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ABSTRACT

Electrostatic field matching (EFM) has recently appeared as a novel physics-
inspired paradigm for data generation and transfer using the idea of an electric
capacitor. However, it requires modeling electrostatic fields using neural networks,
which is non-trivial because of the necessity to take into account the complex field
outside the capacitor plates. In this paper, we propose Interaction Field Matching
(IFM), a generalization of EFM which allows using general interaction fields
beyond the electrostatic one. Furthermore, inspired by strong interactions between
quarks and antiquarks in physics, we design a particular interaction field realization
which solves the problems which arise when modeling electrostatic fields in EFM.
We show the performance on a series of toy and image data transfer problems.

(a) Electrostatic Field Matching
(Kolesov et al., 2025, EFM).

(b) Interaction Field Matching
(IFM, ours).

Figure 1: Electrostatic Field Matching (EFM, (Kolesov et al., 2025)) and our Interaction Field
Matching (IFM) concepts. Two D-dimensional distributions P(·), Q(·) are placed in RD+1 at z = 0
and z = L (a) In EFM, the distributions are interpreted as charges creating a capacitor-like electric
field. Movement along these field lines transfers the distributions, but requires consideration of all
directions of the field lines. (b) Our IFM is a generalization of the EFM to arbitrary interactions
between charges. One possible realization of IFM is motivated by the strong interaction between
quarks. This realization doesn’t have backward-oriented lines and has a smaller curvature of the lines.

1 INTRODUCTION

While diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and flow matching (Liu et al., 2023;
Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) models dominate current research in deep
generative modeling, a new paradigm grounded in Coulomb electrostatics has emerged (Xu et al.,
2022; Kolesov et al., 2025; Cao & Zhao, 2024; Cao et al., 2024; Xu et al., 2023). Early work in this
direction introduced Poisson Flow Generative Models (Xu et al., 2022; 2023, PFGM), focusing on
noise-to-data generation. More recently, Electrostatic Field Matching (Kolesov et al., 2025, EFM)
generalized this framework, enabling electrostatic models to solve data-to-data transfer problems.

Electrostatic Field Matching (EFM) draws inspiration from electric capacitors, modeling input and
target distributions as positive and negative electrostatic charges, respectively. The method performs
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distribution transfer by following electrostatic field lines (Fig. 1a). While conceptually simple, EFM
faces significant practical challenges: it requires accounting for all field lines—including backward-
oriented ones (dotted lines in Fig. 1a)—which exhibit high curvature and span the entire space. This
makes them difficult to model, as the necessary training volume becomes unbounded.

In this paper, we tackle the limitations of EFM (M2.3) and deliver the following main contributions:

1. Theory. We propose Interaction Field Matching (IFM), a generic paradigm for distribution
transfer rooted in pairwise interactions between particles from input and target distributions (M3.3,
3.5). Compared to EFM that relies on the electrostatic field, our approach allows us to leverage
general interaction fields (beyond the Coloumb electrostatics) that satisfy certain physics-inspired
properties such as the flux conservation and the generalized superposition principle (M3.2).

2. Methodology & practice. Inspired by the strong interaction of quarks and antiquarks in physics
(M3.1), we design a particular realization of the interaction field (M3.4) which has several preferable
properties compared to the electrostatic field: (a) the field lines have almost straight segments, (b)
the field vanishes outside the area between particles and (c) it allows using the Minibatch Optimal
Transport Pooladian et al. (2023) to enforce certain properties on the transfer map.

We showcase the performance of IFM on a series of toy and image data transfer problems (M4).

2 BACKGROUND AND RELATED WORKS

In this section, we first recall the concepts of the basic high-dimensional electrostatic (M2.1). Then
we discuss its application to generative modeling and data transfer problems using the example of
EFM (M2.2). Finally, in M2.3, we discuss the limitations of EFM which motivated our study.

2.1 ELECTROSTATICS

We recall the fundamental principles of electrostatics necessary for understanding electrostatic-based
generative models. A detailed treatment of three-dimensional electrostatics can be found in any
standard electricity and magnetism textbook, e.g., (Landau & Lifshitz, 1971, Chapter 5). The
generalization of electrostatics to high-dimensional spaces is discussed in (Caruso et al., 2023).

The electrostatic field. Let q : RD → R be the density of a charge distribution on RD. The
distribution may contain both positive and negative charges and is assumed to have finite total charge
(
∫
|q(x)|dx < ∞). At a point x ∈ RD it produces the electrostatic field E : RD → RD:

E(x) =

∫
1

SD−1

(x− x′)

||x− x′||D
q(x′)dx′, (1)

where SD−1 is the surface area of an (D − 1)-dimensional sphere with unit radius. That is, the field
at x is a weighted sum of fields from all charges x′, where closer charges yield stronger field.

Electric field strength lines. An electric field strength line is a curve x(τ) ∈ RD, τ ∈ [a, b] ⊂ R
whose tangent to each point is parallel to the electric field at that point. In other words:

dx(τ)

dτ
= E(x). (2)

Electric field lines are a key concept for electrostatic generative models such as PFGM and EFM.

2.2 ELECTROSTATIC FIELD MATCHING (EFM)

The first application of electrostatics to generative modeling problems was carried out in the works
of (Xu et al., 2022; 2023, PFGM), where the authors proposed a model applicable to noise-to-data
generative problems. Electrostatic Field Matching (EFM) extends the application of electrostatics to
the case of data-to-data transfer, and uses previously unconsidered properties of electric field lines.
We describe here EFM since it is more general than PFGM, and our work is built upon it.

EFM works with two data distributions P(x+) and Q(x−), x± ∈ RD. The first distribution is assigned
a positive charge, while the second distribution is assigned a negative charge. The distributions are
placed in the extended space RD+1 on the planes z = 0 and z = L, respectively (see Fig. 1a).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

One can think of it as a (D + 1)-dimensional capacitor. A point in this space has the form
(x1, x2, ..., xD, z) = (x, z) = x̃ ∈ RD+1. The field is found from the superposition principle:

E(x̃) = E+(x̃) + E−(x̃), (3)

where E+(x) and E−(x̃) are the fields created by P(x̃+) and Q(x̃−
), respectively.

Then, as proved in the original paper, the movement along the field lines dx̃ = E(x̃)dτ performs
the transfer between the distributions P(x̃+) and Q(x̃−). This fact has opened the possibility to
use electrostatics both in data generation and transfer problems. Indeed, to move between data
distributions, it is sufficient to follow the electric field lines.

To obtain a distribution transfer model, one trains a neural network fθ(·) : RD+1 → RD+1 to recover
the normalized electric field E(x̃)

||E(x̃)||2 , e.g., by using a loss function

Ex̃||fθ(x̃)−
E(x̃)

||E(x̃)||2
||2 → min

θ
. (4)

Here, E(x̃) is calculated with (3), where E±(x̃) is approximated by empirical samples of P(x̃+) and
Q(x̃−), i.e., data. Monte Carlo averaging Ex̃ is done on the points x̃ around the plates. This set of
points if called the training volume; its selection is crucial but highly non-trivial (Xu et al., 2022).

2.3 LIMITATIONS OF EFM

Despite its performance, EFM has a few weak spots coming from the properties of electrostatic fields:

1. Backward-oriented field lines. Each plate produces two sets of electric field lines (Fig. 1a).
The first set (forward-oriented lines) is directed toward the second plate. The second set (backward-
oriented lines) starts from the first plate in the opposite direction. In practice, the forward-oriented
set of lines is chosen because it requires less training volume and because these lines are less curved
than the lines of the backward-oriented series. However, backward-oriented lines play a critical role
for the full coverage of the target distribution. The use of only forward-oriented lines is not sufficient
to fully cover the distribution of Q(·), see the illustration in Fig.2a.

2. Line termination problem. Even some forward-oriented field lines can pass the boundary z = L
before reaching the second distribution. In such a case, the field line enters the region z > L (see
Fig. 2a) and requires further integration to come back to target distribution at z = L. This problem
complicates the data transfer procedure. Indeed, one has to design some criterion to decide whether
the line terminates at z = L or should be integrated further.

(a) EFM (b) Our IFM (independent plan)

Figure 2: Limitations of the EFM & comparison with IFM. (a) The toy experiment (1 → 2 Gaussians)
shows that even some forward-oriented field lines can leave z > L. These trajectories have increased
length and curvature. Moreover, the transfer along only the forward-oriented lines does not cover
of the target distribution (green point cloud does not coincide with the red one). (b) Our realization
of IFM (M3.4) does not have the above mentioned problems: the field lines between the planes are
almost straight, they do not extend beyond z>L and are enough to cover the entire target distribution.
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3. Training volume selection. From the first two problems follows the challenge of choosing
the training volume, i.e., points x̃ in equation 4 for learning the field. For the correct transport
between P(·) and Q(·), it is necessary to know not only the field between the plates (0 < z < L),
but also beyond the plates (z > L for lines leaving the boundary and z < 0 for backward-oriented
lines). Therefore, it is necessary to choose a large training volume for learning of the neural network.
Moreover, the size of the required volume is initially unknown.

Below we propose a generalization of EFM which aims to ease the above-mentioned problems.

3 INTERACTION FIELD MATCHING (IFM)
This section describes our proposed Interaction Field Mathcing (IFM), the generalization of the
electrostatic paradigm in generative models. In M3.1, we start by motivating the IFM with the strong
interaction between subnuclear particles (quarks) in physics. In M3.2, we present the necessary
requirements for an interaction field required for our ideas to work. In M3.3, we formulate the main
theorem devoted to transfer of distributions into each other by means of a proper interaction field.
The M3.4 describes a particular realization of the field inspired by strong interactions. In M3.5, we
report the learning and inference algorithms. The proofs are in Appendix A.1.

3.1 MOTIVATION: STRONG INTERACTION IN PHYSICS

Figure 3: Comparison of electrostatic interac-
tion between charges q± (left) and strong in-
teraction between quarks q, q̄ (right). At small
distances, the strong interaction resembles the
electromagnetic interaction, but as quarks sepa-
rate, the field lines straighten into a string.

To address EFM challenges, we propose utiliz-
ing the strong interaction (Quevedo & Schachner,
2024, M7.4)— a fundamental force binding subnu-
clear particles. The smallest particles involved in
this interaction are called quarks.

A typical configuration of the strong field is shown
in Fig. 3, highlighting key contrasts with electro-
magnetic fields. At small distances, quark q and
antiquark q interact similarly to charged particles
q±. However, as the separation increases, the strong
field lines become considerably straighter.

Unfortunately, strong field strength calculation re-
quires complex quantum-mechanical computations.
Although our work is motivated by quark interac-
tions, unlike EGM and PFGM, our setting uses modified physical interactions.

3.2 PROPERTIES OF PROPER INTERACTION FIELDS

Here we list the most general requirements for the interaction field E(x̃) which are sufficient to
perform data transfer. These requirements allow for broad flexibility in the field design. In particular,
it could be an electrostatic field (see Example 3.2 below). Nevertheless, to preserve the concept of
strong interaction, we will still refer to particles as quarks and antiquarks.

Suppose that a quark q is located at the point x̃q ∈ RD+1 and an antiquark q̄ at the point x̃q̄ ∈ RD+1

and produce interation field E(x̃) = E(x̃) · n(x̃), where n(x̃) is the unit vector tangent to the field
line and E(x̃) is the magnitude. We require the following properties of the interaction field E(x̃):

1. The start and the termination of lines at (anti)quarks. For qq̄-pair with equal charges, the
interaction field line must start at the quark and end at the antiquark:{

dx̃(τ)
dτ = n

(
x̃(τ)

)
,

x̃(τs) = x̃q, x̃(τf ) = x̃q̄,
(5)

where τs, τf correspond to the initial and final points of the field line.

Figure 4: An illustration of
the flux conservation.

2. Flux conservation. For a qq̄-pair with equal charges, an interaction
field must maintain the following property along the stream tube

E(x̃) · dS = const, (6)
where dS is a vector with a length equal to the area dS of the surface,
where the considered stream tube rests. The direction of the vector is
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orthogonal to the surface. In turn, E · dS = EdS cosα = E1dS1 + ...+ EDdSD denotes the inner
product between the vectors E and dS. Informally, this property means that the number of field lines
along the stream surface is constant, see Fig. 4. We additionally assume that the total flux between
quark-antiquark pair is proportional to the charge of the quark q that creates this field, and does not
depend on the relative position of the quark-antiquark pair.

3. Generalized superposition principle w.r.t. a transport plan. Consider two continuous distribu-
tions q(·), q(·) of quarks and antiquarks, respectively, and assume they have the same total charge.
Let π(·, ·) be a transport plan between these distributions, i.e., it satisfies the non-negativity property
π(xq,xq̄) ≥ 0 and the marginal constraints

∫
π(xq,xq̄)dxq̄ = q(xq),

∫
π(xq,xq̄)dxq = q(xq̄). Let

Exq,xq̄
(x̃) denote the field produced by a pair of a unit quark and a unit antiquark located at xq,xq̄.

Then the field of the system of quarks q and antiquarks q w.r.t. π is given by:

Eπ(x̃) =
x

π(xq,xq̄)Exq,xq̄
(x̃)dxqdxq̄. (7)

Physically, it means that E is the average of fields of interacting pairs (xq,xq̄), and π(xq,xq̄)
characterizes the strength of pairing between quarks xq and xq̄. For completeness, we note that the
superposition principle can be analogously stated for the discrete systems of quarks.

Properties 1-2 are formulated for a quark-antiquark pair. However, if these properties are true for the
qq̄-pair, they remain valid for more complex discrete and continuous systems.
Lemma 3.1 (On the field lines). Let q(·) and q(·) be two compactly supported (discrete or continuous)
distributions of quarks and antiquarks. Let them satisfy

∫
q(x)dxq =

∫
q(xq̄)dxq̄. Let the field of

the quark-antiquark pair Exq,xq̄ (x̃) start at xq and terminate at xq̄ (Property 1), and conserve flux
along the current tube (Property 2). Then the total field (7) from all quarks and antiquarks

(a) Start at supp(P) and end at supp(Q), except perhaps for the number of lines of zero flux

(b) Conserve flux along the current tubes.
Example 3.2 (The electrostatic field). The electrostatic field (3) is a special case of the interaction
field satisfying properties 1-3 for an arbitrary transport plan. Indeed, property 1 corresponds to the
dipole field, property 2 follows from Gauss’s theorem (Kolesov et al., 2025, M2.1), and property 3 is
easy to check:

Eπ(x̃) =

∫ (
Eq+(x̃, x̃

+) +Eq−(x̃, x̃
−)

)
π(x̃+, x̃−)dx̃+dx̃− =

=

∫
Eq+(x̃, x̃

+)q+(x̃+)dx̃+ +

∫
Eq−(x̃, x̃

−)|q−|(x̃−)dx̃− = E+(x̃) +E−(x̃) = (3),

(8)

where Eq(x̃, x̃
±) is the electric field at a point x̃ produced by a point charge q = ±1 located at a

point x̃±. Electrostatic fields are independent of the transport plan π, i.e., changing the plan does not
alter the field as the total field of two charges itself is a sum of two separate fields by these charges.

3.3 MAIN THEOREM

Figure 5: Illustration of
forward, backward lines.

Let P(xq) and Q(xq̄) be two D-dimensional data distributions. Sim-
ilarly to EFM, we put these distributions in the extended space RD+1

on the planes z = 0 and z = L, respectively, see Fig. 1b. Now
assume that P and Q are the distributions of quarks q and antiquarks
q, respectively. Fix a transport plan π between them, e.g., set the inde-
pendent one π = q × q = P×Q. Let Eπ(x̃) be a proper interaction
field, i.e., satisfying properties 1-3 of M3.2.

For transport between the distributions, we define a map T :
supp(P) → supp(Q) that moves along the field lines by integrat-
ing dx̃ = E(x̃)dτ , where E(x̃) is defined by (7). Field lines starting
on the distribution P(xq) can emanate in two directions: forward-
oriented, directed toward Q(xq̄), and backward-oriented, pointed
initially in the opposite direction (see Fig. 5). The choice be-
tween these directions of motion must be made stochastically. A
definition of the stochastic map T is provided in Appendix A.2.

Then, for this map T (xq), we prove the following key theorem:

5
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Theorem 3.3 (Interaction Field Matching). Let P(xq) and Q(xq̄) be two continuous data distributions
that have compact support. Let xq be a random variable distributed as P(xq). Then xq̄ = T (xq) is a
random variable distributed as Q(xq̄):

xq ∼ P(xq) ⇒ T (xq) = xq̄ ∼ Q(xq̄). (9)

In other words, the movement along interaction field lines provably transfers P(xq) to Q(xq̄). The
proof of the theorem is given in App.A.3

3.4 REALIZATION OF THE INTERACTION FIELD

(a) Symmetric case. (b) Shifted case.

Figure 6: Realization of the field between two quarks. In the range z ∈ [0, d] and z ∈ [L− d, L] the
field lines curve toward the quarks, in the middle range z ∈ [d, L− d] the field lines are straight. The
string has an effective width σ0, beyond which the field value exponentially decreases. (a) Symmetric
case. (b) The shifted case is obtained by a proportional shift along the plane z = L

We present an interaction field realization that meets Properties 1-3 (M3.2), motivated by quark
interactions (M3.1). This design eliminates backward-oriented lines and prevents field lines from
going to z > L (Fig. 2b). A schematic is shown in Fig. 6, while the detailed algorithm for
calculating the field is formulated in Appendix A.4.

Theorem 3.4 (Properties of our interaction field). Our realization of the interaction field E(x̃)
satisfies the fundamental Properties 1-3 in M3.2, with additional characteristics:

• Field lines never extend beyond z > L.

• No backward-oriented lines exist.

The combination of these properties saves a given interaction field from EFM problems (M2.3).We
give proof and provide additional discussions in Appendix A.5.

3.5 LEARNING AND INFERENCE ALGORITHM Algorithm 1 IFM Training
Input: Distributions accessible by samples:

P(xq)δ(z) and Q(xq̄)δ(z − L);
Transport plan π(xq,xq̄) : RD × RD → R;
NN approximator fθ(·) : RD+1 → RD+1;

Output: The learned interaction field fθ(·)
Repeat until converged:

Sample |B| batch (X̃q, X̃q̄) ∼ π(xq,xq̄)
Sample |B| coordinates z ∼ r(z) ;
Compute noise ϵ̃(z) as ϵσ(z) (see App.A.4)
Calculate batch x̃ = z

L
x̃q +(1− z

L
)x̃q̄ + ϵ̃(z);

Calculate Eqq̄(x̃) for all pairs following M3.4;
Calculate E(x̃) with (7);
Compute L = Ex̃||fθ(x̃)− E(x̃)||22 → minθ;
Update θ by using ∂L

∂θ
;

To move between data distributions, it is sufficient
to follow the interaction field lines. The lines can be
found from the trained neural net approximating the
interaction field E(x̃).

Training. To recover the interaction field E(·) in
(D + 1)-dimensional points between the hyperplanes,
similarly to EFM, we approximate it with a neural
network fθ(·) : RD+1 → RD+1. To begin with, we
need to define the training volume, i.e., the procedure
to sample x̃ for training. Since the field is compli-
cated near the plates Xu et al. (2022), it is crucial to
accurately recover the field there, rather than in the
middle. We use the following sampling scheme:

x̃ =
z

L
x̃q + (1− z

L
)x̃q̄ + ϵ̃(z), (10)

where (x̃q, x̃q̄) ∼ π is sampled from the plan, z ∼ r(z) is the schedule distribution on [0, L] and
ϵ̃(z) is the amount of noise injected into the linear interpolation of x̃q and x̃q̄ at level z. This scheme

6
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is inspired by related works Kolesov et al. (2025); Xu et al. (2022). In our experiments, we use a
uniform distribution for r(z) and N (0, σ2(z)) for ϵ̃(z), where the variance σ2(z) is = L

2 − |L2 − z|.
ϵ̃(z). This formulation ensures that ϵ̃(z) = 0 at z = 0 and z = L, with the maximum noise occurring
at the middle z = L

2 . Also, it is worth noticing that (10) is just one of many possible ways to define
intermediate points between the plates, and our method does not have direct connection to the training
procedures of popular Flow Lipman et al. (2023); Liu et al. (2023); Albergo & Vanden-Eijnden (2023)
or Bridge Matching Shi et al. (2023).

The ground-truth E(x̃) is estimated with Eq. (7). Specifically, we approximate the field by Monte
Carlo samples from the given transport plan π. The field between paired quarks in a batch Exq,xq̄

is
determined according to the recipe described in M3.4. Analogously to EFM and PFGM, We learn
fθ(·) by minimizing the squared error difference between the normalized ground truth E(x̃) and the
predictions fθ(x̃) over the parameters of the neural network with SGD, i.e., the learning objective is

Ex̃||fθ(x̃)−
E(x̃)

||E(x̃)||
||2 → min

θ
. (11)

Algorithm 2 IFM Sampling
Input: samples x̃q from P(xq)δ(z)

The learned field f∗
θ (·) : RD+1 → RD+1;

Output: samples x̃q̄ from Q(xq̄)δ(z − L)
Set x0 = x̃q

for k = 1,2,...,L do
Calculate f∗

θ (xk−1) = (f∗
θ (xk−1)x, f

∗
θ (xk−1)z)

xk = xk−1 + f∗
θ (xk−1)

−1
z f∗

θ (xk−1)x
Return xL

Inference. After learning the normalized vector
field E(·)

||E(·)|| with a neural network fθ(·), we sim-
ulate the movement between hyperplanes to trans-
fer data from P(xq) to Q(xq̄). A straightforward
approach for this is to run an ODE solver for equa-
tion 2. However, one needs a right stopping time
for the ODE solver since the arrival time may dif-
fer for different field lines. In order to find it, we
follow the idea of (Xu et al., 2022; Kolesov et al.,
2025) and use an equivalent ODE solver with x̃
evolving with the extended variable z:

dx̃ =
(dx
dt

dt

dz
, 1
)
dz = (Ex(x̃)E−1

z (x̃), 1)dz = (
Ex(x̃)
||E(x̃)||

||E(x̃)||
Ez(x̃)

, 1)dz ≈ (fθ(x̃)xf−1
θ (x̃)z, 1)dz, (12)

where we denote fθ(x̃) as (fθ(x̃)x, fθ(x̃)z) and E(x̃) equals(Ex(x̃),Ez(x̃)). In the new ODE (12),
we replace the time variable t with the physically meaningful variable z setting the explicit start
(z = 0) and the end (z = L) conditions. We start with samples from P(xq), i.e., when z = 0. Then,
we arrive at the data distribution Q(xq̄) when z reaches L during the ODE simulation.

(a) L = 6 (b) L = 40

Figure 7: Interaction field line structure for the
Gaussian→Swiss Roll experiment with L =
6, 40. Our IFM with minibatch OT plan.

We emphasize, that in EFM such a movement does
not always realize transport between distributions
properly due to the backward-oriented lines and
line termination problem (M2.3). In contrast, in our
implementation of IFM (M3.4), such integration
theoretically provably translates P to Q. All the in-
gredients for training and inference in our method
are described in Algorithms 1 and 2, where we
summarize the learning and the inference proce-
dures, correspondingly.

4 EXPERIMENTAL ILLUSTRATIONS

Here we show the proof-of-concept experiments with our IFM method. We show a 2-dimensional
illustrative experiment (M4.1), image generation (M4.3) and image-to-image translation experiments
(M4.2). We give technical details of the implementation of the experiments in Appendix B. We
provide a study of the sensitivity of our model to the choice of hyperparameters in Appendix C.

4.1 GAUSSIAN TO SWISS ROLL

An intuitive initial test to validate the method involves transferring between distributions with visually
comparable densities.We use a 2D zero-mean Gaussian distribution with identity covariance matrix
as P(xq) and a Swiss Roll distribution as Q(xq̄). Their respective visualizations appear in Figs. 8a
and 8b. In Figs. 8c and 8d show the points T (xq) obtained by moving along the lines of our
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(a) Samples from P(xq), placed on
the left hyperplane z = 0.

(b) Samples from Q(xq̄), placed
on the right hyperplane z = L.

(c) Mapped samples by T (xq)
for distance L = 6.

(d) Mapped samples by T (xq)
for distance L = 40.

Figure 8: Illustrative 2D Gaussian→Swiss Roll: Input and target distributions P(xq) and Q(xq̄) with
the transfer results learned by our IFM (with minibatch OT plan) for distances L = 6 and L = 40.

interaction field realization with minibatch OT plan (Tong et al., 2023). Fig. 8c corresponds to the
plate distance L = 6, and Fig. 8d corresponds to L = 40. It can be seen that there are no significant
differences due to the choice of the hyperparameter L, while in EFM the choice of large L lead to
failure on the same experiment, namely, it failed to accurately map P to Q see (Kolesov et al., 2025,
M4.2). Fig. 7 shows the 3D structure of the field lines for L = 6 and L = 40. It can be seen that the
lines are almost straight over the entire range of values and depend weakly on L. Note that in EFM
the field lines were significantly curved at large values of L (Kolesov et al., 2025, M5), see Fig. 7.

4.2 IMAGE GENERATION

We consider the generative task on the multimodal 32×32 CIFAR-10 dataset and the high-dimensional
64 × 64 CelebA faces dataset. In this experiment, we place noise images from a D-dimensional
multivariate normal distribution N (0, ID×D) on the left hyperplane z = 0, where D = 3× 32× 32
for CIFAR-10 and D = 3× 64× 64 for CelebA. Images from the CIFAR-10 and CelebA datasets are
placed on the right hyperplane z = 20. In accordance with our Algorithm 1, we learn the normalized
interaction field between the hyperplanes using independent transport plans.
For completeness, we compare our approach not only with previous electrostatic-based approaches
such as EFM (Kolesov et al., 2025), PFGM(Xu et al., 2022) and PFGM++ (Xu et al., 2023), but
also with modern flow-based FM (Lipman et al., 2023), diffusion-based DDPM (Ho et al., 2020),
and adversarial approaches such as StyleGAN (Karras et al., 2020). Our method, IFM, performs
competitively with well-known state-of-the-art approaches in terms of qualitative results (see Figs.
9a and 9b), while EFM fails to generate samples for the 64× 64 CelebA dataset (see Fig. 9b). We
quantitatively evaluate our method’s performance by reporting FID in Table 1.

(a) CIFAR-10 32x32. (b) Celeba 64x64.

Figure 9: Image Generation: Samples obtained by IFM(ours) with the independent plan, electrostatic-based
approaches EFM and PFGM&PFGM++, flow-based FM, diffusion-based DDPM and StyleGAN.
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Dataset / Method IFM (our) EFM PFGM++ PFGM FM DDPM StyleGAN
CIFAR-10 (32x32) 2.28 2.62 2.15 2.76 2.99 3.12 2.48
Celeba (64x64) 3.07 >100 2.89 3.95 14.45 12.26 3.68

Table 1: Image Generation: FID↓ score on 32×32 CIFAR-10 and 64×64 Celeba faces datasets for
our IFM, EFM, PFGM & PFGM++, flow matching (FM), diffusion (DDPM) and StyleGAN.

Additional qualitative results for other image generation tasks (128×128 CelebA dataset and
conditional image generation on CIFAR-10) are provided in Appendices D and E

Computational efficiency. Training of our IFM takes less than 10 hours on a single NVIDIA A100
GPU (30 GB VRAM) for the 32×32 and 64×64 resolution datasets, and less than 30 hours for the
128×128 resolution dataset. Our IFM shares the same architecture as the closest competitors: EFM,
PFGM/PFGM++, DDPM, and FM. We also use the same Euler-based ODE solver and 100 evaluation
steps for each method to ensure a fair comparison. Therefore, the inference speed and memory
usage is identical for all these methods. For completeness, we report the inference speed to generate
different batch sizes of images, including a single image (i.e., batch size=1), see Table 2. In particular,
the peak GPU memory usage for all methods is approximately 8, 10 and 16 GB during inference with
a batch size of 128 for 32x32, 64x64 and 128x128 datasets, respectively.

Dataset / Batch Size 256 128 64 16 1
CIFAR-10 (32x32) 10.93 5.74 1.63 0.82 0.7
Celeba (64x64) 36.81 18.45 8.5 2.93 0.97
Celeba (128x128) 63.28 32.27 14.87 4.06 1.75

Table 2: The inference time (in seconds) of our IFM with different batch sizes |B| in generation.

4.3 IMAGE-TO-IMAGE TRANSLATION

Following (Zhu et al., 2017; Kolesov et al., 2025), we also consider an unpaired image translation task
with two scenarios: translating 32× 32 colored MNIST digits from ’2’ to ’3’ (2→3) and translating
64 × 64 scenes from Winter to Summer (W→S). The placement of images on the hyperplanes
follows the same setup as the M4.2. We learn the normalized field between the plates using both
independent and mini-batch optimal transport plans. Our IFM and IFM-MB approaches effectively
preserve shapes (with IFM-MB performing slightly better due to the use of the transport plan) and
changes the styles of the initial images (see Figs. 10a and 10b). For completeness, we compare
IFM and IFM-MB with popular image-to-image translation methods, including Flow Matching,
diffusion-based (Ho et al., 2020, DDIB), adversarial (Zhu et al., 2017, CycleGAN), and EFM. We
evaluate the performance of these methods using the CMMD Yan et al. (2022), as reported in Table 3.
We also add a discussion of the distinctions between our approach and FM in the Appendix F .

(a) Colored digits ’2’ → Colored digits ’3’. (b) Winter → Summer.
Figure 10: Image Translation: Samples obtained by IFM(ours) with/without the minibatch plan,

electrostatic-based approach EFM, flow-based FM, diffusion-based DDIB and adversarial CycleGAN.
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Dataset / Method IFM-MB (our) IFM (our) EFM FM CycleGAN DDIB
’2’ → ’3’ (32x32) 0.87 0.95 0.93 1.06 0.90 0.96
W→S (64x64) 1.13 1.25 ≫1 ≫1 1.33 1.39

Table 3: Unpaired Image Translation: CMMD↓ on W→S and colored difits ’2’→’3’
for our IFM, EFM, FM, CycleGAN and DDIB.

Computational efficiency of our method in translation is almost the same as in generation (M4.2).
Also, the core implementation components of IFM (artitectures, number of steps in ODE solver, etc.)
are the same as in generation and are again identical to the closest ODE-based competitors EFM &
FM to ensure the fair comparison. Therefore, the runtime & memory usage is the same for all these
mentioned approaches. For completeness, we report the inference time of IFM in Table 4.3 below.

Dataset / Batch Size 256 128 64 16 1
MNIST ’2’→’3’ (32x32) 10.95 5.73 1.61 0.85 0.73
W → S (64x64) 36.84 18.44 8.53 4.05 1.76

Table 4: The inference time (in seconds) of our IFM with different batch sizes |B| in translation.

5 DISCUSSION

Our proposed IFM method is a generalization of EFM allowing using rather general interaction fields
for distribution transfer. Our implementation of the particular IFM field is just one of many possible
realizations. The search for a more optimal realization is a difficult task and is a promising subject of
future research that opens opportunities for the further development of electrostatic-inspired models.

Our IFM overcomes major limitations of prior EFM method (M2.3): backward-oriented field lines,
line termination problems, and training volume selection issues. Moreover, due to our field’s specific
structure, we also address the high-dimensionality challenge and the associated numerical instability
that affects EFM and PFGM due to the Coulomb factor 1/∥x̃− x̃′∥D (see Appendix C).

Impact statement. Our paper presents work with a goal to advance ML. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.
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A INTERACTION FIELD MATCHING: PROPERTIES AND PROOFS

A.1 PROPERTIES OF INTERACTION FIELD LINES

In this section we formulate several properties of the interaction field which are essential for the proof
of the main theorem. First of all, let us formulate the notion of field flux which has been introduced
intuitively in the main text.

Definition A.1. (Field flux). Consider an element of area dS. The field flux E through this element
is called dΦ = E · dS. If we need to calculate the field flux through a finite surface Σ, then the field
flux is

Φ =

∫
Σ

dΦ =

∫
Σ

E · dS. (13)

Intuitively, field flux indicates how many field lines pass through a surface Σ. The greater the flux,
the higher the number of lines passing through a given area.

Remark. For the closed surfaces, we assume that the normal is always directed outward.

Lemma A.1 (Generalized Gauss theorem). Let P(·), Q(·) be two D-dimensional probability distri-
butions having compact support, located on planes z = 0 and z = L in RD+1, respectively, and
satisfying the property

∫
P(xq)dxq =

∫
Q(xq̄)dxq̄. Let Eqq̄(x̃) ≡ Exqxq̄(x̃) be an interaction field

produced by a pair of a unit quark and a unit antiquark satisfying properties 1-3 of M3.2. Let ∂M be
a surface bounding the volume M and containing a part of the distribution P(·) and not containing
Q(·). Then

x

∂M

E · dS = Φ0 ·
∫
M

P(x̃)dx̃, (14)

where Φ0 =
s

∂M
Eqq̄ · dS is the field flux from a single unit qq̄-pair1.

Proof. Substituting the explicit expression (7) for the interaction field E(x̃) we obtain:
x

∂M

E · dS =
x

∂M

(∫
Eqq̄π(xq,xq̄)dxqdxq̄

)
· dS =∫

π(xq,xq̄)dxqdxq̄ ·
x

∂M

Eqq̄ · dS = Φ0

∫
M

dxq

∫
dxq̄π(xq,xq̄) =

Φ0 ·
∫
M

P(xq)dxq.

(15)

The equality on the second line is associated with a change in the order of integration, which is
possible by the natural assumption of the continuity of the functions π(xq,xq̄) and Eqq̄ and the
compactness of their support.

Remark. If M contains a part of the distribution Q(·) but does not contain P(·), then the statement
of the theorem will be written as follows:

x

∂M

E · dS = Φ0 ·
∫
M

Q(x̃)dx̃. (16)

1We assume (M3.2) that the flux Φqq̄ is proportional to the charge of the quark q that creates field Eqq̄ and
does not depend on the relative position of the quark-antiquark pair. That is, all other things being equal, the
replacement q → 2q will lead to Φqq̄ → 2Φqq̄ . Therefore, for any pair qq̄ with the same unit charge q = 1 (and
it is precisely what we mean when we talk about the elementary field Eqq̄), the flux Φqq̄ ≡ Φ11̄ = Φ0 will be
the same for all pairs

12
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Corollary A.2. For any point x̃ in the support of distribution P(·):

E+
z (x̃)− E−

z (x̃) = Φ0 · P(x̃). (17)

Proof. Consider an infinitesimal volume dS ∈ supp P(·). Consider a closed surface, a cylinder with
infinitesimal indentation in different directions in the plane z = 0, see Fig. 11.

The flux through this surface consists of three summands: the dΦ+ flux in the positive direction of
the z-axis, the dΦ− flux in the negative direction of the z-axis, and the dΦlat flux through the lateral
surface:

dΦfull = dΦ+ + dΦ− + dΦlat = E+
z dS − E−

z dS + 0. (18)

Figure 11: Considered area.

Here dΦlat = 0 since the height of the cylinder under
consideration can be made as small as we want (in-
finitesimal of higher order than dS). dΦ− = −E−

z dS
has a negative sign due to the fact that the normal to the
closed surface is directed outward, i.e. in the opposite
direction from the axis z.

Then, due to the generalized Gauss’s theorem:

dΦfull = (E+
z − E−

z )dS = Φ0 · PdS (19)

which proves the corollary.

Lemma A.3 (On field lines). Let P(·) and Q(·) be two
(discrete or continuous) distributions corresponding to
quarks and antiquarks. Let these distributions have
compact support and satisfy

∫
P(xq)dxq =

∫
Q(xq̄)dxq̄. Let the field of the unit quark-antiquark

pair Exq,xq̄
(x̃) ≡ Eqq̄(x̃) start at xq and end at xq̄ (Property 1), and conserve flux along the current

tube (Property 2). Then the total field (7) from all quarks and antiquarks satisfies:

(a) Its lines start at P(·) and end at Q(·), except perhaps for the number of lines of zero flux

(b) It conserves flux along the current tubes.

Proof. Let us begin with the proof of the second property. Let the field E =
∫
Eqq̄πqq̄dxqdxq̄ and∫

Eqq̄ · dS = const. Then:

∫
E · dS =

∫ ∫
πqq̄dxqdxq̄

∫
Eqq̄ · dS =

∫
πqq̄dxqdxq̄ · const = const · 1 = const. (20)

Let us now prove the first property. Suppose the opposite. Let there be lines starting at P but not
ending at Q (the case of lines not starting at P but ending at Q can be considered similarly).

Consider a qq̄-pair. The field Eqq̄ of this pair by assumption of the lemma starts on q and ends on q̄,
is continuous, and therefore cannot go to infinity. Therefore, the flux through any Σ-area infinitely
distant from qq̄-pair must be zero 2:

ΦΣ
qq̄ =

∫
Σ

Eqq̄ · dS → 0, ||x|| → ∞. (21)

Then, if P(·) and Q(·) have a compact support, the field flux from all quarks will also be zero:

2The difference ΦΣ
qq̄ with the Φ0 here is that Σ is an open surface infinitely distant from the qq̄-pair, while

Φ0 is the flux through a closed surface ∂M containing charge q and not containing charge q̄. In other words,
Φ0 denotes the total field flux between a quark-antiquark pair of unit charge, while ΦΣ

qq̄ defines the field flux
through some infinitely distant surface.
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Φ∞ =

∫
Σ

E · dS =

∫
Σ

∫
Eqq̄πqq̄dxqdxq̄ · dS =

∫
πqq̄Φ

Σ
qq̄dxqdxq̄ → 0, ||x|| → ∞. (22)

Therefore, if the lines under consideration go to infinity, their flux is zero.

Let us now consider lines ending not at infinity and not at the target distribution (i.e., at some
intermediate points)3. At the stopping point E = 0 (otherwise it is not a stopping point). But then the
total flux produced by such lines:

Φ =

∫
E · dS = 0 (23)

which proves the statement.

A.2 DEFINITION OF STOCHASTIC MAP T

Movement from one distribution to the other is carried out along the field strength lines. In this
section, we rigorously define this movement using a stochastic map T , taking into account the
existence of two series of lines - forward-oriented and backward-oriented.

We define the stochastic forward map TF from supp(P) to supp(Q) through forward-oriented field
lines. For this, we consider a point x̃q = (xq, ε), ε → 0+ slightly shifted in the direction of the
second plate. Let us move along the corresponding field line by integrating dx̃(t) = E(x̃(t))dt.

Sooner or later, such movement leads to the intersection of the plane z = 0 or z = L. At this moment,
the question arises of whether to continue or stop the movement. If the movement continues, it will
proceed until the plane z = 0 or z = L is intersected again. Then, a decision must again be made - to
stop or to go further. This procedure must be continued until we reach the final stopping point. Let us
denote the intersection points as follows:

x̃q → x̃(1)F → x̃(2)
F → ... → x̃(N)

F (24)

At each of these points, it is necessary to stop with probability ν(x̃(i)
F ) and continue movement with

probability 1− ν(x̃(i)F ), where

ν(x̃(i)F ) =


1, if E(before)

z (x̃(i)F ) and E
(after)
z (x̃(i)F ) have opposite signs

0, if |E(after)
z (x̃(i)

F )| ≥ |E(before)
z (x̃(i)

F )|
|E(before)

z (̃x(i)F )|−|E(after)
z (̃x(i)F )|

|E(before)
z (̃x(i)F )|

if |E(after)
z (x̃(i)F )| < |E(before)

z (x̃(i)
F )|

,

(25)

where E
(before)
z (x̃(i)

F ) and E
(after)
z (x̃(i)F ) are the values of the z-component of the field immediately

before and immediately after intersecting the plane at point x̃(i)F , respectively.

To understand the meaning of this probability, note that if E
(before)
z (x̃(i)F ) and E

(after)
z (x̃(i)

F ) have
opposite signs, then further movement along the field lines is impossible (and thus we have arrived at
the final point x̃(N)

F on the target distribution). If they have the same sign, then further movement
along the field lines is possible.

If further movement is possible, two situations arise: either |E(after)
z (x̃(i)F )| ≥ |E(before)

z (x̃(i)
F )| or

|E(after)
z (x̃(i)F )| < |E(before)

z (x̃(i)F )|. In the first case, after crossing the plane, the field magnitude
(and consequently the flux) increases - therefore the stopping probability is set to zero. If the flux

3Note that there are only two possible options - either the field line goes to infinity, or does not go to infinity,
that is, it stops somewhere at an intermediate point.
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magnitude becomes smaller after crossing, it means that one must stop with some probability and
continue with another. Lemma X explains why this particular probability value is chosen for the latter
situation.

The stochastic backward map TB is constructed similarly using left limit ε → 0− and backward-
oriented field lines.

The complete transport T is then described by the random variable:

T (xq) =

{
TF (xq) with probability µ(xq),
TB(xq) with probability 1− µ(xq),

(26)

capturing both forward and backward trajectory endpoints for each xq ∈ supp(P) with probabilities
µ(xq) and 1− µ(xq), where

µ(xq) =


0, E+

z < 0

1, E−
z > 0

E+
z

E+
z +|E−

z | otherwise.
(27)

Here E±
z = Ez(x̃ ± εez), ε → 0+ are the left and right limits of the field value at the point x̃

in z direction. The meaning of this probability is as follows. Value µ(xq) allows one to choose a
forward or backward sets of lines with a probability proportional to the field flux in the corresponding
direction (i.e., proportional to E+

z and |E−
z |, respectively). At the same time, if it is impossible to

move forward (E+
z < 0), the map TB is chosen (µ(xq) = 0), and if it is impossible to move backward

(E−
z > 0), the map TF is chosen (µ(xq) = 1).

A.3 IFM MAIN THEOREM PROOF

Lemma A.4 (First lemma on the flow). Let P(·), Q(·) be two D-dimensional data distributions
having a compact support, located on the planes z = 0 and z = L in RD+1, respectively. Let
{x̃qi}ni=1 be a sample of points distributed over P. Let dS be an element of D-dimensional area on
the distribution of P (dS ∈ supp P). Let the field near the element dS have different signs: E+

z > 0
and E−

z < 0. Let dn be the number of points from the sample that fall in the volume dS. Let
dn = dnF + dnB , where dnF is the number of points from dS that correspond to the mapping TF

(i.e., movement along forward-oriented lines), and dnB corresponds to TB . Then:
dnF

n

a.s.−−−−→
n→∞

E+
z dS

Φ0
=

dΦF

Φ0
,

dnB

n

a.s.−−−−→
n→∞

|E−
z |dS
Φ0

=
dΦB

Φ0
,

(28)

where
(
...

a.s.−−−−→
n→∞

...
)

denotes the almost sure convergence.

Proof. According to the multiplication rule of probability and the law of large numbers:
dnF

n

a.s.−−−−→
n→∞

(probability of choosing TF ) · (probability of falling in dS) =

= µ(x̃) · P(x̃)dS =
E+

z

E+
z + |E−

z |
· (E

+
z + |E−

z |)dS
Φ0

=
E+

z dS

Φ0
=

dΦF

Φ0
.

(29)

In the second equality, the definitions of probability µ(·), see Eq. (27), and Corollary A.2 were used.
The case dnB is proved similarly.

Lemma A.5 (Second lemma on the flow). Let P,Q, {x̃qi}ni=1, dS, dn have the same meaning as in
the Lemma A.4. Let E+

z and E−
z have the same sign near dS (i.e., either simultaneously E±

z > 0 or
simultaneously E±

z < 0). Then

dn

n

a.s.−−−−→
n→∞

dΦafter

Φ0
−

dΦbefore

Φ0
, (30)

where dΦbefore is the field flux through the current tube supported on dS immediately before crossing
the plane dS ∈ suppP(·), and dΦafter is the flux after crossing.
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Remark. This statement implies that when the field crosses the plane P containing a charge
(proportional to dn/n), the field flux must increase by Φ0 · dn/n.

Proof. For clarity, consider the case E+
z > 0, E−

z > 0 when µ(xq) = 1 and motion processes only
along the forward-oriented lines, corresponding to the mapping TF .

By the probability product theorem, the strong law of large numbers, Corollary A.2, and the definition
of flux:

dn

n
→ µ(x)P(x)dS = 1 · P(x)dS =

E+
z − E−

z

Φ0
dS =

dΦafter

Φ0
− dΦbefore

Φ0
. (31)

Lemmas A.4 and A.5 address the behavior near the distribution P. Similar statements are valid for
the behavior near Q. When moving along field lines, we eventually reach the plane z = L. At this
point two different scenarios may occur:

1. E+
z (L) and E−

z (L) have opposite signs. Then the field line motion terminates in this case.

2. E+
z (L) and E−

z (L) have the same sign. Then a portion dn′ of lines must terminate, while
others continue.

This portion dn′ can be found from the line termination property in Q.

Lemma A.6 (Line Termination). If E+
z (L) and E−

z (L) have the same sign upon crossing z = L,
the number of lines terminating on z = L satisfies:

dn′

n
→ −

dΦafter

Φ0
+

dΦbefore

Φ0
, (32)

Remark. When the field crosses the plane Q containing a charge (proportional to dn′/n), the field
flux must decrease by Φ0 · dn′/n.

Proof. . Consider the current tube before it intersects the plane z = L. Let us denote the number of
lines inside dnbefore. As a result of the intersection z = L, some of the lines dn′ stop moving, while
some of the lines dnafter continue moving. In view of the first Lemma A.4 on flow, as well as the
conservation of flow inside the current tube (Property 2 in M3.2):

dnbefore

n

a.s.−−−−→
n→∞

dΦbefore. (33)

Then, by virtue of the law of large numbers and the fact that dnbefore = dn′ + dnafter, we have:

dn′

n

a.s.−−−−→
n→∞

(probability of termination) · dnbefore

n

a.s.−−−−→
n→∞

ν(x−) · dΦbefore

E−
z − E+

z

E−
z

· E−
z dS′ = (E−

z − E+
z )dS′ = −dΦafter + dΦbefore

(34)

We now proceed to prove the main theorem.

Theorem A.7 (Interaction Field Matching). Let P(xq) and Q(xq̄) be two data distributions that
have compact support. Let xq be distributed over P(xq). Then xq̄ = T (xq) is distributed over Q(xq̄)
almost surely:

If xq ∼ P(xq) ⇒ T (xq) = xq̄ ∼ Q(xq̄). (35)
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Proof. Let {xqi}ni=1 be points distributed according to P. Moving along the field lines via mapping
T , we obtain points xq̄i = T (xqi) in distribution Q.

Consider a D-dimensional area element dS′ ⊂ suppQ. Let dn′ be the number of points xq̄i in this
area. Define the sample:

Q̂ndS
′ =

dn′

n
. (36)

Figure 12: Points corre-
sponding to forward and
backward lines.

The aim is to prove
Q̂n → Q. (37)

The points dn′ arrive via forward or backward directions:

dn′ = dn′
F + dn′

B . (38)

Consider dn′
F and its associated flux tube. Traverse this tube inversely

along the field lines until stopping at P. During this motion, multiple
crossings of z = 0 and/or z = L may occur. Denote the intersection
points:

xq̄ = x0 → x1 → · · · → xN−1 → xN = xq. (39)

Their corresponding area elements are

dS′ = dS0 → dS1 → · · · → dSN−1 → dSN = dS. (40)

Point counts in these areas read

dn′ = dn0 → dn1 → · · · → dnN−1 → dnN = dn, (41)

where dnk (k = 0, ..., N + 1) is number of points from sample {xqi}ni=1 or from map {T (xqi)}ni=1
inside the volume dSk near point xk that corresponds to considered motion inside current tube.

The dnk are not arbitrary but related by flux conservation. Only the charged planes (z = 0 or z = L)
can alter the count:

• At zi = 0: Line count increases by dni

• At zi = L: Line count decreases by dni

Mathematically:
N∑
i=0

(−1)fidni = 0, (42)

where

fi =

{
0 if zi = 0,

1 if zi = L.
(43)

Due to the first Lemma on flow A.4:

dnN

n
≡ dn

n

a.s.−−−−→
n→∞

dΦN

Φ0
≡ dΦ

Φ0
, (44)

Due to the second Lemma A.5 on the flow , and because of the line termination Lemma A.3:

(−1)fi · dni

n

a.s.−−−−→
n→∞

dΦafter,i

Φ0
− dΦbefore,i

Φ0
. (45)

According to the law of conservation of flux along the tube (Lemma A.3):
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dΦafter,i = dΦbefore,i−1. (46)

Whence we obtain a chain of equalities:

0 =

N+1∑
k=0

(−1)fkdnk = −dn′
F

n
+ (−1)f1

dn1

n
+ ...+ (−1)fN

dnN

n
+

dn

n
⇒

dn′
F

n
= (−1)f1

dn1

n
+ ...+ (−1)fN

dnN

n
+

dn

n

a.s.−−−−→
n→∞

a.s.−−−−→
n→∞

−dΦafter,1 − dΦbefore,1 + ...+ dΦafter,N − dΦbefore,N + dΦN+1 =

= dΦafter,1 + 0 + ...+ 0 = dΦ′
F .

(47)

Consequently,

dn′
F

n

a.s.−−−−→
n→∞

dΦ′
F

Φ0
. (48)

Similarly, it can be proven that
dn′

B

n

a.s.−−−−→
n→∞

dΦ′
B

Φ0
. (49)

Then, by virtue of the generalized Gauss’s theorem (Lemma A.1), we finally have

Q̂ndS
′ =

dn′

n
=

dn′
F

n
+

dn′
B

n

a.s.−−−−→
n→∞

dΦ′
F

Φ0
+

dΦ′
B

Φ0
= QdS. (50)

This completes the proof.

A.4 INTERACTION FIELD REALIZATION

Here we formulate an algorithm for computing our constructed field which is inpired by strong
interaction in physics at an arbitrary point x̃ ∈ RD+1 with the quark q and the antiquark q̄ being at
x̃q and x̃q̄ (see Fig. 6).

Symmetric case. Let a quark q be located at the origin: x̃q = (0, 0) ∈ RD+1, and the antiquark
q̄ at the point x̃q̄ = (0, L) ∈ RD+1. The arbitrary point of space can be written as x̃ = (x⊥, z) =
x̃⊥+zez, where x̃⊥ ∈ RD+1 is the component of the vector x̃ orthogonal to the z-axis. We introduce
the following string hyperparameters (Fig. 6a):

• σ0 is the effective width of the string in the cross section.
• d is the size of the region of the string in which the field lines will curve toward the quark (antiquark).

Thus, in the interval z ∈ [d, L − d] the field lines are straight, and in the regions z ∈ [0, d] and
z ∈ [L− d, L] the lines will be curved. Value k = π/2d is also introduced.

We define the dependence of the effective string width σ(z) on the coordinate z as follows:

σ(z) =


σ0 sin(kz), z ∈ [0, d],

σ0, z ∈ [d, L− d],

σ0 sin(k(L− z)), z ∈ [L− d, d],

0, otherwise.

(51)

The field direction n(x̃) at the point x̃ is defined as:

n(x̃) = cosα(x⊥, z) · ez + sinα(x⊥, z) · e⊥ ∈ RD+1, (52)

where ez, e⊥ are the unit vectors along the z-axis and along the vector x̃⊥, respectively, i.e., e⊥ =
x̃⊥/||x̃⊥||. α = α(x⊥, z) is the angle between the field direction at a given point and the z-axis.
This angle is determined from the following considerations. Let x̃′(z′) be the field line parallel
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Algorithm 3 Interaction field calculation
Input: Positions of quark and antiquark: x̃q, x̃q̄ ∈ RD+1,with zq = 0, zq̄ = L

Arbitrary point x̃ ∈ RD+1

String hyperparameters: σ0, d, k = π/2d
Output: The interaction field Eqq̄(x̃)
Algorithm:

Calculate the vector connecting the quarks: r̃ = x̃q̄ − x̃q ∈ RD+1

Calculate the unit direction vector corresponding to it: e′z = r̃
||̃r|| ∈ RD+1

Calculate the vector of shift of the point x̃ from the axis of the string:

ρ̃ = x̃− x̃q + (x̃q − x̃q̄)
z

L
∈ RD+1

,
where z is corresponding coordinate of point x̃
Calculate x⊥ = ||ρ̃||, e⊥ = ρ̃

||ρ̃||
Calculate the string width σ(z) according to (51)
Calculate the angle α(x⊥, z) according to (53)
Calculate the value of field E(x⊥, z) according to (54)
Calculate the direction n(x̃) = cosα(x⊥, z) · e′z + sinα(x⊥, z) · e⊥ ∈ RD+1

Return: Eqq̄(x̃) = E(x⊥, z)n(x⊥, z)

to the level σ(z) (i.e. ∀z′ : x′
⊥(z

′)/σ(z′) = const ) which passes through the point (x⊥, z), i.e.,

x̃′(z′)|z′=z = x̃ = (x⊥, z). Then α = α(x⊥, z) is determined by tanα =
dx′

⊥
dz′

∣∣∣
z′=z

:

α = α(x⊥, z) =


arctan(kx⊥ cot(kz)), z ∈ [0, d],

0, z ∈ [d, L− d],

arctan(kx⊥ cot(k(L− z)), z ∈ [L− d, L].

(53)

We define the field strength value as the product of the Gaussian distribution in the radial direction
and a normalization factor that keeps the interaction field flux invariant along the tube:

E(x⊥, z) = exp

(
− x2

⊥
2σ(z)2

)
· 1

σ(z)D cosα(x⊥, z)
. (54)

Shifted case. In the case where the quarks are in the shifted positions x̃q and x̃q̄ , we use a field shift
parallel to the planes z = 0 and z = L, as shown in Fig. 6b. We use the shift and not the rotation
of the string with the aim of not generating backward-oriented lines and lines traversing the region
z > L. The detailed algorithm for calculating the field is formulated in Algorithm 3

A.5 PROOF OF PROPERTIES OF INTERACTION FIELD REALIZATION

Theorem A.8 (Properties of our interaction field realization). Our realization of the interaction field
E(x̃) satisfies the fundamental Properties 1-2 in M3.2, with following additional characteristics:

• Z-Axis caging: Field lines never extend beyond z > L.

• Unidirectional Flow: No backward-oriented field lines exist.

• Centrosymmetrical arrangement: E(x̃) = E(r⊥, z).

• Radial Decay: Monotonic decrease in field strength away from axis:

∂∥E∥
∂r⊥

≤ 0 with lim
r⊥→∞

E(x̃) = 0.

• Axial Alignment: Field becomes parallel to the string axis in middle region:

E(r⊥, z) ∥ e′z for z ∈ [d, L− d].

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. The interaction field starts at a quark and ends at an antiquark (Property 1M3.2) due to the fact
that the field direction n(x̃) = cosα(x⊥, z) · e′z + sinα(x⊥, z) · e⊥ is a tangent to the curve x′

⊥(z
′),

which by construction begins at x̃′
q and ends at x̃q̄ .

Consider an infinitesimal current tube connecting a quark and an antiquark. The surface bounding this
tube is parallel to the field line x′

⊥(z
′). Along the field line by construction x⊥/σ(z) = κ = const. In

(D+1)-dimensional space, the area element dS orthogonal to the z-axis is dS ∼ xD−1
⊥ dx⊥.Therefore,

due to the definition of the flux and the explicit expression for E(x⊥, z) (54) we have

dΦ = E · dS = EdS cosα ∼ exp

(
− r2⊥
2σ(z)2

)
· 1

σ(z)D cosα
· xD−1

⊥ dx⊥ · cosα =

= exp

(
−κ2

2

)
· κD−1dκ = const.

(55)

Therefore, Property 2 M3.2 is satisfied.

The Z-Axis caging property is satisfied because σ(z > L) = 0. The Unidirectional Flow property
is satisfied due to σ(z < L) = 0. The Cylindrical Symmetry property is satisfied because E(x̃) =
E(x⊥, z). Radial decay property is satisfied because of the explicit formula (54) for E(x⊥, z) .
Finally, the Axial alignment property is satisfied because α(z ∈ [d, L− d]) = 0.

Remark. A crucial element in the flux conservation proof is the factor 1/σ(z)D in the definition of the
IFM field (see (54)). The intuition behind this factor can be explained as follows: any flux tube must
narrow to a point as it approaches a charge. Consequently, the cross-section (which is proportional to
σ(z)D) must also decrease. Flux conservation can only be maintained by a proportional increase in
the field strength, see Figure 13 below.

Figure 13: An illustration to the flux conservation property. To maintain the field flux conservation
within a tube as it narrows, a proportional increase in field strength is required.

In simpler terms, the closer one is to a charge, the stronger the field must be.

B EXPERIMENTAL DETAILS

We aggregate the hyper-parameters of our Algorithm 1 for different experiments in the Table 5.
We base our code for the experiments on EFM’s code https://github.com/justkolesov/
FieldMatching.

Experiment D Batch Size L σ0 d LR π plan
Gaussian Swiss-roll M4.1 2 1024 [6, 40] 1 [0.1, 0.5]L 2e-4 [Ind, MB]
CIFAR-10 Generation M4.2 3072 128 20 1 0.5L 2e-4 Ind
CelebA 64x64 Generation M4.2) 12288 128 20 1 [0.1, 0.25, 0.4, 0.5]L 2e-4 Ind
MNIST digits 2→3 Translation M4.3 3072 128 20 1 0.1L 2e-4 [Ind, MB]
Winter→Summer Translation M4.3 12288 128 20 1 0.1L 2e-4 [Ind, MB]
CelebA 128x128 Generation App. D 49152 128 20 1 0.25L 2e-4 Ind
Conditional CIFAR-10 generation App. E 3072 128 20 1 0.25L 2e-4 Ind

Table 5: Hyper-parameters of Alg. 1 for the experiments, where D is the dimensionality of task, L is
the distance betwenn plates, σ0 is the effective width, d is the characteristic distance (see Fig.6a).

20

https://github.com/justkolesov/FieldMatching
https://github.com/justkolesov/FieldMatching


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In the case of the Image experiments (see §4.3 and §4.2), we follow (Kolesov et al., 2025, EFM), (Xu
et al., 2022; 2023, PFGM/PFGM++), (Ho et al., 2020, DDPM) and (Lipman et al., 2023, FM) and
use Exponential Moving Averaging (EMA) technique with the ema rate decay equals 0.99 to provide
smooth solution. Also, we use linear scheduler, that grows from 0 to 2e − 4 during the first 5000
iterations and decreases monotonically. As for the optimizer, we use Adam optimizer Kingma & Ba
(2015) with the learning rate 2e− 4 and weight decay equals 1e− 4.

We compare our method with PFGM/PFGM++ Xu et al. (2022; 2023), whose the source code are
taken from https://github.com/Newbeeer/pfgmpp for running PFGM++ and https:
//github.com/Newbeeer/Poisson_flow/ for PFGM in our experiments. We follow the
proposed values of hyper parameters are appropriate for us: γ = 5, τ = 0.3, ϵ = 1e− 3. The source
code for DDPM is taken from https://github.com/yang-song/score_sde_pytorch
with hyper-parameters σmin = 0.01, σmax = 50, βmin = 0.1 and βmax = 20. The source
code for FM is taken from https://github.com/facebookresearch/flow_matching
with linear interpolant . The source code for StyleGAN is taken from https://github.com/
NVlabs/stylegan2-ada-pytorch.

C ABLATION STUDY

Our IFM realization is defined by the following hyperparameters: the distance L between plates, the
string width σ0, and the distance d over which field lines curve toward the charges. In this Appendix,
we address the practical selection of these hyperparameters and present an ablation study on how
they affect our model’s performance. We choose parameters based on the following ideas:

1. Since we learn the normalized field (see (11)), the factor 1/σ(z)D cancels out. Indeed, let
x̃ ∈ RD+1 be a point where we estimate the normalized vector field using B sampled pairs of
quarks and anti-quarks. In accordance with the superposition principle (see (7)), the resulting field
is obtained as the average of B independent fields E(x

(i)
⊥ , z)n(x(i)

⊥ , z) (see (54)) from each pair:

E(x̃)
||E(x̃)||

=

B∑
i=1

exp(− x
(i)
⊥

2σ(z)2 )

���
σ(z)D

n(x(i)
⊥ , z)

/
1

���
σ(z)D

||
B∑
i=1

exp(−
x
(i)
⊥

2σ(z)2
)n(x(i)

⊥ , z)||.

Therefore, term 1/σ(z)D cancels out completely. The practical choice of the hyperparameter σ0

is determined solely by numerical considerations and is usually set to σ0 = 1.

2. The distance d should not be chosen too short—this complicates data translation via the ODE due
to the high curvature of the field lines in the region z ∈ [0, d]∪ [L− d, L] . In practice, we usually
use d ∈ [0.1L, 0.5L].

3. Finally, the distance L does not significantly impact translation quality in our method (see Fig.
7). This is different from EFM, where making L too large significantly worsens the results (see
M2.3). Our IFM realization is specifically designed to reduce this dependency through straight field
segments for z ∈ [d, L−d], where ODE integration follows straight lines. In practice, analogously
to EFM, we set L to be on the order of the data standard deviation: L ∼

√
DP or

√
DQ.

Figure 14 presents a series of experiments with different values of the parameter d. It can be seen
that the generation quality does not significantly depend on this parameter.

D ADDITIONAL CELEBA GENERATION EXPERIMENT (128X128)

We also provide a more challenging image generation task on the 128×128 CelebA dataset. We
follow the experimental design from the M4.2, placing the CelebA images and the noise from standard
multivariate distribution N (0, I128×128) on the left hyperplane (z = 0) and the right hyperplane
(z = 20), respectively. We present the qualitative results of our IFM in Fig. 15, demonstrating its
scalability in high-dimensional spaces.
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(a) L = 20, σ0 = 1, d =
0.1L.

(b) L = 20, σ0 = 1, d =
0.25L.

(c) L = 20, σ0 = 1, d =
0.4L.

(d) L = 20, σ0 = 1, d =
0.5L.

Figure 14: Image Generation on CelebA 64x64: Investigation of generation quality dependence on
the model hyperparameter d in our IFM method.

Figure 15: Image Generation: Samples obtained by IFM (ours) method with the independent
transport plan on CelebA dataset with resolution 128x128.

E CONDITIONAL IMAGE GENERATION ON CIFAR-10

Our IFM can be easily adapted to conditional generation tasks. For generating images of a specific
class c, we learn a conditional vector field E(x̃|c). Specifically, for a data sample x̃q = (xq, 0) from
c-th class, we sample noised sample x̃ via (10) and approximate E(x̃|c) by a neural network fθ(x̃, c)
with the following optimization function over parameters θ:

EcEx̃|c||fθ(x̃, c)−
E(x̃|c)

||E(x̃|c)||2
||22 → min

θ
.

We consider conditional generating task on the 32x32 CIFAR-10 dataset and demonstrate generated
images over each class c in Fig. 16

F COMPARISON WITH FLOW MATCHING

Our IFM framework offers an important advantage compared to Flow Matching (Lipman et al., 2023;
Liu et al., 2023; Tong et al., 2023): it enables multi-sample estimation of the field.

In particular, our IFM method approximates the normalized vector field with a neural network
fθ(x̃), trained with the loss

LIFM = Ex̃

∥∥∥∥fθ(x̃)− E(x̃)

∥E(x̃)∥

∥∥∥∥2
2

,

which requires an estimate of the ground-truth vector field E(x̃). The distribution over points x̃ at
which the field is learned serves as a hyperparameter. Since the field E(x̃) is represented using the
superposition principle (7), we can estimate it by averaging over fields induced by B batch samples

22
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Figure 16: Conditional Image Generation: Samples obtained by conditional vector field E(x̃|c) of
IFM(ours) method on CIFAR-10 dataset for each class c.

(quark and anti-quark pairs) x̃q = (xq, 0) and x̃q̄ = (xq̄, L):

E(x̃) ≈ 1

B

B∑
i=1

Exqi
xq̄i

(x̃),

where each Exqi
xq̄i

(x̃) admits a closed form (see Appendix A.4). Thus, we can use any available
number of sample pairs (x̃q, x̃q̄) ∼ π—up to the entire dataset—to estimate the ground-truth field
and reduce the variance of this Monte Carlo estimator.

In contrast, the Flow Matching (FM) loss is

LFM = Et∈[0,1], (x0,x1)∼π ∥vθ(xt, t)− (x1 − x0)∥22 ,

where xt = tx1 + (1 − t)x0. The optimal vector field is v∗(xt, t) = E[x1 − x0 | xt], but this
conditional expectation is intractable to estimate via Monte Carlo because one cannot easily sample
x1,x0 conditioned on xt. Thus, during training, one regresses vθ(xt, t) to its single-sample estimate

vθ(xt, t) ≈ x1 − x0.

Therefore, FM estimates the ground-truth field at each point xt using only one pair (x0,x1) ∼ π,
with no direct way to reduce the variance of this Monte Carlo estimate.

We sum up differences between FM and our IFM in Table 6 .

IFM (ours) FM
Estimation of a field Multi-sample: E(̃x) over B pairs (x0, x1) ∼ π One-sample: v(xt) over one pair (x0, x1) ∼ π
Training volume Any: x̃ = (x, z) : z ∈ [0, L] Restricted: xt = tx1 + (1 − t)x0

Table 6: The differences between our IFM and Flow Matching (FM).
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