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Abstract. Data compression for RDF knowledge graphs is used in an increasing
number of settings. In parallel to this, several grammar-based graph compression
algorithms have been developed to reduce the size of graphs. We port gRePair—
a state-of-the-art grammar-based graph compression algorithm—to RDF (named
RDFRePair). We compare this promising technique with respect to the compres-
sion ratio to the state-of-the-art approaches for RDF compression dubbed HDT,
HDT++ and OFR as well as a k2-trees-based RDF compression. We run an ex-
tensive evaluation on 40 datasets. Our results suggest that RDFRePair achieves
significantly better compression ratios and runtimes than gRePair. However, it
is outperformed by k2 trees, which achieve the overall best compression ratio
on real-world datasets. This better performance comes at the cost of time, as
k2 trees are clearly outperformed by OFR w.r.t. compression and decompres-
sion time. A pairwise Wilcoxon Signed Rank Test suggests that while OFR is
significantly more time-efficient than HDT and k2 trees, there is no significant
difference between the compression ratios achieved by k2 trees and OFR. In ad-
dition, we point out future directions for research. All code and datasets are avail-
able at https://github.com/dice-group/GraphCompression and https://hobbitdata.
informatik.uni-leipzig.de/rdfrepair/evaluation datasets/, respectively.
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1 Introduction

The first prominent use of data compression can be traced back to the 19th century with
works such as the Morse code, which uses a precursor of entropy-based compression
by assigning shorter codes to high-frequency letters [16]. Data compression is now
used in an ever growing number of settings, especially due to the steadily increasing
size of application-relevant datasets [7,8,10,12,15,17]. This holds in particular for RDF
knowledge graphs, which grow continuously in both number and sheer size [10]. The
need for compressing RDF data has hence fueled a considerable body of research.

RDF compression algorithms achieve better compression ratios than human-readable
compact RDF representations (e.g., Turtle [3], Notation-3 [4]) by serializing RDF data
in a manner which still allows for querying. The wide range of available approaches
spans algorithms implemented directly in storage solutions [2] over algorithms able to
exploit the semantics of RDF knowledge graphs [12,15] to syntax-based compression

https://github.com/dice-group/GraphCompression
https://hobbitdata.informatik.uni-leipzig.de/rdfrepair/evaluation_datasets/
https://hobbitdata.informatik.uni-leipzig.de/rdfrepair/evaluation_datasets/
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techniques [8,10]. Most of these approaches abide by the general concept of separating
an RDF graph into three different parts [8]: a header, a dictionary and a representa-
tion of the triples. The header contains general statistical information. Since it is not
necessary for the decompression of the RDF graph, we will not further take it into con-
sideration throughout the rest of this paper. The dictionary maps the URIs and literal
values of the graph to ids. These ids are used within the triples file for a space-efficient
representation. This general concept is wide spread when it comes to the compression
of RDF graphs [8,10].

The graph processing community has also been aware of the need for compression
and has developed a range of approaches ranging from tree-based strategies [5] to tech-
niques based on automatically generated graph context-free grammars [13]. Especially
the latter work of Maneth et al. attracted our interest since the authors implemented a
prototypical compressor and evaluated it on different types of graphs (including some
RDF graphs). Based on a comparison with a k2-trees-based compression they conclude
that ”[o]ver RDF graphs [...] our compressor gives the best results, sometimes factors of
several magnitudes smaller than other compressors” [13]. However, no previous work
has addressed the concrete task of porting and comparing the current state of the art in
grammar-based graph compression with the current reigning RDF compression algo-
rithms. We address exactly this research gap.

In this paper, we port one of the currently best performing graph compression ap-
proaches, i.e., gRePair [13] and adapt it to RDF knowledge graphs. In addition, we
develop an efficient implementation of k2 trees [5,1] for RDF. The resulting approaches
are compared with HDT, HDT++ and OFR in a large-scale evaluation over 40 datasets
w.r.t. their runtime and compression ratio. Our results suggest that OFR and k2 trees
achieve comparable results and outperform other RDF compression approaches sig-
nificantly with respect to compression ratio—including gRePair. Our result analysis
unveils more efficient dictionary compression approaches yield the potential for better
RDF compression ratios. A comparison with respect to query execution performance is
not part of this paper.

In the following Section, we present related work. Section 3 comprises preliminaries
before our approach is described in Section 4. We describe our evaluation and report
results in Section 5 before we conclude in Section 6.

2 Related work

The existing compression algorithms for RDF data can be separated into two groups—
syntactic compression algorithms and semantic compression algorithms. A syntactic
compression takes the given RDF graph and uses an economical syntax to encode its
information. For example, Ferńandez et al. [8] present the HDT compression.3 It is an
implementation of a dictionary and several triple representations. The dictionary re-
duces the space needed to store the URIs by using a prefix tree. The most efficient
triple representation groups triples by their subject and after that by their predicate. The
grouped triples are represented by using id arrays and bitsets. Álvarez-Garcı́a et al. [2,1]

3 https://www.w3.org/Submission/HDT/

https://www.w3.org/Submission/HDT/
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the k2-triples approach that uses k2 trees to store triples to ensure that even large RDF
graphs can be handled by in-memory data stores. However, the authors do not com-
pare the approach with other RDF graph compression approaches. Similar to k2-triples,
Wang et al. [18] proposes the usage of octrees to compress the representation of triples.
Their evaluation shows that this approach achieves better compression ratios than HDT
for 4 example datasets. However, to the best of our knowledge the implementations
of k2-triples and octrees are not publicly available. Hernández-Illera et al. [10] extend
HDT to HDT++ by using predicate families, i.e., combinations of predicates that co-
occur very often. Instead of storing the predicate ids for each of these triples, HDT++
stores the id of the predicate family together with the object ids. The evaluation shows
that especially for highly structured datasets, HDT++ achieves better compression ratios
than HDT. For 3 out of the 4 datasets used for the evaluation, HDT++ outperforms a k2-
tree-based compression. The Objects-First Representation (OFR) presented by Swacha
et al. [17] uses a two-staged algorithm. In the first stage, the dictionary and the triples
are compressed. Instead of a single dictionary, the algorithm uses several indexes that
handle different parts like subject, predicate or object URIs, subject or object names, or
literals. The triples are represented as object, subject, predicate tuples and
subsequently sorted in ascending order, thus allowing the usage of a delta encoding for
the objects. This means that only one bit is necessary to encode whether the object of a
triple remains the same as the object of the previous triple or whether its ID is increased
by 1. The encoding of the subject follows a similar idea with a special handling of large
deltas between the IDs. The predicate IDs are encoded as usual numbers. In the second
stage of the algorithm, a general compression algorithm is applied. Depending on the
data, the first step uses different output streams to write the data. The authors argue that
this allows the second-stage algorithm to find more patterns within streams that contain
similar data. In their evaluation, the authors show that using either the Deflate or the
LZMA algorithm in the second stage outperforms the HDT algorithm using the same
algorithms as a post processing. However, the usage of general compression algorithms
prevents the execution of queries on the compressed dataset.

The group of semantic compression algorithms aims at the reduction of the num-
ber of triples that need to be stored by replacing repetitive parts of the graph. A gen-
eral approach to the reduction of graphs are grammar-based compressions. Maneth et
al. [13] propose the gRePair algorithm. The approach searches for edge pairs—named
digrams—that occur often within a graph. The occurrences of the digrams are replaced
by hyper edges. In an additional grammar, the rules for replacing the hyper edges with
their digrams is stored. The remaining graph is stored using a k2 tree. Although the
authors suggest that this compression can potentially be ported to RDF and used for
querying, we are the first to port gRePair to RDF knowledge graphs. Pan et al. [15]
propose to search for redundant graph patterns and replace them by triples with newly
created predicates and a grammar comprising rules for the decompression. However, a
comparison with existing RDF compression approaches like HDT with respect to their
compression ratio is missing and the source code is not available. Gayathri et al. [9] pro-
pose the mining of logical Horn-rules. Based on these rules, triples that can be inferred
are removed from the graph. In the evaluation, the authors show that depending on the
dataset 27–40% of the triples can be removed. In a similar way, Joshi et al. [12] propose
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a compression technique which is based on frequent item set mining. Frequent patterns
that can be recovered by applying rules are removed from the graph. Their evaluation
shows that for several datasets, more than 50% of the triples can be removed and that
the removal can lead to an improvement of the performance of the HDT compression
algorithm.

3 Preliminaries

Definition 1 (Sets). Let U , B and L be the mutually disjoint sets of URI references,
blank nodes and literals, respectively [11]. Let P ⊆ U be the set of all properties.

Definition 2 (RDF triple). An RDF triple t = (s, p, o) ∈ (U ∪B)×P × (U ∪B ∪L)
displays the statement that the subject s is related to the object o via the predicate
p [11].

Definition 3 (RDF graph). An RDF graph can be defined as directed labeled multi-
graph, i.e., as a tuple G = (V,E, λ) where V = {v1, ..., vn} is the set of nodes; E is a
multiset of edges ei = (v

(t)
i , v

(h)
i ) ∈ V 2 and λ : E → P is the edge label mapping.

Definition 4 (Digram). A digram d = (pi, pj) is defined as two edges that share at
least one node and are labeled with two edge labels pi and pj . It follows, that each
digram can link up to three nodes. Each node is either an external or an internal node,
where a node is called external if it has at least one edge that does not belong to the
digram.

Note that in contrast to Maneth et al. [13], we do not define digrams as hyperedges,
i.e., we limit ourselves to digrams with one or two external nodes for two reasons: First,
this allows the usage of digrams as normal edges in a directed labeled graph as defined
above. Second, preliminary implementations showed that digrams with more than two
external nodes might not lead to better compression ratios. Our definition leads to 33
different shapes of digrams. 8 examples thereof are depicted in Figure 1. A digram
occurrence is defined as the occurrence of such a digram in a given graph.

Definition 5 (Digram-compressed RDF graph). Let D be the set of all digrams. A
digram-compressed RDF graph is an RDF graph which has an extended label mapping
function λ′ : E → P ∪D.

Definition 6 (Non-terminal edge). A non-terminal edge is an edge in a digram-compressed
RDF graph that is not mapped to a predicate but to a digram.

Definition 7 (Grammar). A grammar G is defined as G = (S,D), where S is a
digram-compressed RDF graph named start graph and D is the set of digrams used
to compress the graph.

Definition 8 (Quadrant). A matrix of dimension 2n × 2n can be divided into four
sub-matrices of equal size 2n−1 × 2n−1. These submatrices are called quadrants. The
quadrants will represent the following rows and columns of the original matrix:
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external node internal node

Fig. 1: Examples of digram shapes. The external nodes have additional edges that are
not part of the digram (depicted in light gray).

- First quadrant: (0, 0) to (2n−1 − 1, 2n−1 − 1);
- Second quadrant: (0, 2n−1) to (2n−1 − 1, 2n);
- Third quadrant: (2n−1, 0) to (2n, 2n−1 − 1);
- Fourth quadrant: (2n−1, 2n−1) to (2n, 2n).

Definition 9 (Compression Ratio). Let so and sc be the file size in bytes of the original
RDF file and the compressed file, respectively. The compression ratio r is defined as r =
sc
so

. The smaller the compression ratio, the better is the performance of a compression
algorithm.

4 Approaches

We implemented two approaches for RDF compression: RDFRePair and k2. We be-
gin by presenting RDFRePair, an RDF compression approach based on the gRePair
algorithm proposed by Maneth et al. [13]. It adapts the gRePair approach to RDF and
combines it with the dictionary of [8]. The workflow of RDFRePair comprises 4 main
steps: 1) Indexing the nodes and edge labels of the input graph, 2) running the gRePair
algorithm, 3) creating k2 trees for the remaining, compressed graph and 4) serializing
the graph. The second approach skips the second step and solely relies on an efficient
implementation of k2 trees as proposed by Álvarez-Garcı́a et al. [1]. These steps are
explained in the following before we explain the decompression of the graph in 4.5.
The execution of queries on the compressed graph is out of the scope of this paper.

4.1 Indexing

The first step is to load the input RDF graph into memory and index all nodes and
edge labels within the graph. Maneth et al. [13] state that “[a]ny method for dictionary
compression can be used to additionally compress the dictionary (e.g. [14])”. Hence,
we use the dictionary implementation of HDT [8].
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Fig. 2: Example of an adjacency matrix to a k2 tree and its serialization.

4.2 gRePair Algorithm

In this step, the algorithm will create a Grammar G from the indexed graph G as de-
scribed by Maneth et al. [13]. This step consists of the following sub steps.

1. Initial digram scan: The algorithm iterates over all vertices. For each vertex, all
pairs of edges connected to that vertex are counted as potential digrams.

2. Sort digrams: All digrams with at least two occurrences are sorted descending by
their frequency using a priority queue.

3. Get most frequent digram d: The most frequent digram is removed from the priority
queue.

4. Replace all occurences of d: All occurrences of dwithin the graph are replaced with
non-terminal edges and the edges receive the label d. All replaced occurrences are
added to a list which is necessary for the later serialization of the digram d.

5. Find new digrams: Since new edges have been introduced, new digrams could have
been created. All vertices connected to at least one of these newly created non-
terminal edges are given to the digram search algorithm to search for new digrams.
If new digrams are found, they are added to the queue.

6. Repeat: if the queue is not empty, go back to step 2.

4.3 k2 Trees

The grammar G created by the gRePair algorithm is split up in a start graph S and the
set of digrams D. As proposed by Maneth et al. [13], an adjacency matrix is created for
each edge label in S. The matrix is of dimension |V | × |V | and its cells represent the
edges between the subject (row index) and the object (column index). If an edge with
the edge label of the matrix exists between a subject and an object the representing cell
is set to 1. Hence, the matrix is typically sparse.

Thereafter, the k2 trees are built from these matrices. To this end, each path from
the root of the k2 tree to its leaves is built individually before it is merged with all other
paths of the matrix. The path creation algorithm is shown in Algorithm 1. First, the
matrix is resized to 2h × 2h where h ∈ N is the lowest integer that fulfills 2h ≥ |V |.
The added rows and columns are filled with zeros. After that, the matrix is transformed
into a tree using a recursion. Starting with the root node, the matrix is divided into 4
quadrants as defined in Definition 8 and four child nodes are added to the root node.
The value of a child node is either 1 if the quadrant contains at least one cell with a
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Algorithm 1: k2 tree path creation algorithm.
Input: Matrix M, Integer h
Output: k2-Tree

1 x1 = 0, y1 = 0, x2 = 2h, y2 = 2h

2 root = new TreeNode()
3 currentNode = root
4 for Point p : M.getPoints() do
5 quadrant = getQuadrant(p, x1, y1, x2, y2)
6 child = new TreeNode()
7 currentNode.set(quadrant, child)
8 currentNode = child
9 shrinkBoundaries(x1, y1, x2, y2, quadrant)

10 return root

Algorithm 2: k2 tree path merge algorithm.
Input: TreeNode node, Map<Integer, TreeNode> map, Integer k, Integer h
Output: List of individual paths in k2-tree

1 if k==h OR node == null then
2 return

3 for child C : node.getChildren() do
4 map.get(k).add(C)

5 for child C : node.getChildren() do
6 merge(C, map, k+1, h)

7 return map

1 value. Otherwise, the child node gets the value 0. This is done recursively for each
child having a 1 until the quadrants are of size 2x2. In that case, the 4 numbers of the
quadrant are used for the 4 child nodes.

Instead of implementing the recursion directly, we implemented a more efficient
algorithm, which comprises two steps. First, the algorithm iterates over all cells of the
matrix having a 1 value. For each of these cells, the path within a k2 tree is determined
as shown in Algorithm 1. Beginning with the complete matrix, the algorithm determines
the quadrant in which the cell is located and adds a child node to the path before shrink-
ing the quadrant. Thereafter, all generated paths are merged as shown in Algorithm 2.
Afterwards the map represents the k2 Tree optimized for later serialization.

4.4 Serialization

The serializiation of the created grammar G comprises the serialization of the start
graph and the serialization of the digrams.

Start graph. The start graph is serialized as a sequence of its k2-trees. Each tree is
preceded by the ID of its edge label (4 bytes). Each tree node is represented by a single
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4 8 12 16

Edge Label Index 1 (INT)

Edge Label Index 2 (INT)

Size Digram Shape ID
Internal Data:

{Internal Index1 (, Internal Index2)},...

Fig. 3: Digram serialization. One line represents 2 bytes.

bit. Hence, the tree is serialized as a sequence of bits representing its nodes from top
to bottom. If the tree has an uneven number of nodes, the last byte will be padded with
zeros. An example is shown in Figure 2. In this example the whole tree can be stored
using only 2 bytes.

Digrams. The digrams used to reduce the graph are serialized as depicted in Figure 3. A
serialized digram comprises the two edge labels, a size flag, a shape ID and the IDs of all
internal nodes of all occurrences of this digram. The edge label IDs are two integers that
represent the IDs of the properties or digrams the two edges of the digram have.4 The
size flag uses two bits to decode the number of bytes that are used for the single internal
node IDs. This allows the usage of 1, 2, 3 or 4 byte IDs. The shape ID comprises 6 bits
that are used to store the ID of the digram shape (i.e., one of the different 33 shapes).
The last part of the digram lists the IDs of the internal nodes of all occurrences of the
digram. To this end, the occurrences of the digram are sorted based on the ID(s) of
its external nodes. Hence, the mapping of internal nodes to the single occurrences of
the digram are stored implicitly without taking any additional space. Maneth et al. [13]
propose an optimization that reassigns the IDs of vertices in the graph to implicitly store
the IDs of internal nodes as well. However, this would raise a new requirement for the
dictionary or consume additional space to store the mapping of IDs.

4.5 Decompression

In this section, we briefly describe the process of decompressing a compressed graph.
First, the dictionary is loaded. After that all k2 trees for all terminal edges are loaded
and directly transformed into the RDF triples they represent. The digrams are then read
and iterated upon in reverse order. The non-terminal edges of each digram’s k2-tree are
sorted by the IDs of vertices they connect. Based on this order, the single non-terminals
can be replaced by the two edges and the internal nodes. Since the non-terminal edges
are handled in the same order as during the serialisation, the internal nodes are read in
the correct order. Depending on the two edge labels a digram contains, the generated

4 In the current implementation, we use 32 Bit integers. They can be extended to 64 Bits for
very large graphs.
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terminal edges are directly written into the result RDF graph. If non-terminals are cre-
ated, they are added to the list of their digram. The order of digrams ensures that only
non-terminal edges of yet unprocessed digrams can be found.

5 Evaluation

Our evaluation aims to answer the following research questions:

– RQ1: How do RDFRePair and k2 perform compared to state-of-the-art RDF graph
compression algorithms w.r.t. compression ratio and (de)compression times?

– RQ2: To which extent does the dictionary affect the compressed size?
– RQ3: Which RDF dataset features influence the compression ratio?

5.1 Experimental Setup

To answer the research questions above, we execute several experiments using different
RDF datasets and compression algorithms.5 For each dataset-algorithm combination,
we use the algorithm to compress and decompress the dataset. During that, we gather
four measures: 1) the compression ratio, 2) the runtime of the compression, 3) the run-
time of the complete decompression and 4) the amount of space of the compressed
dataset that is used to store the dictionary. In addition, we analyze the datasets using
the following metrics to answer the third question: number of triples, classes and re-
sources, URI resources, properties, as well as star pattern similarity and structuredness.
We elaborate upon the last two measures in the following.

In [13], the authors mention that a graph similar to the star pattern is beneficial for
gRePair, because gRePair can make use of this structure to find many digram occur-
rences around those high-degree nodes. A directed graph is described as a star pattern if
one node v ∈ V is connected to all other nodes, whereas no other nodes are connected
to each other. Hence, the following necessary (but not sufficient) condition must apply:
∃v ∈ V, ∀e ∈ E : v ∈ e. As graphs tend to be more complex than such simple patterns,
we define a metric describing how similar a given graph is to a star pattern. Let deg(v)
be the degree of a node v. Let N be a list of all nodes sorted by their deg-values in
descending order and Nx be the first x nodes of N . We define the star pattern similarity
(SPS) metric as follows.

SPS =

∑
n∈Nx

deg(n)∑
n∈N deg(n)

∈ [0 : 1] (1)

In our experiments we choose x = 0.001 · |N |.
Duan et al. [6] compare synthetic and real-world RDF datasets and conclude that

synthetic datasets tend to be more structured. To measure this structuredness, they count
how regularly properties occur for instances of classes. If all instances of a class have

5 All experiments were executed on a 64-bit Ubuntu 16.04 machine, an Intel(R) Xeon(R) CPU
E5-2698 v3 @ 2.30GHz with 64 CPUs and 128GB RAM. Only the experiments for WatDiv
were executed on a 64-bit Debian machine with 128 CPUs and 1TB RAM.
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Table 1: Datasets used for the evaluation.
Name Abbreviation #Triples #Resources #Classes

dc-2010-complete-alignments SD0 5 919 821 36
ekaw-2012-complete-alignments SD1 13 114 1 604 36
eswc-2006-complete-alignments SD2 6 654 1 259 25
eswc-2009-complete-alignments SD3 9 456 1 247 34
eswc-2010-complete-alignments SD4 18 122 2 226 36
eswc-2011-complete-alignments SD5 25 865 3 071 36
iswc-2002-complete-alignments SD6 13 450 1 953 36
iswc-2003-complete-alignments SD7 18 039 2 565 36
iswc-2005-complete-alignments SD8 28 149 3 877 36
iswc-2010-complete-alignments SD9 32 022 3 842 36

external links en DB0 49 999 7 070 0
geo coordinates en DB1 49 999 54 870 1

homepages en DB2 49 999 12 505 0
instance types transitive en DB3 49 999 98 666 273

instance types en DB4 49 999 48 913 306
mappingbased objects en DB5 49 998 37 159 0

persondata en DB6 49 999 9 516 2
transitive redirects en DB7 49 999 82 386 0

wikidata-20200308-lexemes-BETA WD0 49 828 9 965 15
wikidata-20200404-lexemes-BETA WD1 49 827 9 931 15
wikidata-20200412-lexemes-BETA WD2 49 828 9 932 15
wikidata-20200418-lexemes-BETA WD3 49 828 9 902 15

lubm-1 LUBM-1 100 545 17 209 15
lubm-10 LUBM-10 1 272 577 207 461 15
lubm-100 LUBM-100 13 405 383 2 179 801 15

lubm-1000 LUBM-1000 133 573 856 21 715 143 15
watdiv WAT 1 098 871 666 52 120 471 12 500 145

external links en EL 7 772 283 9 128 582 0
geo coordinates en GC 2 323 568 580 897 1

homepages en HO 688 563 1 300 927 0
instance types en IT 5 150 432 5 044 646 422

instance types transitive en ITT 31 254 270 4 737 461 388
mappingbased objects en MO 18 746 173 5 901 219 0

persondata en PD 10 310 094 1 522 938 18
transitive redirects en TR 7 632 358 10 404 804 0

archives-hub AH 1 361 815 135 643 46
jamendo JA 1 047 950 410 929 11

scholarydata dump SDD 859 840 95 016 46
wikidata-20200308-lexemes-BETA WD 42 914 845 6 061 049 22

dblp-20170124 DBLP 88 150 324 28 058 722 14

triples with the same properties, the class is highly structured. If some of the instances
have triples with properties that other instances of the same class do not have, the class
is less structured. The structuredness of a dataset is the weighted average of the class
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structuredness values with a higher weight for classes with many instances and many
properties.

5.2 Datasets

Table 1 shows the summary of the datasets.6 We use 40 datasets in total. Note that gRe-
Pair and in part RDFRePair were not able to handle large datasets in our experiments.
To still be able to compare them with other approaches, we introduce 4 Wikidata and 8
DBpedia subsets cut at 50k lines.

5.3 Compression Algorithms

For the evaluation of RDFRePair, we select a subset of the algorithms listed as related
work. We choose HDT because of its wide adoption and its usage as reference algo-
rithm in several publications.7 In addition, we compare our evaluation with HDT++
and OFR since both algorithms are reported to perform at state-of-the-art level and bet-
ter than HDT.8 We also use our k2 implementation since the implementations used in
the related work (e.g., [1]) do not seem to be available as open source. In addition,
we received a prototypical implementation of the gRePair algorithm from the authors
of [13]. Given that the original gRePair implementation is a proof of concept, it is rather
far from stable regarding decompression. Apart from that, the implementation does not
create a dictionary. To alleviate this problem, the HDT dictionary size was added for
a fair comparison. The OFR compression provides several files representing the com-
pressed graph. To combine these files and further compress them the authors suggested
to use either Deflate (zip) or LZMA (7z). However, since our goal is to compare compar-
isons that would be able to answer SPARQL queries, we do not use additional, binary
compression algorithms. Instead, we sum up the sizes of the individual files. The addi-
tion of other algorithms (see Section 2) was prevented by the non-availability of their
implementation or their reported poor compression ratio.

5.4 Results

Figure 4 shows the compression ratios achieved by the different algorithms. To com-
pare the compression ratios across the different datasets, we use a one-tailed Wilcoxon
signed-rank test for a pairwise comparison of the compression algorithms. Table 2 lists
the p-values of the tests. These results suggest that RDFRePair leads to significantly bet-
ter compression ratios than the original prototypical gRePair implementation. However,
RDFRePair is significantly outperformed by k2 and OFR. The prototypical implemen-
tation of gRePair is outperformed by all other approaches. Overall, OFR and our imple-
mentation of the k2 algorithm lead to the best compression ratios with k2 performing

6 The datasets can be found at https://w3id.org/dice-research/data/rdfrepair/evaluation datasets/.
For scholarly data (DF0–DF9), we use the rich datasets (see http://www.scholarlydata.org/
dumps/).

7 https://github.com/rdfhdt/hdt-java
8 HDT++ is available at https://github.com/antonioillera/iHDTpp-src. OFR is not publicly avail-

able. However, the authors were so kind to provide us the binaries.

https://w3id.org/dice-research/data/rdfrepair/evaluation_datasets/
http://www.scholarlydata.org/dumps/
http://www.scholarlydata.org/dumps/
https://github.com/rdfhdt/hdt-java
https://github.com/antonioillera/iHDTpp-src
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Fig. 4: Compression ratio for the compression algorithms on the single datasets. Smaller
values are better.
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Table 2: p-value of a one-tailed Wilcoxon signed rank test with respect to compression
ratio. A bold value indicates that the algorithm in the row leads to a significantly better
compression ratio than the algorithm in the column (p < α = 0.05).

r1 \ r2 RDFRePair gRePair HDT k2 OFR HDT++

RDFRePair — ≈0.0 0.79 ≈1.0 0.99 0.89
gRePair ≈1.0 — 0.95 ≈1.0 ≈1.0 ≈1.0

HDT 0.21 0.05 — ≈1.0 ≈1.0 ≈1.0
k2 ≈0.0 ≈0.0 ≈0.0 — 0.51 ≈0.0

OFR 0.01 ≈0.0 ≈0.0 0.49 — 0.07
HDT++ 0.11 ≈0.0 ≈0.0 ≈1.0 0.93 —
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(b) Real-world datasets

Fig. 5: compression time in ms (log). Smaller values are better.

better on non-synthetic datasets. None of these two algorithms is able to significantly
outperform the other one with respect to the compression ratio. Our findings contradict
the results of Maneth et al. [13] that gRePair performs better than k2.

OFR has the shortest runtime w.r.t. compression and decompression time (depicted
in Figures 5 and 6). It is followed by HDT and HDT++. k2 shows a longer runtime
than these three algorithms. The prototypical implementation of gRePair is the slowest
algorithm. In addition, gRePair and RDFRePair were not able to compress 12 of the 40
datasets within 2 hours, respectively.

Figure 7 depicts the amount of space used to store the compressed dictionary in
comparison to the overall size of the compressed dataset. 5 of the 6 approaches share a
similar dictionary implementation based on [8]. For all these approaches, the dictionary
consumes the majority of the space. Especially for the k2 compression, the average size
of the dictionary over all datasets is 80%. In comparison, the OFR dictionary achieves
smaller dictionary sizes on some of the datasets. This suggests that improvements to the
dictionary can lead to much better compression ratios for HDT, HDT++ and k2.

The correlation analysis reveals that all algorithms have a correlation between their
performance and the number of classes. However, this seems to be an indirect relation
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Fig. 6: decompression time in ms (log). Smaller values are better.
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Fig. 7: Size of the dictionary in comparison to the compressed dataset size in %.

that is caused by the datasets that contain solely one-to-one mappings like DB0 or
EL. These datasets have no classes and are hard to compress because of their one-
to-one structure. Neither the SPS nor the structuredness metric show any significant
correlations.

The results show that RDFRePair underachieves. A further analysis reveals that the
optimization described in Section 4.4, i.e., to store the IDs of internal nodes implicitly
by renumbering all nodes in the graph, is one of the major features of gRePair.9 This
leads to very good results in the evaluation done by Maneth et al. [13]. This optimiza-
tion seems to contradict the statement that a dictionary compression as proposed by
Martı́nez-Prieto et al. [14] can be used (see Section 4.1) since the dictionary compres-
sion needs to allow the gRePair algorithm to freely redefine the IDs of all nodes. How-
ever, Martı́nez-Prieto et al. separate the space of node IDs into several ranges. Based on

9 For a fair comparison, we turned this feature of gRePair in our evaluation off. Otherwise, it
couldn’t be used with the HDT dictionary.
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Table 3: Values of Kendall’s Tau rank correlation between compression ratio and dataset
metrics. A bold value indicates a significant correlation (α = 0.02). ∗ only experiments
that terminated in time were taken into account.

RDFRePair∗ gRePair∗ HDT k2 OFR HDT++

#Triples 0.27 0.32 0.17 0.13 0.03 0.11
#Classes −0.47 −0.57 −0.51 −0.50 −0.43 −0.52
#UriResources 0.23 0.27 0.17 0.13 0.04 0.10
#Resources 0.37 0.40 0.24 0.20 0.12 0.17
#Properties −0.17 −0.13 −0.22 −0.24 −0.15 −0.19
SPS 0.09 0.14 0.06 0.00 −0.01 0.04
Structuredness −0.20 −0.24 −0.21 −0.18 −0.30 −0.21

the role of a node in the graph, it has to receive an ID of a certain range. This allows
different indexing and compression strategies for the different ranges. However, such
a node can not get an ID assigned by gRePair. We measured the amount of space the
internal nodes consume. Especially for type graphs with a simple structure (e.g., DB4)
the internal nodes consume up to 98% of the memory of the compressed triples (i.e.,
the memory of the compressed dataset without the dictionary). We call this the internal
node size ratio. The datasets used by Maneth et al. [13] seem to favor the usage of di-
grams. Two out of the six datasets have an internal node size ratio of 99% while three
other datasets have ratios of more than 50%. In our evaluation, the majority of datasets
has an internal node size ratio below 50%. More diverse datasets like SD0–SD9 have
ratios between 9% and 16%. Even without storing internal nodes, RDFRePair and gRe-
Pair would still show a lower performance than k2 trees for such datasets but with the
cost of a dictionary that may less optimized for querying and compression.

6 Conclusion

This paper presented several contributions. First, we presented RDFRePair—an im-
proved implementation of the gRePair algorithm ported to the compression of RDF
graphs. Second, we present an efficient implementation of the k2 trees for the same
goal. Third, we ran a large-scale evaluation comparing RDFRePair and k2 with HDT,
HDT++, OFR and a prototypical implementation of gRePair. Our results could not sup-
port the assumption that grammar-based compressions like gRePair are able to outper-
form existing RDF graph compressions. Instead, our results suggest that in most cases
the best compression ratio of RDF datasets can be achieved by using either k2 trees or
OFR with k2 trees performing best on average when faced with real data. On the other
hand, OFR clearly shows a better runtime performance. There are existing implementa-
tions for executing SPARQL queries on k2 trees while an implementation for the query
execution for OFR is missing. During the analysis of our results, we couldn’t identify
significant correlations between the compressor’s performance and the features of the
datasets. However, our results suggest that future work may focus on further improving
the dictionary since it consumes the majority of the space.
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