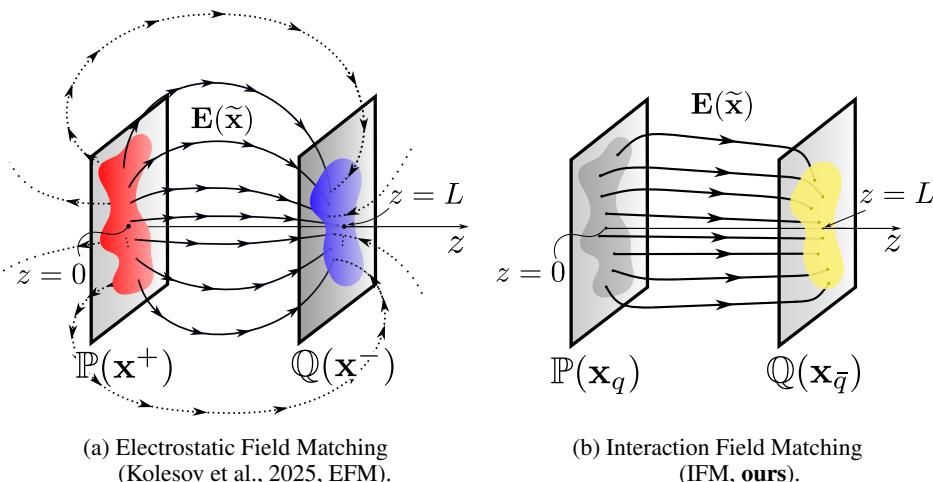


INTERACTION FIELD MATCHING: OVERCOMING LIMITATIONS OF ELECTROSTATIC MODELS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

ABSTRACT

010
011 Electrostatic field matching (EFM) has recently appeared as a novel physics-
012 inspired paradigm for data generation and transfer using the idea of an electric
013 capacitor. However, it requires modeling electrostatic fields using neural networks,
014 which is non-trivial because of the necessity to take into account the complex field
015 outside the capacitor plates. In this paper, we propose Interaction Field Matching
016 (IFM), a generalization of EFM which allows using general interaction fields
017 beyond the electrostatic one. Furthermore, inspired by strong interactions between
018 quarks and antiquarks in physics, we design a particular interaction field realization
019 which solves the problems which arise when modeling electrostatic fields in EFM.
020 We show the performance on a series of toy and image data transfer problems.
021
022
023
024
025
026
027
028
029
030
031
032
033



034
035
036
037 Figure 1: Electrostatic Field Matching (EFM, (Kolesov et al., 2025)) and our Interaction Field
038 Matching (IFM) concepts. Two D -dimensional distributions $\mathbb{P}(\cdot)$, $\mathbb{Q}(\cdot)$ are placed in \mathbb{R}^{D+1} at $z = 0$
039 and $z = L$ **(a)** In EFM, the distributions are interpreted as charges creating a capacitor-like electric
040 field. Movement along these field lines transfers the distributions, but requires consideration of all
041 directions of the field lines. **(b)** Our IFM is a generalization of the EFM to arbitrary interactions
042 between charges. One possible realization of IFM is motivated by the strong interaction between
043 quarks. This realization doesn't have backward-oriented lines and has a smaller curvature of the lines.
044
045

1 INTRODUCTION

046 While diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and flow matching (Liu et al., 2023;
047 Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) models dominate current research in deep
048 generative modeling, a new paradigm grounded in Coulomb electrostatics has emerged (Xu et al.,
049 2022; Kolesov et al., 2025; Cao & Zhao, 2024; Cao et al., 2024; Xu et al., 2023). Early work in this
050 direction introduced Poisson Flow Generative Models (Xu et al., 2022; 2023, PFGM), focusing on
051 noise-to-data generation. More recently, Electrostatic Field Matching (Kolesov et al., 2025, EFM)
052 generalized this framework, enabling electrostatic models to solve data-to-data transfer problems.
053

Electrostatic Field Matching (EFM) draws inspiration from electric capacitors, modeling input and target distributions as positive and negative electrostatic charges, respectively. The method performs

054 distribution transfer by following electrostatic field lines (Fig. 1a). While conceptually simple, EFM
 055 faces significant practical challenges: it requires accounting for all field lines—including *backward-*
 056 *oriented* ones (dotted lines in Fig. 1a)—which exhibit high curvature and span the entire space. This
 057 makes them difficult to model, as the necessary training volume becomes unbounded.

058 In this paper, we tackle the limitations of EFM (§2.3) and deliver the following **main contributions**:

060 1. **Theory.** We propose Interaction Field Matching (IFM), a generic paradigm for distribution
 061 transfer rooted in pairwise interactions between particles from input and target distributions (§3.3,
 062 3.5). Compared to EFM that relies on the electrostatic field, our approach allows us to leverage
 063 *general interaction fields* (beyond the Coulomb electrostatics) that satisfy certain physics-inspired
 064 properties such as the flux conservation and the *generalized* superposition principle (§3.2).

065 2. **Methodology & practice.** Inspired by the *strong interaction* of quarks and antiquarks in physics
 066 (§3.1), we design a particular realization of the interaction field (§3.4) which has several preferable
 067 properties compared to the electrostatic field: **(a)** the field lines have almost straight segments, **(b)**
 068 the field vanishes outside the area between particles and **(c)** it allows using the Minibatch Optimal
 069 Transport Pooladian et al. (2023) to enforce certain properties on the transfer map.

070 We showcase the performance of IFM on a series of toy and image data transfer problems (§4).

072 2 BACKGROUND AND RELATED WORKS

074 In this section, we first recall the concepts of the basic high-dimensional electrostatic (§2.1). Then
 075 we discuss its application to generative modeling and data transfer problems using the example of
 076 EFM (§2.2). Finally, in §2.3, we discuss the limitations of EFM which motivated our study.

078 2.1 ELECTROSTATICS

079 We recall the fundamental principles of electrostatics necessary for understanding electrostatic-based
 080 generative models. A detailed treatment of three-dimensional electrostatics can be found in any
 081 standard electricity and magnetism textbook, e.g., (Landau & Lifshitz, 1971, Chapter 5). The
 082 generalization of electrostatics to high-dimensional spaces is discussed in (Caruso et al., 2023).

084 **The electrostatic field.** Let $q : \mathbb{R}^D \rightarrow \mathbb{R}$ be the density of a charge distribution on \mathbb{R}^D . The
 085 distribution may contain both positive and negative charges and is assumed to have finite total charge
 086 ($\int |q(\mathbf{x})| d\mathbf{x} < \infty$). At a point $\mathbf{x} \in \mathbb{R}^D$ it produces the electrostatic field $\mathbf{E} : \mathbb{R}^D \rightarrow \mathbb{R}^D$:

$$087 \mathbf{E}(\mathbf{x}) = \int \frac{1}{S_{D-1}} \frac{(\mathbf{x} - \mathbf{x}')}{\|\mathbf{x} - \mathbf{x}'\|^D} q(\mathbf{x}') d\mathbf{x}', \quad (1)$$

090 where S_{D-1} is the surface area of an $(D - 1)$ -dimensional sphere with unit radius. That is, the field
 091 at \mathbf{x} is a weighted sum of fields from all charges \mathbf{x}' , where closer charges yield stronger field.

092 **Electric field strength lines.** An electric field strength line is a curve $\mathbf{x}(\tau) \in \mathbb{R}^D$, $\tau \in [a, b] \subset \mathbb{R}$
 093 whose tangent to each point is parallel to the electric field at that point. In other words:

$$095 \frac{d\mathbf{x}(\tau)}{d\tau} = \mathbf{E}(\mathbf{x}). \quad (2)$$

098 Electric field lines are a key concept for electrostatic generative models such as PFGM and EFM.

100 2.2 ELECTROSTATIC FIELD MATCHING (EFM)

101 The first application of electrostatics to generative modeling problems was carried out in the works
 102 of (Xu et al., 2022; 2023, PFGM), where the authors proposed a model applicable to noise-to-data
 103 generative problems. Electrostatic Field Matching (EFM) extends the application of electrostatics to
 104 the case of data-to-data transfer, and uses previously unconsidered properties of electric field lines.
 105 We describe here EFM since it is more general than PFGM, and our work is built upon it.

106 EFM works with two data distributions $\mathbb{P}(\mathbf{x}^+)$ and $\mathbb{Q}(\mathbf{x}^-)$, $\mathbf{x}^\pm \in \mathbb{R}^D$. The first distribution is assigned
 107 a positive charge, while the second distribution is assigned a negative charge. The distributions are
 placed in the *extended space* \mathbb{R}^{D+1} on the planes $z = 0$ and $z = L$, respectively (see Fig. 1a).

108 One can think of it as a $(D + 1)$ -dimensional **capacitor**. A point in this space has the form
 109 $(x_1, x_2, \dots, x_D, z) = (\mathbf{x}, z) = \tilde{\mathbf{x}} \in \mathbb{R}^{D+1}$. The field is found from the superposition principle:
 110

$$\mathbf{E}(\tilde{\mathbf{x}}) = \mathbf{E}_+(\tilde{\mathbf{x}}) + \mathbf{E}_-(\tilde{\mathbf{x}}), \quad (3)$$

112 where $\mathbf{E}_+(\mathbf{x})$ and $\mathbf{E}_-(\mathbf{x})$ are the fields created by $\mathbb{P}(\tilde{\mathbf{x}}^+)$ and $\mathbb{Q}(\tilde{\mathbf{x}}^-)$, respectively.
 113

114 Then, as proved in the original paper, the **movement along the field lines** $d\tilde{\mathbf{x}} = \mathbf{E}(\tilde{\mathbf{x}})d\tau$ performs
 115 **the transfer** between the distributions $\mathbb{P}(\tilde{\mathbf{x}}^+)$ and $\mathbb{Q}(\tilde{\mathbf{x}}^-)$. This fact has opened the possibility to
 116 use electrostatics both in data generation and transfer problems. Indeed, to move between data
 117 distributions, it is sufficient to follow the electric field lines.
 118

119 To obtain a distribution transfer model, one trains a neural network $f_\theta(\cdot) : \mathbb{R}^{D+1} \rightarrow \mathbb{R}^{D+1}$ to recover
 120 the normalized electric field $\frac{\mathbf{E}(\tilde{\mathbf{x}})}{\|\mathbf{E}(\tilde{\mathbf{x}})\|_2}$, e.g., by using a loss function
 121

$$\mathbb{E}_{\tilde{\mathbf{x}}} \|f_\theta(\tilde{\mathbf{x}}) - \frac{\mathbf{E}(\tilde{\mathbf{x}})}{\|\mathbf{E}(\tilde{\mathbf{x}})\|_2}\|_2 \rightarrow \min_\theta. \quad (4)$$

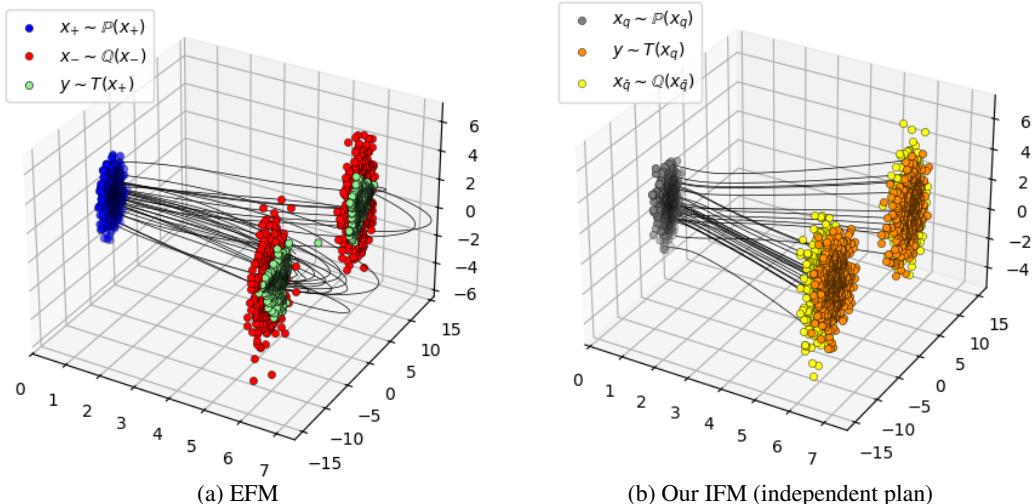
122 Here, $\mathbf{E}(\tilde{\mathbf{x}})$ is calculated with (3), where $\mathbf{E}^\pm(\tilde{\mathbf{x}})$ is approximated by empirical samples of $\mathbb{P}(\tilde{\mathbf{x}}^+)$ and
 123 $\mathbb{Q}(\tilde{\mathbf{x}}^-)$, i.e., data. Monte Carlo averaging $\mathbb{E}_{\tilde{\mathbf{x}}}$ is done on the points $\tilde{\mathbf{x}}$ around the plates. This set of
 124 points is called the **training volume**; its selection is crucial but highly non-trivial (Xu et al., 2022).
 125

126 2.3 LIMITATIONS OF EFM

127 Despite its performance, EFM has a few weak spots coming from the properties of electrostatic fields:
 128

129 **1. Backward-oriented field lines.** Each plate produces two sets of electric field lines (Fig. 1a).
 130 The first set (*forward-oriented* lines) is directed toward the second plate. The second set (*backward-
 131 oriented* lines) starts from the first plate in the opposite direction. In practice, the forward-oriented
 132 set of lines is chosen because it requires less training volume and because these lines are less curved
 133 than the lines of the backward-oriented series. However, backward-oriented lines play a critical role
 134 for the full coverage of the target distribution. The use of only forward-oriented lines is not sufficient
 135 to fully cover the distribution of $\mathbb{Q}(\cdot)$, see the illustration in Fig. 2a.
 136

137 **2. Line termination problem.** Even some forward-oriented field lines can pass the boundary $z = L$
 138 before reaching the second distribution. In such a case, the field line enters the region $z > L$ (see
 139 Fig. 2a) and requires further integration to come back to target distribution at $z = L$. This problem
 140 complicates the data transfer procedure. Indeed, one has to design some criterion to decide whether
 141 the line terminates at $z = L$ or should be integrated further.
 142



150 Figure 2: Limitations of the EFM & comparison with IFM. **(a)** The toy experiment $(1 \rightarrow 2$ Gaussians $)$ shows that even some *forward-oriented* field lines can leave $z > L$. These trajectories have increased
 151 length and curvature. Moreover, the transfer along only the forward-oriented lines does not cover
 152 of the target distribution (green point cloud does not coincide with the red one). **(b)** Our realization
 153 of IFM (§3.4) does not have the above mentioned problems: the field lines between the planes are
 154 almost straight, they do not extend beyond $z > L$ and are enough to cover the entire target distribution.
 155

162 **3. Training volume selection.** From the first two problems follows the challenge of choosing
 163 the training volume, i.e., points $\tilde{\mathbf{x}}$ in equation 4 for learning the field. For the correct transport
 164 between $\mathbb{P}(\cdot)$ and $\mathbb{Q}(\cdot)$, it is necessary to know not only the field between the plates ($0 < z < L$),
 165 but also beyond the plates ($z > L$ for lines leaving the boundary and $z < 0$ for backward-oriented
 166 lines). Therefore, it is necessary to choose a large training volume for learning of the neural network.
 167 Moreover, the size of the required volume is initially unknown.

168 Below we propose a generalization of EFM which aims to ease the above-mentioned problems.
 169

170 3 INTERACTION FIELD MATCHING (IFM)

171 This section describes our proposed Interaction Field Matching (IFM), the generalization of the
 172 electrostatic paradigm in generative models. In §3.1, we start by motivating the IFM with the strong
 173 interaction between subnuclear particles (quarks) in physics. In §3.2, we present the necessary
 174 requirements for an interaction field required for our ideas to work. In §3.3, we formulate the main
 175 theorem devoted to transfer of distributions into each other by means of a proper interaction field.
 176 The §3.4 describes a particular realization of the field inspired by strong interactions. In §3.5, we
 177 report the learning and inference algorithms. The proofs are in Appendix A.1.

178 3.1 MOTIVATION: STRONG INTERACTION IN PHYSICS

180 To address EFM challenges, we propose utilizing the **strong interaction** (Quevedo & Schachner,
 181 2024, §7.4)—a fundamental force binding subnu-
 182 clear particles. The smallest particles involved in
 183 this interaction are called **quarks**.
 184

185 A typical configuration of the strong field is shown
 186 in Fig. 3, highlighting key contrasts with electro-
 187 magnetic fields. At small distances, quark q and
 188 antiquark \bar{q} interact similarly to charged particles
 189 q_{\pm} . However, as the separation increases, the strong
 190 field lines become considerably straighter.

191 Unfortunately, strong field strength calculation re-
 192 quires complex quantum-mechanical computations.
 193 Although our work is motivated by quark interac-
 194 tions, unlike EGM and PFGM, *our setting uses modified physical interactions*.

195 3.2 PROPERTIES OF PROPER INTERACTION FIELDS

197 Here we list the most general requirements for the interaction field $\mathbf{E}(\tilde{\mathbf{x}})$ which are sufficient to
 198 perform data transfer. These requirements allow for broad flexibility in the field design. In particular,
 199 it could be an electrostatic field (see Example 3.2 below). Nevertheless, to preserve the concept of
 200 strong interaction, we will still refer to particles as quarks and antiquarks.

201 Suppose that a quark q is located at the point $\tilde{\mathbf{x}}_q \in \mathbb{R}^{D+1}$ and an antiquark \bar{q} at the point $\tilde{\mathbf{x}}_{\bar{q}} \in \mathbb{R}^{D+1}$
 202 and produce interaction field $\mathbf{E}(\tilde{\mathbf{x}}) = E(\tilde{\mathbf{x}}) \cdot \mathbf{n}(\tilde{\mathbf{x}})$, where $\mathbf{n}(\tilde{\mathbf{x}})$ is the unit vector tangent to the field
 203 line and $E(\tilde{\mathbf{x}})$ is the magnitude. We require the following properties of the interaction field $\mathbf{E}(\tilde{\mathbf{x}})$:

204 **1. The start and the termination of lines at (anti)quarks.** For $q\bar{q}$ -pair with equal charges, the
 205 interaction field line must start at the quark and end at the antiquark:

$$\begin{cases} \frac{d\tilde{\mathbf{x}}(\tau)}{d\tau} = \mathbf{n}(\tilde{\mathbf{x}}(\tau)), \\ \tilde{\mathbf{x}}(\tau_s) = \tilde{\mathbf{x}}_q, \quad \tilde{\mathbf{x}}(\tau_f) = \tilde{\mathbf{x}}_{\bar{q}}, \end{cases} \quad (5)$$

210 where τ_s, τ_f correspond to the initial and final points of the field line.

211 **2. Flux conservation.** For a $q\bar{q}$ -pair with equal charges, an interaction
 212 field must maintain the following property along the stream tube

$$\mathbf{E}(\tilde{\mathbf{x}}) \cdot d\mathbf{S} = \text{const}, \quad (6)$$

213 where $d\mathbf{S}$ is a vector with a length equal to the area dS of the surface,
 214 where the considered stream tube rests. The direction of the vector is

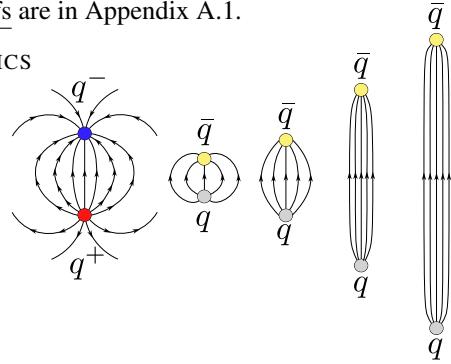


Figure 3: Comparison of electrostatic interaction between charges q^{\pm} (left) and strong interaction between quarks q, \bar{q} (right). At small distances, the strong interaction resembles the electromagnetic interaction, but as quarks separate, the field lines straighten into a string.

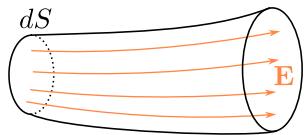


Figure 4: An illustration of the flux conservation.

orthogonal to the surface. In turn, $\mathbf{E} \cdot d\mathbf{S} = EdS \cos \alpha = E_1 dS_1 + \dots + E_D dS_D$ denotes the inner product between the vectors \mathbf{E} and $d\mathbf{S}$. Informally, this property means that the number of field lines along the stream surface is constant, see Fig. 4. We additionally assume that the *total* flux between quark-antiquark pair is proportional to the charge of the quark q that creates this field, and does not depend on the relative position of the quark-antiquark pair.

3. Generalized superposition principle w.r.t. a transport plan. Consider two continuous distributions $q(\cdot), \bar{q}(\cdot)$ of quarks and antiquarks, respectively, and assume they have the same total charge. Let $\pi(\cdot, \cdot)$ be a transport plan between these distributions, i.e., it satisfies the non-negativity property $\pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) \geq 0$ and the marginal constraints $\int \pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) d\mathbf{x}_{\bar{q}} = q(\mathbf{x}_q), \int \pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) d\mathbf{x}_q = \bar{q}(\mathbf{x}_{\bar{q}})$. Let $\mathbf{E}_{\mathbf{x}_q, \mathbf{x}_{\bar{q}}}(\tilde{\mathbf{x}})$ denote the field produced by a pair of a unit quark and a unit antiquark located at $\mathbf{x}_q, \mathbf{x}_{\bar{q}}$. Then the field of the system of quarks q and antiquarks \bar{q} w.r.t. π is given by:

$$\mathbf{E}_\pi(\tilde{\mathbf{x}}) = \iint \pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) \mathbf{E}_{\mathbf{x}_q, \mathbf{x}_{\bar{q}}}(\tilde{\mathbf{x}}) d\mathbf{x}_q d\mathbf{x}_{\bar{q}}. \quad (7)$$

Physically, it means that \mathbf{E} is the average of fields of interacting pairs $(\mathbf{x}_q, \mathbf{x}_{\bar{q}})$, and $\pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}})$ characterizes the strength of pairing between quarks \mathbf{x}_q and $\mathbf{x}_{\bar{q}}$. For completeness, we note that the superposition principle can be analogously stated for the discrete systems of quarks.

Properties 1-2 are formulated for a quark-antiquark pair. However, if these properties are true for the $q\bar{q}$ -pair, they remain valid for more complex discrete and continuous systems.

Lemma 3.1 (On the field lines). *Let $q(\cdot)$ and $\bar{q}(\cdot)$ be two compactly supported (discrete or continuous) distributions of quarks and antiquarks. Let them satisfy $\int q(\mathbf{x}) d\mathbf{x}_q = \int \bar{q}(\mathbf{x}_{\bar{q}}) d\mathbf{x}_{\bar{q}}$. Let the field of the quark-antiquark pair $\mathbf{E}_{\mathbf{x}_q, \mathbf{x}_{\bar{q}}}(\tilde{\mathbf{x}})$ start at \mathbf{x}_q and terminate at $\mathbf{x}_{\bar{q}}$ (Property 1), and conserve flux along the current tube (Property 2). Then the total field (7) from all quarks and antiquarks*

(a) *Start at $\text{supp}(\mathbb{P})$ and end at $\text{supp}(\mathbb{Q})$, except perhaps for the number of lines of zero flux*

(b) *Conserve flux along the current tubes.*

Example 3.2 (The electrostatic field). The electrostatic field (3) is a special case of the interaction field satisfying properties 1-3 for an **arbitrary** transport plan. Indeed, property 1 corresponds to the dipole field, property 2 follows from Gauss's theorem (Kolesov et al., 2025, §2.1), and property 3 is easy to check:

$$\begin{aligned} \mathbf{E}_\pi(\tilde{\mathbf{x}}) &= \int (\mathbf{E}_{q^+}(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}^+) + \mathbf{E}_{q^-}(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}^-)) \pi(\tilde{\mathbf{x}}^+, \tilde{\mathbf{x}}^-) d\tilde{\mathbf{x}}^+ d\tilde{\mathbf{x}}^- = \\ &= \int \mathbf{E}_{q^+}(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}^+) q^+(\tilde{\mathbf{x}}^+) d\tilde{\mathbf{x}}^+ + \int \mathbf{E}_{q^-}(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}^-) |q^-|(\tilde{\mathbf{x}}^-) d\tilde{\mathbf{x}}^- = \mathbf{E}^+(\tilde{\mathbf{x}}) + \mathbf{E}^-(\tilde{\mathbf{x}}) = (3), \end{aligned} \quad (8)$$

where $\mathbf{E}_q(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}^\pm)$ is the electric field at a point $\tilde{\mathbf{x}}$ produced by a point charge $q = \pm 1$ located at a point $\tilde{\mathbf{x}}^\pm$. *Electrostatic fields are independent* of the transport plan π , i.e., changing the plan does not alter the field as the total field of two charges itself is a sum of two separate fields by these charges.

3.3 MAIN THEOREM

Let $\mathbb{P}(\mathbf{x}_q)$ and $\mathbb{Q}(\mathbf{x}_{\bar{q}})$ be two D -dimensional data distributions. Similarly to EFM, we put these distributions in the *extended space* \mathbb{R}^{D+1} on the planes $z = 0$ and $z = L$, respectively, see Fig. 1b. Now assume that \mathbb{P} and \mathbb{Q} are the distributions of quarks q and antiquarks \bar{q} , respectively. Fix a transport plan π between them, e.g., set the independent one $\pi = q \times \bar{q} = \mathbb{P} \times \mathbb{Q}$. Let $\mathbf{E}_\pi(\tilde{\mathbf{x}})$ be a proper interaction field, i.e., satisfying properties 1-3 of §3.2.

For transport between the distributions, we define a map $T : \text{supp}(\mathbb{P}) \rightarrow \text{supp}(\mathbb{Q})$ that moves along the field lines by integrating $d\tilde{\mathbf{x}} = \mathbf{E}(\tilde{\mathbf{x}}) d\tau$, where $\mathbf{E}(\tilde{\mathbf{x}})$ is defined by (7). Field lines starting on the distribution $\mathbb{P}(\mathbf{x}_q)$ can emanate in two directions: forward-oriented, directed toward $\mathbb{Q}(\mathbf{x}_{\bar{q}})$, and backward-oriented, pointed initially in the opposite direction (see Fig. 5). The choice between these directions of motion must be made stochastically. A definition of the stochastic map T is provided in Appendix A.2.

Then, for this map $T(\mathbf{x}_q)$, we prove the following key theorem:

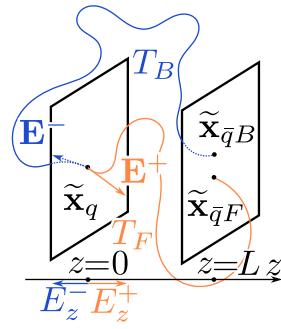


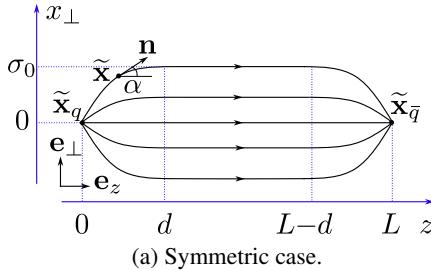
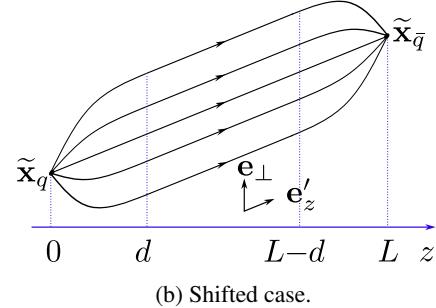
Figure 5: Illustration of forward, backward lines.

270 **Theorem 3.3** (Interaction Field Matching). Let $\mathbb{P}(\mathbf{x}_q)$ and $\mathbb{Q}(\mathbf{x}_{\bar{q}})$ be two continuous data distributions
 271 that have compact support. Let \mathbf{x}_q be a random variable distributed as $\mathbb{P}(\mathbf{x}_q)$. Then $\mathbf{x}_{\bar{q}} = T(\mathbf{x}_q)$ is a
 272 random variable distributed as $\mathbb{Q}(\mathbf{x}_{\bar{q}})$:

$$273 \quad 274 \quad \mathbf{x}_q \sim \mathbb{P}(\mathbf{x}_q) \Rightarrow T(\mathbf{x}_q) = \mathbf{x}_{\bar{q}} \sim \mathbb{Q}(\mathbf{x}_{\bar{q}}). \quad (9)$$

275 In other words, the movement along interaction field lines provably transfers $\mathbb{P}(\mathbf{x}_q)$ to $\mathbb{Q}(\mathbf{x}_{\bar{q}})$. The
 276 proof of the theorem is given in App.A.3
 277

278 **3.4 REALIZATION OF THE INTERACTION FIELD**



288 Figure 6: Realization of the field between two quarks. In the range $z \in [0, d]$ and $z \in [L - d, L]$ the
 289 field lines curve toward the quarks, in the middle range $z \in [d, L - d]$ the field lines are straight. The
 290 string has an effective width σ_0 , beyond which the field value exponentially decreases. **(a)** Symmetric
 291 case. **(b)** The shifted case is obtained by a proportional shift along the plane $z = L$

293 We present an interaction field realization that meets Properties 1-3 (§3.2), motivated by quark
 294 interactions (§3.1). This design eliminates backward-oriented lines and prevents field lines from
 295 going to $z > L$ (Fig. 2b). A schematic is shown in Fig. 6, while the detailed algorithm for
 296 calculating the field is formulated in Appendix A.4.

297 **Theorem 3.4** (Properties of our interaction field). *Our realization of the interaction field $\mathbf{E}(\tilde{\mathbf{x}})$
 298 satisfies the fundamental Properties 1-3 in §3.2, with additional characteristics:*

- 300 • *Field lines never extend beyond $z > L$.*
- 301 • *No backward-oriented lines exist.*

303 The combination of these properties saves a given interaction field from EFM problems (§2.3). We
 304 give proof and provide additional discussions in Appendix A.5.

306 **3.5 LEARNING AND INFERENCE ALGORITHM**

308 To move between data distributions, it is sufficient
 309 to follow the interaction field lines. The lines can be
 310 found from the trained neural net approximating the
 311 interaction field $\mathbf{E}(\tilde{\mathbf{x}})$.

312 **Training.** To recover the interaction field $\mathbf{E}(\cdot)$ in
 313 $(D + 1)$ -dimensional points between the hyperplanes,
 314 similarly to EFM, we approximate it with a neural
 315 network $f_\theta(\cdot) : \mathbb{R}^{D+1} \rightarrow \mathbb{R}^{D+1}$. To begin with, we
 316 need to define the training volume, i.e., the procedure
 317 to sample $\tilde{\mathbf{x}}$ for training. Since the field is compli-
 318 cated near the plates Xu et al. (2022), it is crucial to
 319 accurately recover the field there, rather than in the
 320 middle. We use the following sampling scheme:

$$321 \quad 322 \quad \tilde{\mathbf{x}} = \frac{z}{L} \tilde{\mathbf{x}}_q + (1 - \frac{z}{L}) \tilde{\mathbf{x}}_{\bar{q}} + \tilde{\epsilon}(z), \quad (10)$$

323 where $(\tilde{\mathbf{x}}_q, \tilde{\mathbf{x}}_{\bar{q}}) \sim \pi$ is sampled from the plan, $z \sim r(z)$ is the schedule distribution on $[0, L]$ and
 $\tilde{\epsilon}(z)$ is the amount of noise injected into the linear interpolation of $\tilde{\mathbf{x}}_q$ and $\tilde{\mathbf{x}}_{\bar{q}}$ at level z . This scheme

Algorithm 1 IFM Training

Input: Distributions accessible by samples:

$\mathbb{P}(\mathbf{x}_q)\delta(z)$ and $\mathbb{Q}(\mathbf{x}_{\bar{q}})\delta(z - L)$;

Transport plan $\pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) : \mathbb{R}^D \times \mathbb{R}^D \rightarrow \mathbb{R}$;

NN approximator $f_\theta(\cdot) : \mathbb{R}^{D+1} \rightarrow \mathbb{R}^{D+1}$;

Output: The learned interaction field $f_\theta(\cdot)$

Repeat until converged:

Sample $|B|$ batch $(\tilde{\mathbf{x}}_q, \tilde{\mathbf{x}}_{\bar{q}}) \sim \pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}})$

Sample $|B|$ coordinates $z \sim r(z)$;

Compute noise $\tilde{\epsilon}(z)$ as $\epsilon\sigma(z)$ (see App.A.4)

Calculate batch $\tilde{\mathbf{x}} = \frac{z}{L} \tilde{\mathbf{x}}_q + (1 - \frac{z}{L}) \tilde{\mathbf{x}}_{\bar{q}} + \tilde{\epsilon}(z)$;

Calculate $\mathbf{E}_{q\bar{q}}(\tilde{\mathbf{x}})$ for all pairs following §3.4;

Calculate $\mathbf{E}(\tilde{\mathbf{x}})$ with (7);

Compute $\mathcal{L} = \mathbb{E}_{\tilde{\mathbf{x}}} \|f_\theta(\tilde{\mathbf{x}}) - \mathbf{E}(\tilde{\mathbf{x}})\|_2^2 \rightarrow \min_\theta$;

Update θ by using $\frac{\partial \mathcal{L}}{\partial \theta}$;

is inspired by related works Kolesov et al. (2025); Xu et al. (2022). In our experiments, we use a uniform distribution for $r(z)$ and $\mathcal{N}(0, \sigma^2(z))$ for $\tilde{\epsilon}(z)$, where the variance $\sigma^2(z)$ is $\frac{L}{2} - |\frac{L}{2} - z|$. $\tilde{\epsilon}(z)$. This formulation ensures that $\tilde{\epsilon}(z) = 0$ at $z = 0$ and $z = L$, with the maximum noise occurring at the middle $z = \frac{L}{2}$. Also, it is worth noticing that (10) is just one of many possible ways to define intermediate points between the plates, and our method does not have direct connection to the training procedures of popular Flow Lipman et al. (2023); Liu et al. (2023); Albergo & Vanden-Eijnden (2023) or Bridge Matching Shi et al. (2023).

The ground-truth $\mathbf{E}(\tilde{\mathbf{x}})$ is estimated with Eq. (7). Specifically, we approximate the field by Monte Carlo samples from the given transport plan π . The field between paired quarks in a batch $\mathbf{E}_{\mathbf{x}_q, \mathbf{x}_{\bar{q}}}$ is determined according to the recipe described in §3.4. Analogously to EFM and PFGM, We learn $f_\theta(\cdot)$ by minimizing the squared error difference between the normalized ground truth $\mathbf{E}(\tilde{\mathbf{x}})$ and the predictions $f_\theta(\tilde{\mathbf{x}})$ over the parameters of the neural network with SGD, i.e., the learning objective is

$$\mathbb{E}_{\tilde{\mathbf{x}}} \|f_\theta(\tilde{\mathbf{x}}) - \frac{\mathbf{E}(\tilde{\mathbf{x}})}{\|\mathbf{E}(\tilde{\mathbf{x}})\|}\|^2 \rightarrow \min_{\theta}. \quad (11)$$

Inference. After learning the normalized vector field $\frac{\mathbf{E}(\cdot)}{\|\mathbf{E}(\cdot)\|}$ with a neural network $f_\theta(\cdot)$, we simulate the movement between hyperplanes to transfer data from $\mathbb{P}(\mathbf{x}_q)$ to $\mathbb{Q}(\mathbf{x}_{\bar{q}})$. A straightforward approach for this is to run an ODE solver for equation 2. However, one needs a right stopping time for the ODE solver since the arrival time may differ for different field lines. In order to find it, we follow the idea of (Xu et al., 2022; Kolesov et al., 2025) and use an equivalent ODE solver with $\tilde{\mathbf{x}}$ evolving with the extended variable z :

$$d\tilde{\mathbf{x}} = \left(\frac{d\mathbf{x}}{dt} \frac{dt}{dz}, 1 \right) dz = (\mathbf{E}_x(\tilde{\mathbf{x}}) \mathbf{E}_z^{-1}(\tilde{\mathbf{x}}), 1) dz = \left(\frac{\mathbf{E}_x(\tilde{\mathbf{x}})}{\|\mathbf{E}(\tilde{\mathbf{x}})\|}, \frac{\|\mathbf{E}(\tilde{\mathbf{x}})\|}{\mathbf{E}_z(\tilde{\mathbf{x}})} \right) dz \approx (f_\theta(\tilde{\mathbf{x}})_x f_\theta^{-1}(\tilde{\mathbf{x}})_z, 1) dz, \quad (12)$$

where we denote $f_\theta(\tilde{\mathbf{x}})$ as $(f_\theta(\tilde{\mathbf{x}})_x, f_\theta(\tilde{\mathbf{x}})_z)$ and $\mathbf{E}(\tilde{\mathbf{x}})$ equals $(\mathbf{E}_x(\tilde{\mathbf{x}}), \mathbf{E}_z(\tilde{\mathbf{x}}))$. In the new ODE (12), we replace the time variable t with the physically meaningful variable z setting the explicit start ($z = 0$) and the end ($z = L$) conditions. We start with samples from $\mathbb{P}(\mathbf{x}_q)$, i.e., when $z = 0$. Then, we arrive at the data distribution $\mathbb{Q}(\mathbf{x}_{\bar{q}})$ when z reaches L during the ODE simulation.

We emphasize, that *in EFM such a movement does not always realize transport between distributions properly* due to the backward-oriented lines and line termination problem (§2.3). In contrast, in our implementation of IFM (§3.4), such integration theoretically provably translates \mathbb{P} to \mathbb{Q} . All the ingredients for training and inference in our method are described in Algorithms 1 and 2, where we summarize the learning and the inference procedures, correspondingly.

4 EXPERIMENTAL ILLUSTRATIONS

Here we show the proof-of-concept experiments with our IFM method. We show a 2-dimensional illustrative experiment (§4.1), image generation (§4.3) and image-to-image translation experiments (§4.2). We give technical details of the implementation of the experiments in Appendix B. **We provide a study of the sensitivity of our model to the choice of hyperparameters in Appendix C.**

4.1 GAUSSIAN TO SWISS ROLL

An intuitive initial test to validate the method involves transferring between distributions with visually comparable densities. We use a 2D zero-mean Gaussian distribution with identity covariance matrix as $\mathbb{P}(\mathbf{x}_q)$ and a Swiss Roll distribution as $\mathbb{Q}(\mathbf{x}_{\bar{q}})$. Their respective visualizations appear in Figs. 8a and 8b. In Figs. 8c and 8d show the points $T(\mathbf{x}_q)$ obtained by moving along the lines of our

Algorithm 2 IFM Sampling

Input: samples $\tilde{\mathbf{x}}_q$ from $\mathbb{P}(\mathbf{x}_q)\delta(z)$
 The learned field $f_\theta^*(\cdot) : \mathbb{R}^{D+1} \rightarrow \mathbb{R}^{D+1}$;
Output: samples $\tilde{\mathbf{x}}_{\bar{q}}$ from $\mathbb{Q}(\mathbf{x}_{\bar{q}})\delta(z - L)$
 Set $\mathbf{x}_0 = \tilde{\mathbf{x}}_q$
for $k = 1, 2, \dots, L$ **do**
 Calculate $f_\theta^*(\mathbf{x}_{k-1}) = (f_\theta^*(\mathbf{x}_{k-1})_x, f_\theta^*(\mathbf{x}_{k-1})_z)$
 $\mathbf{x}_k = \mathbf{x}_{k-1} + f_\theta^*(\mathbf{x}_{k-1})_z^{-1} f_\theta^*(\mathbf{x}_{k-1})_x$
Return \mathbf{x}_L

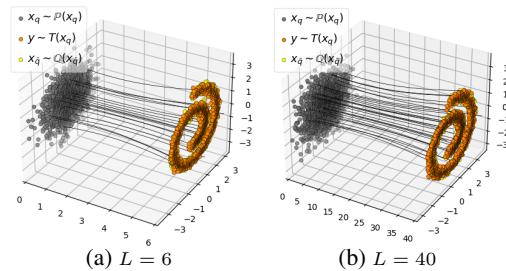


Figure 7: Interaction field line structure for the Gaussian-to-Swiss Roll experiment with $L = 6, 40$. Our IFM with minibatch OT plan.

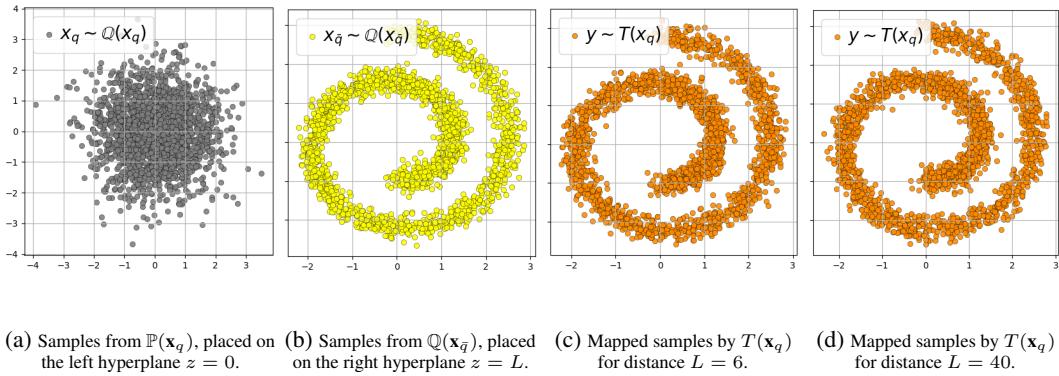


Figure 8: *Illustrative 2D Gaussian → Swiss Roll*: Input and target distributions $\mathbb{P}(\mathbf{x}_q)$ and $\mathbb{Q}(\mathbf{x}_{\bar{q}})$ with the transfer results learned by our IFM (with minibatch OT plan) for distances $L = 6$ and $L = 40$.

interaction field realization with minibatch OT plan (Tong et al., 2023). Fig. 8c corresponds to the plate distance $L = 6$, and Fig. 8d corresponds to $L = 40$. It can be seen that there are no significant differences due to the choice of the hyperparameter L , while in EFM the choice of large L lead to failure on the same experiment, namely, it failed to accurately map \mathbb{P} to \mathbb{Q} see (Kolesov et al., 2025, §4.2). Fig. 7 shows the 3D structure of the field lines for $L = 6$ and $L = 40$. It can be seen that the lines are almost straight over the entire range of values and depend weakly on L . Note that in EFM the field lines were significantly curved at large values of L (Kolesov et al., 2025, §5), see Fig. 7.

4.2 IMAGE GENERATION

We consider the generative task on the multimodal 32×32 CIFAR-10 dataset and the high-dimensional 64×64 CelebA faces dataset. In this experiment, we place noise images from a D -dimensional multivariate normal distribution $\mathcal{N}(0, I_{D \times D})$ on the left hyperplane $z = 0$, where $D = 3 \times 32 \times 32$ for CIFAR-10 and $D = 3 \times 64 \times 64$ for CelebA. Images from the CIFAR-10 and CelebA datasets are placed on the right hyperplane $z = 20$. In accordance with our Algorithm 1, we learn the normalized interaction field between the hyperplanes using independent transport plans.

For completeness, we compare our approach not only with previous electrostatic-based approaches such as EFM (Kolesov et al., 2025), PFGM (Xu et al., 2022) and PFGM++ (Xu et al., 2023), but also with modern flow-based FM (Lipman et al., 2023), diffusion-based DDPM (Ho et al., 2020), and adversarial approaches such as StyleGAN (Karras et al., 2020). Our method, IFM, performs competitively with well-known state-of-the-art approaches in terms of qualitative results (see Figs. 9a and 9b), while EFM fails to generate samples for the 64×64 CelebA dataset (see Fig. 9b). We quantitatively evaluate our method’s performance by reporting FID in Table 1.

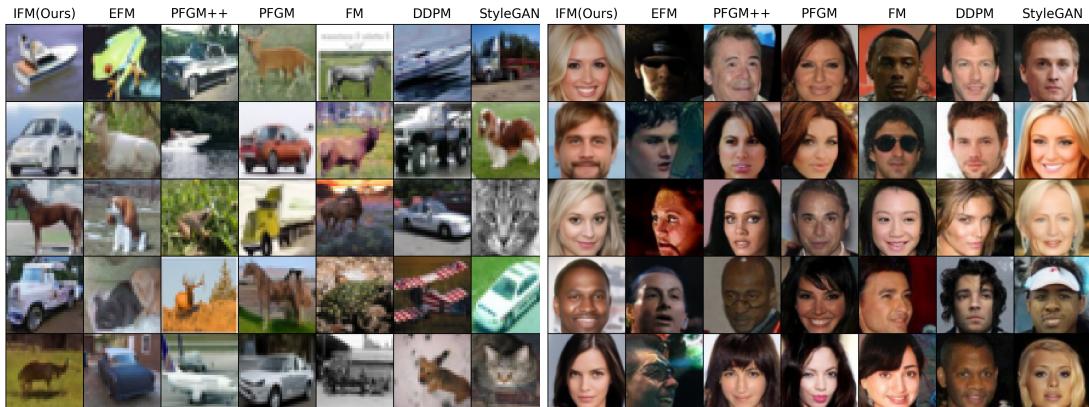


Figure 9: *Image Generation*: Samples obtained by **IFM(ours)** with the independent plan, electrostatic-based approaches **EFM** and **PFGM&PFGM++**, flow-based **FM**, diffusion-based **DDPM** and **StyleGAN**.

Dataset / Method	IFM (our)	EFM	PFGM++	PFGM	FM	DDPM	StyleGAN
CIFAR-10 (32x32)	2.28	2.62	2.15	2.76	2.99	3.12	2.48
Celeba (64x64)	3.07	>100	2.89	3.95	14.45	12.26	3.68

Table 1: *Image Generation*: FID \downarrow score on 32 \times 32 CIFAR-10 and 64 \times 64 Celeba faces datasets for our **IFM**, **EFM**, **PFGM** & **PFGM++**, flow matching (**FM**), diffusion (**DDPM**) and **StyleGAN**.

Additional qualitative results for other image generation tasks (128 \times 128 CelebA dataset and conditional image generation on CIFAR-10) are provided in Appendices D and E

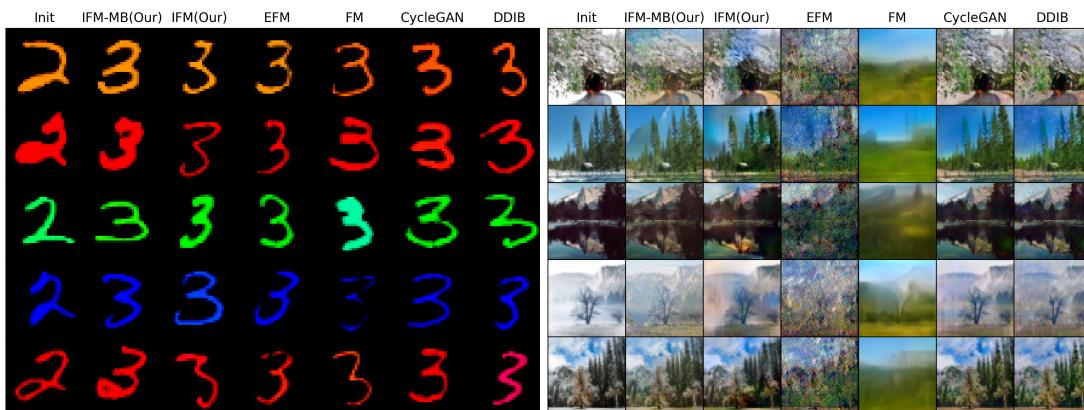
Computational efficiency. Training of our IFM takes less than 10 hours on a single NVIDIA A100 GPU (30 GB VRAM) for the 32 \times 32 and 64 \times 64 resolution datasets, and less than 30 hours for the 128 \times 128 resolution dataset. Our IFM shares the same architecture as the closest competitors: EFM, PFGM/PFGM++, DDPM, and FM. We also use the same Euler-based ODE solver and 100 evaluation steps for each method to ensure a fair comparison. Therefore, the inference speed and memory usage is identical for all these methods. For completeness, we report the inference speed to generate different batch sizes of images, including a single image (i.e., batch size=1), see Table 2. In particular, the peak GPU memory usage for all methods is approximately 8, 10 and 16 GB during inference with a batch size of 128 for 32x32, 64x64 and 128x128 datasets, respectively.

Dataset / Batch Size	256	128	64	16	1
CIFAR-10 (32x32)	10.93	5.74	1.63	0.82	0.7
Celeba (64x64)	36.81	18.45	8.5	2.93	0.97
Celeba (128x128)	63.28	32.27	14.87	4.06	1.75

Table 2: The inference time (in seconds) of our IFM with different batch sizes $|B|$ in generation.

4.3 IMAGE-TO-IMAGE TRANSLATION

Following (Zhu et al., 2017; Kolesov et al., 2025), we also consider an unpaired image translation task with two scenarios: translating 32 \times 32 colored MNIST digits from '2' to '3' (2 \rightarrow 3) and translating 64 \times 64 scenes from Winter to Summer (W \rightarrow S). The placement of images on the hyperplanes follows the same setup as the §4.2. We learn the normalized field between the plates using both independent and mini-batch optimal transport plans. Our IFM and IFM-MB approaches effectively preserve shapes (with IFM-MB performing slightly better due to the use of the transport plan) and changes the styles of the initial images (see Figs. 10a and 10b). For completeness, we compare IFM and IFM-MB with popular image-to-image translation methods, including Flow Matching, diffusion-based (Ho et al., 2020, DDIB), adversarial (Zhu et al., 2017, CycleGAN), and EFM. We evaluate the performance of these methods using the CMMID Yan et al. (2022), as reported in Table 3. We also add a discussion of the distinctions between our approach and FM in the Appendix F.



(a) Colored digits '2' \rightarrow Colored digits '3'.

(b) Winter \rightarrow Summer.

Figure 10: *Image Translation*: Samples obtained by **IFM**(ours) with/without the minibatch plan, electrostatic-based approach **EFM**, flow-based **FM**, diffusion-based **DDIB** and adversarial **CycleGAN**.

Dataset / Method	IFM-MB (our)	IFM (our)	EFM	FM	CycleGAN	DDIB
'2' → '3' (32x32)	0.87	0.95	0.93	1.06	0.90	0.96
W → S (64x64)	1.13	1.25	≥1	≥1	1.33	1.39

Table 3: *Unpaired Image Translation*: CMMD↓ on W → S and colored digits '2' → '3' for our **IFM**, **EFM**, **FM**, **CycleGAN** and **DDIB**.

Computational efficiency of our method in translation is almost the same as in generation (§4.2). Also, the core implementation components of IFM (architectures, number of steps in ODE solver, etc.) are the same as in generation and are again identical to the closest ODE-based competitors EFM & FM to ensure the fair comparison. Therefore, the runtime & memory usage is the same for all these mentioned approaches. For completeness, we report the inference time of IFM in Table 4.3 below.

Dataset / Batch Size	256	128	64	16	1
MNIST '2' → '3' (32x32)	10.95	5.73	1.61	0.85	0.73
W → S (64x64)	36.84	18.44	8.53	4.05	1.76

Table 4: The inference time (in seconds) of our IFM with different batch sizes $|B|$ in translation.

5 DISCUSSION

Our proposed IFM method is a generalization of EFM allowing using rather general interaction fields for distribution transfer. Our implementation of the particular IFM field is just one of many possible realizations. The search for a more optimal realization is a difficult task and is a promising subject of future research that opens opportunities for the further development of electrostatic-inspired models.

Our IFM overcomes major limitations of prior EFM method (§2.3): backward-oriented field lines, line termination problems, and training volume selection issues. Moreover, due to our field's specific structure, we also address the high-dimensionality challenge and the associated numerical instability that affects EFM and PFGM due to the Coulomb factor $1/\|\tilde{\mathbf{x}} - \tilde{\mathbf{x}}'\|^D$ (see Appendix C).

Impact statement. Our paper presents work with a goal to advance ML. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.

REFERENCES

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. In *The Eleventh International Conference on Learning Representations*, 2023.

Xiao Cao and Shenghui Zhao. Pfgm++ combined with stochastic regeneration for speech enhancement. In *2024 9th International Conference on Signal and Image Processing (ICSIP)*, pp. 267–271. IEEE, 2024.

Xiao Cao, Shenghui Zhao, Yajing Hu, and Jing Wang. Sr-pfgm++ based consistency model for speech enhancement. In *2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP)*, pp. 1–5. IEEE, 2024.

Francisco Caruso, Vitor Oguri, and Felipe Silveira. Still learning about space dimensionality: From the description of hydrogen atom by a generalized wave equation for dimensions $d \geq 3$. *American Journal of Physics*, 91(2):153–158, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8110–8119, 2020.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In *ICLR: international conference on learning representations*, pp. 1–15. ICLR US., 2015.

540 Alexander Kolesov, Stepan Manukhov, Vladimir V Palyulin, and Alexander Korotin. Field matching:
 541 an electrostatic paradigm to generate and transfer data. In *Forty-second International Conference on*
 542 *Machine Learning*, 2025. URL <https://openreview.net/forum?id=9dHilxylvC>.

543

544 L. D. Landau and E. M. Lifshitz. *The Classical Theory of Fields (Volume 2 of A Course of Theoretical*
 545 *Physics)*. Pergamon Press, 1971.

546

547 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
 548 for generative modeling. In *The Eleventh International Conference on Learning Representations*,
 2023.

549

550 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
 551 data with rectified flow. In *The Eleventh International Conference on Learning Representations*,
 2023.

552

553 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
 554 and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings.
 555 In *International Conference on Machine Learning*, pp. 28100–28127. PMLR, 2023.

556

557 Fernando Quevedo and Andreas Schachner. *Cambridge Lectures on The Standard Model*. CERN-
 558 TH-2024-106, 2024.

559

560 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 561 bridge matching. *Advances in Neural Information Processing Systems*, 36:62183–62223, 2023.

562

563 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 564 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 pp. 2256–2265. PMLR, 2015.

565

566 Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
 567 Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic
 568 optimal transport. *arXiv preprint arXiv:2302.00482*, 2(3), 2023.

569

570 Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola. Poisson flow generative models. In
 571 *Proceedings of the 36th International Conference on Neural Information Processing Systems*, pp.
 16782–16795, 2022.

572

573 Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark, and Tommi Jaakkola.
 574 Pfgm++: Unlocking the potential of physics-inspired generative models. In *International Conference on Machine Learning*, pp. 38566–38591. PMLR, 2023.

575

576 Shifu Yan, Caihua Shan, Wenyi Yang, Bixiong Xu, Dongsheng Li, Lili Qiu, Jie Tong, and Qi Zhang.
 577 Cmmd: Cross-metric multi-dimensional root cause analysis. In *Proceedings of the 28th ACM*
 578 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 4310–4320, 2022.

579

580 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
 581 using cycle-consistent adversarial networks. In *Proceedings of the IEEE international conference*
 582 *on computer vision*, pp. 2223–2232, 2017.

583

584

585

586

587

588

589

590

591

592

593

594 A INTERACTION FIELD MATCHING: PROPERTIES AND PROOFS
595596 A.1 PROPERTIES OF INTERACTION FIELD LINES
597598 In this section we formulate several properties of the interaction field which are essential for the proof
599 of the main theorem. First of all, let us formulate the notion of field flux which has been introduced
600 intuitively in the main text.601 **Definition A.1.** (Field flux). Consider an element of area $d\mathbf{S}$. The field flux \mathbf{E} through this element
602 is called $d\Phi = \mathbf{E} \cdot d\mathbf{S}$. If we need to calculate the field flux through a finite surface Σ , then the field
603 flux is

604
605
$$\Phi = \int_{\Sigma} d\Phi = \int_{\Sigma} \mathbf{E} \cdot d\mathbf{S}. \quad (13)$$

606

607 Intuitively, field flux indicates how many field lines pass through a surface Σ . The greater the flux,
608 the higher the number of lines passing through a given area.
609610 **Remark.** For the closed surfaces, we assume that the normal is always directed outward.611 **Lemma A.1** (Generalized Gauss theorem). *Let $\mathbb{P}(\cdot)$, $\mathbb{Q}(\cdot)$ be two D -dimensional probability distri-
612 butions having compact support, located on planes $z = 0$ and $z = L$ in \mathbb{R}^{D+1} , respectively, and
613 satisfying the property $\int \mathbb{P}(\mathbf{x}_q) d\mathbf{x}_q = \int \mathbb{Q}(\mathbf{x}_{\bar{q}}) d\mathbf{x}_{\bar{q}}$. Let $\mathbf{E}_{q\bar{q}}(\tilde{\mathbf{x}}) \equiv \mathbf{E}_{\mathbf{x}_q \mathbf{x}_{\bar{q}}(\tilde{\mathbf{x}})}$ be an interaction field
614 produced by a pair of a unit quark and a unit antiquark satisfying properties 1-3 of §3.2. Let ∂M be
615 a surface bounding the volume M and containing a part of the distribution $\mathbb{P}(\cdot)$ and not containing
616 $\mathbb{Q}(\cdot)$. Then*

617
618
$$\iint_{\partial M} \mathbf{E} \cdot d\mathbf{S} = \Phi_0 \cdot \int_M \mathbb{P}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}}, \quad (14)$$

619

620 where $\Phi_0 = \iint_{\partial M} \mathbf{E}_{q\bar{q}} \cdot d\mathbf{S}$ is the field flux from a single unit $q\bar{q}$ -pair¹.621 *Proof.* Substituting the explicit expression (7) for the interaction field $\mathbf{E}(\tilde{\mathbf{x}})$ we obtain:

622
623
$$\begin{aligned} \iint_{\partial M} \mathbf{E} \cdot d\mathbf{S} &= \iint_{\partial M} \left(\int \mathbf{E}_{q\bar{q}} \pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) d\mathbf{x}_q d\mathbf{x}_{\bar{q}} \right) \cdot d\mathbf{S} = \\ 624 &= \int \pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) d\mathbf{x}_q d\mathbf{x}_{\bar{q}} \cdot \iint_{\partial M} \mathbf{E}_{q\bar{q}} \cdot d\mathbf{S} = \Phi_0 \int_M d\mathbf{x}_q \int d\mathbf{x}_{\bar{q}} \pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}}) = \\ 625 &= \Phi_0 \cdot \int_M \mathbb{P}(\mathbf{x}_q) d\mathbf{x}_q. \end{aligned} \quad (15)$$

626

627 The equality on the second line is associated with a change in the order of integration, which is
628 possible by the natural assumption of the continuity of the functions $\pi(\mathbf{x}_q, \mathbf{x}_{\bar{q}})$ and $\mathbf{E}_{q\bar{q}}$ and the
629 compactness of their support.630 \square 631 **Remark.** If M contains a part of the distribution $\mathbb{Q}(\cdot)$ but does not contain $\mathbb{P}(\cdot)$, then the statement
632 of the theorem will be written as follows:

633
634
$$\iint_{\partial M} \mathbf{E} \cdot d\mathbf{S} = \Phi_0 \cdot \int_M \mathbb{Q}(\tilde{\mathbf{x}}) d\tilde{\mathbf{x}}. \quad (16)$$

635

636
637
638 ¹We assume (§3.2) that the flux $\Phi_{q\bar{q}}$ is proportional to the charge of the quark q that creates field $\mathbf{E}_{q\bar{q}}$ and
639 does not depend on the relative position of the quark-antiquark pair. That is, all other things being equal, the
640 replacement $q \rightarrow 2q$ will lead to $\Phi_{q\bar{q}} \rightarrow 2\Phi_{q\bar{q}}$. Therefore, for any pair $q\bar{q}$ with the same unit charge $q = 1$ (and
641 it is precisely what we mean when we talk about the elementary field $\mathbf{E}_{q\bar{q}}$), the flux $\Phi_{q\bar{q}} \equiv \Phi_{1\bar{1}} = \Phi_0$ will be
642 the same for all pairs

648 **Corollary A.2.** For any point $\tilde{\mathbf{x}}$ in the support of distribution $\mathbb{P}(\cdot)$:
 649

$$650 \quad 651 \quad E_z^+(\tilde{\mathbf{x}}) - E_z^-(\tilde{\mathbf{x}}) = \Phi_0 \cdot \mathbb{P}(\tilde{\mathbf{x}}). \quad (17)$$

652 *Proof.* Consider an infinitesimal volume $d\mathbf{S} \in \text{supp } \mathbb{P}(\cdot)$. Consider a closed surface, a cylinder with
 653 infinitesimal indentation in different directions in the plane $z = 0$, see Fig. 11.
 654

655 The flux through this surface consists of three summands: the $d\Phi^+$ flux in the positive direction of
 656 the z -axis, the $d\Phi^-$ flux in the negative direction of the z -axis, and the $d\Phi_{\text{lat}}$ flux through the lateral
 657 surface:

$$658 \quad 659 \quad d\Phi_{\text{full}} = d\Phi^+ + d\Phi^- + d\Phi_{\text{lat}} = E_z^+ dS - E_z^- dS + 0. \quad (18)$$

660 Here $d\Phi_{\text{lat}} = 0$ since the height of the cylinder under
 661 consideration can be made as small as we want (in-
 662 finitesimal of higher order than dS). $d\Phi^- = -E_z^- dS$
 663 has a negative sign due to the fact that the normal to the
 664 closed surface is directed outward, i.e. in the opposite
 665 direction from the axis z .
 666

667 Then, due to the generalized Gauss's theorem:

$$668 \quad 669 \quad d\Phi_{\text{full}} = (E_z^+ - E_z^-) dS = \Phi_0 \cdot \mathbb{P} dS \quad (19)$$

670 which proves the corollary.
 671

672 **Lemma A.3** (On field lines). Let $\mathbb{P}(\cdot)$ and $\mathbb{Q}(\cdot)$ be two
 673 (discrete or continuous) distributions corresponding to
 674 quarks and antiquarks. Let these distributions have
 675 compact support and satisfy $\int \mathbb{P}(\mathbf{x}_q) d\mathbf{x}_q = \int \mathbb{Q}(\mathbf{x}_{\bar{q}}) d\mathbf{x}_{\bar{q}}$. Let the field of the unit quark-antiquark
 676 pair $\mathbf{E}_{\mathbf{x}_q, \mathbf{x}_{\bar{q}}}(\tilde{\mathbf{x}}) \equiv \mathbf{E}_{q\bar{q}}(\tilde{\mathbf{x}})$ start at \mathbf{x}_q and end at $\mathbf{x}_{\bar{q}}$ (Property 1), and conserve flux along the current
 677 tube (Property 2). Then the total field (7) from all quarks and antiquarks satisfies:

678 (a) Its lines start at $\mathbb{P}(\cdot)$ and end at $\mathbb{Q}(\cdot)$, except perhaps for the number of lines of zero flux
 679
 680 (b) It conserves flux along the current tubes.

681 *Proof.* Let us begin with the proof of the second property. Let the field $\mathbf{E} = \int \mathbf{E}_{q\bar{q}} \pi_{q\bar{q}} d\mathbf{x}_q d\mathbf{x}_{\bar{q}}$ and
 682 $\int \mathbf{E}_{q\bar{q}} \cdot d\mathbf{S} = \text{const}$. Then:

$$683 \quad 684 \quad 685 \quad \int \mathbf{E} \cdot d\mathbf{S} = \int \int \pi_{q\bar{q}} d\mathbf{x}_q d\mathbf{x}_{\bar{q}} \int \mathbf{E}_{q\bar{q}} \cdot d\mathbf{S} = \int \pi_{q\bar{q}} d\mathbf{x}_q d\mathbf{x}_{\bar{q}} \cdot \text{const} = \text{const} \cdot 1 = \text{const}. \quad (20)$$

686 Let us now prove the first property. Suppose the opposite. Let there be lines starting at \mathbb{P} but not
 687 ending at \mathbb{Q} (the case of lines not starting at \mathbb{P} but ending at \mathbb{Q} can be considered similarly).
 688

689 Consider a $q\bar{q}$ -pair. The field $\mathbf{E}_{q\bar{q}}$ of this pair by assumption of the lemma starts on q and ends on \bar{q} ,
 690 is continuous, and therefore cannot go to infinity. Therefore, the flux through any Σ -area infinitely
 691 distant from $q\bar{q}$ -pair must be zero ²:

$$692 \quad 693 \quad 694 \quad \Phi_{q\bar{q}}^{\Sigma} = \int_{\Sigma} \mathbf{E}_{q\bar{q}} \cdot d\mathbf{S} \rightarrow 0, \|\mathbf{x}\| \rightarrow \infty. \quad (21)$$

695 Then, if $\mathbb{P}(\cdot)$ and $\mathbb{Q}(\cdot)$ have a compact support, the field flux from all quarks will also be zero:
 696

697 ²The difference $\Phi_{q\bar{q}}^{\Sigma}$ with the Φ_0 here is that Σ is an open surface infinitely distant from the $q\bar{q}$ -pair, while
 698 Φ_0 is the flux through a closed surface ∂M containing charge q and not containing charge \bar{q} . In other words,
 699 Φ_0 denotes the total field flux between a quark-antiquark pair of unit charge, while $\Phi_{q\bar{q}}^{\Sigma}$ defines the field flux
 700 through some infinitely distant surface.
 701

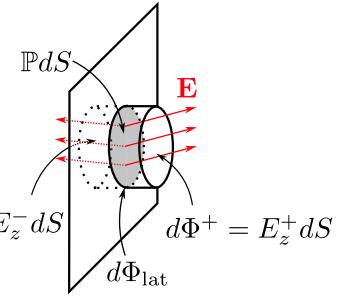


Figure 11: Considered area.

702

703

$$\Phi_\infty = \int_{\Sigma} \mathbf{E} \cdot d\mathbf{S} = \int_{\Sigma} \int \mathbf{E}_{q\bar{q}} \pi_{q\bar{q}} d\mathbf{x}_q d\mathbf{x}_{\bar{q}} \cdot d\mathbf{S} = \int \pi_{q\bar{q}} \Phi_{q\bar{q}}^\Sigma d\mathbf{x}_q d\mathbf{x}_{\bar{q}} \rightarrow 0, ||\mathbf{x}|| \rightarrow \infty. \quad (22)$$

704

705

Therefore, if the lines under consideration go to infinity, their flux is zero.

706

707

Let us now consider lines ending not at infinity and not at the target distribution (i.e., at some intermediate points)³. At the stopping point $\mathbf{E} = 0$ (otherwise it is not a stopping point). But then the total flux produced by such lines:

708

709

$$\Phi = \int \mathbf{E} \cdot d\mathbf{S} = 0 \quad (23)$$

710

which proves the statement. \square

711

712

A.2 DEFINITION OF STOCHASTIC MAP T

713

Movement from one distribution to the other is carried out along the field strength lines. In this section, we rigorously define this movement using a stochastic map T , taking into account the existence of two series of lines - forward-oriented and backward-oriented.

714

We define the **stochastic forward map** T_F from $\text{supp}(\mathbb{P})$ to $\text{supp}(\mathbb{Q})$ through forward-oriented field lines. For this, we consider a point $\tilde{\mathbf{x}}_q = (\mathbf{x}_q, \varepsilon)$, $\varepsilon \rightarrow 0^+$ slightly shifted in the direction of the second plate. Let us move along the corresponding field line by integrating $d\tilde{\mathbf{x}}(t) = \mathbf{E}(\tilde{\mathbf{x}}(t))dt$.

715

Sooner or later, such movement leads to the intersection of the plane $z = 0$ or $z = L$. At this moment, the question arises of whether to continue or stop the movement. If the movement continues, it will proceed until the plane $z = 0$ or $z = L$ is intersected again. Then, a decision must again be made - to stop or to go further. This procedure must be continued until we reach the final stopping point. Let us denote the intersection points as follows:

716

717

$$\tilde{\mathbf{x}}_q \rightarrow \tilde{\mathbf{x}}_F^{(1)} \rightarrow \tilde{\mathbf{x}}_F^{(2)} \rightarrow \dots \rightarrow \tilde{\mathbf{x}}_F^{(N)} \quad (24)$$

718

At each of these points, it is necessary to stop with probability $\nu(\tilde{\mathbf{x}}_F^{(i)})$ and continue movement with probability $1 - \nu(\tilde{\mathbf{x}}_F^{(i)})$, where

719

720

$$\nu(\tilde{\mathbf{x}}_F^{(i)}) = \begin{cases} 1, & \text{if } E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)}) \text{ and } E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)}) \text{ have opposite signs} \\ 0, & \text{if } |E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)})| \geq |E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})| \\ \frac{|E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})| - |E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)})|}{|E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})|} & \text{if } |E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)})| < |E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})| \end{cases}, \quad (25)$$

721

where $E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})$ and $E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)})$ are the values of the z -component of the field immediately before and immediately after intersecting the plane at point $\tilde{\mathbf{x}}_F^{(i)}$, respectively.

722

To understand the meaning of this probability, note that if $E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})$ and $E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)})$ have opposite signs, then further movement along the field lines is impossible (and thus we have arrived at the final point $\tilde{\mathbf{x}}_F^{(N)}$ on the target distribution). If they have the same sign, then further movement along the field lines is possible.

723

If further movement is possible, two situations arise: either $|E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)})| \geq |E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})|$ or $|E_z^{(\text{after})}(\tilde{\mathbf{x}}_F^{(i)})| < |E_z^{(\text{before})}(\tilde{\mathbf{x}}_F^{(i)})|$. In the first case, after crossing the plane, the field magnitude (and consequently the flux) increases - therefore the stopping probability is set to zero. If the flux

724

³Note that there are only two possible options - either the field line goes to infinity, or does not go to infinity, that is, it stops somewhere at an intermediate point.

756 magnitude becomes smaller after crossing, it means that one must stop with some probability and
 757 continue with another. Lemma X explains why this particular probability value is chosen for the latter
 758 situation.

759 The **stochastic backward map** T_B is constructed similarly using left limit $\varepsilon \rightarrow 0^-$ and backward-
 760 oriented field lines.

761 The complete transport T is then described by the *random variable*:

$$763 \quad T(\mathbf{x}_q) = \begin{cases} 764 \quad T_F(\mathbf{x}_q) \text{ with probability } \mu(\mathbf{x}_q), \\ 765 \quad T_B(\mathbf{x}_q) \text{ with probability } 1 - \mu(\mathbf{x}_q), \end{cases} \quad (26)$$

766 capturing both forward and backward trajectory endpoints for each $\mathbf{x}_q \in \text{supp}(\mathbb{P})$ with probabilities
 767 $\mu(\mathbf{x}_q)$ and $1 - \mu(\mathbf{x}_q)$, where

$$768 \quad \mu(\mathbf{x}_q) = \begin{cases} 769 \quad 0, & E_z^+ < 0 \\ 770 \quad 1, & E_z^- > 0 \\ 771 \quad \frac{E_z^+}{E_z^+ + |E_z^-|}, & \text{otherwise.} \end{cases} \quad (27)$$

772 Here $E_z^\pm = E_z(\tilde{\mathbf{x}} \pm \varepsilon \mathbf{e}_z)$, $\varepsilon \rightarrow 0^+$ are the left and right limits of the field value at the point $\tilde{\mathbf{x}}$
 773 in z direction. The meaning of this probability is as follows. Value $\mu(\mathbf{x}_q)$ allows one to choose a
 774 forward or backward sets of lines with a probability proportional to the field flux in the corresponding
 775 direction (i.e., proportional to E_z^+ and $|E_z^-|$, respectively). At the same time, if it is impossible to
 776 move forward ($E_z^+ < 0$), the map T_B is chosen ($\mu(\mathbf{x}_q) = 0$), and if it is impossible to move backward
 777 ($E_z^- > 0$), the map T_F is chosen ($\mu(\mathbf{x}_q) = 1$).

778 A.3 IFM MAIN THEOREM PROOF

779 **Lemma A.4** (First lemma on the flow). *Let $\mathbb{P}(\cdot)$, $\mathbb{Q}(\cdot)$ be two D -dimensional data distributions
 780 having a compact support, located on the planes $z = 0$ and $z = L$ in \mathbb{R}^{D+1} , respectively. Let
 781 $\{\tilde{\mathbf{x}}_{q_i}\}_{i=1}^n$ be a sample of points distributed over \mathbb{P} . Let dS be an element of D -dimensional area on
 782 the distribution of \mathbb{P} ($dS \in \text{supp } \mathbb{P}$). Let the field near the element dS have different signs: $E_z^+ > 0$
 783 and $E_z^- < 0$. Let dn be the number of points from the sample that fall in the volume dS . Let
 784 $dn = dn_F + dn_B$, where dn_F is the number of points from dS that correspond to the mapping T_F
 785 (i.e., movement along forward-oriented lines), and dn_B corresponds to T_B . Then:*

$$786 \quad \frac{dn_F}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{E_z^+ dS}{\Phi_0} = \frac{d\Phi_F}{\Phi_0}, \\ 787 \quad \frac{dn_B}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{|E_z^-| dS}{\Phi_0} = \frac{d\Phi_B}{\Phi_0}, \quad (28)$$

788 where $\left(\dots \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \dots \right)$ denotes the almost sure convergence.

789 *Proof.* According to the multiplication rule of probability and the law of large numbers:

$$790 \quad \frac{dn_F}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} (\text{probability of choosing } T_F) \cdot (\text{probability of falling in } dS) = \\ 791 \quad = \mu(\tilde{\mathbf{x}}) \cdot \mathbb{P}(\tilde{\mathbf{x}}) dS = \frac{E_z^+}{E_z^+ + |E_z^-|} \cdot \frac{(E_z^+ + |E_z^-|) dS}{\Phi_0} = \frac{E_z^+ dS}{\Phi_0} = \frac{d\Phi_F}{\Phi_0}. \quad (29)$$

792 In the second equality, the definitions of probability $\mu(\cdot)$, see Eq. (27), and Corollary A.2 were used.
 793 The case dn_B is proved similarly. \square

794 **Lemma A.5** (Second lemma on the flow). *Let $\mathbb{P}, \mathbb{Q}, \{\tilde{\mathbf{x}}_{q_i}\}_{i=1}^n, dS, dn$ have the same meaning as in
 795 the Lemma A.4. Let E_z^+ and E_z^- have the same sign near dS (i.e., either simultaneously $E_z^\pm > 0$ or
 796 simultaneously $E_z^\pm < 0$). Then*

$$797 \quad \frac{dn}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{d\Phi_{\text{after}}}{\Phi_0} - \frac{d\Phi_{\text{before}}}{\Phi_0}, \quad (30)$$

798 where $d\Phi_{\text{before}}$ is the field flux through the current tube supported on dS immediately before crossing
 799 the plane $dS \in \text{supp } \mathbb{P}(\cdot)$, and $d\Phi_{\text{after}}$ is the flux after crossing.

810 **Remark.** This statement implies that when the field crosses the plane \mathbb{P} containing a charge
 811 (proportional to dn/n), the field flux must *increase* by $\Phi_0 \cdot dn/n$.
 812

813 *Proof.* For clarity, consider the case $E_z^+ > 0, E_z^- > 0$ when $\mu(\mathbf{x}_q) = 1$ and motion processes only
 814 along the forward-oriented lines, corresponding to the mapping T_F .
 815

816 By the probability product theorem, the strong law of large numbers, Corollary A.2, and the definition
 817 of flux:
 818

$$819 \quad \frac{dn}{n} \rightarrow \mu(\mathbf{x}) \mathbb{P}(\mathbf{x}) dS = 1 \cdot \mathbb{P}(\mathbf{x}) dS = \frac{E_z^+ - E_z^-}{\Phi_0} dS = \frac{d\Phi_{\text{after}}}{\Phi_0} - \frac{d\Phi_{\text{before}}}{\Phi_0}. \quad (31)$$

□

823 Lemmas A.4 and A.5 address the behavior near the distribution \mathbb{P} . Similar statements are valid for
 824 the behavior near \mathbb{Q} . When moving along field lines, we eventually reach the plane $z = L$. At this
 825 point two different scenarios may occur:
 826

- 827 1. $E_z^+(L)$ and $E_z^-(L)$ have opposite signs. Then the field line motion terminates in this case.
 828
- 829 2. $E_z^+(L)$ and $E_z^-(L)$ have the same sign. Then a portion dn' of lines must terminate, while
 830 others continue.

831 This portion dn' can be found from the line termination property in \mathbb{Q} .
 832

833 **Lemma A.6** (Line Termination). *If $E_z^+(L)$ and $E_z^-(L)$ have the same sign upon crossing $z = L$,
 834 the number of lines terminating on $z = L$ satisfies:*

$$835 \quad \frac{dn'}{n} \rightarrow -\frac{d\Phi_{\text{after}}}{\Phi_0} + \frac{d\Phi_{\text{before}}}{\Phi_0}, \quad (32)$$

838 **Remark.** When the field crosses the plane \mathbb{Q} containing a charge (proportional to dn'/n), the field
 839 flux must *decrease* by $\Phi_0 \cdot dn'/n$.
 840

841 *Proof.* . Consider the current tube before it intersects the plane $z = L$. Let us denote the number of
 842 lines inside dn_{before} . As a result of the intersection $z = L$, some of the lines dn' stop moving, while
 843 some of the lines dn_{after} continue moving. In view of the first Lemma A.4 on flow, as well as the
 844 conservation of flow inside the current tube (Property 2 in §3.2):
 845

$$846 \quad \frac{dn_{\text{before}}}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} d\Phi_{\text{before}}. \quad (33)$$

849 Then, by virtue of the law of large numbers and the fact that $dn_{\text{before}} = dn' + dn_{\text{after}}$, we have:
 850

$$852 \quad \frac{dn'}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} (\text{probability of termination}) \cdot \frac{dn_{\text{before}}}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \nu(\mathbf{x}^-) \cdot d\Phi_{\text{before}} \\ 853 \quad \frac{E_z^- - E_z^+}{E_z^-} \cdot E_z^- dS' = (E_z^- - E_z^+) dS' = -d\Phi_{\text{after}} + d\Phi_{\text{before}} \quad (34)$$

□

859 We now proceed to prove the main theorem.
 860

861 **Theorem A.7** (Interaction Field Matching). *Let $\mathbb{P}(\mathbf{x}_q)$ and $\mathbb{Q}(\mathbf{x}_{\bar{q}})$ be two data distributions that
 862 have compact support. Let \mathbf{x}_q be distributed over $\mathbb{P}(\mathbf{x}_q)$. Then $\mathbf{x}_{\bar{q}} = T(\mathbf{x}_q)$ is distributed over $\mathbb{Q}(\mathbf{x}_{\bar{q}})$
 863 almost surely:*

$$864 \quad \text{If } \mathbf{x}_q \sim \mathbb{P}(\mathbf{x}_q) \Rightarrow T(\mathbf{x}_q) = \mathbf{x}_{\bar{q}} \sim \mathbb{Q}(\mathbf{x}_{\bar{q}}). \quad (35)$$

864 *Proof.* Let $\{\mathbf{x}_{q_i}\}_{i=1}^n$ be points distributed according to \mathbb{P} . Moving along the field lines via mapping
 865 T , we obtain points $\mathbf{x}_{\bar{q}_i} = T(\mathbf{x}_{q_i})$ in distribution \mathbb{Q} .
 866

867 Consider a D -dimensional area element $dS' \subset \text{supp } \mathbb{Q}$. Let dn' be the number of points $\mathbf{x}_{\bar{q}_i}$ in this
 868 area. Define the sample:
 869

$$\hat{\mathbb{Q}}_n dS' = \frac{dn'}{n}. \quad (36)$$

870 The aim is to prove

$$\hat{\mathbb{Q}}_n \rightarrow \mathbb{Q}. \quad (37)$$

871 The points dn' arrive via forward or backward directions:
 872

$$dn' = dn'_F + dn'_B. \quad (38)$$

873 Consider dn'_F and its associated flux tube. Traverse this tube inversely along the field lines until stopping at \mathbb{P} . During this motion, multiple
 874 crossings of $z = 0$ and/or $z = L$ may occur. Denote the intersection
 875 points:
 876

$$\mathbf{x}_{\bar{q}} = \mathbf{x}_0 \rightarrow \mathbf{x}_1 \rightarrow \dots \rightarrow \mathbf{x}_{N-1} \rightarrow \mathbf{x}_N = \mathbf{x}_q. \quad (39)$$

877 Their corresponding area elements are
 878

$$dS' = dS_0 \rightarrow dS_1 \rightarrow \dots \rightarrow dS_{N-1} \rightarrow dS_N = dS. \quad (40)$$

879 Point counts in these areas read
 880

$$dn' = dn_0 \rightarrow dn_1 \rightarrow \dots \rightarrow dn_{N-1} \rightarrow dn_N = dn, \quad (41)$$

881 where dn_k ($k = 0, \dots, N + 1$) is number of points from sample $\{\mathbf{x}_{q_i}\}_{i=1}^n$ or from map $\{T(\mathbf{x}_{q_i})\}_{i=1}^n$
 882 inside the volume dS_k near point \mathbf{x}_k that corresponds to considered motion inside current tube.
 883

884 The dn_k are not arbitrary but related by flux conservation. Only the charged planes ($z = 0$ or $z = L$)
 885 can alter the count:
 886

- At $z_i = 0$: Line count increases by dn_i
- At $z_i = L$: Line count decreases by dn_i

887 Mathematically:
 888

$$\sum_{i=0}^N (-1)^{f_i} dn_i = 0, \quad (42)$$

889 where
 890

$$f_i = \begin{cases} 0 & \text{if } z_i = 0, \\ 1 & \text{if } z_i = L. \end{cases} \quad (43)$$

891 Due to the first Lemma on flow A.4:
 892

$$\frac{dn_N}{n} \equiv \frac{dn}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{d\Phi_N}{\Phi_0} \equiv \frac{d\Phi}{\Phi_0}, \quad (44)$$

893 Due to the second Lemma A.5 on the flow, and because of the line termination Lemma A.3:
 894

$$(-1)^{f_i} \cdot \frac{dn_i}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{d\Phi_{\text{after},i}}{\Phi_0} - \frac{d\Phi_{\text{before},i}}{\Phi_0}. \quad (45)$$

913 According to the law of conservation of flux along the tube (Lemma A.3):
 914

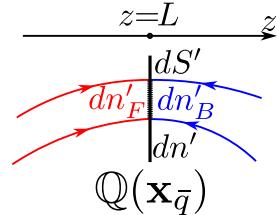


Figure 12: Points corresponding to forward and backward lines.

918
919
920

$$d\Phi_{\text{after},i} = d\Phi_{\text{before},i-1}. \quad (46)$$

921 Whence we obtain a chain of equalities:

$$\begin{aligned} 923 \quad 0 &= \sum_{k=0}^{N+1} (-1)^{f_k} dn_k = -\frac{dn'_F}{n} + (-1)^{f_1} \frac{dn_1}{n} + \dots + (-1)^{f_N} \frac{dn_N}{n} + \frac{dn}{n} \Rightarrow \\ 924 \quad dn'_F &= (-1)^{f_1} \frac{dn_1}{n} + \dots + (-1)^{f_N} \frac{dn_N}{n} + \frac{dn}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \\ 925 \quad &\xrightarrow[n \rightarrow \infty]{\text{a.s.}} -d\Phi_{\text{after},1} - d\Phi_{\text{before},1} + \dots + d\Phi_{\text{after},N} - d\Phi_{\text{before},N} + d\Phi_{N+1} = \\ 926 \quad &= d\Phi_{\text{after},1} + 0 + \dots + 0 = d\Phi'_F. \\ 927 \quad & \\ 928 \quad & \\ 929 \quad & \\ 930 \quad & \end{aligned} \quad (47)$$

931 Consequently,

$$\frac{dn'_F}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{d\Phi'_F}{\Phi_0}. \quad (48)$$

936 Similarly, it can be proven that

$$\frac{dn'_B}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{d\Phi'_B}{\Phi_0}. \quad (49)$$

939 Then, by virtue of the generalized Gauss's theorem (Lemma A.1), we finally have

$$\hat{Q}_n dS' = \frac{dn'}{n} = \frac{dn'_F}{n} + \frac{dn'_B}{n} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} \frac{d\Phi'_F}{\Phi_0} + \frac{d\Phi'_B}{\Phi_0} = \mathbb{Q} dS. \quad (50)$$

943 This completes the proof.

944 A.4 INTERACTION FIELD REALIZATION

945 Here we formulate an algorithm for computing our constructed field which is inspired by strong
946 interaction in physics at an arbitrary point $\tilde{\mathbf{x}} \in \mathbb{R}^{D+1}$ with the quark q and the antiquark \bar{q} being at
947 $\tilde{\mathbf{x}}_q$ and $\tilde{\mathbf{x}}_{\bar{q}}$ (see Fig. 6).948 **Symmetric case.** Let a quark q be located at the origin: $\tilde{\mathbf{x}}_q = (\mathbf{0}, 0) \in \mathbb{R}^{D+1}$, and the antiquark
949 \bar{q} at the point $\tilde{\mathbf{x}}_{\bar{q}} = (\mathbf{0}, L) \in \mathbb{R}^{D+1}$. The arbitrary point of space can be written as $\tilde{\mathbf{x}} = (\mathbf{x}_{\perp}, z) =$
950 $\tilde{\mathbf{x}}_{\perp} + z\mathbf{e}_z$, where $\tilde{\mathbf{x}}_{\perp} \in \mathbb{R}^{D+1}$ is the component of the vector $\tilde{\mathbf{x}}$ orthogonal to the z -axis. We introduce
951 the following string hyperparameters (Fig. 6a):

- 952 • σ_0 is the effective width of the string in the cross section.
- 953 • d is the size of the region of the string in which the field lines will curve toward the quark (antiquark).
954 Thus, in the interval $z \in [d, L-d]$ the field lines are straight, and in the regions $z \in [0, d]$ and
955 $z \in [L-d, L]$ the lines will be curved. Value $k = \pi/2d$ is also introduced.

956 We define the dependence of the effective string width $\sigma(z)$ on the coordinate z as follows:

$$\sigma(z) = \begin{cases} \sigma_0 \sin(kz), & z \in [0, d], \\ \sigma_0, & z \in [d, L-d], \\ \sigma_0 \sin(k(L-z)), & z \in [L-d, L], \\ 0, & \text{otherwise.} \end{cases} \quad (51)$$

957 The field direction $\mathbf{n}(\tilde{\mathbf{x}})$ at the point $\tilde{\mathbf{x}}$ is defined as:

$$\mathbf{n}(\tilde{\mathbf{x}}) = \cos \alpha(x_{\perp}, z) \cdot \mathbf{e}_z + \sin \alpha(x_{\perp}, z) \cdot \mathbf{e}_{\perp} \in \mathbb{R}^{D+1}, \quad (52)$$

958 where $\mathbf{e}_z, \mathbf{e}_{\perp}$ are the unit vectors along the z -axis and along the vector $\tilde{\mathbf{x}}_{\perp}$, respectively, i.e., $\mathbf{e}_{\perp} =$
959 $\tilde{\mathbf{x}}_{\perp}/\|\tilde{\mathbf{x}}_{\perp}\|$. $\alpha = \alpha(x_{\perp}, z)$ is the angle between the field direction at a given point and the z -axis.
960 This angle is determined from the following considerations. Let $\tilde{\mathbf{x}}'(z')$ be the field line parallel

972 **Algorithm 3** Interaction field calculation
 973 **Input:** Positions of quark and antiquark: $\tilde{\mathbf{x}}_q, \tilde{\mathbf{x}}_{\bar{q}} \in \mathbb{R}^{D+1}$, with $z_q = 0, z_{\bar{q}} = L$
 974 Arbitrary point $\tilde{\mathbf{x}} \in \mathbb{R}^{D+1}$
 975 String hyperparameters: $\sigma_0, d, k = \pi/2d$
 976 **Output:** The interaction field $\mathbf{E}_{q\bar{q}}(\tilde{\mathbf{x}})$
 977 **Algorithm:**
 978 Calculate the vector connecting the quarks: $\tilde{\mathbf{r}} = \tilde{\mathbf{x}}_{\bar{q}} - \tilde{\mathbf{x}}_q \in \mathbb{R}^{D+1}$
 979 Calculate the unit direction vector corresponding to it: $\mathbf{e}'_z = \frac{\tilde{\mathbf{r}}}{\|\tilde{\mathbf{r}}\|} \in \mathbb{R}^{D+1}$
 980 Calculate the vector of shift of the point $\tilde{\mathbf{x}}$ from the axis of the string:
 981
 982
$$\tilde{\rho} = \tilde{\mathbf{x}} - \tilde{\mathbf{x}}_q + (\tilde{\mathbf{x}}_q - \tilde{\mathbf{x}}_{\bar{q}}) \frac{z}{L} \in \mathbb{R}^{D+1}$$

 983
 984 , where z is corresponding coordinate of point $\tilde{\mathbf{x}}$
 985 Calculate $x_{\perp} = \|\tilde{\rho}\|, \mathbf{e}_{\perp} = \frac{\tilde{\rho}}{\|\tilde{\rho}\|}$
 986 Calculate the string width $\sigma(z)$ according to (51)
 987 Calculate the angle $\alpha(x_{\perp}, z)$ according to (53)
 988 Calculate the value of field $E(x_{\perp}, z)$ according to (54)
 989 Calculate the direction $\mathbf{n}(\tilde{\mathbf{x}}) = \cos \alpha(x_{\perp}, z) \cdot \mathbf{e}'_z + \sin \alpha(x_{\perp}, z) \cdot \mathbf{e}_{\perp} \in \mathbb{R}^{D+1}$
 990 Return: $\mathbf{E}_{q\bar{q}}(\tilde{\mathbf{x}}) = E(x_{\perp}, z) \mathbf{n}(x_{\perp}, z)$

992
 993 to the level $\sigma(z)$ (i.e. $\forall z' : x'_{\perp}(z')/\sigma(z') = \text{const}$) which passes through the point (x_{\perp}, z) , i.e.,
 994 $\tilde{\mathbf{x}}'(z')|_{z'=z} = \tilde{\mathbf{x}} = (x_{\perp}, z)$. Then $\alpha = \alpha(x_{\perp}, z)$ is determined by $\tan \alpha = \frac{dx'_{\perp}}{dz'} \Big|_{z'=z}$:

$$\alpha = \alpha(x_{\perp}, z) = \begin{cases} \arctan(kx_{\perp} \cot(kz)), & z \in [0, d], \\ 0, & z \in [d, L-d], \\ \arctan(kx_{\perp} \cot(k(L-z))), & z \in [L-d, L]. \end{cases} \quad (53)$$

1000 We define the field strength value as the product of the Gaussian distribution in the radial direction
 1001 and a normalization factor that keeps the interaction field flux invariant along the tube:
 1002

$$E(x_{\perp}, z) = \exp \left(-\frac{x_{\perp}^2}{2\sigma(z)^2} \right) \cdot \frac{1}{\sigma(z)^D \cos \alpha(x_{\perp}, z)}. \quad (54)$$

1006 **Shifted case.** In the case where the quarks are in the shifted positions $\tilde{\mathbf{x}}_q$ and $\tilde{\mathbf{x}}_{\bar{q}}$, we use a field shift
 1007 parallel to the planes $z = 0$ and $z = L$, as shown in Fig. 6b. We use the shift and not the rotation
 1008 of the string with the aim of not generating backward-oriented lines and lines traversing the region
 1009 $z > L$. The detailed algorithm for calculating the field is formulated in Algorithm 3

1011 A.5 PROOF OF PROPERTIES OF INTERACTION FIELD REALIZATION

1012
 1013 **Theorem A.8** (Properties of our interaction field realization). *Our realization of the interaction field*
 1014 *$\mathbf{E}(\tilde{\mathbf{x}})$ satisfies the fundamental Properties 1-2 in §3.2, with following additional characteristics:*

- **Z-Axis caging:** *Field lines never extend beyond $z > L$.*
- **Unidirectional Flow:** *No backward-oriented field lines exist.*
- **Centrosymmetrical arrangement:** $\mathbf{E}(\tilde{\mathbf{x}}) = \mathbf{E}(r_{\perp}, z)$.
- **Radial Decay:** *Monotonic decrease in field strength away from axis:*

$$\frac{\partial \|\mathbf{E}\|}{\partial r_{\perp}} \leq 0 \quad \text{with} \quad \lim_{r_{\perp} \rightarrow \infty} \mathbf{E}(\tilde{\mathbf{x}}) = \mathbf{0}.$$

- **Axial Alignment:** *Field becomes parallel to the string axis in middle region:*

$$\mathbf{E}(r_{\perp}, z) \parallel \mathbf{e}'_z \quad \text{for} \quad z \in [d, L-d].$$

1026 *Proof.* The interaction field starts at a quark and ends at an antiquark (Property 1§3.2) due to the fact
 1027 that the field direction $\mathbf{n}(\tilde{\mathbf{x}}) = \cos \alpha(x_\perp, z) \cdot \mathbf{e}'_z + \sin \alpha(x_\perp, z) \cdot \mathbf{e}_\perp$ is a tangent to the curve $x'_\perp(z')$,
 1028 which by construction begins at $\tilde{\mathbf{x}}'_q$ and ends at $\tilde{\mathbf{x}}_{\bar{q}}$.

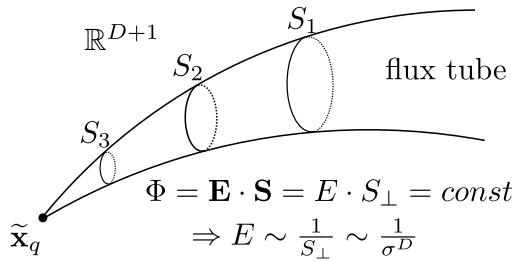
1029 Consider an infinitesimal current tube connecting a quark and an antiquark. The surface bounding this
 1030 tube is parallel to the field line $x'_\perp(z')$. Along the field line by construction $x_\perp/\sigma(z) = \kappa = \text{const}$. In
 1031 $(D+1)$ -dimensional space, the area element dS orthogonal to the z -axis is $dS \sim x_\perp^{D-1} dx_\perp$. Therefore,
 1032 due to the definition of the flux and the explicit expression for $E(x_\perp, z)$ (54) we have
 1033

$$\begin{aligned} 1034 \quad d\Phi &= \mathbf{E} \cdot d\mathbf{S} = EdS \cos \alpha \sim \exp\left(-\frac{r_\perp^2}{2\sigma(z)^2}\right) \cdot \frac{1}{\sigma(z)^D \cos \alpha} \cdot x_\perp^{D-1} dx_\perp \cdot \cos \alpha = \\ 1035 &= \exp\left(-\frac{\kappa^2}{2}\right) \cdot \kappa^{D-1} d\kappa = \text{const}. \end{aligned} \quad (55)$$

1039 Therefore, Property 2 §3.2 is satisfied.

1041 The Z-Axis caging property is satisfied because $\sigma(z > L) = 0$. The Unidirectional Flow property
 1042 is satisfied due to $\sigma(z < L) = 0$. The Cylindrical Symmetry property is satisfied because $\mathbf{E}(\tilde{\mathbf{x}}) =$
 1043 $\mathbf{E}(x_\perp, z)$. Radial decay property is satisfied because of the explicit formula (54) for $E(x_\perp, z)$.
 1044 Finally, the Axial alignment property is satisfied because $\alpha(z \in [d, L-d]) = 0$. \square

1045 **Remark.** A crucial element in the flux conservation proof is the factor $1/\sigma(z)^D$ in the definition of the
 1046 IFM field (see (54)). The intuition behind this factor can be explained as follows: any flux tube must
 1047 narrow to a point as it approaches a charge. Consequently, the cross-section (which is proportional to
 1048 $\sigma(z)^D$) must also decrease. Flux conservation can only be maintained by a proportional increase in
 1049 the field strength, see Figure 13 below.



1061 Figure 13: An illustration to the flux conservation property. To maintain the field flux conservation
 1062 within a tube as it narrows, a proportional increase in field strength is required.

1064 In simpler terms, the closer one is to a charge, the stronger the field must be.

1066 B EXPERIMENTAL DETAILS

1069 We aggregate the hyper-parameters of our Algorithm 1 for different experiments in the Table 5.
 1070 We base our code for the experiments on EFM's code <https://github.com/justkolesov/FieldMatching>.

Experiment	D	Batch Size	L	σ_0	d	LR	π plan
Gaussian Swiss-roll §4.1	2	1024	[6, 40]	1	$[0.1, 0.5]L$	2e-4	[Ind, MB]
CIFAR-10 Generation §4.2	3072	128	20	1	$0.5L$	2e-4	Ind
CelebA 64x64 Generation §4.2)	12288	128	20	1	$[0.1, 0.25, 0.4, 0.5]L$	2e-4	Ind
MNIST digits 2→3 Translation §4.3	3072	128	20	1	$0.1L$	2e-4	[Ind, MB]
Winter→Summer Translation §4.3	12288	128	20	1	$0.1L$	2e-4	[Ind, MB]
CelebA 128x128 Generation App. D	49152	128	20	1	$0.25L$	2e-4	Ind
Conditional CIFAR-10 generation App. E	3072	128	20	1	$0.25L$	2e-4	Ind

1079 Table 5: Hyper-parameters of Alg. 1 for the experiments, where D is the dimensionality of task, L is
 the distance between plates, σ_0 is the effective width, d is the characteristic distance (see Fig.6a).

1080 In the case of the Image experiments (see §4.3 and §4.2), we follow (Kolesov et al., 2025, EFM), (Xu
 1081 et al., 2022; 2023, PFGM/PFGM++), (Ho et al., 2020, DDPM) and (Lipman et al., 2023, FM) and
 1082 use Exponential Moving Averaging (EMA) technique with the ema rate decay equals 0.99 to provide
 1083 smooth solution. Also, we use linear scheduler, that grows from 0 to $2e - 4$ during the first 5000
 1084 iterations and decreases monotonically. As for the optimizer, we use Adam optimizer Kingma & Ba
 1085 (2015) with the learning rate $2e - 4$ and weight decay equals $1e - 4$.

1086 We compare our method with PFGM/PFGM++ Xu et al. (2022; 2023), whose the source code are
 1087 taken from <https://github.com/Newbeeer/pfgmpp> for running **PFGM++** and https://github.com/Newbeeer/Poisson_flow/ for **PFGM** in our experiments. We follow the
 1088 proposed values of hyper parameters are appropriate for us: $\gamma = 5, \tau = 0.3, \epsilon = 1e - 3$. The source
 1089 code for **DDPM** is taken from https://github.com/yang-song/score_sde_pytorch
 1090 with hyper-parameters $\sigma_{min} = 0.01, \sigma_{max} = 50, \beta_{min} = 0.1$ and $\beta_{max} = 20$. The source
 1091 code for **FM** is taken from https://github.com/facebookresearch/flow_matching
 1092 with linear interpolant. The source code for StyleGAN is taken from <https://github.com/NVlabs/stylegan2-ada-pytorch>.
 1093

C ABLATION STUDY

1094 Our IFM realization is defined by the following hyperparameters: the distance L between plates, the
 1095 string width σ_0 , and the distance d over which field lines curve toward the charges. In this Appendix,
 1096 we address the practical selection of these hyperparameters and present an ablation study on how
 1097 they affect our model’s performance. We choose parameters based on the following ideas:

1098 1. Since we learn the normalized field (see (11)), the factor $1/\sigma(z)^D$ cancels out. Indeed, let
 1099 $\tilde{\mathbf{x}} \in \mathbb{R}^{D+1}$ be a point where we estimate the normalized vector field using B sampled pairs of
 1100 quarks and anti-quarks. In accordance with the superposition principle (see (7)), the resulting field
 1101 is obtained as the average of B independent fields $E(x_{\perp}^{(i)}, z)\mathbf{n}(x_{\perp}^{(i)}, z)$ (see (54)) from each pair:
 1102

$$\frac{\mathbf{E}(\tilde{\mathbf{x}})}{\|\mathbf{E}(\tilde{\mathbf{x}})\|} = \sum_{i=1}^B \frac{\exp(-\frac{x_{\perp}^{(i)}}{2\sigma(z)^2})}{\cancel{\sigma(z)^D}} \mathbf{n}(x_{\perp}^{(i)}, z) \left/ \frac{1}{\cancel{\sigma(z)^D}} \right. \left\| \sum_{i=1}^B \exp(-\frac{x_{\perp}^{(i)}}{2\sigma(z)^2}) \mathbf{n}(x_{\perp}^{(i)}, z) \right\|.$$

1113 Therefore, term $1/\sigma(z)^D$ cancels out completely. The practical choice of the hyperparameter σ_0
 1114 is determined solely by numerical considerations and is usually set to $\sigma_0 = 1$.

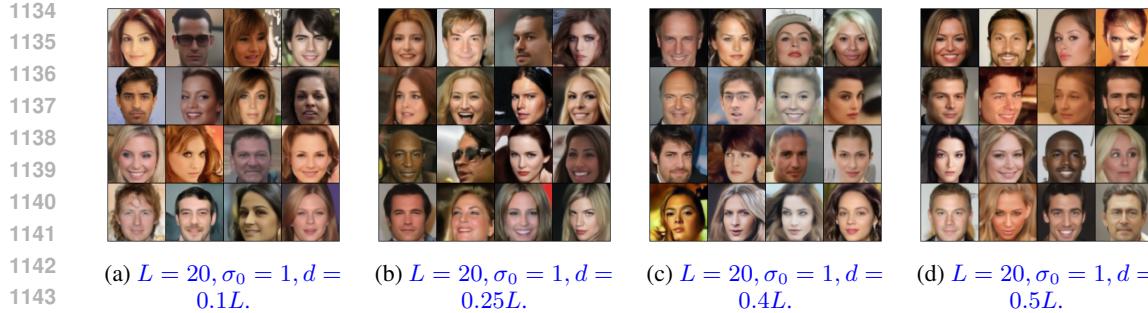
1115 2. The distance d should not be chosen too short—this complicates data translation via the ODE due
 1116 to the high curvature of the field lines in the region $z \in [0, d] \cup [L - d, L]$. In practice, we usually
 1117 use $d \in [0.1L, 0.5L]$.

1118 3. Finally, the distance L does not significantly impact translation quality in our method (see Fig.
 1119 7). This is different from EFM, where making L too large significantly worsens the results (see
 1120 §2.3). Our IFM realization is specifically designed to reduce this dependency through straight field
 1121 segments for $z \in [d, L - d]$, where ODE integration follows straight lines. In practice, analogously
 1122 to EFM, we set L to be on the order of the data standard deviation: $L \sim \sqrt{D_{\mathbb{P}}}$ or $\sqrt{D_{\mathbb{Q}}}$.

1124 Figure 14 presents a series of experiments with different values of the parameter d . It can be seen
 1125 that the generation quality does not significantly depend on this parameter.

D ADDITIONAL CELEBA GENERATION EXPERIMENT (128x128)

1130 We also provide a more challenging image generation task on the 128x128 CelebA dataset. We
 1131 follow the experimental design from the §4.2, placing the CelebA images and the noise from standard
 1132 multivariate distribution $\mathcal{N}(0, I_{128 \times 128})$ on the left hyperplane ($z = 0$) and the right hyperplane
 1133 ($z = 20$), respectively. We present the qualitative results of our IFM in Fig. 15, demonstrating its
 1134 scalability in high-dimensional spaces.



1142
1143
1144
1145 Figure 14: **Image Generation on CelebA 64x64:** Investigation of generation quality dependence on
1146 the model hyperparameter d in our IFM method.

1159
1160 Figure 15: **Image Generation:** Samples obtained by IFM (ours) method with the independent
1161 transport plan on CelebA dataset with resolution 128x128.

E CONDITIONAL IMAGE GENERATION ON CIFAR-10

1165
1166 Our IFM can be easily adapted to conditional generation tasks. For generating images of a specific
1167 class c , we learn a conditional vector field $\mathbf{E}(\tilde{\mathbf{x}}|c)$. Specifically, for a data sample $\tilde{\mathbf{x}}_q = (\mathbf{x}_q, 0)$ from
1168 c -th class, we sample noised sample $\tilde{\mathbf{x}}$ via (10) and approximate $\mathbf{E}(\tilde{\mathbf{x}}|c)$ by a neural network $f_\theta(\tilde{\mathbf{x}}, c)$
1169 with the following optimization function over parameters θ :

$$\mathbb{E}_c \mathbb{E}_{\tilde{\mathbf{x}}|c} \|f_\theta(\tilde{\mathbf{x}}, c) - \frac{\mathbf{E}(\tilde{\mathbf{x}}|c)}{\|\mathbf{E}(\tilde{\mathbf{x}}|c)\|_2}\|_2^2 \rightarrow \min_{\theta}$$

1173
1174 We consider conditional generating task on the 32x32 CIFAR-10 dataset and demonstrate generated
1175 images over each class c in Fig. 16

F COMPARISON WITH FLOW MATCHING

1179 Our IFM framework offers an important advantage compared to Flow Matching (Lipman et al., 2023;
1180 Liu et al., 2023; Tong et al., 2023): it enables **multi-sample estimation of the field**.

1181 In particular, **our IFM method** approximates the normalized vector field with a neural network
1182 $f_\theta(\tilde{\mathbf{x}})$, trained with the loss

$$\mathcal{L}_{\text{IFM}} = \mathbb{E}_{\tilde{\mathbf{x}}} \left\| f_\theta(\tilde{\mathbf{x}}) - \frac{\mathbf{E}(\tilde{\mathbf{x}})}{\|\mathbf{E}(\tilde{\mathbf{x}})\|_2} \right\|_2^2,$$

1186
1187 which requires an estimate of the ground-truth vector field $\mathbf{E}(\tilde{\mathbf{x}})$. The distribution over points $\tilde{\mathbf{x}}$ at
1188 which the field is learned serves as a hyperparameter. Since the field $\mathbf{E}(\tilde{\mathbf{x}})$ is represented using the
superposition principle (7), we can estimate it by averaging over fields induced by B batch samples

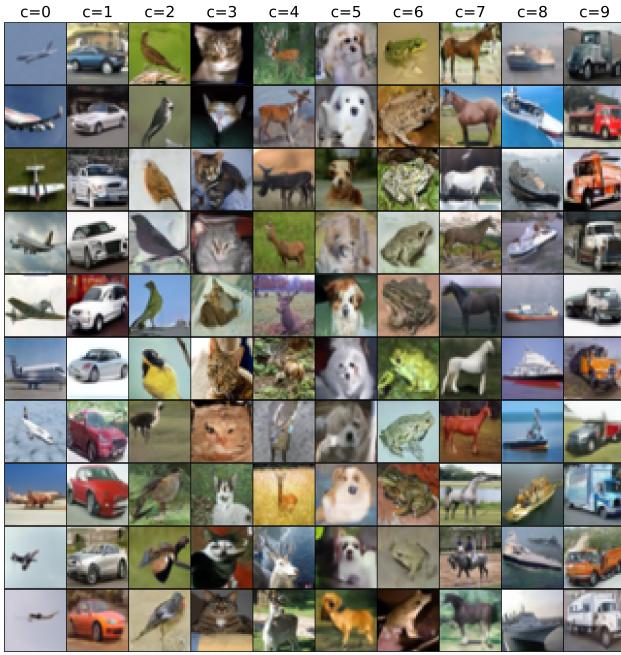


Figure 16: *Conditional Image Generation*: Samples obtained by conditional vector field $\mathbf{E}(\tilde{\mathbf{x}}|c)$ of IFM(ours) method on CIFAR-10 dataset for each class c .

(quark and anti-quark pairs) $\tilde{\mathbf{x}}_q = (\mathbf{x}_q, 0)$ and $\tilde{\mathbf{x}}_{\bar{q}} = (\mathbf{x}_{\bar{q}}, L)$:

$$\mathbf{E}(\tilde{\mathbf{x}}) \approx \frac{1}{B} \sum_{i=1}^B \mathbf{E}_{\mathbf{x}_{q_i} \mathbf{x}_{\bar{q}_i}}(\tilde{\mathbf{x}}),$$

where each $\mathbf{E}_{\mathbf{x}_{q_i} \mathbf{x}_{\bar{q}_i}}(\tilde{\mathbf{x}})$ admits a closed form (see Appendix A.4). *Thus, we can use any available number of sample pairs $(\tilde{\mathbf{x}}_q, \tilde{\mathbf{x}}_{\bar{q}}) \sim \pi$ —up to the entire dataset—to estimate the ground-truth field and reduce the variance of this Monte Carlo estimator.*

In contrast, the **Flow Matching (FM)** loss is

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t \in [0, 1], (\mathbf{x}_0, \mathbf{x}_1) \sim \pi} \|\mathbf{v}_\theta(\mathbf{x}_t, t) - (\mathbf{x}_1 - \mathbf{x}_0)\|_2^2,$$

where $\mathbf{x}_t = t\mathbf{x}_1 + (1 - t)\mathbf{x}_0$. The optimal vector field is $\mathbf{v}^*(\mathbf{x}_t, t) = \mathbb{E}[\mathbf{x}_1 - \mathbf{x}_0 \mid \mathbf{x}_t]$, but this conditional expectation is intractable to estimate via Monte Carlo because one cannot easily sample $\mathbf{x}_1, \mathbf{x}_0$ conditioned on \mathbf{x}_t . Thus, during training, one regresses $\mathbf{v}_\theta(\mathbf{x}_t, t)$ to its single-sample estimate

$$\mathbf{v}_\theta(\mathbf{x}_t, t) \approx \mathbf{x}_1 - \mathbf{x}_0.$$

Therefore, FM estimates the ground-truth field at each point \mathbf{x}_t using only one pair $(\mathbf{x}_0, \mathbf{x}_1) \sim \pi$, with no direct way to reduce the variance of this Monte Carlo estimate.

We sum up differences between FM and our IFM in Table 6 .

	IFM (ours)	FM
Estimation of a field	Multi-sample: $\mathbf{E}(\tilde{\mathbf{x}})$ over B pairs $(\mathbf{x}_0, \mathbf{x}_1) \sim \pi$	One-sample: $\mathbf{v}(\mathbf{x}_t)$ over one pair $(\mathbf{x}_0, \mathbf{x}_1) \sim \pi$
Training volume	Any: $\tilde{\mathbf{x}} = (\mathbf{x}, z) : z \in [0, L]$	Restricted: $\mathbf{x}_t = t\mathbf{x}_1 + (1 - t)\mathbf{x}_0$

Table 6: The differences between our IFM and Flow Matching (FM).