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ABSTRACT

Promising results have driven a recent surge of interest in continuous optimization
methods for Bayesian network structure learning from observational data. However,
there are theoretical limitations on the identifiability of underlying structures
obtained from observational data alone. Interventional data provides much richer
information about the underlying data-generating process. However, the extension
and application of methods designed for observational data to include interventions
is not straightforward and remains an open problem. In this paper we provide a
general framework based on continuous optimization and neural networks to create
models for the combination of observational and interventional data. The proposed
method is applicable even in the challenging and realistic case that the identity of
the intervened upon variable is unknown. We examine the proposed method in the
setting of graph recovery both de novo and from a partially-known edge set. We
establish strong benchmark results on several structure learning tasks, including
structure recovery of both synthetic graphs as well as standard graphs from the
Bayesian Network Repository.

1 INTRODUCTION

Structure learning concerns itself with the recovery of the graph structure of Bayesian networks
(BNs) from data samples. A natural application of Bayesian networks is to describe cause-effect
relationships between variables. In that context, one may speak of causal structure learning. Causal
structure learning is challenging because purely observational data may be satisfactorily explained
by multiple Bayesian networks (a Markov equivalence class), but only one is the most robust to
distributional shifts: The one with the correct graph. A more powerful tool than BNs is thus needed
to model causal relationships.

Structural Causal Models (SCMs) are that tool. An SCM over a set of random variables is a
collection of assignments to these variables and a directed acyclic graph of dependencies between
them (Peters et al., 2017, §6.2). Each assignment is a function of only the direct causes of a variable,
plus an independent noise source. An SCM entails precisely one (observational) data distribution.
Interventions on an SCM’s assignments, such as setting a random variable to a fixed value (a hard
intervention), entail new interventional data distributions (Peters et al., 2017, §6.3).

SCMs can be used to answer higher-order questions of cause-and-effect, up the ladder of causation
(Pearl & Mackenzie, 2018). Causal structure learning using SCMs has been attempted in several
disciplines including biology (Sachs et al., 2005; Hill et al., 2016), weather forecasting (Abramson
et al., 1996) and medicine (Lauritzen & Spiegelhalter, 1988; Korb & Nicholson, 2010).

Causal structure is most frequently learned from data drawn from observational distributions. Struc-
ture learning methods generally cannot do more than identify the causal graph up to a Markov
equivalence class (Spirtes et al., 2000). In order to fully identify the true causal graph, a method must
either make restrictive assumptions about the underlying data-generating process, such as linear but
non-Gaussian data (Shimizu et al., 2006), or must access enough data from outside the observational
distribution (i.e., from interventions).

Under certain assumptions about the number, diversity, and nature of the interventions, the true
underlying causal graph is always identifiable, given that the method knows the intervention performed
(Heckerman et al., 1995). In much of the prior work on causal model induction it is assumed that
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there is an experimenter and this experimenter performs interventions. However, in the real world,
interventions can also be performed by other agents, which could lead to unknown interventions
(interventions with unknown target variables). A few works have attempted to learn structures from
unknown-intervention data (Eaton & Murphy, 2007a; Squires et al., 2020; Huang et al., 2020). A
notable such work, (Mooij et al., 2016), has been extended in (Kocaoglu et al., 2019; Jaber et al.,
2020). Although there is no theoretical guarantee that the true causal graph can be identified in that
setting, evidence so far points to that still being the case.

Another common setting is when the graph structure is partially provided, but must be completed. An
example is protein structure learning in biology, where we may have definitive knowledge of some
causal edges in the protein-protein interactome, but the remaining causal edges must be discovered.
We will call this setting “partial graph completion”. This is an easier task compared to learning the
entire graph, since it limits the number of edges that have to be learned.

Figure 1: In many areas of science, such as biology, we try to infer
the underlying mechanisms and structure through experiments. We can
obtain observational data plus interventional data through known (e.g.
by targeting a certain variable) or unknown interventions (e.g. when
it is unclear where the effect of the intervention will be). Knowledge
of existing edges e.g. through previous experiments can likewise be
included and be considered a special case of causal induction.

Recently, a flurry of work on structure learn-
ing using continuous optimization methods has
appeared (Zheng et al., 2018; Yu et al., 2019).
These methods operate on observational data
and are competitive with other methods. Be-
cause of the theoretical limitations on identifica-
tion from purely observational data cited above,
it would be interesting to extend these meth-
ods to interventional data. However, it is not
straightforward to apply continuous optimiza-
tion methods to structure learning from inter-
ventional data. Our key contributions are to
answer the following questions experimentally:

1. Can the proposed model recover true causal structure? Yes, see Figure §4.
2. How does the proposed model compare against state of the art causal methods on real-world

datasets? Favourably; see §5.4 and Table §1.
3. Does a proposed model generalize well to unseen interventions? Yes, see §5.5.
4. How does the proposed model perform on partial graph recovery? It scales to∼ 50 variables

while the other baselines can’t. see §5.7.

2 PRELIMINARIES

Causal modeling. A Structural Causal Model (SCM) (Peters et al., 2017) over a finite number M
of random variables Xi is a set of structural assignments

Xi := fi(Xpa(i,C), Ni) , ∀i ∈ {0, . . . ,M − 1} (1)

Identifiability. In a purely-observational setting, it is known that causal graphs can be distin-
guished only up to a Markov equivalence class. In order to identify the true causal graph structure,
interventional data is needed (Eberhardt et al., 2012).

Interventions. There are several types of common interventions which may be available (Eaton &
Murphy, 2007b). These are: No intervention: only observational data is obtained from the ground
truth model. Hard/perfect: the value of a single or several variables is fixed and then ancestral
sampling is performed on the other variables. Soft/imperfect: the conditional distribution of the
variable on which the intervention is performed is changed. Uncertain: the learner is not sure of
which variable exactly the intervention affected directly. Here we make use of soft intervention
because they include hard intervention as a limiting case and hence are more general.

Structure discovery using continuous optimization. Structure discovery is a super-exponential
search problem that searches though all possible directed acyclic graphs (DAGs). Previous continuous-
optimization structure learning works (Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2019)
mitigate the problem of searching in the super-exponential set of graph structures by considering the
degree to which a hypothesis graph violates “DAG-ness” as an additional penalty to be optimized. If
there are M such variables, the strategy of considering all the possible structural graphs as separate
hypotheses is not feasible because it would require maintaining O(2M
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3 RELATED WORK

The recovery of the underlying structural causal graph from observational and interventional data
is a fundamental problem (Pearl, 1995; 2009; Spirtes et al., 2000). Different approaches have been
studied: score-based, constraint-based, asymmetry-based and continuous optimization methods.
Score-based methods search through the space of all possible directed acyclic graphs (DAGs)
representing the causal structure based on some form of scoring function for network structures
(Heckerman et al., 1995; Chickering, 2002; Tsamardinos et al., 2006; Hauser & Bühlmann, 2012;
Goudet et al., 2017; Cooper & Yoo, 1999; Zhu & Chen, 2019). Constraint-based methods (Spirtes
et al., 2000; Sun et al., 2007; Zhang et al., 2012; Monti et al., 2019; Zhu & Chen, 2019) infer the
DAG by analyzing conditional independences in the data. Eaton & Murphy (2007c) use dynamic
programming techniques to accelerate Markov Chain Monte Carlo (MCMC) sampling in a Bayesian
approach to structure learning for discrete variable DAGs. Peters et al. (2016); Ghassami et al.
(2017); Rojas-Carulla et al. (2018) exploit invariance across environments to infer causal structure,
which faces difficulty scaling due to the iteration over the super-exponential set of possible graphs.
Recently, (Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2019) framed the structure search
as a continuous optimization problem, however, the methods only uses observational data and are
non-trivial to extend to interventional data. In our paper, we present a method that uses continuous
optimization methods that works on both observational and interventional data.

For interventional data, it is often assumed that the models have access to full intervention information,
which is rare in the real world. Rothenhäusler et al. (2015) have investigated the case of additive
shift interventions, while Eaton & Murphy (2007b) have examined the situation where the targets of
experimental interventions are imperfect or uncertain. This is different from our setting where the
intervention is unknown to start with and is assumed to arise from other agents and the environment.

Learning based methods have been proposed (Guyon, 2013; 2014; Lopez-Paz et al., 2015) and there
also exist recent approaches using the generalization ability of neural networks to learn causal signals
from purely observational data (Kalainathan et al., 2018; Goudet et al., 2018). Neural network
methods equipped with learned masks, such as (Ivanov et al., 2018; Li et al., 2019; Yoon et al., 2018;
Douglas et al., 2017), exist in the literature, but only a few (Kalainathan et al., 2018) have been
adapted to causal inference. This last work is, however, tailored for causal inference on continuous
variables and from observations only. Adapting it to a discrete-variable setting is made difficult by its
use of a Generative Adversarial Network (GAN) Goodfellow et al. (2014) framework.

4 STRUCTURE DISCOVERY FROM INTERVENTIONS METHOD

Scope of Applicability and Objective. The proposed method, like any structure learning algorithm,
assumes the availability of a data-generating process based on ancestral sampling of a ground-truth
SCM of M variables, which can be queried for samples. The SCM supports applying and retracting
known or unknown interventions. The method can support infinite- or finite-data as well as infinite-
or finite-intervention regimes.

The objective is, then, to learn the SCM’s structure from the insights that each intervention gives
about cause-effect relationships between variables in the SCM.

4.1 PROBLEM SETTING AND ASSUMPTIONS

In this paper, we restrict the problem setting to specific, but still broad classes of SCMs and interven-
tions. In particular, we assume that:

Data is discrete-valued. The SCM’s random variables are all categorical.

Causal sufficiency. For every data sample, the value of all variables are available; There are no
latent confounders.

Interventions are localized. They affect only a single variable (but which one may not be known).

Interventions are soft. An intervention does not necessarily pin its target random variable to a fixed
value (though it may, as a special case). It changes the relationship of a variable with its parents.
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Interventions do not stack. Before a new intervention is made, the previous one is fully retracted.
This stops the SCM from wandering away from its initial, observational configuration after a long
series of interventions.

No control over interventions. The structure learning algorithm has control neither of the target, nor
the nature of the next intervention on the SCM.

For a detailed description of the interventions, refer to §A.2.

4.2 VARIATIONS AND PRIOR KNOWLEDGE

In the problem setting above, the ground-truth SCM is completely opaque to us. However, we
consider two interesting relaxations of this formulation:

Complete or partial graph recovery. We may already know the existence of certain cause-effect
edges and non-edges within the ground-truth SCM. If such prior information is available, it turns a
complete graph recovery problem into one of partial graph recovery. Larger SCMs can be tackled if
only parts of the graph need to be recovered.

Known or unknown interventions: The interventions can either be known or unknown to the learned
model.

We demonstrate that the proposed method can naturally incorporate this prior information to improve
its performance.

4.3 METHOD OVERVIEW

Figure 2: Workflow for our proposed
method SDI. Phase 1 samples graphs un-
der the model’s current belief about the
edge structure and fits parameters to obser-
vational data. Phase 2 scores a small set of
graphs against interventional data and as-
signs rewards according to graphs’ ability
to predict interventions. Phase 3 uses the
rewards from Phase 2 to update the beliefs
about the edge structure. If the believed
edge probabilities have all saturated near 0
or 1, the method has converged.

The proposed method is a score-based, iterative, continuous-
optimization method consisting of three phases that flow into one
other (See Figure 2). During the three-phase procedure, a structural
representation of a DAG and a functional representation of a set of
independent causal mechanisms are trained jointly until convergence.
Because the structural and functional parameters are not independent
and do influence each other, we train them in alternating phases, a
form of block coordinate descent optimization.

4.3.1 PARAMETRIZATION

We distinguish two sets of parameters: The structural parameters γ
and the functional parameters θ. Given a graph of M variables, we
parametrize the structure γ as a matrix RM×M such that σ(γij) is
our belief in random variable Xj being a direct cause of Xi, where
σ(x) = 1/(1 + exp(−x)) is the sigmoid function. The matrix σ(γ) is thus a soft adjacency matrix.

The set of functional parameters θi parametrizes the conditional probability distribution of Xi given
its parent set Xpa(i,C), with C ∼ Ber(σ(γ)) a hypothesized configuration of the SCM’s DAG.

4.3.2 PHASE 1: GRAPH FITTING ON OBSERVATIONAL DATA

During Phase 1, the functional parameters θ are trained to maximize the likelihood of randomly
drawn observational data under graphs randomly drawn from our current beliefs about the edge
structure. We draw graph configurations Cij ∼ Ber(σ(γij)) and batches of observational data
from the unintervened ground-truth SCM, then maximize the log-likelihood of the batch under that
configuration using SGD. The use of graph configurations sampling from Bernoulli distributions is
analogous to dropout on the inputs of the functional models (in our implementation, MLPs), giving
us an ensemble of neural networks that can model the observational data.

4.3.3 PHASE 2: GRAPH SCORING ON INTERVENTIONAL DATA

During Phase 2, a number of graph configurations are sampled from the current edge beliefs
parametrized by γ, and scored on data samples drawn from the intervention SCM.
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Intervention applied: At the beginning of Phase 2, an intervention is applied to the ground-truth
SCM. This intervention is not under the control of the method. In our implementation, and un-
beknownst to the model, the target variable is chosen uniformly randomly from all M variables
throughout the optimization process.

Intervention predicted: If the target of the intervention is not known, it is predicted using a simple
heuristic. A small number of interventional data samples are drawn from the SCM and more graphs
are sampled from our current edge beliefs. The average log-likelihood of each individual variable
Xi across the samples is then computed using the functional model parameters θ fine-tuned on
observational data in Phase 1. The variable Xi showing the greatest deterioration in log-likelihood is
assumed to be the target because the observational distribution most poorly predicts that variable.

If the target of the intervention is known, then this is taken as ground-truth knowledge for the purpose
of subsequent steps, and no prediction needs to be done.

Graphs Sampled and Scored: A new set of interventional data samples and graph configurations are
now drawn from the intervention SCM and edge beliefs respectively. The log-likelihood of the data
batches under the hypothesized configurations is computed, with one modification: The contribution
to the total log-likelihood of a sample X coming from the target (or predicted-target) intervention
variable Xi is masked. Because Xi was intervened upon (in the manner of a Pearl do-operation, soft
or hard), the values one gets for that variable should be taken as givens, not as contributors to the total
log-likelihood of the sample. As well, no gradient should be allowed to propagate into the variable’s
learned functional parametrization θi, because it was not actually responsible for the outcome.

Intervention retracted: After Phase 2, the intervention is retracted, per our modelling assumptions.

4.3.4 PHASE 3: CREDIT ASSIGNMENT TO STRUCTURAL PARAMETERS

During Phase 3, the scores of the interventional data batches over various graph configurations are
aggregated into a gradient for the structural parameters γ. Because a discrete Bernoulli random
sampling process was used to sample graph configurations under which the log-likelihoods were
computed, we require a gradient estimator to propagate gradient through to the γ structural parameters.
Several alternatives exist, but we adopt for this purpose the REINFORCE-like gradient estimator gij
proposed by Bengio et al. (2019):

gij =

∑
k(σ(γij)− c

(k)
ij )LC(k)

,i (X)∑
k LC(k)

,i (X)
, ∀i, j ∈ {0, . . . ,M−1} (2)

where the (k) superscript indicates the values obtained for the k-th draw of C under the current edge
beliefs parametrized by γ. Therefore, L(k)

C,i(X) can be read as the log-likelihood of variable Xi in the
data sample X under the k’th configuration, C(k), drawn from our edge beliefs. Using the estimated
gradient, we then update γ with SGD, and return to Phase 1 of the continuous optimization process.

The gradient estimator gij minimizes an implicit empirical risk objective with respect to γij . When
the functional and structural parameters θ and γ are “sufficiently close” to their minima, the estimator
gij empirically converges quickly towards that minimum γ∗ as shown in Figure 16 of Appendix A.13.

Acyclic Constraint: We include a regularization term JDAG(γ) that penalizes length-2 cycles in the
learned adjacency matrix σ(γ), with a tunable strength λDAG. The regularization term is JDAG(γ) =∑
i 6=j cosh(σ(γij)σ(γji)), ∀i, j ∈ {0, . . . ,M−1} and is derived from Zheng et al. (2018). The

details of the derivation are in the Appendix. We explore several different values of λDAG and their
effects in our experimental setup. Suppression of longer-length cycles was not found to be worthwhile
for the increased computational expense.

5 EXPERIMENTAL SETUP AND RESULTS

We first evaluate the proposed method on a synthetic dataset where we have control over the number
of variables and causal edges in the ground-truth SCM. This allows us to analyze the performance of
the proposed method under various conditions. We then evaluate the proposed method on real-world
datasets from the BnLearn dataset repository. We also consider the two variations of §4.2: Recovering
only part of the graph (when the rest is known), and exploiting knowledge of the intervention target.
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The summary of our findings is: 1) We show strong results for graph recovery for all synthetic graphs
in comparisons with other baselines, measured by Hamming distance. 2) The proposed method
achieves high accuracy on partial graph recovery for large, real-world graphs. 3) The proposed
method’s intervention target prediction heuristic closes the gap between the known- and unknown-
target intervention scenarios. 4) The proposed method generalizes well to unseen interventions. 5)
The proposed method’s time-to-solution scaling appears to be driven by the number of edges in the
groundtruth graph moreso than the number of variables.

5.1 MODEL DESCRIPTION
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Figure 3: MLP Model Architecture for an M = 4, N = 3 SCM.
The model computes the conditional probabilities ofA,B,C,D given
their parents using a stack of four independent MLPs. The MLP input
layer uses an adjacency matrix sampled from Ber(σ(γ)) as an input
mask to force the model to make use only of parent nodes to predict
their child node.

Learner model. Without loss of generality,
we let θi = {W0i,B0i,W1i,B1i} define a stack
of M one-hidden-layer MLPs, one for each ran-
dom variable Xi. A more appropriate model,
such as a CNN, can be chosen using domain-
specific knowledge; the primary advantage of
using MLPs is that the hypothesized DAG con-
figurations cij can be readily used to mask the
inputs of MLP i, as shown in Figure 3.

To force the structural equation fi corresponding
to Xi to rely exclusively on its direct ancestor
set pa(i, C) under hypothesis adjacency matrix
C (See Eqn. 1), the one-hot input vector Xj for
variable Xi’s MLP is masked by the Boolean
element cij . An example of the multi-MLP ar-
chitecture with M=4 categorical variables of
N=3 categories is shown in Figure 3. For more
details, refer to Appendix A.4.

Ground-truth model. Ground-truth SCM models are parametrized either as CPTs with parameters
from BnLearn (in the case of real-world graphs), or as a second stack of MLPs similar to the learner
model, with randomly-initialized functional parameters θGT and the desired adjacency matrix γGT.

Interventions. In all experiments, at most one (soft) intervention is concurrently performed. To
simulate a soft intervention on variable Xi, we reinitialize its ground-truth conditional distribution’s
MLP parameters or CPT table randomly, while leaving the other variables untouched. For more
details about the interventions, please refer to Appendix A.2.

5.2 SYNTHETIC DATASETS EXPERIMENTS
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Figure 4: Cross entropy (CE) and Area-Under-Curve (AUC/AUROC) for edge probabilities of learned
graph against ground-truth for synthetic SCMs. Error bars represent ±1σ over PRNG seeds 1-5. Left to
right: chainM,jungleM,fullM,M = 3 . . . 8 (9 . . . 13 in Appendix A.6.1). Graphs (3-8 variables) all
learn perfectly with AUROC reaching 1.0. However, denser graphs (fullM) take longer to converge.

We first evaluate the
model’s performance
on several randomly-
initialized SCMs with
specific, representative
graph structures.
Since the number of
possible DAGs grows
super-exponentially
with the number of
variables, for M=4 up
to 13 a selection of
representative and edge-case DAGs are chosen. chainM and fullM (M=3-13) are the minimally-
and maximally-connected M -variable DAGs, while treeM and jungleM are tree-like intermediate
graphs. colliderM is the (M−1)→ 1 collider graph. The details of the setup is in Appendix A.6.

Results. The model can recover most synthetic DAGs with high accuracy, as measured by Structural
Hamming Distance (SHD) between learned and ground-truth DAGs. Table 1 shows our proposed
method outperforming all other baseline methods, and learns all graphs perfectly for 3 to 13 variables
(excepting full). For DAGs ranging from 3 to 8 variables, the AUROCs all eventually reach 1.0
(indicating perfect classification into edge/non-edge; Refer to Figure 4). For both large (M > 10)
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Table 1: Baseline comparisons: Structural Hamming Distance (SHD) (lower is better) for learned and ground-truth edges on various graphs
from both synthetic and real datasets, compared to (Peters et al., 2016), (Heinze-Deml et al., 2018b), (Eaton & Murphy, 2007b), (Yu et al.,
2019) and (Zheng et al., 2018). The proposed method (Structural Discovery from Interventions (SDI)) is run on random seeds 1 − 5 and we
pick the worst performing model out of the random seeds in the table. OOM: out of memory. Our proposed method correctly recovers the true
causal graph, with the exception of Sachs and full13, and it significantly outperforms all other baseline methods. Proposed method as well as
all the baselines uses similar amount of data.

Method Asia Sachs collider chain jungle collider full
M 8 11 8 13 13 13 13

Zheng et al. (2018) 14 22 18 39 22 24 71
Yu et al. (2019) 10 19 7 14 16 12 77
Heinze-Deml et al. (2018b) 8 17 7 12 12 7 28
Peters et al. (2016) 5 17 2 2 8 2 16
Eaton & Murphy (2007a) 0 OOM 7 OOM OOM OOM OOM
Proposed Method (SDI) 0 6 0 0 0 0 7

and dense DAGs (e.g. full13) the model begins encountering difficulties, as shown in Table 1 and
Appendix §A.6.1.

Small graphs (M < 10) are less sensitive than larger ones to our hyperparameters, notably the sparsity
and acyclic regularization (§4.3.4) terms. In §A.5, we perform an analysis of these hyperparameters.

5.3 REAL-WORLD DATASETS: BNLEARN

The Bayesian Network Repository is a collection of commonly-used causal Bayesian networks from
the literature, suitable for Bayesian and causal learning benchmarks. We evaluate the proposed method
on the Earthquake (Korb & Nicholson, 2010), Cancer (Korb & Nicholson, 2010), Asia (Lauritzen &
Spiegelhalter, 1988) and Sachs (Sachs et al., 2005) datasets (M =5, 5, 8 and 11-variables respectively,
maximum in-degree 3) in the BnLearn dataset repository.

Results. As shown in Table 1, the proposed method perfectly recovers the DAG of Asia, while
making a small number of errors (SHD=6) for Sachs (11-variables). It thus significantly outperforms
all other baselines models. Figures 8 & 9 visualize what the model has learned at several stages of
learning. Results for Cancer and Asia can be found in the appendices, Figure 17 and 18.

5.4 COMPARISONS WITH OTHER METHODS

As shown in Table 1, we compared the proposed SDI method to ICP ((Peters et al., 2016)), non-linear
ICP ((Heinze-Deml et al., 2018b)), and (Eaton & Murphy, 2007b; Zheng et al., 2018; Yu et al.,
2019) on Asia (Lauritzen & Spiegelhalter, 1988), Sachs (Sachs et al., 2005) and representative
synthetic graphs. Eaton & Murphy (2007b) handles uncertain interventions and Peters et al. (2016),
Heinze-Deml et al. (2018b) handles unknown interventions. However, neither attempts to predict the
intervention. As shown in Table 1, we significantly outperform ICP, non-linear ICP, and the methods
in (Yu et al., 2019) and (Zheng et al., 2018). Furthermore, Eaton & Murphy (2007b) runs out of
memory for graphs larger than M = 10 because modelling of uncertain interventions is done using
“shadow” random variables (as suggested by the authors), and thus recovering the DAG internally
requires solving a d = 2M -variable problem. Their method’s extremely poor time- and space-scaling
of O(d2d) makes it unusable beyond d > 20.

For SDIs, we threshold our edge beliefs at σ(γ) = 0.5 to derive a graph, but the continued decrease
of the cross-entropy loss (Figure 4) hints at SDI’s convergence onto the correct causal model. Please
refer to Appendix §A.8 for full details and results.

5.5 GENERALIZATION TO PREVIOUSLY UNSEEN INTERVENTIONS

Table 2: Evaluating the consequences of a previously unseen intervention: (test
log-likelihood under intervention)

fork3 chain3 confounder3 collider3

Baseline -0.5036 -0.4562 -0.3628 -0.5082
SDI -0.4502 -0.3801 -0.2819 -0.4677

It is often argued that machine learn-
ing approaches based purely on cap-
turing joint distributions do not nec-
essarily yield models that generalize
to unseen experiments, since they do
not explicitly model changes through
interventions. By way of contrast,
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causal models use the concept of interventions to explicitly model changing environments and thus
hold the promise of robustness under distributional shifts (Pearl, 2009; Schölkopf et al., 2012; Peters
et al., 2017). To test the robustness of causal modelling to previously unseen interventions (new values
for an intervened variable), we evaluate a well-trained causal model against a variant, non-causal
model trained with cij = 1, i 6= j. An intervention is performed on the ground-truth SCM, fresh
interventional data is drawn from it, and the models, with knowledge of the intervention target, are
asked to predict the other variables given their parents. The average log-likelihoods of the data
under both models are computed and contrasted. The intervention variable’s contribution to the log-
likelihood is masked. For all 3-variable graphs (chain3, fork3, collider3, confounder3),
the causal model attributes higher log-likelihood to the intervention distribution’s samples than the
non-causal variant, thereby demonstrating causal models’ superior generalization ability in transfer
tasks. Table 2 collects these results.

5.6 VARIANT: PREDICTING INTERVENTIONS

Table 3: Intervention Prediction Accuracy: (identify on which variable the
intervention took place)

3 variables 4 variables 5 variables 8 variables

95 % 93 % 85 % 71 %

In Phase 2 (§4.3.3), we use a simple heuris-
tic to predict the intervention target variable.
Experiments show that this heuristic func-
tions well in practice, yielding correct pre-
dictions far more often than by chance alone
(Table 3). Guessing the intervention variable
randomly, or not guessing it at all, leads to a significant drop in the model performance, even for
3-variable graphs (Fig. 11 Left). Training SDI with intervention prediction closely tracks training
with leaked knowledge of the ground-truth intervention on larger, 7-variable graphs (Fig. 11 Right).

5.7 VARIANT: PARTIAL GRAPH RECOVERY

Instead of learning causal structures de novo, we may have partial information about the
ground-truth SCM and may only need to fill in missing information (§4.2). An exam-
ple is protein structure discovery in biology, where some causal relationships have been
definitely established and others remain open hypotheses. This is an easier task com-
pared to full graph recovery, since the model only has to search for missing edges.

Table 4: Partial Graph Recovery on Alarm (Bein-
lich et al., 1989) and Barley (Kristensen & Rasmussen,
2002). The model is asked to predict 50 edges in Bar-
ley and 40 edges in Alarm. The accuracy is measured in
Structural Hamming Distance (SHD). SDI achieved over
90% accuracy on both graphs.

Graph Alarm Barley
Number of variables 37 48
Total Edges 46 84

Edges to recover 40 50
Recovered Edges 37 45
Errors (in SHD) 3 5

We evaluate the proposed method on Barley (Kristensen
& Rasmussen, 2002) (M = 48) and Alarm (Beinlich et al.,
1989) (M = 37) from the BnLearn repository. The model
is asked to predict 50 edges from Barley and 40 edges
from Alarm. The model reached ≥ 90% accuracy on both
datasets, as shown in Table 4.

5.8 ABLATION AND ANALYSIS

As shown in Figure 12, larger graphs (such as M > 6) and
denser graphs (such as full8) are progressively more dif-
ficult to learn. For denser graphs, the learned models have
higher sample complexity, higher variance and slightly
worse results. Refer to Appendix §A.9 for complete results
on all graphs. Hyperparameters. Hyperparameters for all
experiments were kept identical unless otherwise stated. We study the effect of DAG and sparsity
penalties in the following paragraph. For more details, please refer to Appendix §A.5 .

Importance of regularization. Valid configurations C for a causal model are expected to be a)
sparse and b) acyclic. To promote such solutions, we use DAG and sparsity regularization with
tunable hyperparameters. We set the DAG penalty to 0.5 and sparsity penalty to 0.1. We run ablation
studies on different values of the regularizers and study their effect. We find that smaller graphs
are less sensitive to different values of regularizer than larger graphs. For details, refer to Appendix
§A.12.

Importance of dropout. To train functional parameter for an observational distribution, sampling
adjacency matrices is required. We "drop out" each edge (with a probability of σ(γ)) in our experi-
ments during functional parameter training of the conditional distributions of the SCM. Please refer
to Appendix §A.14 for a more detailed analysis.
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6 CONCLUSION

In this work, we introduced an experimentally successful method (SDI) for causal structure discovery
using continuous optimization, combining information from both observational and interventional
data. We show in experiments that it can recover true causal structure, that it generalizes well to
unseen interventions, that it compares very well against start-of-the-art causal discovery methods on
real world datasets, and that it scales even better on problems where only part of the graph is known.
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A ANNEXES

A.1 TRAINING ALGORITHM

Algorithm 1 shows the pseudocode of the method described in §4. Typical values for the loop trip
counts are found in §A.11.

A.2 PRELIMINARIES

Interventions. In a purely-observational setting, it is known that causal graphs can be distinguished
only up to a Markov equivalence class. In order to identify the true causal graph intervention data is
needed (Eberhardt et al., 2012). Several types of common interventions may be available (Eaton &
Murphy, 2007b). These are: No intervention: only observational data is obtained from the ground
truth causal model. Hard/perfect: the value of a single or several variables is fixed and then ancestral
sampling is performed on the other variables. Soft/imperfect: the conditional distribution of the
variable on which the intervention is performed is changed. Uncertain: the learner is not sure of
which variable exactly the intervention affected directly. Here we make use of soft interventions for
several reasons: First, they include hard interventions as a limiting case and hence are more general.
Second, in many real-world scenarios, it is more difficult to perform a hard intervention compared to
a soft one. We also deal with a special case of uncertain interventions, where the variable selected for
intervention is random and unknown. We call these unidentified or unknown interventions.

Intervention setup. For our experiments, the groundtruth models of the synthetic datasets are
modeled by neural networks as described in section A.6. Each neural network models the relationship
of the causal parents and a variable. We perform our intervention by first randomly selecting which
variable to intervene on, then soft-intervening on it. The selected variable is sampled from a uniform
distribution. The soft intervention is a reinitialization of its neural network’s parameters.

Causal sufficiency. The inability to distinguish which causal graph, within a Markov equivalence
class, is the correct one in the purely-observational setting is called the identifiability problem. In our
setting, all variables are observed (there are no latent confounders) and all interventions are random
and independent. Hence, within our setting, if the interventions are known, then the true causal
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Algorithm 1 Training Algorithm
1: procedure TRAINING(SCM Ground-Truth Entailed Distribution D, with M nodes and N categories)
2: Let i an index from 0 to M − 1

3: for I iterations, or until convergence, do
4: if I % reinitialization_period == 0 then
5: D ← reinitialize(D)

6: for F functional parameter training steps do . Phase 1
7: X ∼ D
8: C ∼ Ber(σ(γ))
9: L = − logP (X|C ; θ)

10: θt+1 ← Adam(θt,∇θL)

11: for Q interventions do
. Phase 2

12: I_N← randint(0, M − 1) . Uniform selection of target
13: Dint :=D with intervention on node I_N . Apply intervention

14: if predicting intervention then . Phase 2 Prediction
15: Li ← 0 ∀i
16: for NP prediction steps do
17: X ∼ Dint
18: for CP configurations do
19: C ∼ Ber(σ(γ))
20: Li ← Li − logPi(X|Ci; θslow) ∀i
21: I_N← argmax(Li)

22: gammagrads, logregrets = [], [] . Phase 2 Scoring
23: for NS scoring steps do
24: X ∼ Dint
25: gammagrad, logregret = 0, 0
26: for CS configurations do
27: C ∼ Ber(σ(γ))
28: Li = − logPi(X|Ci; θslow) ∀i
29: gammagrad += σ(γ)− C . Collect σ(γ)− C for Equation 2
30: logregret +=

∑
i6=I_N

Li . Collect LC(k)
,i (X) for Equation 2

31: gammagrads.append(gammagrad)
32: logregrets.append(logregret)

. Phase 3

33: gij =

∑
k(σ(γij)− c

(k)
ij )LC(k)

,i (X)∑
k LC

(k)
,i (X)

. Gradient Estimator, Equation 2

34: g ← g +∇γ (λsparse Lsparse(γ) + λDAG LDAG(γ)) . Regularizers
35: γt+1 ← Adam(γt, g)

graph is always identifiable in principle (Eberhardt et al., 2012; Heinze-Deml et al., 2018a). We also
consider here situations where a single variable is randomly selected and intervened upon with a
soft or imprecise intervention, its identity is unknown and must be inferred. In this case, there is no
theoretical guarantee that the causal graph is identifiable. However, there is existing work Peters et al.
(2016) that handles this scenario and the proposed method is also proven to work empirically.

Faithfulness. It is possible for causally-related variables to be probabilistically independent purely
by happenstance, such as when causal effects along multiple paths cancel out. This is called
unfaithfulness. We assume that faithfulness holds, since the γ gradient estimate is extracted from
shifts in probability distributions. However, because of the “soft” nature of our interventions and their
infinite variety, it would be exceedingly unlikely for cancellation-related unfaithfulness to persist
throughout the causal-learning procedure.

14
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A.3 EXPERIMENTAL SETUP

For all datasets, the weight parameters for the learned model is initialized randomly. In order to not
bias the structural parameters, all σ(γ) are initialized to 0.5 in the beginning of training. Details of
hyperparameters of the learner model are described in Section A.5. The experimental setup for the
groundtruth model for the synthetic data can be found in Section A.6 and the details for the real world
data are described in Section A.7.

A.4 MODEL SETUP

As discussed in section 4, we model the M variables in the graph using M independent MLPs, each
possesses an input layer of M × N neurons (for M one-hot vectors of length N each), a single
hidden layer chosen arbitrarily to have max(4M, 4N) neurons with a LeakyReLU activation of
slope 0.1, and a linear output layer of N neurons representing the unnormalized log-probabilities of
each category (a softmax then recovers the conditional probabilities from these logits). To force fi
to rely exclusively on the direct ancestor set pa(i, C) under adjacency matrix C (See Eqn. 2), the
one-hot input vector Xj for variable Xi’s MLP is masked by the Boolean element cij . The functional
parameters of the MLP are the set θ = {W0ihjn,B0ih,W1inh,B1in}.An example of the multi-MLP
architecture with M=3 categorical variables of N=2 categories is shown in Figure 3.

A.5 HYPERPARAMETERS

Learner model. All experiments on the synthetic graphs of size 3-8 use the same hyperparameters.
Both the functional and structural parameters are optimized using the Adam optimizer Kingma & Ba
(2014). We use a learning rate of 5e− 2 with alpha of 0.9 for the functional parameters, and we use a
learning rate of 5e− 3 with alpha of 0.1 for the structural parameters. We perform 5 runs of each
experiment with random seeds 1− 5 and error bars are plotted for various graphs from size 3 to 8 in
Figure 4. We use a batch size of 256. The L1 norm regularizer is set to 0.1 and the DAG regularizer
is set to 0.5 for all experiments. For each γ update step, we sample 25 structural configurations from
the current γ. In all experiments, we use 100 batches from the interventional distribution to predict
the intervened node.

A.6 SYNTHETIC DATA

A

B

C

chain3

A

B C

fork3

A B

C

collider3

A

B

C

confounder3

Figure 5: Every possible 3-variable connected DAG.

Synthetic datasets. The synthetic datasets in the paper are modeled by neural networks. All
neural networks are 2 layered feed forward neural networks (MLPs) with Leaky ReLU activations
between layers. The parameters of the neural network are initialized orthogonally within the range of
(−2.5, 2.5). This range was selected such that they output a non-trivial distribution. The biases are
initialized uniformly between (−1.1, 1.1).
SCM with n variables are modeled by n feedforward neural networks (MLPs) as described in §5.1.
We assume an acyclic causal graph so that we may easily sample from them. Hence, given any pair
of random variables A and B, either A −→ B, B −→ A or A and B are independent.

The MLP representing the ground-truth SCM has its weights θ initialized use orthogonal initialization
with gain 2.5 and the biases are initialized using a uniform initialization between−1.1 and 1.1, which
was empirically found to yield "interesting" yet learnable random SCMs.

15



Under review as a conference paper at ICLR 2021

(a) chainN (b) colliderN (c) bidiagN

(d) fullN (e) jungleN

Figure 6: Figures for various synthetic graphs. chain, collider, bidiagonal, full and jungle graph.

We study a variety of SCMs with different ground-truth edge structures γ. Our selection of synthetic
graphs explores various extremes in the space of DAGs, stress-testing SDI. The chain graphs
are the sparsest connected graphs possible, and are relatively easy to learn. The bidiag graphs
are extensions of chain where there are 2-hops as well as single hops between nodes, doubling
the number of edges and creating a meshed chain of forks and colliders. The jungle graphs are
binary-tree-like graphs, but with each node connected directly to its grandparent in the tree as well.
Half the nodes in a jungle graph are leaves, and the out-degree is up to 6. The collider graphs
deliberately collide independent M − 1 ancestors into the last node; They stress maximum in-degree.
Lastly, the full graphs are the maximally dense DAGs. All nodes are direct parents of all nodes
below them in the topological order. The maximum in- and out-degree are both M − 1. These graphs
are depicted in Figure 6.

A.6.1 SYNTHETIC DATA RESULTS

The model can recover correctly all synthetic graphs with 10 variables or less, as shown in Figure 10
and Table 1. For graphs larger than 10 variables, the model found it more challenging to recover the
denser graphs (e.g. fullM), as shown in Table 1. Plots of the training curves showing average cross
entropy (CE) and Area-Under-Curve(AUC/AUCROC) for edge probabilities of the learned graph
against the ground-truth graph for synthetic SCMs with 3-13 variables are available in Figure 10.

A.7 BNLEARN DATA REPOSITORY

The repo contains many datasets with various sizes and structures modeling different variables. We
evaluate the proposed method on 3 of the datasets in the repo, namely the Earthquake (Korb &
Nicholson, 2010), Cancer (Korb & Nicholson, 2010) and Asia (Lauritzen & Spiegelhalter, 1988)
datasets. The ground-truth model structure for the Cancer (Korb & Nicholson, 2010) and Earthquake
(Korb & Nicholson, 2010) datasets are shown in Figure 7. Note that even though the structure for the
two datasets seems to be the same, the conditional probability tables (CPTs) for these datasets are
very different and hence results in different structured causal models (SCMs) for each.
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Figure 7: Left to right: Ground Truth SCM for Cancer, Groundtruth SCM for Earthquake, Groundtruth SCM for Asia.

Method Asia chain8 jungle8 collider7 collider8 full8

(Zheng et al., 2018) 14 24 14 11 18 21
(Yu et al., 2019) 10 7 12 6 7 25
(Heinze-Deml et al., 2018b) 8 7 12 6 7 28
(Peters et al., 2016) 5 3 8 4 2 16
(Eaton & Murphy, 2007a) 0 0 0 7 7 1
SDIs 0 0 0 0 0 0

Table 5: Baseline comparisons: Hamming distance (lower is better) for learned and ground-truth edges on various graphs from both synthetic
and real datasets, compared to (Peters et al., 2016), (Heinze-Deml et al., 2018b), (Eaton & Murphy, 2007b), (Yu et al., 2019) and (Zheng et al.,
2018). The proposed SDI is run on random seeds 1− 5 and we pick the worst performing model out of the random seeds in the table.

Figure 8: Learned edges at three different stages of training. Left: chain4 (chain graph with 4 variables). Right: full4 (tournament graph
with 4 variables).

A.8 COMPARISONS TO OTHER METHODS

As described in section 5.4, we compare to 5 other methods. The full comparison between SDIs and
other methods on various graphs can be found in Table 1.

One of these methods, DAG-GNN Yu et al. (2019), outputs 3 graphs based on different criteria: best
mean square error (MSE), best negative loglikelihood (NLL) and best evidence lower bound (ELBO).
We report performance of all outputs of DAG-GNN Yu et al. (2019) in Table 6, and the best one is
selected for Table 1.

A.9 SPARSITY OF GROUND-TRUTH GRAPH

We evaluated the performance of SDI on graphs of various size and sparsity to better understand the
performance of the model. We evaluated the proposed model on 4 representative types of graphs in
increasing order of density. They are the chain, jungle, bidiag and full graphs. As shown
in the results in figure 12, for graphs of size 5 or smaller, there is almost no difference in the final
results in terms of variance and sample complexity. However, as the graphs gets larger (than 6), the
denser graphs (full graphs) gets progressively more difficult to learn compared to the sparser graphs
(chain, jungle and bidiag). The models learned for denser graphs have higher complexity,
higher variance and slightly worse results.
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Figure 9: Top Left: Earthquake: Learned edges at three different stages of training. Top Right: Asia: Learned edges at three different stages
of training. Bottom: chain10 at different stages of training, clearly displaying Markov-equivalence of causal and anti-causal chain. Training
resolves in causal direction after further training.

SDI Best MSE Best NLL Best Elbo

Asia 0 10 10 13
chain8 0 7 7 7
jungle8 0 12 12 13
collider7 0 6 6 6
collider8 0 8 8 7
full8 0 27 25 27

Table 6: Baseline comparisons: Hamming distance (lower is better) for learned and ground-truth edges on Asia and various synthetic graphs.
compared to DAG-GNN Yu et al. (2019). DAG-GNN outputs 3 graphs according to different criterion. We show results on all outputs in this
table and we show the best performing result in Table 1.

A.10 PREDICTING INTERVENTIONS

In Phase 2, we score graph configurations based on how well they fit the interventional data. We find
that it is necessary to avoid disturbing the learned parameters of intervened variables, and to ignore
its contribution to the total negative log-likelihood of the sample. Intuitively, this is because, having
been intervened upon, that variable should be taken as a given. It should especially not be interpreted
as a poorly-learned variable requiring a tuning of its functional parameters, because those functional
parameters were not responsible for the value of that variable; The extrinsic intervention was.

Since an intervened variable is likely to be unusually poorly predicted, we heuristically determine
that the most poorly predicted variable is the intervention variable. We then zero out its contribution
to the log-likelihood of the sample and block gradient into its functional parameters.

Figure 11 illustrates the necessity of this process. When using the prediction heuristic, the training
curve closely tracks training with ground-truth knowledge of the identity of the intervention. If no
prediction is made, or a random prediction is made, training proceeds much more slowly, or fails
entirely.

A.11 SAMPLE COMPLEXITY

Our method is heavily reliant on sampling of configurations and data in Phases 1 and 2. We present
here the breakdown of the sample complexity. Let

• I be the number of iterations of the method, (typical: 500-2000)

• B the number of samples per batch, (typical: 256)

• F the number of functional parameter training iterations in Phase 1, (typical: 10000)

• Q the number of interventions performed in Phase 2, (typical: 100)

• NP the number of data batches for prediction, (typical: 100)
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Chain Jungle Full
3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

ldag=0.5, lsparse=0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ldag=0.5, lsparse=0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ldag=0., lsparse=0.1 0 0 0 1 0 0 0 0 0 1 3 1 0 0 0 0 1 6

Table 7: Regularizer: SDI performance measured by Hamming distance to the ground-truth graph. Comparisons are between SDIs with
different regularizer settings for different graphs. Our default setting is ldag = 0.5, lsparse = 0.1, with ldag the DAG regularization
strength and lsparse the sparsity regularization strength. As shown in the table, SDIs is not very sensitive to different regularizer settings.
Tasks with non-zero Hamming distance (errors) are in bold.
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Figure 10: Cross entropy (CE) and Area-Under-Curve (AUC/AUROC) for edge probabilities of learned graph against ground-truth for synthetic
SCMs. Error bars represent ±1σ over PRNG seeds 1-5. Left to right, up to down: chainM,jungleM,fullM,M = 3 . . . 8 (9 . . . 13
in Appendix A.6.1). Graphs (3-13 variables) all learn perfectly with AUROC reaching 1.0. However, denser graphs (fullM) take longer to
converge.

• CP the number of graph configurations drawn per prediction data batch, (typical: 10)

• NS the number of data batches for scoring, (typical: 10)

• CS the number of graph configurations drawn per scoring data batch. (typical: 20-30)

Then the total number of interventions performed, and configurations and samples drawn, over an
entire run are:

Interventions = IQ = γ updates (3)
Samples = I( F︸︷︷︸

Phase 1

+Q(NP +NS)︸ ︷︷ ︸
Phase 2

)B (4)

Configurations = I( F︸︷︷︸
Phase 1

+Q(CPNP + CSNS)︸ ︷︷ ︸
Phase 2

) (5)

Because of the multiplicative effect of these factors, the number of data samples required can quickly
spiral out of control. For typical values, as many as 500 × 10000 × 256 = 1.28e9 observational
and 500 × 100 × (100 + 10) × 256 = 1.408e9 interventional samples are required. To alleviate
this problem slightly, we limit the number of samples generated for each intervention; This limit is
usually 500-2000.
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Figure 11: Ablation Study of Intervention Prediction Cross-entropy loss over time on multiple graphs and intervention prediction modes.
Above Left: All 3-variable graphs. Solid/dashed lines: Ground-truth & Prediction strategies. Dotted lines: Random- & No-Prediction strate-
gies. Training with prediction closely tracks ground-truth. Above Right: Comparison for 7-variable graphs, ground-truth against prediction
strategy. Training with prediction still closely tracks ground-truth at larger scales. Below: Performance on 15-variable graphs with known
intervention targets.

A.12 EFFECT OF REGULARIZATION

Importance of sparsity regularizer. We use a L1 regularizer on the structure parameters γ to
encourage a sparse representation of edges in the causal graph. In order to better understand the
effect of the L1 regularizer, we conducted ablation studies on the L1 regularizer. It seems that the
regularizer has an small effect on rate of converges and that the model converges faster with the
regularizer, This is shown in Figure 13. However, this does not seem to affect the final value the
model converges to, as is shown in Table 7.

Importance of DAG regularizer. We use an acyclic regularizer to discourage length-2 cycles in
the learned model. We found that for small models (≤ 5 variables), the acyclic regularizer helps with
faster convergence, without improving significantly the final cross-entropy. This is illustrated for the
3-variable graphs in Figure 14. However, for graphs larger than 5 variables, the acyclic regularizer
starts playing an important role in encouraging the model to learn the correct structure. This is shown
in the ablation study in Table 7.

A.13 NEAR-OPTIMUM PERFORMANCE OF GRADIENT ESTIMATOR

The gradient estimator gij we use to minimize the empirical risk w.r.t. the structural parameters γ,
defined in Eq. 2 is adapted from Bengio et al. (2019). We verify that the estimator samples the correct
gradient by an experiment that tests convergence near the optimum.

To do this, we pre-initialize the structural and functional parameters near the global minimum,
and verify that γ converges. Specifically, the ground-truth functional parameters θ are copied and
disturbed by a small Gaussian noise, while the ground-truth structural parameters γ are copied, but
the confidences in an edge or non-edge are set to 88% and 12% rather than 100% and 0%. The
experiment is then expected to quickly converge to the global minimum.
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Figure 12: Left to right, top to bottom Average cross-entropy loss of edge beliefs σ(γ) and Area-Under-Curve throughout training for the
synthetic graphs chainN, jungleN, colliderN and fullN, N=3-13, grouped by graph size. Error bars represent ±1σ over PRNG
seeds 1-5.

Figure 13: Effect of sparsity (lsparse) regularizer : On 5 variable, 6 variable and 8 variable Nodes

As shown in Figure 16, the gradient estimator correctly enables Stochastic Gradient Descent towards
the minimum, for the chain and jungle graphs of size 15, 20 and 25. The average cross-entropy
rapidly approaches its floor of 0.01, a consequence of our clamping of all γij to the range ±5
(equivalently, clamping σ(γij) to the range [0.0067, 0.9933]).

A.14 IMPORTANCE OF DROPOUT

To train the functional parameters on an observational distribution, one would need sampling adja-
cency matrices. One may be tempted to make these “complete directed graph” (all-ones except for a
zero diagonal), to give the MLP maximum freedom to learn any potential causal relations itself. We
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Figure 14: Ablations study results on all possible 3 variable
graphs. Graphs show the cross-entropy loss on learned vs
ground-truth edges over training time. Comparisons of model
trained with and without DAG regularizer (LDAG), showing that
DAG regularizer helps convergence.
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Figure 15: Edge CE loss for 3-variable graphs with no dropout
when training functional parameters, showing the importance of
this dropout.
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Figure 16: Near-optima performance of gradient estimator: Performance on chain and jungle, M =15, 20, 25, and initialized from
near the global optimum. Illustrates correctness and rapid convergence using the gradient estimator in Eq. 2 near the optimum.

demonstrate that functional parameter training cannot be carried out this way, and that it is necessary
to “drop out” each edge (with probability of the current γ value in our experiments) during pre-
training of the conditional distributions of the SCM. We attempt to recover the previously-recoverable
graphs chain3, fork3 and confounder3 without dropout, but fail to do so, as shown in Figure
15.

SDI Eaton & Murphy (2007b)
Asia 0 0
chain8 0 0
jungle8 0 0
collider7 0 7
collider8 0.0 7
full8 0.0 1

Table 8: Comparisons: Structured hamming distance (SHD) on learned and ground-truth edges on asia and various synthetic graphs. Eaton
& Murphy (2007b) can not scale to larger variables graphs as shown in Table 1, hence, we compare to the largest graph that (Eaton & Murphy,
2007b) can scale up to. SDI is compared to (Eaton & Murphy, 2007b) for collider7, collider8 and full8, (Eaton & Murphy, 2007a)
asserts with 100% confidence a no-edge where there is one (false negative). For comparisons with all other methods 1.
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Figure 17: Cross-entropy for edge prob-
ability between learned and ground-truth
SCM for Cancer at varying temperatures.

Figure 18: Cross-entropy for edge probability between learned and ground-truth SCM.
Left: The Earthquake dataset with 6 variables. Right: The Asia dataset with 8 vari-
ables
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