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ABSTRACT

Electrostatic field matching (EFM) has recently appeared as a novel physics-
inspired paradigm for data generation and transfer using the idea of an electric
capacitor. However, it requires modeling electrostatic fields using neural networks,
which is non-trivial because of the necessity to take into account the complex field
outside the capacitor plates. In this paper, we propose Interaction Field Matching
(IFM), a generalization of EFM which allows using general interaction fields
beyond the electrostatic one. Furthermore, inspired by strong interactions between
quarks and antiquarks in physics, we design a particular interaction field realization
which solves the problems which arise when modeling electrostatic fields in EFM.
We show the performance on a series of toy and image data transfer problems.
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(a) Electrostatic Field Matching (b) Interaction Field Matching
(Kolesov et al., {2025, EFM). (IFM, ours).

Figure 1: Electrostatic Field Matching (EFM, (Kolesov et al., 2025)) and our Interaction Field
Matching (IFM) concepts. Two D-dimensional distributions P(-), Q(-) are placed in RP*! at z = 0
and z = L (a) In EFM, the distributions are interpreted as charges creating a capacitor-like electric
field. Movement along these field lines transfers the distributions, but requires consideration of all
directions of the field lines. (b) Our IFM is a generalization of the EFM to arbitrary interactions
between charges. One possible realization of IFM is motivated by the strong interaction between
quarks. This realization doesn’t have backward-oriented lines and has a smaller curvature of the lines.

1 INTRODUCTION

While diffusion (Sohl-Dickstein et al., 20155 |Ho et al., 2020) and flow matching (Liu et al., 2023}
Lipman et al,|2023; |Albergo & Vanden-Eijnden, [2023)) models dominate current research in deep
generative modeling, a new paradigm grounded in Coulomb electrostatics has emerged (Xu et al.,
2022; Kolesov et al., 20255 |Cao & Zhao, |2024; Cao et al., [2024; Xu et al., 2023). Early work in this
direction introduced Poisson Flow Generative Models (Xu et al., 2022} 2023, PFGM), focusing on
noise-to-data generation. More recently, Electrostatic Field Matching (Kolesov et al., 2025, EFM)
generalized this framework, enabling electrostatic models to solve data-to-data transfer problems.

Electrostatic Field Matching (EFM) draws inspiration from electric capacitors, modeling input and
target distributions as positive and negative electrostatic charges, respectively. The method performs
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distribution transfer by following electrostatic field lines (Fig. [Ta). While conceptually simple, EFM
faces significant practical challenges: it requires accounting for all field lines—including backward-
oriented ones (dotted lines in Fig. [[a)—which exhibit high curvature and span the entire space. This
makes them difficult to model, as the necessary training volume becomes unbounded.

In this paper, we tackle the limitations of EFM (82.3) and deliver the following main contributions:

1. Theory. We propose Interaction Field Matching (IFM), a generic paradigm for distribution
transfer rooted in pairwise interactions between particles from input and target distributions (§3.3]
[3.3). Compared to EFM that relies on the electrostatic field, our approach allows us to leverage
general interaction fields (beyond the Coloumb electrostatics) that satisfy certain physics-inspired
properties such as the flux conservation and the generalized superposition principle (§3.2).

2. Methodology & practice. Inspired by the strong interaction of quarks and antiquarks in physics
(§3.1), we design a particular realization of the interaction field (§3.4) which has several preferable
properties compared to the electrostatic field: (a) the field lines have almost straight segments, (b)
the field vanishes outside the area between particles and (c) it allows using the Minibatch Optimal
Transport Pooladian et al.|(2023) to enforce certain properties on the transfer map.

We showcase the performance of IFM on a series of toy and image data transfer problems (§4).

2 BACKGROUND AND RELATED WORKS

In this section, we first recall the concepts of the basic high-dimensional electrostatic (§2.1). Then
we discuss its application to generative modeling and data transfer problems using the example of
EFM (§2.2). Finally, in §2.3] we discuss the limitations of EFM which motivated our study.

2.1 ELECTROSTATICS

We recall the fundamental principles of electrostatics necessary for understanding electrostatic-based
generative models. A detailed treatment of three-dimensional electrostatics can be found in any
standard electricity and magnetism textbook, e.g., (Landau & Lifshitz, (1971, Chapter 5). The
generalization of electrostatics to high-dimensional spaces is discussed in (Caruso et al., [2023).

The electrostatic field. Let ¢ : R” — R be the density of a charge distribution on R”. The
distribution may contain both positive and negative charges and is assumed to have finite total charge
(f |g(x)|dx < c0). Ata point x € R” it produces the electrostatic field E : R? — RP:

1 (x—X)

B = | o =P

q(x")dx’, (1)

where Sp_1 is the surface area of an (D — 1)-dimensional sphere with unit radius. That is, the field
at x is a weighted sum of fields from all charges x’, where closer charges yield stronger field.

Electric field strength lines. An electric field strength line is a curve x(7) € R?, 7 € [a,b] C R
whose tangent to each point is parallel to the electric field at that point. In other words:

dx(T)
dr

Electric field lines are a key concept for electrostatic generative models such as PFGM and EFM.

= E(x). 2)

2.2 ELECTROSTATIC FIELD MATCHING (EFM)

The first application of electrostatics to generative modeling problems was carried out in the works
of (Xu et al.} 2022} 2023, PFGM), where the authors proposed a model applicable to noise-to-data
generative problems. Electrostatic Field Matching (EFM) extends the application of electrostatics to
the case of data-to-data transfer, and uses previously unconsidered properties of electric field lines.
We describe here EFM since it is more general than PFGM, and our work is built upon it.

EFM works with two data distributions P(x*) and Q(x ™), x* € RP. The first distribution is assigned
a positive charge, while the second distribution is assigned a negative charge. The distributions are
placed in the extended space RP+! on the planes z = 0 and z = L, respectively (see Fig. [lal).
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One can think of it as a (D + 1)-dimensional capacitor. A point in this space has the form
(71,22, ...,7p,2) = (X,2) = X € RPT! The field is found from the superposition principle:

E®) - E. () +E_ (), @)
where E. (x) and E_ (X) are the fields created by P(X ") and Q(X ), respectively.

Then, as proved in the original paper, the movement along the field lines dx = E(x)dr performs
the transfer between the distributions P(X) and Q(X ). This fact has opened the possibility to

use electrostatics both in data generation and transfer problems. Indeed, to move between data
distributions, it is sufficient to follow the electric field lines.
To obtain a distribution transfer model, one trains a neural network fy(-) : RP+1 — RP+1 to recover
the normalized electric field % e.g., by using a loss function

_E®)
[[EX)[2

Here, E(X) is calculated with (3 ' where E£(X) is approximated by empirical samples of P(X") and

Q(x"), i.e., data. Monte Carlo averaging Ex is done on the points X around the plates. This set of
points if called the training volume; its selection is crucial but highly non-trivial (Xu et al., [2022]).

Eg||fo(X) —

[l2 — mm %)

2.3 LIMITATIONS OF EFM

Despite its performance, EFM has a few weak spots coming from the properties of electrostatic fields:

1. Backward-oriented field lines. Each plate produces two sets of electric field lines (Fig. [La).
The first set (forward-oriented lines) is directed toward the second plate. The second set (backward-
oriented lines) starts from the first plate in the opposite direction. In practice, the forward-oriented
set of lines is chosen because it requires less training volume and because these lines are less curved
than the lines of the backward-oriented series. However, backward-oriented lines play a critical role
for the full coverage of the target distribution. The use of only forward-oriented lines is not sufficient
to fully cover the distribution of Q(-), see the illustration in Fig 2a]

2. Line termination problem. Even some forward-oriented field lines can pass the boundary z = L
before reaching the second distribution. In such a case, the field line enters the region z > L (see
Fig. 2a) and requires further integration to come back to target distribution at z = L. This problem
complicates the data transfer procedure. Indeed, one has to design some criterion to decide whether
the line terminates at z = L or should be integrated further.

o X:—O(x:) e Xg~ PlXq)
e x_~0lx) o y~Tixg)

o y~=Tx:) o Xz~ Qlxg)

(a) EFM (b) Our IFM (independent plan)

Figure 2: Limitations of the EFM & comparison with IFM. (a) The toy experiment (1 — 2 Gaussians)
shows that even some forward-oriented field lines can leave z > L. These trajectories have increased
length and curvature. Moreover, the transfer along only the forward-oriented lines does not cover
of the target distribution (green point cloud does not coincide with the red one). (b) Our realization
of IFM (§3.4) does not have the above mentioned problems: the field lines between the planes are
almost straight, they do not extend beyond z > L and are enough to cover the entire target distribution.

3
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3. Training volume selection. From the first two problems follows the challenge of choosing
the training volume, i.e., points X in equation {4 for learning the field. For the correct transport
between P(-) and Q(+), it is necessary to know not only the field between the plates (0 < z < L),
but also beyond the plates (¢ > L for lines leaving the boundary and z < 0 for backward-oriented
lines). Therefore, it is necessary to choose a large training volume for learning of the neural network.
Moreover, the size of the required volume is initially unknown.

Below we propose a generalization of EFM which aims to ease the above-mentioned problems.

3 INTERACTION FIELD MATCHING (IFM)

This section describes our proposed Interaction Field Mathcing (IFM), the generalization of the
electrostatic paradigm in generative models. In §3.1} we start by motivating the IFM with the strong
interaction between subnuclear particles (quarks) in physics. In §3.2] we present the necessary
requirements for an interaction field required for our ideas to work. In we formulate the main
theorem devoted to transfer of distributions into each other by means of a proper interaction field.
The §3.4]describes a particular realization of the field 1nsp1red by strong interactions. In §3.5] we
report the learning and inference algorithms. The proofs are in Appendix E} q

3.1 MOTIVATION: STRONG INTERACTION IN PHYSICS

q
- q \
To address EFM challenges, we propose utiliz- _ q
ing the strong interaction (Quevedo & Schachner], q 2
2024}, §7.4)— a fundamental force binding subnu-
clear particles. The smallest particles involved in
q
q

this interaction are called quarks.

A typical configuration of the strong field is shown q

in Fig. 3] highlighting key contrasts with electro- u{
magnetic fields. At small distances, quark ¢ and
antiquark ¢ interact similarly to charged particles q

L7 Figure 3: Comparison of electrostatic interac-
q+. However, as the separation increases, the strong . + .
field lines become considerably straighter. tion between charges ¢ (left) and strong in-

teraction between quarks g, ¢ (right). At small
Unfortunately, strong field strength calculation re- distances, the strong interaction resembles the
quires complex quantum-mechanical computations. electromagnetic interaction, but as quarks sepa-
Although our work is motivated by quark interac- rate, the field lines straighten into a string.
tions, unlike EGM and PFGM, our setting uses modified physical interactions.

3.2 PROPERTIES OF PROPER INTERACTION FIELDS

Here we list the most general requirements for the interaction field E(X) which are sufficient to
perform data transfer. These requirements allow for broad flexibility in the field design. In particular,
it could be an electrostatic field (see Example [3.2]below). Nevertheless, to preserve the concept of
strong interaction, we will still refer to particles as quarks and antiquarks.

Suppose that a quark g is located at the point X, € R”T! and an antiquark g at the point x; € RP*!
and produce interation field E(X) = F(X) - n( ), where n(X) is the unit vector tangent to the field
line and E'(X) is the magnitude. We require the following properties of the interaction field E(X):

1. The start and the termination of lines at (anti)quarks. For ¢g-pair with equal charges, the
interaction field line must start at the quark and end at the antiquark:

{d’fz(:) = n(X( ))7 5)

x(7s) = XtIﬂ i(Tf) = ;(177

as

where 7, 77 correspond to the initial and final points of the field line.

2. Flux conservation. For a gg-pair with equal charges, an interaction

field must maintain the following property along the stream tube
E(X) - dS = const, 6)

where dS is a vector with a length equal to the area d.S of the surface, Figure 4: An illustration of
where the considered stream tube rests. The direction of the vector is the flux conservation.
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orthogonal to the surface. In turn, E - dS = EdS cosa = E1dS; + ... + EpdSp denotes the inner
product between the vectors E and dS. Informally, this property means that the number of field lines
along the stream surface is constant, see Fig. d] We additionally assume that the rotal flux between
quark-antiquark pair is proportional to the charge of the quark ¢ that creates this field, and does not
depend on the relative position of the quark-antiquark pair.

3. Generalized superposition principle w.r.t. a transport plan. Consider two continuous distribu-
tions ¢(+), g(-) of quarks and antiquarks, respectively, and assume they have the same total charge.
Let 7 (-, -) be a transport plan between these distributions, i.e., it satisfies the non-negativity property
7(Xq,Xg) > 0 and the marginal constraints [ 7(Xq, Xg)dxg = q(Xq), [ 7(xq, Xq)dxq = G(x4). Let
Ex, x,(X) denote the field produced by a pair of a unit quark and a unit antiquark located at x,, Xg.
Then the field of the system of quarks ¢ and antiquarks g w.r.t. 7 is given by:

E.(X) = jf (X, Xg) By, (X)dxqddxg. %)

Physically, it means that E is the average of fields of interacting pairs (x4, Xg), and 7(x,, Xg)
characterizes the strength of pairing between quarks x, and x5. For completeness, we note that the
superposition principle can be analogously stated for the discrete systems of quarks.

Properties 1-2 are formulated for a quark-antiquark pair. However, if these properties are true for the
qq-pair, they remain valid for more complex discrete and continuous systems.

Lemma 3.1 (On the field lines). Let q(-) and G(-) be two compactly supported (discrete or continuous)
distributions of quarks and antiquarks. Let them satisfy [ q(x)dxq = [ q(x4)dxq. Let the field of
the quark-antiquark pair Ex . (X) start at X, and terminate at X4 (Property 1), and conserve flux
along the current tube (Property 2). Then the total field (7) from all quarks and antiquarks

(a) Start at supp(P) and end at supp(Q), except perhaps for the number of lines of zero flux

(b) Conserve flux along the current tubes.

Example 3.2 (The electrostatic field). The electrostatic field (3)) is a special case of the interaction
field satisfying properties 1-3 for an arbitrary transport plan. Indeed, property 1 corresponds to the
dipole field, property 2 follows from Gauss’s theorem (Kolesov et al.,[2025] §2.1), and property 3 is
easy to check:

(%) = / (Ep (®B%) + B, (%,%)) n(&" % )dxrdx =
®)
=[xt &+ B, @3l IE R =B 6B 5 = )

where E, (X, x%) is the electric field at a point X produced by a point charge ¢ = +1 located at a
point X*. Electrostatic fields are independent of the transport plan 7, i.e., changing the plan does not
alter the field as the total field of two charges itself is a sum of two separate fields by these charges.

3.3 MAIN THEOREM

Let P(x,) and Q(x5) be two D-dimensional data distributions. Sim-
ilarly to EFM, we put these distributions in the extended space RP+1
on the planes z = 0 and z = L, respectively, see Fig. [Ib] Now
assume that P and Q are the distributions of quarks ¢ and antiquarks
q, respectively. Fix a transport plan 7 between them, e.g., set the inde-
pendent one m = ¢ X § = P x Q. Let E(X) be a proper interaction
field, i.e., satisfying properties 1-3 of

For transport between the distributions, we define a map T’
supp(PP) — supp(Q) that moves along the field lines by integrat-
ing dX = E(X)dr, where E(X) is defined by (7). Field lines starting
on the distribution P(x,) can emanate in two directions: forward-
oriented, directed toward Q(x5), and backward-oriented, pointed
initially in the opposite direction (see Fig. [5). The choice be-
tween these directions of motion must be made stochastically. A
definition of the stochastic map T is provided in Appendix E}

Figure 5: Illustration of
forward, backward lines.

Then, for this map 7T'(x,), we prove the following key theorem:
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Theorem 3.3 (Interaction Field Matching). Let P(x,) and Q(x3) be two continuous data distributions
that have compact support. Let x, be a random variable distributed as P(x,). Thenxz = T'(x,) is a
random variable distributed as Q(xg):

xq ~ Plxg) = T(x,) = x5 ~ Qlxg). 9

In other words, the movement along interaction field lines provably transfers P(x,) to Q(xz). The
proof of the theorem is given in App@

3.4 REALIZATION OF THE INTERACTION FIELD %
T q
2
g0 F
_ ~
0 q, Xq ~ ©
X 1
e
- ' el
. €,
0 d L-d L =z 0 d L-d L =
(a) Symmetric case. (b) Shifted case.

Figure 6: Realization of the field between two quarks. In the range z € [0,d] and z € [L — d, L] the
field lines curve toward the quarks, in the middle range z € [d, L — d] the field lines are straight. The
string has an effective width o, beyond which the field value exponentially decreases. (a) Symmetric
case. (b) The shifted case is obtained by a proportional shift along the plane z = L

We present an interaction field realization that meets Properties 1-3 (§3.2), motivated by quark
interactions (§3.1I). This design eliminates backward-oriented lines and prevents field lines from
going to z > L (Fig. 2b). A schematic is shown in Fig. [6] while the detailed algorithm for
calculating the field is formulated in Appendix E}

Theorem 3.4 (Properties of our interaction field). Our realization of the interaction field E(X)
satisfies the fundamental Properties 1-3 in with additional characteristics:

* Field lines never extend beyond z > L.

¢ No backward-oriented lines exist.

The combination of these properties saves a given interaction field from EFM problems (§2.3)).We
give proof and provide additional discussions in AppendixE}

3.5 LEARNING AND INFERENCE ALGORITHM Algorithm 1 IFM Training

Input: Distributions accessible by samples:
P(xq)d(2) and Q(x7)0(z — L);
Transport plan 7(x,, Xg) : R x RP = R;
NN approximator fg(-) : RP+1 — RPT,;
Output: The learned interaction field fy(-)
Training. To recover the interaction field E(-) in Repeat until converged:
(D + 1)-dimensional points between the hyperplanes, Sample | B| batch (X, Xq) ~ 7(xq, Xq)
similarly to EFM, we approximate it with a neural Sample | B| coordinates z ~ 7(2) ;

To move between data distributions, it is sufficient
to follow the interaction field lines. The lines can be
found from the trained neural net approximating the
interaction field E(X).

network fo(-) : RP+!1 — RP+1 To begin with, we
need to define the training volume, i.e., the procedure
to sample X for training. Since the field is compli-
cated near the plates Xu et al.|(2022), it is crucial to
accurately recover the field there, rather than in the
middle. We use the following sampling scheme:

~ Z~ z

L

X:qu—i—(l

Compute noise €(z) as o (z) (see AppJA.4)
Calculate batchX = £X, + (1 — £)Xg +%
Calculate E4(X) for all pairs following §3.4}
Calculate E(x) with (7);

Compute £ = Ex|| fo(X) — E(X)||3 — ming;
Update 6 by using %;

)Xg + €(2), (10)

where (X,,X5) ~ 7 is sampled from the plan, z ~ r(z) is the schedule distribution on [0, L] and
€(z) is the amount of noise injected into the linear interpolation of X, and X; at level z. This scheme
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is inspired by related works [Kolesov et al.| (2025)); [Xu et al.| (2022). In our experiments, we use a
uniform distribution for r(z) and (0, 02(z)) for €(z), where the variance 02(z) is = & — [& — 2.
€(z). This formulation ensures that €(z) = 0 at z = 0 and z = L, with the maximum noise occurring
at the middle z = % Also, it is worth noticing that is just one of many possible ways to define
intermediate points between the plates, and our method does not have direct connection to the training
procedures of popular Flow Lipman et al.|(2023); Liu et al.[(2023);|Albergo & Vanden-Eijnden|(2023))
or Bridge Matching Shi et al.[(2023).

The ground-truth E(X) is estimated with Eq. . Specifically, we approximate the field by Monte
Carlo samples from the given transport plan 7. The field between paired quarks in a batch Ey, «, is
determined according to the recipe described in Analogously to EFM and PFGM, We learn
fo(+) by minimizing the squared error difference between the normalized ground truth E(X) and the
predictions fy(X) over the parameters of the neural network with SGD, i.e., the learning objective is

Esllfo®) — 2212 - min.

E@)] ) (n

Inference. After learning the normalized vector
field % with a neural network fy(-), we sim-

ulate the movement between hyperplanes to trans-
fer data from P(x,) to Q(xz). A straightforward
approach for this is to run an ODE solver for equa-

Algorithm 2 IFM Sampling

Input: samples X, from P(x4)d(z)

The learned field f5(-) : RPT! — RPTL;
Output: samples X; from Q(x4)d(z — L)
Set xg = Xq

tion[2] However, one needs a right stopping time
for the ODE solver since the arrival time may dif-

fork=1.2,..,Ldo
Calculate f5 (Xp—1) = (f§ (Xk—1)2, fo (Xk—1)z)

fer for different field lines. In order to find it, we Xp = Xp—1 + f5 (%k—1)= " [ (Xe—1)2
follow the idea of (Xu et al,[2022; [Kolesov et al], Returnxr
2025) and use an equivalent ODE solver with X
evolving with the extended variable z:
Cdxdt o B® BRI e i
= (g o Ve = BeE R, 1)de = (s b Dz = (fo @y )=, 1z, (12)

where we denote fy(X) as (fo(X)z, fo(X)-) and E(X) equals(E,(X), E.(X)). In the new ODE (12),
we replace the time variable ¢ with the physically meaningful variable z setting the explicit start
(z = 0) and the end (¢ = L) conditions. We start with samples from P(x,), i.e., when z = 0. Then,
we arrive at the data distribution Q(x7) when z reaches L during the ODE simulation.

o Xg ~P(xq) © Xq ~P(xq)

We emphasize, that in EFM such a movement does
not always realize transport between distributions
properly due to the backward-oriented lines and
line termination problem (§2.3)). In contrast, in our
implementation of IFM (83.4), such integration
theoretically provably translates IP to Q. All the in-
gredients for training and inference in our method
are described in Algorithms [T] and 2] where we
summarize the learning and the inference proce-
dures, correspondingly.

o y~Tixg)

Xg ~ Qlxg) +

o ¥y ~Ti(xq)

B 4

(b) L = 40

Figure 7: Interaction field line structure for the
Gaussian—Swiss Roll experiment with L =

4 EXPERIMENTAL ILLUSTRATIONS  ¢%" TEM with minibatch OT plan,

Here we show the proof-of-concept experiments with our IFM method. We show a 2-dimensional
illustrative experiment (84.1)), image generation (§4.3) and image-to-image translation experiments
(§4.2). We give technical details of the implementation of the experiments in Appendix [B] We
provide a study of the sensitivity of our model to the choice of hyperparameters in Appendix

4.1 GAUSSIAN TO SWISS ROLL

An intuitive initial test to validate the method involves transferring between distributions with visually
comparable densities.We use a 2D zero-mean Gaussian distribution with identity covariance matrix
as P(x,) and a Swiss Roll distribution as Q(x4). Their respective visualizations appear in Figs.
and [8b| In Figs. and [8d| show the points T'(x,) obtained by moving along the lines of our
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(a) Samples from P(x), placed on (b) Samples from Q(x5), placed (C) Mapped samples by T'(x,)  (d) Mapped samples by T'(x,)
the left hyperplane z = 0. on the right hyperplane z = L. for distance L = 6. for distance L = 40.

Figure 8: Illustrative 2D Gaussian—Swiss Roll: Input and target distributions P(x,) and Q(xz) with
the transfer results learned by our IFM (with minibatch OT plan) for distances L = 6 and L = 40.

interaction field realization with minibatch OT plan 2023). Fig. [Bc]corresponds to the
plate distance L = 6, and Fig. [8d]corresponds to L = 40. It can be seen that there are no significant
differences due to the choice of the hyperparameter L, while in EFM the choice of large L lead to
failure on the same experiment, namely, it failed to accurately map IP to Q see (Kolesov et al.,[2025),
§4.2). Fig. [7]shows the 3D structure of the field lines for L = 6 and L = 40. It can be seen that the
lines are almost straight over the entire range of values and depend weakly on L. Note that in EFM
the field lines were significantly curved at large values of L (Kolesov et al, [2025] §5), see Fig.[7]

4.2 IMAGE GENERATION

We consider the generative task on the multimodal 32 x 32 CIFAR-10 dataset and the high-dimensional
64 x 64 CelebA faces dataset. In this experiment, we place noise images from a D-dimensional
multivariate normal distribution A/(0, Ipx« p) on the left hyperplane z = 0, where D = 3 x 32 x 32
for CIFAR-10 and D = 3 x 64 x 64 for CelebA. Images from the CIFAR-10 and CelebA datasets are
placed on the right hyperplane z = 20. In accordance with our Algorithm 1, we learn the normalized
interaction field between the hyperplanes using independent transport plans.

For completeness, we compare our approach not only with previous electrostatic-based approaches

such as EFM (Kolesov et al} 2025), PFGM(Xu et all 2022) and PEGM++ 2023), but

also with modern flow-based FM (Lipman et al., 2023), diffusion-based DDPM 2020),
and adversarial approaches such as StyleGAN (Karras et al.|[2020). Our method, IFM, performs

competitively with well-known state-of-the-art approaches in terms of qualitative results (see Figs.
[Oaland Pb), while EFM fails to generate samples for the 64 x 64 CelebA dataset (see Fig. 0b). We
quantitatively evaluate our method’s performance by reporting FID in Table 1.

EFM PFGM++ StyleGAN

PFGM FM DDPM StyleGAN  IFM(Ours) EFM PFGM++ PFGM FM DDPM

IFM(Ours)

(a) CIFAR-10 32x32. (b) Celeba 64x64.

Figure 9: Image Generation: Samples obtained by IFM(ours) with the independent plan, electrostatic-based
approaches EFM and PFGM&PFGM++, flow-based FM, diffusion-based DDPM and StyleGAN.
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Dataset / Method | IFM (our) | EFM | PFGM++ | PFGM | FM DDPM | StyleGAN

CIFAR-10 (32x32) | 2.28 262 | 2.15 2.76 299 | 3.12 2.48

Celeba (64x64) 3.07 >100 | 2.89 3.95 14.45 | 12.26 3.68

Table 1: Image Generation: FIDJ score on 32x32 CIFAR-10 and 64 x64 Celeba faces datasets for
our IFM, EFM, PFGM & PFGM++, flow matching (FM), diffusion (DDPM) and StyleGAN.

Additional qualitative results for other image generation tasks (128x128 CelebA dataset and
conditional image generation on CIFAR-10) are provided in Appendices |§| and @

Computational efficiency. Training of our IFM takes less than 10 hours on a single NVIDIA A100
GPU (30 GB VRAM) for the 32x32 and 64x64 resolution datasets, and less than 30 hours for the
128x128 resolution dataset. Our IFM shares the same architecture as the closest competitors: EFM,
PFGM/PFGM++, DDPM, and FM. We also use the same Euler-based ODE solver and 100 evaluation
steps for each method to ensure a fair comparison. Therefore, the inference speed and memory
usage is identical for all these methods. For completeness, we report the inference speed to generate
different batch sizes of images, including a single image (i.e., batch size=1), see Table2} In particular,
the peak GPU memory usage for all methods is approximately 8, 10 and 16 GB during inference with
a batch size of 128 for 32x32, 64x64 and 128x128 datasets, respectively.

Dataset / Batch Size | 256 128 64 16 1
CIFAR-10 (32x32) 1093 | 5.74 1.63 082 | 0.7
Celeba (64x64) 36.81 | 18.45 | 8.5 2.93 | 0.97
Celeba (128x128) 63.28 | 32.27 | 14.87 | 4.06 | 1.75

Table 2: The inference time (in seconds) of our IFM with different batch sizes | B| in generation.

4.3 IMAGE-TO-IMAGE TRANSLATION

Following (Zhu et al.| 2017} Kolesov et al.| 2025)), we also consider an unpaired image translation task
with two scenarios: translating 32 x 32 colored MNIST digits from °2’ to ’3” (2—3) and translating
64 x 64 scenes from Winter to Summer (W—S). The placement of images on the hyperplanes
follows the same setup as the §4.2 We learn the normalized field between the plates using both
independent and mini-batch optimal transport plans. Our IFM and IFM-MB approaches effectively
preserve shapes (with IFM-MB performing slightly better due to the use of the transport plan) and
changes the styles of the initial images (see Figs. [I0a and [TOb). For completeness, we compare
IFM and IFM-MB with popular image-to-image translation methods, including Flow Matching,
diffusion-based (Ho et al., {2020, DDIB), adversarial (Zhu et al.,|2017, CycleGAN), and EFM. We
evaluate the performance of these methods using the CMMD |Yan et al.| (2022), as reported in TableEl
We also add a discussion of the distinctions between our approach and FM in the Appendix [H.

Init IFM-MB(Our) IFM(Our) FM CycleGAN DDIB Init IFM-MB(Our) IFM(Our) EFM FM CycleGAN

(a) Colored digits *2’ — Colored digits ’3’. (b) Winter — Summer.

Figure 10: Image Translation: Samples obtained by IFM(ours) with/without the minibatch plan,
electrostatic-based approach EFM, flow-based FM, diffusion-based DDIB and adversarial CycleGAN.
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Dataset / Method | IFM-MB (our) | IFM (our) | EFM | FM | CycleGAN | DDIB
27— 37 (32x32) | 0.87 0.95 0.93 1.06 | 0.90 0.96
W—S (64x64) 1.13 1.25 >1 >1 1.33 1.39

Table 3: Unpaired Image Translation: CMMDJ], on W—S and colored difits 2’ —’3’
for our IFM, EFM, FM, CycleGAN and DDIB.

Computational efficiency of our method in translation is almost the same as in generation (§4.2).
Also, the core implementation components of IFM (artitectures, number of steps in ODE solver, etc.)
are the same as in generation and are again identical to the closest ODE-based competitors EFM &
FM to ensure the fair comparison. Therefore, the runtime & memory usage is the same for all these
mentioned approaches. For completeness, we report the inference time of IFM in Table 3] below.

Dataset / Batch Size 256 128 64 16 1
MNIST ’2°—’3" (32x32) | 10.95 | 5.73 1.61 | 0.85 | 0.73
W — S (64x64) 36.84 | 18.44 | 853 | 4.05 | 1.76

Table 4: The inference time (in seconds) of our IFM with different batch sizes | B| in translation.

5 DISCUSSION

Our proposed IFM method is a generalization of EFM allowing using rather general interaction fields
for distribution transfer. Our implementation of the particular IFM field is just one of many possible
realizations. The search for a more optimal realization is a difficult task and is a promising subject of
future research that opens opportunities for the further development of electrostatic-inspired models.

Our IFM overcomes major limitations of prior EFM method (§2.3)): backward-oriented field lines,
line termination problems, and training volume selection issues. Moreover, due to our field’s specific
structure, we also address the high-dimensionality challenge and the associated numerical instability
that affects EFM and PFGM due to the Coulomb factor 1/[|x — X'||” (see Appendix .

Impact statement. Our paper presents work with a goal to advance ML. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.
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A INTERACTION FIELD MATCHING: PROPERTIES AND PROOFS

A.1 PROPERTIES OF INTERACTION FIELD LINES

In this section we formulate several properties of the interaction field which are essential for the proof
of the main theorem. First of all, let us formulate the notion of field flux which has been introduced
intuitively in the main text.

Definition A.1. (Field flux). Consider an element of area dS. The field flux E through this element
is called d® = E - dS. If we need to calculate the field flux through a finite surface 3, then the field

flux is
<I>:/d<I>:/E-dS. (13)
b)) by

Intuitively, field flux indicates how many field lines pass through a surface 3. The greater the flux,
the higher the number of lines passing through a given area.

Remark. For the closed surfaces, we assume that the normal is always directed outward.

Lemma A.1 (Generalized Gauss theorem). Let P(-), Q(-) be two D-dimensional probability distri-
butions having compact support, located on planes z = 0 and z = L in RP*1, respectively, and
satisfying the property [ P(x,)dx, = [ Q(xq)dxq. Let Egq(X) = Ex x,(x) be an interaction field
produced by a pair of a unit quark and a unit antiquark satisfying properties 1-3 of Let OM be
a surface bounding the volume M and containing a part of the distribution P(-) and not containing

Q(-). Then

j E-dS:<I>0-/ P(X)dX, (14)
M

oM

where ®o = [[,,, Eqq - dS is the field flux from a single unit q(j—pairﬂ

Proof. Substituting the explicit expression (7)) for the interaction field E(X) we obtain:

[[B-as= [ ( / Eqqm(Xq, Xq)dx,dx; ) - dS =
oM oM

/W(Xq, xg)dx,dxg - jj Ey,-dS =9 /M dx, / dxgm(x4,Xg) = (15)

oM

<I>0~/ P(xq)dx,.
M

The equality on the second line is associated with a change in the order of integration, which is
possible by the natural assumption of the continuity of the functions (x4, x5) and E,; and the
compactness of their support.

O

Remark. If M contains a part of the distribution Q(-) but does not contain P(-), then the statement
of the theorem will be written as follows:

ﬂ E-dS=d,- /M Q(X)dx. (16)
OM

'We assume ( that the flux @44 is proportional to the charge of the quark ¢ that creates field E,5 and
does not depend on the relative position of the quark-antiquark pair. That is, all other things being equal, the
replacement ¢ — 2q will lead to ®45 — 2®,4. Therefore, for any pair ¢qg with the same unit charge ¢ = 1 (and
it is precisely what we mean when we talk about the elementary field E,4), the flux ®,5 = ;7 = $o will be
the same for all pairs

12
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Corollary A.2. For any point X in the support of distribution P(-):

EX () — BEZ (%) = © - PF). 17

Proof. Consider an infinitesimal volume dS € supp P(+). Consider a closed surface, a cylinder with
infinitesimal indentation in different directions in the plane z = 0, see Fig. [IT]

The flux through this surface consists of three summands: the d® flux in the positive direction of
the z-axis, the d®~ flux in the negative direction of the z-axis, and the d®,, flux through the lateral
surface:

APy = dOt + dd~ + ddyy = ESdS — E; dS + 0. (18)

Here d®,, = 0 since the height of the cylinder under
consideration can be made as small as we want (in-
finitesimal of higher order than dS). d®~ = —E_ dS
has a negative sign due to the fact that the normal to the
closed surface is directed outward, i.e. in the opposite
direction from the axis z.

Then, due to the generalized Gauss’s theorem:

d®ay = (Ef — E])dS = ®y-PdS  (19)

which proves the corollary.

Lemma A.3 (On field lines). Let IP() and Q() be two Figure 11: Considered area.
(discrete or continuous) distributions corresponding to

quarks and antiquarks. Let these distributions have

compact support and satisfy [P(x,)dx, = [ Q(xq)dxq. Let the field of the unit quark-antiquark
pair By x.(X) = Eqq(X) start at x, and end at xq (Property 1), and conserve flux along the current
tube (Property 2). Then the total field (7) from all quarks and antiquarks satisfies:

(a) Its lines start at P(-) and end at Q(+), except perhaps for the number of lines of zero flux

(b) It conserves flux along the current tubes.

Proof. Let us begin with the proof of the second property. Let the field E = [ Eg;744dx,dx; and
[ Eqg - dS = const. Then:

/E -dS = //qudquxq / Eu-dS = /qudquxq - const = const - 1 = const.  (20)

Let us now prove the first property. Suppose the opposite. Let there be lines starting at P but not
ending at QQ (the case of lines not starting at P but ending at Q can be considered similarly).

Consider a gg-pair. The field E,4 of this pair by assumption of the lemma starts on ¢ and ends on g,
is continuous, and therefore cannot go to infinity. Therefore, the flux through any X-area infinitely
distant from gg-pair must be zero ﬂ

o) = /Equ -dS — 0,]|x|| — oo. 21)

Then, if P(-) and Q(-) have a compact support, the field flux from all quarks will also be zero:

’The difference <I>q2q with the ®¢ here is that 3 is an open surface infinitely distant from the ¢g-pair, while
) is the flux through a closed surface M containing charge ¢ and not containing charge ¢. In other words,
®, denotes the total field flux between a quark-antiquark pair of unit charge, while <I>qzq defines the field flux
through some infinitely distant surface.

13
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= / E-dS= / / E,q7gqd%,dxg - dS = / Taq®oadxqdxg — 0,[|x|| = c0.  (22)
b)) b

Therefore, if the lines under consideration go to infinity, their flux is zero.

Let us now consider lines ending not at infinity and not at the target distribution (i.e., at some
intermediate pomtsﬂ At the stopping point E = 0 (otherwise it is not a stopping point). But then the
total flux produced by such lines:

<I>:/E-dS=O 23)

which proves the statement.

A.2 DEFINITION OF STOCHASTIC MAP T’

Movement from one distribution to the other is carried out along the field strength lines. In this
section, we rigorously define this movement using a stochastic map 7', taking into account the
existence of two series of lines - forward-oriented and backward-oriented.

We define the stochastic forward map T from supp(P) to supp(Q) through forward-oriented field
lines. For this, we consider a point X, = (X4,),& — 07 slightly shifted in the direction of the
second plate. Let us move along the corresponding field line by integrating dx(¢) = E(x(t))dt.

Sooner or later, such movement leads to the intersection of the plane z = 0 or z = L. At this moment,
the question arises of whether to continue or stop the movement. If the movement continues, it will
proceed until the plane z = 0 or z = L is intersected again. Then, a decision must again be made - to
stop or to go further. This procedure must be continued until we reach the final stopping point. Let us
denote the intersection points as follows:

X, o x5 oz (24

At each of these points, it is necessary to stop with probability (X @

probability 1 — u(x%)), where

) and continue movement with

1, if E(beffore) (x(%)) and E;E)azter))(ﬁ If )) have opposite signs
~(’L) _ 07 f E after X 3 > E crore ’i’ K3
V) [BO) ()|~ [ B )| | (after) y 5>)| | (before)( 5)” ’
if | EET0 (&) < | B (&)

|E£b°ﬁ'm) (ig) ) ‘
(25)

where EL (3 and E&™) (x1)) are the values of the z-component of the field immediately

before and immediately after intersecting the plane at point ig), respectively.

To understand the meaning of this probability, note that if E*(x) and E&™ (x¥) have
opposite signs, then further movement along the field lines is impossible (and thus we have arrlved at
the final point x( ) on the target distribution). If they have the same sign, then further movement
along the field lmes is possible.

If further movement is possible, two situations arise: either |E§aﬁer) (§g))| > |E§"ef°'e) (i%)ﬂ or

| plfer) (igﬁ))\ < |Bhetere) (igﬁ))| In the first case, after crossing the plane, the field magnitude
(and consequently the flux) increases - therefore the stopping probability is set to zero. If the flux

3Note that there are only two possible options - either the field line goes to infinity, or does not go to infinity,
that is, it stops somewhere at an intermediate point.

14
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magnitude becomes smaller after crossing, it means that one must stop with some probability and
continue with another. Lemma X explains why this particular probability value is chosen for the latter
situation.

The stochastic backward map Tz is constructed similarly using left limit ¢ — 0~ and backward-
oriented field lines.

The complete transport T is then described by the random variable:

T(x,) = {

capturing both forward and backward trajectory endpoints for each x, € supp(P) with probabilities
w(xq) and 1 — p(x,), where

Tr(x4) with probability u(x,),

26
Tp(x,) with probability 1 — u(x,), (26)

0, Ef <0
p(xy) =4 b N E; >0 (27)
#TE*I otherwise.

Here EX = E,(X £ ee,), ¢ — 0F are the left and right limits of the field value at the point X
in z direction. The meaning of this probability is as follows. Value u(x,) allows one to choose a
forward or backward sets of lines with a probability proportional to the field flux in the corresponding
direction (i.e., proportional to E and |E |, respectively). At the same time, if it is impossible to
move forward (E < 0), the map T's is chosen (u(x,) = 0), and if it is impossible to move backward
(E; > 0), the map T is chosen (u(x,) = 1).

A.3 IFM MAIN THEOREM PROOF

Lemma A.4 (First lemma on the flow). Let P(-), Q(-) be two D-dimensional data distributions
having a compact support, located on the planes z = 0 and z = L in RPT, respectively. Let
{Xq, 171 be a sample of points distributed over P. Let dS be an element of D-dimensional area on
the distribution of P (dS € supp P). Let the field near the element dS have different signs: EJ > 0
and E7 < 0. Let dn be the number of points from the sample that fall in the volume dS. Let
dn = dnp + dnp, where dnp is the number of points from dS that correspond to the mapping Tr
(i.e., movement along forward-oriented lines), and dnp corresponds to T'g. Then:

d?’LF a.s. E;rdS - d(I)F
n n—00 CI)() N CI)O ’
dnB as. |EZ_|dS . d(DB

(28)

n n— oo (po @0 ’

a.s.
where ( — ) denotes the almost sure convergence.
n—oo

Proof. According to the multiplication rule of probability and the law of large numbers:
d
L N (probability of choosing Tr) - (probability of falling in d.S) =

n n—o0o
Ef (Ef +|E7)dS  EFfdS dop

= u(x) - P(X)dS = .
u(x) - P) Ef +|EZ| Dq Dq ®q

In the second equality, the definitions of probability (), see Eq. (27), and Corollary [A.2] were used.
The case dnp is proved similarly. O

(29)

Lemma A.5 (Second lemma on the flow). Let P, Q, {x,, }7_,, dS, dn have the same meaning as in
the Lemma Let E} and E have the same sign near dS (i.e., either simultaneously EX > 0 or
simultaneously EX < 0). Then

dj a.s. d(I)after _ d(I)hefore

n  n—oo P Dy
where d®pejore is the field flux through the current tube supported on dS immediately before crossing
the plane dS € suppP(-), and d® ., is the flux after crossing.

(30)
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Remark. This statement implies that when the field crosses the plane P containing a charge
(proportional to dn/n), the field flux must increase by ®q - dn/n.

Proof. For clarity, consider the case E} > 0, E > 0 when u(x,) = 1 and motion processes only
along the forward-oriented lines, corresponding to the mapping 1.

By the probability product theorem, the strong law of large numbers, Corollary A.2, and the definition
of flux:

dn E+ - E7 d(I)afler d(I)before
aw P(x)dS = 1-P(x)dS = =22 4§ — - .
- — u(x)P(x)dS (x)dS B S By B,

3D

O

Lemmas [A.4]and [A 3] address the behavior near the distribution P. Similar statements are valid for
the behavior near Q. When moving along field lines, we eventually reach the plane z = L. At this
point two different scenarios may occur:

1. EF (L) and E; (L) have opposite signs. Then the field line motion terminates in this case.

2. Ef(L) and E; (L) have the same sign. Then a portion dn’ of lines must terminate, while
others continue.

This portion dn’ can be found from the line termination property in Q.

Lemma A.6 (Line Termination). If ES (L) and E (L) have the same sign upon crossing z = L,
the number of lines terminating on z = L satisfies:

d ! d(I)a'er ad efore
n o ift + bef

n q)() (I)O ’

(32)

Remark. When the field crosses the plane Q containing a charge (proportional to dn’/n), the field
flux must decrease by O - dn’/n.

Proof. . Consider the current tube before it intersects the plane z = L. Let us denote the number of
lines inside dnpefore. As a result of the intersection z = L, some of the lines dn’ stop moving, while
some of the lines dn,g; continue moving. In view of the first Lemma [A.4|on flow, as well as the
conservation of flow inside the current tube (Property 2 in §3.2)):

dnpetore as
Ellbefore 25, 1y fore- (33)
n n—oo

Then, by virtue of the law of large numbers and the fact that dnpegore = dn’ + dnagier, We have:

d !/ as . . . d a.s. —
o _as (probability of termination) - Tlhbefore_2s_, v(x7) - d®pefore
n n—oo n n—00
E; — Ef o
% -E;dS' = (E; — EN)dS' = —d®qgier + dPrefore
O

We now proceed to prove the main theorem.

Theorem A.7 (Interaction Field Matching). Let P(x,) and Q(xz) be two data distributions that
have compact support. Let x, be distributed over P(x). Then x5 = T (x,) is distributed over Q(x7)
almost surely:

If xg ~P(xy) = T(xg) = x5 ~ Q(x3). (35)
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Proof. Let {x,, }I'_; be points distributed according to P. Moving along the field lines via mapping
T, we obtain points xgz, = T'(x,,) in distribution Q.

Consider a D-dimensional area element dS’ C supp Q. Let dn’ be the number of points xg, in this
area. Define the sample:

N dn’
Qnds’ = = (36)
n
The aim is to prove
Q. — Q. (37)
The points dn’ arrive via forward or backward directions:
dn’ = dn'y + dn’g. (38)

Consider dn’, and its associated flux tube. Traverse this tube inversely
along the field lines until stopping at P. During this motion, multiple
crossings of z = 0 and/or z = L may occur. Denote the intersection
points:

Figure 12: Points corre-
Xg=X0 > X| = XN_] = XN = Xg. (39) sponding to forward and
backward lines.
Their corresponding area elements are

dS’:dSo—>dSl—>---—>dSN_1—>dSN:dS. 40)

Point counts in these areas read

dn' =dng — dny — -+ = dny_1 — dny = dn, 41)
where dny, (k =0, ..., N + 1) is number of points from sample {x,, } ; or from map {T(x,,)}I"
inside the volume d.S}, near point xy, that corresponds to considered motion inside current tube.

The dny, are not arbitrary but related by flux conservation. Only the charged planes (z = 0 or z = L)
can alter the count:

* At z; = 0: Line count increases by dn;
* At z; = L: Line count decreases by dn;

Mathematically:
N
> (=1)fidn; =0, (42)
i=0
where
0 ifz; =0
R A 9 4
fi {1 if z; = L. 43)

Due to the first Lemma on flow [A 4t

d d dd d®
nN — an as. N =2 (44)
n n n—oo P (O

Due to the second Lemma[A.3]on the flow , and because of the line termination Lemmal[A.3

(_1)f1 . dni as. d(I)after,i o dq)before,i
n n—oo (I)O (I)O :

(45)

According to the law of conservation of flux along the tube (Lemma|A.3):
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dq)after,i = dq)before,i—l- (46)
Whence we obtain a chain of equalities:
N+1
dn/, dn, dny  dn
0= “Dfedpy = ——LE 4+ (-1) — + (-1 — 4+ —
12()% L+ (D)4 (-D) -
!
dny _ (,Dflﬂ N (,1)deniN dn _as (47)
n n n n n—oo
ﬁ _dq)after,l - dq)before,l + ...+ dq)afler,N - dq)before,N + d(I)N+1 =
= dPyier,1 + 0+ ... + 0 = dP.
Consequently,
dnlp  as. AP ' 48)
n n—oo Py
Similarly, it can be proven that
dnly  as.  dP'y . (49)
n n—oo Py
Then, by virtue of the generalized Gauss’s theorem (Lemma[A.T), we finally have
Q,ds’ = dn' _dnf  dnp as.  dPE | dOp — Qds. (50)
n n n—ooo Py P

This completes the proof.

A.4 INTERACTION FIELD REALIZATION

Here we formulate an algorithm for computing our constructed field which is inpired by strong
interaction in physics at an arbitrary point x € RP*! with the quark ¢ and the antiquark ¢ being at
X, and X4 (see Fig. [6).

Symmetric case. Let a quark g be located at the origin: X, = (0,0) € RP*1, and the antiquark
q at the point X; = (0, L) € RP*!. The arbitrary point of space can be written as X = (x,2) =

X, +ze,,wherex, € RP+1 s the component of the vector X orthogonal to the z-axis. We introduce
the following string hyperparameters (Fig. [6a):

* 0y is the effective width of the string in the cross section.

* dis the size of the region of the string in which the field lines will curve toward the quark (antiquark).
Thus, in the interval z € [d, L — d] the field lines are straight, and in the regions z € [0, d] and
z € [L — d, L] the lines will be curved. Value k = 7/2d is also introduced.

We define the dependence of the effective string width o(2) on the coordinate z as follows:

oo sin(kz), z € [0,d],
oo, zeldL—d,
= 51
92 =9 gosin(k(L — 2)), 2 € [L—d,d], oD
0, otherwise.
The field direction n(X) at the point X is defined as:
n(x) =cosa(r,,?) e, +sina(r,,z) e, € RPTL (52)

where e, e are the unit vectors along the z-axis and along the vector X | , respectively, i.e., e; =
X1 /|IXL]|l- @ = a(z1,2) is the angle between the field direction at a given point and the z-axis.
This angle is determined from the following considerations. Let X’(z’) be the field line parallel
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Algorithm 3 Interaction field calculation

Input: Positions of quark and antiquark: X,,X; € RP! with 2, = 0,2; = L
Arbitrary point X € RP+1
String hyperparameters: oq,d, k = 7/2d

Output: The interaction field E,q(x)

Algorithm:
Calculate the vector connecting the quarks: T = X5 — X, € RD +1
Calculate the unit direction vector corresponding to it: €, = TF H € RPH!

Calculate the vector of shift of the point X from the axis of the string:
ﬁ:§_§q+(§q_)~(é)% ERD+1

where z is corresponding coordinate of point X

Calculate z; = ||p||,eL = Hﬁl\

Calculate the string width o(z) according to (51)

Calculate the angle (x| , z) according to (53)

Calculate the value of field E(x, z) according to (54)

Calculate the direction n(X) = cosa(x,,z) - e, +sina(z,2) e, € RP*!
Return: E3(X) = E(x 1, 2)n(z.,2)

to the level o(z) (i.e. V2’ : 2/, (2)/0(2") = const) which passes through the point (x 1, 2), i.e.,
X'(2')|2r=2 =X = (x1,2). Then a = a(x 1, 2) is determined by tan o = ‘ff}

arctan(kx | cot(kz)), z € ]0,d],
a=arL,z) =<0, z€[d, L —d], (53)
arctan(kx | cot(k(L — 2)), z€[L—d,L].

We define the field strength value as the product of the Gaussian distribution in the radial direction
and a normalization factor that keeps the interaction field flux invariant along the tube:

()
E(zy,z) =exp <_20(Z)2> o(z)Peosa(ry,2)’ Y

Shifted case. In the case where the quarks are in the shifted positions X, and Xz, we use a field shift
parallel to the planes z = 0 and z = L, as shown in Fig. [6b] We use the shift and not the rotation
of the string with the aim of not generating backward-oriented lines and lines traversing the region
z > L. The detailed algorithm for calculating the field is formulated in AlgorithmE]

A.5 PROOF OF PROPERTIES OF INTERACTION FIELD REALIZATION

Theorem A.8 (Properties of our interaction field realization). Our realization of the interaction field
E(X) satisfies the fundamental Properties 1-2 in with following additional characteristics:

» Z-Axis caging: Field lines never extend beyond z > L.
e Unidirectional Flow: No backward-oriented field lines exist.
o Centrosymmetrical arrangement: E(X) = E(r_ , 2).

* Radial Decay: Monotonic decrease in field strength away from axis:

E ~
ol H with  lim E(X) = 0.

Bm T —00

* Axial Alignment: Field becomes parallel to the string axis in middle region:
E(ry,2) || e, for ze[d L—d).
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Proof. The interaction field starts at a quark and ends at an antiquark (Property 1§3.2) due to the fact
that the field direction n(x) = cosa(z 1, 2) - €, +sina(z 1, z) - e, is a tangent to the curve 2/, (2'),
which by construction begins at x; and ends at X.

Consider an infinitesimal current tube connecting a quark and an antiquark. The surface bounding this
tube is parallel to the field line =/, (2"). Along the field line by construction x| /o(z) = k = const. In
(D+1)-dimensional space, the area element d.S orthogonal to the z-axis is d.S ~ xlj “ldx . Therefore,
due to the definition of the flux and the explicit expression for E(z, z) (54) we have

r? 1
d—E- - E ~ N . . pP-1 . —
d ds dS cosa ~ exp ( 20(2)? > oD cos x| dry -cosa 5

(2
= exp (—2) - kP~ Ydk = const.

Therefore, Property 2 §3.7]is satisfied.

The Z-Axis caging property is satisfied because o(z > L) = 0. The Unidirectional Flow property
is satisfied due to o(z < L) = 0. The Cylindrical Symmetry property is satisfied because E(X) =
E(z,,z). Radial decay property is satisfied because of the explicit formula for E(zy,z2) .
Finally, the Axial alignment property is satisfied because a(z € [d, L — d]) = 0. O

Remark. A crucial element in the flux conservation proof is the factor 1/ (z)? in the definition of the
IFM field (see (54)). The intuition behind this factor can be explained as follows: any flux tube must
narrow to a point as it approaches a charge. Consequently, the cross-section (which is proportional to
o(z)P) must also decrease. Flux conservation can only be maintained by a proportional increase in
the field strength, see Figure @below.

RD+1
flux tube

b=E-S=FE-5, =const

B S
= E~g-~5p

Figure 13: An illustration to the flux conservation property. To maintain the field flux conservation
within a tube as it narrows, a proportional increase in field strength is required.

In simpler terms, the closer one is to a charge, the stronger the field must be.

B EXPERIMENTAL DETAILS

We aggregate the hyper-parameters of our Algorithm [T] for different experiments in the Table [3]
We base our code for the experiments on EFM’s code https://github.com/justkolesov/
FieldMatching.

Experiment D Batch Size L oo d LR 7 plan
Gaussian Swiss-roll §4.1 2 1024 [6, 40] 1 [0.1,0.5]L 2e-4 [Ind, MB]
CIFAR-10 Generaﬁonm 3072 128 20 1 0.5L 2e-4 Ind
CelebA 64x64 Generation §4.2) 12288 128 20 1 [0.1,0.25,0.4,0.5]L | 2e-4 | Ind
MNIST digits 2—3 Translation §4.3] 3072 128 20 1 0.1L 2e-4 | [Ind, MB]
Winter— Summer Translation gﬂ: 12288 128 20 1 0.1L 2e-4 [Ind, MB]
CelebA 128x128 Generation App. |D| 49152 | 128 20 1 0.25L 2¢e-4 | Ind
Conditional CIFAR-10 generation App.]EI 3072 128 20 1 0.25L 2e-4 | Ind

Table 5: Hyper-parameters of Alg. for the experiments, where D is the dimensionality of task, L is
the distance betwenn plates, oy is the effective width, d is the characteristic distance (see Fig@.
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In the case of the Image experiments (see §4.3|and §4.2)), we follow (Kolesov et al.| 2025, EFM),
et al [2022; 2023, PFGM/PFGM++), 2020, DDPM) and (Lipman et al., 2023 FM) and

use Exponential Moving Averaging (EMA) technique with the ema rate decay equals 0.99 to provide
smooth solution. Also, we use linear scheduler, that grows from 0 to 2e — 4 during the first 5000
iterations and decreases monotonically. As for the optimizer, we use Adam optimizer Kingma & Ba|
with the learning rate 2e — 4 and weight decay equals 1e — 4.

We compare our method with PEGM/PFGM++ [Xu et al.| (2022} [2023)), whose the source code are
taken from https://github.com/Newbeeer/pfgmpp| for running PFGM++ and https:
//github.com/Newbeeer/Poisson_flow/ for PEFGM in our experiments. We follow the
proposed values of hyper parameters are appropriate for us: v = 5,7 = 0.3, ¢ = le — 3. The source
code for DDPM is taken from https://github.com/yang-song/score_sde_pytorch
with hyper-parameters o,,;, = 0.01, 042 = 50, Bmin = 0.1 and Bax = 20. The source
code for FM is taken from https://github.com/facebookresearch/flow_matching
with linear interpolant . The source code for StyleGAN is taken from https://github.com/
NVlabs/stylegan2-ada-pytorch.

C ABLATION STUDY

Our IFM realization is defined by the following hyperparameters: the distance L between plates, the
string width o¢, and the distance d over which field lines curve toward the charges. In this Appendix,
we address the practical selection of these hyperparameters and present an ablation study on how
they affect our model’s performance. We choose parameters based on the following ideas:

1. Since we learn the normalized field (see ( .) the factor 1/0(2)P cancels out. Indeed, let
X € RP+! be a point where we estimate the normalized vector field using B sampled pairs of

quarks and anti-quarks. In accordance with the superposition principle (see (7)), the resulting field

is obtained as the average of B independent fields £ (;rﬁ_), Z)n (IS_), z) (see 1b from each pair:

()

E(}Z) :iexp(_gg(z)z ||Zexp
EQI & oe” Mrf

Therefore, term 1/0(2)? cancels out completely. The practical choice of the hyperparameter o
is determined solely by numerical considerations and is usually set to o = 1.

2. The distance d should not be chosen too short—this complicates data translation via the ODE due
to the high curvature of the field lines in the region z € [0, d] U [L — d, L] . In practice, we usually
used € [0.1L, 0.5L].

3. Finally, the distance L does not significantly impact translation quality in our method (see Fig.
7). This is different from EFM, where making L too large significantly worsens the results (see
§2.3). Our IFM realization is specifically designed to reduce this dependency through straight field
segments for z € [d, L — d], where ODE integration follows straight lines. In practice, analogously

to EFM, we set L to be on the order of the data standard deviation: L ~ /Dp or 1/ Dg.

Figure [I4] presents a series of experiments with different values of the parameter d. It can be seen
that the generation quality does not significantly depend on this parameter.

D ADDITIONAL CELEBA GENERATION EXPERIMENT (128X128)

We also provide a more challenging image generation task on the 128x128 CelebA dataset. We
follow the experimental design from the §4.2] placing the CelebA images and the noise from standard
multivariate distribution N'(0, I12gx128) on the left hyperplane (z = 0) and the right hyperplane
(z = 20), respectively. We present the qualitative results of our IFM in Fig. [T5] demonstrating its
scalability in high-dimensional spaces.
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(b) L =20,00 =1,d=
0.25L.

(d) L =20,00=1,d=
0.5L.

Figure 14: Image Generation on CelebA 64x64: Investigation of generation quality dependence on
the model hyperparameter d in our IFM method.

Figure 15: Image Generation: Samples obtained by IFM (ours) method with the independent
transport plan on CelebA dataset with resolution 128x128.

E CONDITIONAL IMAGE GENERATION ON CIFAR-10

Our IFM can be easily adapted to conditional generation tasks. For generating images of a specific
class ¢, we learn a conditional vector field E(X|c). Specifically, for a data sample X, = (x,,0) from
c-th class, we sample noised sample X via dﬁ) and approximate E(X|c) by a neural network fy (X, ¢)
with the following optimization function over parameters 6:

E(x|c)

EcBxel /6% ) ~ TR,

|12 —>main.

We consider conditional generating task on the 32x32 CIFAR-10 dataset and demonstrate generated
images over each class c in Fig. [T6]

F COMPARISON WITH FLOW MATCHING

Our IFM framework offers an important advantage compared to Flow Matching (Lipman et al.} 2023}
Liu et al] 2023} [Tong et all,2023): it enables multi-sample estimation of the field.

In particular, our IFM method approximates the normalized vector field with a neural network
fo(X), trained with the loss

_. Ex |
Jo(X) — ===

[E&)|
which requires an estimate of the ground-truth vector field E(X). The distribution over points X at
which the field is learned serves as a hyperparameter. Since the field E(X) is represented using the

superposition principle (7), we can estimate it by averaging over fields induced by B batch samples

Lirm = Ex

)
2

22



Under review as a conference paper at ICLR 2026

Figure 16: Conditional Image Generation: Samples obtained by conditional vector field E(X|c) of
IFM(ours) method on CIFAR-10 dataset for each class c.

(quark and anti-quark pairs) X, = (x4,0) and X5 = (xg, L):

B
~ 1 ~
ERX) ~ 5> Bx,x, (%),
i=1

where each Ey, «, (X) admits a closed form (see Appendix @) Thus, we can use any available
number of sample pairs (Xq,Xg) ~ m—up to the entire dataset—to estimate the ground-truth field
and reduce the variance of this Monte Carlo estimator.

In contrast, the Flow Matching (FM) loss is

Lim = Eie[0,1], (xo.x1)~r Vo (Xt 1) — (X1 — X0)||§,

where x; = tx1 + (1 — t)x¢. The optimal vector field is v*(x;,t) = E[x; — X¢ | x¢], but this
conditional expectation is intractable to estimate via Monte Carlo because one cannot easily sample
X1, X conditioned on x;. Thus, during training, one regresses vy (x;, t) to its single-sample estimate

vo(x¢,t) & X1 — Xq.

Therefore, FM estimates the ground-truth field at each point x; using only one pair (Xg,X1) ~ T,
with no direct way to reduce the variance of this Monte Carlo estimate.

We sum up differences between FM and our IFM in Table[6].

IFM (ours) M
Estimation of a field | Multi-sample: E(X) over B pairs (Xo, X1) ~ 7 One-sample: v(x; ) over one pair (Xo,X1) ~ 7
Training volume Any: X = (x,2) : z € [0, L] Restricted: x; = tx1 + (1 — )Xo

Table 6: The differences between our IFM and Flow Matching (FM).
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