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Abstract

While powerful, classical Bayesian Optimization (BO) and active learning methods1

struggle to incorporate complex prior knowledge, provide limited interpretability in2

explaining why a candidate looks promising, and can be computationally demand-3

ing. Large language models (LLMs) offer complementary strengths in reasoning4

ability and integration of domain knowledge, but it remains unclear when and5

how they can reliably improve BO campaigns. We reconcile previous reports by6

providing a systematic comparison of various LLM-based approaches (off-the-shelf7

reasoning LLMs relying on in-context learning, fine-tuned on synthetic BO, and8

light-weight agentic workflows using tools) against classical statistical BO across9

molecular optimization and protein design tasks. We find that off-the-shelf reason-10

ing LLMs fail in SMILES-based molecular optimization due to their poor handling11

of SMILES representations and large in-context inputs, but agentic workflows that12

leverage cheminformatics tools and statistical model-based filtering overcome these13

limitations. In contrast, in the design of four-residue protein motifs, pure reasoning14

LLMs excel by generating domain knowledge-driven hypotheses, while agentic15

workflows underperform, relying too heavily on tools. These results highlight the16

complementarity of reasoning models and agentic architectures, offering guidance17

on when each is preferable. Finally, we show that non-reasoning LLMs trained18

via supervised fine-tuning (SFT) can efficiently mimic statistical strategies in our19

setting, sometimes outperforming reasoning models at a fraction of the computa-20

tional cost. Together, our findings clarify the respective roles and failure modes of21

reasoning, agentic, and statistical approaches in BO, and propose a path toward22

hybrid methods that combine the strengths of LLM-hypothesis generation and23

statistical rigor.24

1 Introduction25

Chemical space diversity presents a challenge in scientific discovery, specifically in fields like drug26

design, protein engineering, and others where the number of potential candidates is prohibitively27

large to test thoroughly. Bayesian optimization (BO) is a paradigm that addresses the challenge of28

efficiently navigating large search spaces in an intelligent manner [Snoek et al., 2012]. At its core,29

BO is a probabilistic machine learning approach where a model iteratively suggests experiments to30

perform for costly evaluations (e.g., human expert, physical experiment, computational model, etc.).31

The iterative, data-driven strategy is meant to optimally explore the search space, while exploiting32

the best possible candidates with minimal number of experiments, thereby accelerating the scientific33

discovery process [Tabor et al., 2018]. The framework has been successfully used in drug discovery34
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[Korovina et al., 2020, Pyzer-Knapp, 2018], chemical reaction optimization [Shields et al., 2021],35

catalyst development and more [Tabor et al., 2018, Hsieh et al., 2018].36

At the core of the Bayesian optimization framework is the acquisition function (AF). It is the37

formulation that decides which candidate (or set of) to select at each iteration. Statistical AFs are38

often designed to manage the fundamental trade-off between exploitation and exploration [Kaelbling39

et al., 1996, Shahriari et al., 2015]. Exploration will increase the knowledge of the model by focusing40

on candidates where the model is uncertain, aiming to reduce global error of the model, potentially41

uncovering novel regions of the search space with better performance. Exploitation, on the other hand,42

prioritizes already known regions where the model currently predicts the best outcome, effectively43

optimizing known regions of high performance. Common methods such as Upper Confidence Bound44

(UCB) [Lai and Robbins, 1985] and Thompson Sampling (TS) [Thompson, 1933, Thompson et al.,45

2022] offer frameworks for balancing these competing objectives.46

The performance of these methods is contingent on the quality of the model’s uncertainty estimates47

and only captures the knowledge from the model predictions, but does not include chemical knowledge48

available in the large body of literature work. The inherent opacity of the surrogate models typically49

employed in Bayesian optimization hinders its broader utility, as it precludes researchers from50

elucidating the fundamental structure-property relationships governing the system. The expensive51

calculations in common surrogate models such as the Gaussian Process limit the ability of using52

BO for large search spaces and long optimization campaigns. Collectively, these constraints on53

interpretability, computational scalability, and knowledge integration limit the practical utility of54

Bayesian optimization.55

Large language models (LLMs) on top of being disruptive in virtually every other field, also bring56

potential benefits to scientific discovery. The vast domain knowledge and reasoning capabilities of57

LLMs promise great potential in enhancing BO. Studies have used LLMs for the entire BO pipeline58

[Yang et al., 2023], replacing representation, uncertainty quantification and acquisition [Wang et al.,59

2025], or dynamically sampling new proposal distributions as the campaign evolves [Agarwal et al.,60

2025]. Yet there is a lack of clear understanding as to when and how LLMs are better than classical61

BO methods.62

In this work, we systematically compare LLM-based approaches (off-the-shelf, fine-tuned or agentic)63

against BO methods. At the core of the investigation, is to understand under what conditions do64

LLMs perform better than BO, and when not. We do this by using two benchmarks. SMILES-based65

molecular optimization and a four-residue protein optimization. The SMILES task is characterized66

by a constrained search-space, where valid SMILES strings form only a small fraction of all possible67

character sequences, and a large evaluation budget. The protein task is characterized by simple68

representations (four-residue amino acid sequence) and a less-constrained search space – all amino69

acid combinations are valid and a small evaluation budget. Our main findings are that off-the-70

shelf models fail in SMILES-based molecular optimization tasks, due to the inability to accurately71

understand molecular structure from SMILES strings and failure to process large in-context inputs.72

Agentic frameworks, that have been equipped with domain specific tools, help to overcome these73

both failure modes by offloading filtering to tools. In the four-residue protein design task, reasoning74

models excel due to effective domain related hypothesis generation. On the other hand, agentic75

workflows under-perform here in comparison to pure reasoning models.76

2 Related Works77

2.1 Bayesian optimization and active learning in molecular sciences78

Bayesian optimization and active learning have been extensively employed in various fields to79

accelerate scientific discovery. In drug discovery, these methods are used to navigate the vast80

chemical space to find novel drug candidates, optimizing for properties such as docking scores,81

potency, and more [McDonald et al., 2025]. For instance, Dang et al. [2025] showed that BO can82

guide the synthesis of ligands with high affinity to specific enzymes. In materials science, these83

techniques have accelerated the discovery of novel liquid electrolytes, identified novel electro-catalyst84

candidates for CO2 reduction and oxygen evolution reduction, and discovered new alloys with85

enhanced mechanical strength [Dave et al., 2022, Jenewein et al., 2024, Tran and Ulissi, 2018,86

Ghorbani et al., 2024]. Furthermore, BO is frequently applied to optimize the conditions of chemical87

reactions, efficiently determining the ideal temperature, pressure, and reactant concentrations to88
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maximize yield and minimize byproducts [Tachibana et al., 2023, Burger et al., 2020]. In the field89

of protein engineering, Bayesian optimization and active learning guide the design of antibodies90

with high target specificity, proteins with high thermostability, and peptide sequences with favorable91

functionality and stability [Khan et al., 2023, Stanton et al., 2022, Manshour et al., 2024].92

2.2 LLM-guided Bayesian optimization and active learning93

With recent advances in LLMs, there is a shift toward the integration of LLMs into the BO/AL loop94

to exploit their vast prior knowledge and reasoning capabilities. One major direction involves framing95

the LLM itself as an optimizer [Yang et al., 2023, Xia et al., 2025]. In molecular discovery [Reinhart96

and Statt, 2024], it has been demonstrated that off-the-shelf LLMs (e.g., Claude 3.5) can serve as an97

an evolutionary optimizer for macromolecular operations, outperforming traditional active learning98

pipelines and genetic algorithms on a polymer sequence discovery task, suggesting that LLMs can99

implicitly balance exploration and exploitation . Similarly, Liu et al. [2024] integrate an LLM into the100

BO process by framing optimization as a language problem by prompting the model to propose and101

evaluate solutions given the history of observation. Leveraging the LLM’s zero/few- shot learning to102

guide search, their approach (LLAMBO) improved hyperparameter tuning efficiency in data-sparse103

settings without any model fine-tuning. Lu et al. [2025] achieve similar results on simple transition104

metal complexes discovery using in-context learning. However, some studies provide a more cautious105

perspective. Kristiadi et al. [2024] reports that general-purpose LLMs offer limited benefit, unless106

they have been pretrained or finetuned with domain-specific data (e.g., molecular data). Additionally,107

this finding is further corroborated by Wang et al. [2025] who found that no off-the-shelf LLM, no108

matter incorporated at what stage of BO, can outperform a simple statistical baseline. These results109

highlight that careful adaptation is needed to leverage LLMs in BO/AL settings. Building on top of110

these previous works, our work systematically investigate advantages and limitations of using LLMs111

for BO in scientific discovery, and proposes strategies to overcome the limitations.112

2.3 Frameworks: Off-the-shelf vs. fine-tuned vs. agentic LLMs113

Scientific research with Large Language Models (LLMs) spans a spectrum from general-purpose114

application to highly specialized automation. At one end, off-the-shelf models like GPT, Gemini,115

Claude, Llama, and Qwen serve as powerful, multipurpose tools for tasks such as summarizing116

literature, generating hypotheses, and writing code, leveraging their vast pretrained knowledge base.117

Researchers develop finetuned models by further training a base LLM on a specific domain-centric118

dataset, for example, routes of chemical synthesis or therapeutics to increase performance in specific119

tasks [Sun et al., 2025, Chaves et al., 2024, Zhang et al., 2025]. The finetuning process hones the120

model’s capabilities, enabling it to generate highly accurate and contextually relevant outputs for121

niche tasks that a general model would struggle with. Sumers et al. [2023] proposed agentic LLM122

frameworks that integrate various LLMs into large systems capable of handling more complicated123

tasks by dividing into smaller tasks, using larger context windows with more advanced memory, and124

with the ability to perform actions with integrated tools. Agentic frameworks have been successfully125

utilized in discovering protein design principles [Ghafarollahi and Buehler, 2025b], novel treatments126

for macular degeneration [Ghareeb et al., 2025], designing novel alloys [Ghafarollahi and Buehler,127

2025a], and more [Xia et al., 2025].128

3 Overview129

We study the success and failure modes of LLMs across two flavors of Bayesian optimization (BO)130

tasks: SMILES-based molecular optimization and four-residue protein optimization. The molecule131

task (SMILES-based) is characterized by a constrained search space where valid SMILES strings132

form only a small fraction of all possible character sequences—and a large evaluation budget. The133

protein task (four-residue) is characterized by a less-constrained search space where all amino acid134

combinations are valid, and a small evaluation budget.135

Across both domains, we evaluate three classes of LLM-based methods: (1) off-the-shelf reasoning136

models, (2) our developed agentic workflow, and (3) non-reasoning LLMs fine-tuned to mimic137

statistical acquisition strategies. We compare these against standard statistical baselines and analyze138

where LLM-based approaches succeed or fail.139

3



SMILES-based molecular optimization. For the molecule task, we use the benchmark introduced140

by Gorantla et al. [2024]. The benchmark contains 4 datasets of thousands of medium-sized molecules141

(95% in the [15, 22] carbon range), with measured binding affinities to a protein target. We run our142

tests against two of these targets; D2R, and TYK2. The goal is to identify molecules in the top 2%143

for each target. Following prior work, we initialize with starting size = 60, batch size =144

60, and extend the evaluation budget to 600 (from 360 in the original benchmark) to strengthen the145

signal. We also evaluate the predictive model’s RMSE on the entire database as a metric of how well146

each acquisition function informs the predictive model.147

As statistical baselines, we implement Gaussian process regression with a Tanimoto kernel (4096148

bits, radius 2), using four acquisition strategies: Greedy, Upper Confidence Bound (UCB), Thompson149

Sampling (TS), and Random sampling.150

In BO, the effect of starting point is huge. If we start from bad local minima, greedy algorithm would151

fail miserably. Thus, robustness of the method to the initialization is required. To evaluate robustness,152

we consider two initialization regimes for the molecule task: (1) starting batches sampled uniformly153

at random and (2) batches sampled from a single cluster in a UMAP embedding of chemical space.154

Four-Residue Protein Optimization. For the protein task, we adopt the framework of Yang et al.155

[2025], which provides fitness values for nearly all sequences in the full 204 combinatorial search156

space of two highly epistatic motifs (on GB1 and TrpB). The objective is to discover sequences of157

maximal fitness.158

We evaluate performance using two metrics: (1) maximum fitness score, as in the original benchmark,159

and (2) recall of top-performing sequences (top 0.5 %), for consistency with the molecule task.160

Baselines include Greedy, UCB, TS, Random, and a directed evolution strategy (greedy local search161

around the wildtype). The predictive model is a deep neural network (DNN) ensemble trained on162

one-hot encoded sequences, as shown to perform best in the original paper. We test both a small163

campaign (starting size = 10, batch size = 10, budget = 60) and the larger campaign164

studied by Yang et al. [2025] (starting size = 96, batch size = 96, budget = 480).165

4 Off-the-Shelf Reasoning LLMs Struggle with Molecular Optimization166

4.1 Setup: Reasoning LLM-based acquisition design and prompting strategy167

We evaluate three reasoning models on this benchmark - Qwen3-32B [QwenTeam, 2025], GPT-5-168

medium reasoning [OpenAI, 2025], and Llama-4-maverick-17B [MetaAI, 2025]. At each iteration,169

the model receives the campaign description, accumulated observations (SMILES with ground truth170

fitness values of selected samples), and a candidate pool (SMILES with predictive model fitness171

values and confidence scores).172

The full list of candidates was processed in chunks of size dependent on the context length, selecting173

a batch from each chunk, and then a final batch from the union of selections from all chunks.174

Due to context length limits, smaller models (Qwen3, GPT-5) cannot simultaneously attend to all175

accumulated observations and candidate chunks. For these models, we first prompt to summarize the176

accumulated observations, and the summary was then used to inform the selections from the chunks.177

With this method, acquisition takes around 2 minutes and 60,000 tokens per 1,000 samples.178

4.2 Poor handling of large in-context inputs and SMILES limits the reasoning model179

performance.180

LLM-based acquisition underperform compared to statistical acquisition functions in terms of recall,181

effectively mimicking the greedy algorithm in both the random start (Figure 1a), and the bad start182

(Figure 1b), showing a limited ability to identify and escape the local minima. Contrary to our183

expectation that LLMs would leverage scientific reasoning to escape bad starts, their selections rely184

heavily on GP predictions, providing little additional information gain for the GP model compared185

with statistical baselines (Figure 1d).186

The inferior performance of LLM-based acquisition highlights two main issues. First, LLMs struggle187

to correctly parse and reason over SMILES strings. Second, they are unable to accurately process the188

large in-context dataset tables. Qwen3 and Llama-4 often deviate from the required output format,189
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selecting duplicates or using wrong budget. GPT-5 is more precise with the format, but appears to190

fail at correctly mapping chemical patterns to SMILES (further discussion in A.1). Moreover, finding191

an optimal way of chunking the data for in-context input requires an extra effort.192

5 Agentic Workflows Improve Data Comprehension and Scalability193

Given these limitations, we explore whether agentic workflows, where an LLM orchestrates tool194

use rather than directly ranking molecules, can mitigate data processing challenges. We designed an195

LLM workflow to select from the candidate pool using a limited set of simple tools, including: (1)196

sorting by GP predictions, (2) filtering by SMARTS substrings, (3) filtering by Tanimoto similarity in197

comparison to compounds already observed or to the current batch, and (4) filtering using UCB with198

hyperparameters set by the agent.199

The workflow begins with a “strategist" node prompted to analyze the campaign stage, objectives,200

and accumulated observations (a dataframe of SMILES string and score of each molecule selected201

in previous cycles). Based on this analysis, it proposes a set of selection strategies. Each strategy202

is then passed to an “implementer" node, responsible for executing the strategy via tool calls. The203

results, along with the information of strategies, task reasoning, and tool calls, is finally processed204

by a “summary" node which evaluates the effectiveness of each strategy and the cycle performance205

overall. This summary is subsequently fed back to the “reasoning" node, informing the design of206

strategies in the next iteration. Claude-3.5-sonnet [Anthropic, 2024] was used for both implementer207

and summary nodes.208

5.1 Agentic workflows surpass both statistical and LLM baselines209

Even with a limited set of tools, the agentic workflow proves effective, greatly surpassing all off-the-210

shelf models in the easy task (Figure 1a, AGENT), and the statistical models on the bad start (Figure211

1b). The main reason for this improvement is that the workflow’s ability to leverage rule-based212

SMARTS filtering, rather than having to rely on their own understanding of SMILES.213

5.2 Limiting in-context information reinforces domain knowledge-driven reasoning214

From the LLM reasoning history, we observed that the agent consistently copied patterns from215

SMILES present in the accumulated observations table for SMARTS filtering. Interestingly, when216

we remove all sample-level information (i.e., SMILES strings and their associated scores) from217

the prompt provided to the “strategist" node (Prompt A-A.4.1, SMILES table at end of cycle218

summary Prompt A-A.4.1), while maintaining the natural language cycle summaries (generated219

by the “summary" node), the model engages in expert-level chemical reasoning about structural220

motifs associated with binding. Instead of copy-pasting substrings from the table of accumulated221

observations, it instead creates SMARTS filters based on chemical hypotheses from prior knowledge.222

This method achieves performance comparable to statistical methods on the simpler task (Figure 1a,223

SIMPLEAGENT) while providing larger information gain to the GP model (Figure 1c), and quickly224

breaks out from the bad starts (Figure 1b). The improvement from the original AGENT suggests that225

constraining models to tool-mediated reasoning allows domain knowledge to be used more effectively226

than forcing direct SMILES comprehension.227

6 Protein optimization task shows the true power of reasoning model228

From our previous section, we identified the failure modes in SMILES-based molecular optimization229

task. LLMs are not good at comprehending SMILES and in-context processing of large dataset is not230

ideal. As such, we next investigated whether these models are more effective in the task with simpler231

representations and less-constrained search spaces, optimizing the fitness of a four-position protein232

motif.233

The set of current observations for statistical models and the agentic workflows were initialized with234

random samples from the search space and a target protein description that included the wildtype235

(WT) sequence. The “off-the-shelf" reasoning models were given the same background and WT. The236

agentic workflow could filter by predictive model predictions, blosum62 scores, Hamming distances,237

regex patterns, and UCB.238
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(a) (b)

(c) (d)

Figure 1: Performance of statistical acquisition functions (GREEDY, UCB = upper confidence
bound, TS = Thompson sampling), off-the-shelf models (GPT-5, Qwen3, Llama4 (non-reasoning)),
and agentic flows (AGENT, SIMPLEAGENT) on the molecular BO task. Metrics: (1) Recall at
2 % (Top row), the fraction of the top 2 % of candidates in the entire search space, (2) predictive
model’s RMSE on the accumulated observations (Bottom row) measuring how well-informed the
predictive model is of the search space at a given stage of the campaign. Left column: Binding
affinity optimization for D2R target with random initialization. Right column: Binding affinity
optimization for TYK2 target, with initialization from a bad local minima testing the method’s ability
to explore. N=10 samples for all methods except Qwen3 and GPT-5 (N=5). Dashed line (Random)
marks the performance of random acquisition. Agentic models outperform statistical models when
the campaign is initialized in a bad local minima and are competitive on random initializations, while
informing the predictive model more.

6.1 Qwen3 agentic workflows collapse to directed-evolution behavior and underperform239

Across both protein targets GB1 and TrpB, Qwen3 underperformed across all metrics (Figure 2).240

Closer inspection on the reasoning log revealed that its proposals were almost exclusively point241

mutations of the WT or current best-performing sequence, effectively reproducing directed evolution242

(DE) (Figure 2, DE baseline).243

The Qwen3-based agent (Figure 2, AGENT) also performed poorly: it heavily relied on regex-244

matching of the accumulated observations and again converged to DE-like behavior (Figure 2a). To245

mitigate this, we limited the information provided to the initial prompt, withholding any information246

about the sequences in the accumulated observations so far. This SIMPLEAGENT variant showed247

marked improvement (Figure 2a), as it relied more on the GP model predictions rather than trying248

to search near the previous observations. Nevertheless, its recall remained substantially lower than249

statistical baselines (Figure 2d).250
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(a) (b)

(c) (d)

Figure 2: Performance of statistical acquisition functions (GREEDY, UCB = upper confidence
bound, TS = Thompson sampling), off-the-shelf models (GPT-5, Qwen3), and Qwen3-based agentic
models (AGENT, SIMPLEAGENT) on the active learning task of optimizing a four-residue motif.
Metrics: (1) highest achieved fitness (Top row), (2) recall at 0.5 % (Bottom row), implying the
fraction of the top 0.5 % motifs in the entire search space. The campaign is performed on two scales:
with a budget of 60, batch size 10 motifs (Left column), and with a budget of 480, batch size 96
motifs (Right column). Error bars mark standard deviation. Statistical methods use 50 samples, and
LLM methods use 10 samples. Dashed line (DE) marks the performance of directed evolution starting
from the WT. Dotted line (Top row, Random) marks expected performance from random acquisition.
GPT-5 performs the best in the small campaign, but performance deteriorates with increased batch
sizes and budgets. Agents fail due to the limited usefulness of tools in this domain.

Although performing significantly worse than the statistical models on the recall metric (Figure 2d),251

it still scales indefinitely in execution time and cost with budget. Extensive tool tuning, or unlimited252

accessibility to python would likely improve performance significantly.253

6.2 Off-the-shelf GPT-5 outperforms statistical methods254

We next evaluated GPT-5, which produced highly potent results in the protein task. Starting from the255

WT, GPT-5 identified 11 sequences in the top 0.5% of the full search space within just 60 evaluations256

(Figure 2a). Notably, GPT-5 appeared to have biological knowledge about the system: given only the257

WT sequence “VDGV” along with the keyword “epistatic,” it identified GB1 as the protein target.258

We therefore ran both Qwen3 and GPT-5 without any context about the wildtype or the protein, and259

still observed very strong performance of GPT-5. Both Qwen3 and GPT-5 demonstrated explicit260

hypothesis-driven search. While Qwen3 still appeared ineffective at executing on the ideas, GPT-5261

had already by the second cycle, articulated and tested the hypothesis that “bulky residues at positions262
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1 and 3, small residues elsewhere” yield high-fitness sequences, a pattern that is 5.3x more common263

in the top 0.5% of sequences than on average. Moreover, GPT-5 generated multiple hypotheses per264

batch, enabling rapid exploration of the sequence landscape, in sharp contrast to Qwen3’s incremental265

point mutations. However, GPT-5 suffered from scaling limitations. In larger campaigns with high266

batch sizes, its performance plateaued (Figures 2b, 2d). The performance was similarly high in a267

different campaign targeting the protein TrpB (Figure A-5a).268

6.3 Generative reasoning scales efficiently independent of search space size269

An important note is that the off-the-shelf models are fully generative, producing new sequences270

directly rather than evaluating an entire candidate pool. This makes their runtime independent of the271

search space size. Thompson sampling, which requires repeated retraining of the predictive model272

and covariance matrix computations, scales by O(N3) when using an exact GP in a search space273

of N candidates, and O(Nm) using low-rank (m rank) to approximate the covariance matrix. This274

efficiency advantage suggests a role for reasoning models in settings where computational overhead275

dominates.276

7 Fine-tuning Non-Reasoning LLMs Trains the Models to Perform Bayesian277

Acquisition Behavior278

As a complement to the other findings, we aimed to see if non-reasoning Qwen2.5-7B-Instruct could279

be fine-tuned to perform simpler generative tasks. Off-the-shelf Qwen2.5-7B-Instruct is unable280

to effectively perform the task. Wang et al. [2025] showed that training a non-reasoning LLM on281

acquisitions by a statistical model in an artificial setting using Direct Preference Optimization (DPO)282

can improve the Bayesian behavior of the LLM on selection tasks very similar to the molecular task283

described in this article.284

We similarly generated synthetic AL tasks in the motif domain, and trained the non-reasoning285

LLM using DPO and supervised fine-tuning (SFT) using trajectories sampled from onehot-DNN286

Ensemble-TS method as training examples. DPO underperformed in this task, but SFT significantly287

outperformed Qwen3, and achieved performance competitive with the statistical methods (details in288

the Appendix A.2.5).289

8 Conclusion290

In this paper, various LLM-based methods (off-the-shelf, agentic and fine-tuned) are systematically291

compared on two Bayesian optimization tasks. Models of various sizes and capabilities are compared292

to gain insight into the scope and potential of using LLMs for BO.293

SMILES-based molecular optimization gives enhanced perspective on a common problem for LLMs:294

off-the-shelf models struggle with in-context processing of large datasets and accurate parsing of295

SMILES strings. The introduction of an agentic workflow with the ability to use a set of simple tools296

greatly increases the performance of LLMs on this task. Furthermore, by removing SMILES related297

information from the agent the model performance increases even more. This happens as the model298

creates chemical hypothesis more freely and relies less on direct SMILES string comprehension.299

Table A-1 (a) shows the performance increase of the best agent framework in this task.300

The protein optimization task shows the power of reasoning models on simpler representations. While301

the smaller models (Qwen3-32B) and the agentic frameworks saw performance much lower than that302

of the BO baselines, the GPT-5 reasoning model generated a wide variety of valid hypothesis and303

rapidly explored the sequence landscape. On the other hand, GPT-5 suffered from scaling to larger304

campaigns with high batch sizes, where its performance plateaued. Finally, fine-tuned non-reasoning305

models were able to achieve enhanced performance compared to their non-fine-tuned reasoning306

counterparts while operating on a fraction of cost.307

This study shows the potential for using LLMs in BO in various fields under the correct circumstances.308

In constrained search spaces such as SMILES optimization, agentic workflows equipped with309

external tools yield stronger performance, whereas in less-constrained search spaces with more310

LLM-comprehensible representations such as protein optimization, off-the-shelf reasoning models311

employing generative strategies prove more effective.312
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A Technical Appendices and Supplementary Material466

Table 1: Comparison of best LLM approaches for Active Learning across different domains

(a) SMILES-Based Molecular Optimization

TYK2, Bad Start D2R, Random Start
Recall@2% ↑ RMSE ↓ Recall@2% ↑ RMSE ↓

Method ×10−3 ×10−3

Best Statistical Model 0.32 ± 0.25 160 ± 47 0.80 ± 0.05 90 ± 5
Best Agent 0.54 ± 0.12 93 ± 7 0.78 ± 0.05 86 ± 6

Best Off-the-Shelf 0.19 ± 0.16 159 ± 84 0.61 ± 0.09 91 ± 5

(b) four-residue Protein Optimization

GB1, Budget 60 TrpB, Budget 60
Recall@0.5% ↑ Max Fitness ↑ Recall@0.5% ↑ Max Fitness ↑

Method ×103 ×103
Best Statistical Model 12 ± 7 0.63 ± 0.17 9 ± 10 0.51 ± 0.32

Best Agent 5 ± 6 0.50 ± 0.25 7 ± 7 0.57 ± 0.20
Best Off-the-Shelf 20 ± 11 0.60 ± 0.13 10 ± 15 0.45 ± 0.35

Method TYK2 Bad Start TYK2 Random Start D2R Bad Start D2R Random Start
Recall@2% ↑ RMSE ↓ Recall@2% ↑ RMSE ↓ Recall@2% ↑ RMSE ↓ Recall@2% ↑ RMSE ↓

×10−3 ×10−3 ×10−3 ×10−3

GREEDY 0.16 ± 0.14 234 ± 20 0.62 ± 0.04 100 ± 4 0.47 ± 0.17 123 ± 9 0.52 ± 0.13 96 ± 6
UCB 0.32 ± 0.25 160 ± 47 0.69 ± 0.04 94 ± 4 0.68 ± 0.08 110 ± 7 0.80 ± 0.05 90 ± 5
TS 0.19 ± 0.15 205 ± 41 0.65 ± 0.04 99 ± 5 0.56 ± 0.15 118 ± 9 0.71 ± 0.07 92 ± 6
AGENT 0.47 ± 0.14 107 ± 33 0.62 ± 0.11 90 ± 4 0.70 ± 0.09 99 ± 7 0.65 ± 0.10 90 ± 6
SIMPLEAGENT 0.54 ± 0.12 93 ± 7 0.64 ± 0.06 86 ± 2 0.69 ± 0.08 98 ± 10 0.78 ± 0.05 86 ± 6
GPT-5 0.19 ± 0.16 158.7 ± 84.4 - - - - 0.61 ± 0.09 91 ± 5
Qwen3 0.17 ± 0.17 169 ± 45 - - - - 0.53 ± 0.10 93 ± 6

Table 2: Performance comparison for different acquisition methods on the molecular domain. Errors
are standard deviations (N=5 for GPT-5 and Qwen; N=10 all others). Bold numbers mark significantly
better performance in a statistical method relative to all LLM-method or an LLM-method relative
to all statistical method (95% confidence in difference between means by bootstrapping on random
seeds).

A.1 LLMs have trouble comprehending SMILES467

In depth analysis of the off-the-shelf LLM responses showed several failure modes. Firstly, the468

Qwen3 and Llama (and Claude-Sonnet-3.7, not included in data) were greedy with respect to selecting469

SMILES strings. When prompted with a table sorted by predicted affinity, they exclusively chose470

from the very top of the table. When the table was shuffled, they sometimes appeared to only process471

subsets of the table. As seen in Response A.1, Llama-4-maverick has a very high probability of472

selecting a candidate index following a candidate index it has already selected. This is not a surprising,473

but a serious issue. The reasoning was often advanced, but despite extensive prompt engineering474

efforts, LLMs struggled to implement their stated strategies in practice. Models would provide475

excellent rationales for decisions and develop sophisticated AL strategies during the reasoning phase,476

yet default to simple heuristics during selection. The reasoning around specific molecule structures477

was often extremely brief and related only to one or two substructures, often on the edges of the478

SMILES string (Figure 3, right). The model often confused different substructures in multi-ring479

systems. To further investigate SMILES comprehension, we asked Qwen3 to summarize different480

SMILES from our database (Figure 3, left). The summaries often include several correctly named481

substructures and correct chemical properties, but the relation between the substructures is absent.482

Qwen3 also often uses SMILES substrings to design hypothesis and filters. This leads to very dense483

summaries of the chemical space largely containing copy-pasted substrings (Response A.4.1). This484

shows that the reasoning models are capable of using substructre information from the SMILES,485

but that it requires significant token use. When prompted with more SMILES, precision decreases486

drastically. Llama-4-maverick reasons in a similar fashion. Qwen3 and Llama-4, rely heavily on487
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Method Budget 60, GB1 Budget 480, GB1 Budget 60, TrpB
Recall@0.5% ↑ Max Fitness ↑ Recall@0.5% ↑ Max Fitness ↑ Recall@0.5% ↑ Max Fitness ↑

×103 ×103 ×103

GREEDY 12 ± 7 0.63 ± 0.17 231 ± 60 0.89 ± 0.13 9 ± 10 0.51 ± 0.32
UCB 9 ± 7 0.56 ± 0.18 196 ± 53 0.90 ± 0.12 7 ± 8 0.50 ± 0.30
TS 12 ± 8 0.62 ± 0.17 216 ± 55 0.90 ± 0.12 9 ± 9 0.52 ± 0.29
AGENT 4 ± 4 0.45 ± 0.17 166 ± 71 0.90 ± 0.17 7 ± 8 0.45 ± 0.28
SIMPLEAGENT 5 ± 6 0.50 ± 0.25 194 ± 52 0.90 ± 0.08 7 ± 7 0.57 ± 0.20
GPT5 14 ± 7 0.56 ± 0.05 83 ± 23 0.74 ± 0.18 16 ± 9 0.58 ± 0.05
Qwen3 3 ± 3 0.46 ± 0.14 6 ± 3 0.60 ± 0.20 11 ± 8 0.61 ± 0.08
Qwen3-BLIND 3 ± 4 0.41 ± 0.19 - - 3 ± 5 0.43 ± 0.32
GPT5-BLIND 20 ± 11 0.60 ± 0.13 - - 10 ± 15 0.45 ± 0.35

Table 3: Performance comparison for different acquisition methods on the protein domain. Errors
mark standard deviations (N=50 for statistical models, N=10 otherwise). Bold numbers mark
significantly better performance in a statistical method relative to all LLM-method or an LLM-
method relative to all statistical method (95% confidence by bootstrapping on random seeds for
agent-statistical comparisons (N=10), and on unique trajectories on off-the-shelf LLM (N=10)-
statistical (N=50) comparisons). Note: Averages and marginal errors shown for statistical models
here are across 50 samples, but significance between agents and statistical models is still computed
on 10 shared starting points.

overly simple filters that only capture minimal information about a given molecule’s performance.488

Other studies have similarly shown that reducing detailed numeric or conceptually complex data489

increases performance [Agarwal et al., 2025].490

Interestingly, GPT5 uses a completely different language. The summaries are more extensive (Re-491

sponse A.4.1) and detailed. It is able to derive relations between substructures, for example "Substruc-492

ture filter: pyridyl-diamide with two secondary amides: ArL̂–NH–C(=O)–pyridyl–NH–C(=O)–ArR̂".493

GPT5’s failure likely lies in its ability to apply such derived filters in practice. We observed several494

instances in which it was mapping even simple substructures incorrectly, stating that it found sul-495

fonyl in the indices of molecules without a single sulfur. GPT5 has indeed been shown to perform496

better than other models on atom mapping, which may translate to better understanding relations497

between substructures, but not on SMILES to IUPAC [Runcie, 2025, Runcie et al., 2025]. We aim to498

investigate this further in subsequent work.499

GPT actually recognizes that the chemical space is constrained in the clustered starting configurations500

(Figure 1b) but does nothing about it: "The chemical space is tightly focused around a501

single core with well-behaved, monotonic SAR along three modular regions."502

Response 1: Llama-4-maverick response from processing chunk

...
Here are 60 selected indices, ensuring a mix across the entire range and

diversity in chemical structures and predicted properties:

<selected_indices>
[38, 497, 244, 248, 293, 294, 999, 1000, 113, 116, 140, 599, 605, 758, 762,

838, 839, 847, 851, 884, 885, 937, 940, 949, 950, 951, 952, 953, 954, 10,
20, 31, 32, 33, 34, 39, 48, 52, 60, 62, 70, 106, 108, 115, 117, 118,

119, 121, 122, 123, 124, 125, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139]

</selected_indices>

503
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A.2 Implementation Details504

A.2.1 Bayesian Optimization Loop505

Each Bayesian Optimization campaign is characterized by an initial size of set of observations506

selected randomly or from a cluster, a batch size denoting the number of samples to be selected or507

generated each loop, and a budget of total samples drawn throughout the campaign. The number of508

cycles is defined directly from the batch size and the budget. Each cycle follows the following509

scheme:510

1. Train a predictive model on accumulated observations511

2. Use the predictive model to predict the fitness of all candidates in the search space512

3. Sample observations from the predictions using an Acquisition function513

4. Assign true labels to all sampled observations and add them to the set of accumulated514

observations515

A.2.2 LLM-based approaches516

This project investigates the use of Large Language Models (LLMs) as the predictive model and/or517

acquisition function within the BO loop. We compare the performance of three distinct LLM strategies518

in this role:519

• Off-the-shelf model: A base LLM applied directly using zero-shot or few-shot prompting.520

For the molecular optimization task the LLM replaces only the acquisition function. For the521

protein optimization task the LLM replaces both the predictive model and the acquisition522

function and is completely standalone.523

• Fine-tuned model: An LLM finetuned to the specific optimization task through further524

training on a domain-specific dataset. The fine-tuned model was trained only for the protein525

optimization task.526

• Agentic workflow: A system where an LLM orchestrates a more complex, multi-step rea-527

soning process to sample the candidate space. The agentic workflow replaces the acquisition528

function.529

The project used various publicly available LLM families. Llama-4-maverick [MetaAI, 2025] and530

Qwen3-32B [QwenTeam, 2025] which were accessed through the Lambda API. GPT-5 ? was531

accessed through the OpenAI API. Claude Anthropic [2024] models were accessed through the532

Anthropic API. Local Qwen models were accessed from Huggingface.533

A.2.3 Molecular optimization task534

The project utilized publicly available binding affinity datasets assembled by Gorantla et al. [2024];535

TYK2: 9,997 congeneric molecules with aminopyrimidine core scaffold, derived from RBFE536

calculations [Thompson et al., 2022], USP7: 4,535 diverse scaffolds from ChEMBL, exhibiting537

multiple assay minima, D2R: 2,502 molecule subset of ACNet dataset [Zhang et al., 2023], high538

activity cliff content, Mpro: COVID Moonshot project data, smallest dataset (665 compounds). The539

target Mpro was discarded because of insufficient data, and USP7 was discarded due to irregularities540

in the data. The TYK2 search space consists of several larger clusters of molecules, making the541

search trivial when initialized randomly. The D2R search space consists of a diverse set of molecules.542

We therefore mainly used TYK2 data to initialize a bad start from one of the clusters, and the D2R543

data for random starts. Bad start was initialized by clustering (K-means, 10 clusters) a UMAP of544

the chemical space (10 components), and drawing all initial observations from the same cluster. For545

completion, we also ran TYK2 with random start and D2R with bad starts for a subset of the methods546

tested.547

A Gaussian process regressor (GP) with a Tanimoto similarity kernel (radius=4, nbits=4096) trained548

for 500 epochs (learning rate=0.001, Adam, gpytorch 1.14, rdkit 2025.3.3) was used549

as a predictive model. The GP generates both predictions and their corresponding standard deviations.550

A random selector drew samples from the candidates from a uniform distribution. UCB directly551
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"Carbonyl (CO), thiol groups (two -SCH2-), hydroxyl (terminal -OH), alkyne
(C#C). Five-membered heterocyclic ring (piperidine derivative) with chiral
center. Alkyne is rigid; rest of molecule flexible. H-bond donors: hydroxyl;
acceptors: carbonyl. Moderate size (∼15 heavy atoms). Complex structure
with multiple stereocenters and functionalgroups."✓

"...thiazole-piperidine with trifluoromethoxy group.." ✓

"Pyrrolidine ring (heterocyclic), benzene ring (aromatic), ester (C=O-O),
amide (C=O-NH). Flexible backbone with multiple rotatable bonds (ester,
amide, alkyl chains). H-bond donors: amide NH, pyrrolidine NH. Acceptors:
amide carbonyl, ester carbonyl, ester O. Medium size, complex structure
with 4 rings and 5 functional groups." ✓

"...chlorothiazole variant with high confidence..."✓

Key functional groups: isopropyl, piperidine (heterocyclic) ×, benzene
(aromatic), carbonyl, amide, trifluoromethyl. Ring systems: six-membered
piperidine, aromatic benzene. Flexibility: multiplerotatable bonds (amide,
piperidine, side chains). H-bonding: amide NH (donor), carbonyl (accep-
tor), piperidine N (donor/acceptor). Size: ∼20 heavy atoms ×, moderate
complexity. Cationic: piperidine N may protonate at physiological pH. Hy-
drophobic: trifluoromethyl, aromatic rings; hydrophilic: amide, piperidine.

"...brominated benzodioxole, unique substitution pattern..."×

"Tripeptide with nitrile (C#N), isopropyl, and phenyl side chains. Aromatic
benzene ring. Multiple rotatable bonds (peptide backbone, side chains).
Amide NH donors (3) and carbonyl acceptors (3). Ester O (acceptor).
Chiral centers (3). ∼18 heavy atoms ×. Cationic at physiological pH
(nitrile, amides). Hydrophobic (isopropyl, phenyl) and hydrophilic (amide,
ester) regions.

"...cyclopropylmethyl variant of successful scaffold..."×

"Aromatic benzene ring with methoxy group (OCH3) at C1. Piperazine
(six-membered, two N) and pyrrolidine (five-membered, one N) heterocycles.
Flexibility from ring conformations and single bonds. H-bond donors:
piperazine NH, pyrrolidine NH ×; acceptors: methoxy O. Moderate size
∼15 heavy atoms×), complex structure with multiplerings."

"...with a dimethylaminoethyl group..."✓

Figure 3: Left: Qwen3 responses when asked to summerize given SMILES. Right: Qwen3 reasoning
about given SMILES during selection or chemical space summary.

16



(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4: Top row: Complement to Figure 1, max fitness achieved in D2R campaign with random
start (left) and in TYK2 campaign with bad start (right). Middle: Campaign results from D2R
campaign with bad start. Bottom row: Campaign results from TYK2 with random start. Error bars
mark standard deviation. The SIMPLEAGENT achieves comparable results to the best statistical
methods (UCB, TS) (4c, 4f) while informing the predictive model more (4d, 4g), and often discovering
higher affinity molecules within the budget.

sampled the top candidates from the score s = µ + β1/2σ, using β = 4. The Thompson sampler552

sampled the top-most common candidates from 100 calls to the predictive model posterior.553

Off-the-shelf LLM models were replacing the acquisition functions. We tried Qwen3-32B (tempera-554

ture 0.6), Llama-4-maverick-17b-128e-instruct-fp8 (temperature 0.7), and GPT-5 (medium reasoning555

effort). At each cycle, the LLM was prompted to select the optimal candidates to move on with from a556

table of candidates index, SMILES, prediction, and predictive model confidence. Prompts to models557

with more extended context windows (Llama-4-maverick) also included a table of all compounds558

used to train the predictive model and their respective labels (Prompt A.4.2). Models with smaller559

context windows (Qwen3, GPT-5) were informed of the accumulated observations by first having560

the model summarize the chemical space into a compact string (Prompt A.4.1), which replaced the561

historical data section. The set of candidates was then processed in chunks of ∼ 400 candidates for562

Qwen3 and GPT-5, and ∼1,200 candidates for Llama-4. The models were asked to select max(batch563
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(a) (b)

(c) (d)

Figure 5: Complement to Figure 2. Left column: Max fitness and recall for campaign targeting a
different protein motif (TrpB) with a budget of 60 and a batch size of 10 motifs. For TrpB, sequences
closer to the WT generally yield higher fitness than for GB1 (Figure 2a), leading to DE outperforming
all other methods in fitness and some in recall. Qwen3 primarily reproduces DE-like behavior,
whereas GPT-5 explores more advanced patterns. Right column: Same campaign setup as Figure 2a,
but with a poorly tuned predictive model. All methods relying on the predictive model fail, while
reasoning models, being fully standalone, remain unaffected, demonstrating LLM robustness. Error
bars denote standard deviation.

size, chunk size/n chunks) candidates from each chunk, and a final selection was then made from the564

chunk selections. Significant prompt engineering and fallbacks were required to make this method565

reliable and moderately efficient.566

Agentic workflows were set up in Langgraph 0.5.0. They consist of three main LLM types operating567

in a hierarchical structure:568

Strategist (Qwen3-32B, temperature 0.6): High-level planning node with reasoning enabled.569

Receives extensive information about the current BO stage, previous cycles, and accumulated570

observations (Prompt A.4.1). Generates an arbitrary number of complementary filter strategies for571

candidate selection. (generate_strategy in Figure 9). The only difference between the AGENT572

and the SIMPLEAGENT is a SMILES table (amino acid sequences in protein task) appended to the573

end of each cycle summary (cycle summary example, Prompt A.4.1).574

Implementers (Claude Sonnet 3.5-20241022, temperature 0): Multiple execution nodes created575

in series, no thinking (implement_strategy in Figure 9). Each receives one strategy from the576

strategist and implements database filtering using prediction thresholds, UCB weighting, SMARTS577

matching parsed using SQL boolean format (AND, OR, NOT with parentheses) for flexible sub-578
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(a) TYK2, Random Start (b) D2R, Bad Start

Figure 6: UMAP of the molecules selected as start batch (Pink) of all available molecules in the
database (Gray) when initialized with a random start on D2R target (Left) and with a bad, clustered
start on the TYK2 target (Right).

structure querying, and/or Tanimoto similarity to accumulated observations or the current batch. As579

implementers in the series select candidates, these are removed from the database to avoid selecting580

duplicates. If the batch size is not filled after processing all strategies due to incompatible filters, a581

final implementer node is created to fill the batch size with all strategies.582

Figure 9: LLM workflow
structure showing strategist-
implementer-reporter hierar-
chy with tool integration loop.

Summary node (Claude Sonnet 3.5-20241022, temperature 0):583

Final summarization node that processes all conversations from the584

implementation nodes, and generates comprehensive cycle selection585

reports including rationales and identified issues. This report is586

then used in the following cycle strategist prompt to inform it about587

successful/problematic filters.588

The yellow-highlighted region in the workflow graph (Figure 9) rep-589

resents the core implementation loop where strategies are executed590

through available tools.591

To test how much the strategist was held back by the limited tools in592

the molecular domain, we removed all tool descriptions and stated593

“your strategies will be implemented by experienced chemists". The594

only filtering method commonly requested, not available to our agent595

was k-means clustering of the data.596

A.2.4 Protein optimization task597

We built on the codebase and data assembled by Yang et al. [2025].598

The dataset consists of fitness scores of an almost complete set of599

possible mutations on four-residue motifs on two proteins (GB1 and600

TrpB). In the paper, they benchmark using the highest discovered601

fitness across four cycles (batch size=96, starting size=96,602

budget=480). We used DNN ensemble predictive model with one-603

hot encoding of the amino acids, optimized by Yang et al. [2025]. For604

comparison, we also test the implementation of the GP with ESM2605

embedding, which was shown to perform the worst on the task. The606

acquisition functions Greedy, Thompson, and UCB (β = 4), were607

left identical to the paper. For more details, we refer to the original paper. We ran 4 campaigns:608

The Small-Good 1, and Small-Good 2 campaigns assess the performance on short campaigns609

with optimized predictive model-encoding combination against two different protein targets (GB1,610

TrpB). Small-Bad evaluates the performance of acquisition functions when paired with an improper611

predictive model-encoding combination, whereas Big-Good assesses performance on the larger cam-612

paign from the original paper, utilizing an optimized predictive model and encoding. We evaluated613

performance by highest fitness, as in the paper, as recall with a 0.5% cutoff, which ensures both614
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Figure 7: Performance of off-the-shelf models initialized without any context to the target protein (-
BLIND) on the GB1 task (Upper), and the TrpB task (Lower), compared to a subset of other models.
The GPT-5 blind model performs similar or significantly better than all statistical models on the recall
metric. The unexpected performance on the GB1 task is largely a coincidence. GPT-5-BLIND often
starts the search with the conservative guess “AAAA" which happens to be highly successful in the
GB1 task. Qwen3 perfroms point wise mutations achieving performance similar to directed evolution
(DE), which is an especially good strategy on the TrpB task, but fails to generalize to the GB1 task.
Error bars mark standard deviation.

Target Model Initial size Batch size Budget
Small-Good 1 GB1 DNN-onehot 10 10 60

Small-Bad GB1 GP-ESM2 10 10 60
Big-Good GB1 DNN-onehot 96 96 480

Small-Good 2 TrpB DNN-onehot 10 10 60
Table 4: BO scenarios

WT are outside the cutoff. The 2 % cutoff used in Domain 1 quickly becomes saturated and less615

informative on this task.616

Off-the-shelf models were implemented as generative models, completely standalone from the617

predictive models. The campaign was started of with an introduction to the task, the WT, and a brief618

description of the target motif function and protein (Prompt A.4.1). For example, the background for619

GB1 was: “The target is a four-site epistatic region (wildtype: V39, D40, G41, V54, fitness 0.1) of620

the 56-residue protein G domain B1 (GB1), an immunoglobulin-binding domain from Streptococcal621
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Figure 8: GB1. SFT and DPO models compared to a subset of other methods. The SFT model
significantly outperforms the reasoning model Qwen3 while executing 30x faster and achieves
performance competitive with UCB on the recall metric Error bars mark standard deviatio.

bacteria. These sites account for a majority of the most strongly epistatic interactions in GB1 and622

span a fitness landscape of 160,000 variants. Variants were assessed for IgG-Fc binding using mRNA623

display and high-throughput sequencing". Importantly, the actual protein name “TrpB" was changed624

to “protein" as we observed a significant bias in Qwen3 to the amino acid Tryptophan (W,Trp)625

introduced by simply including the word TrpB in the prompt, completely deteriorating performance.626

Indeed, Trp occur 584x less frequently in the top 0.5 % performing sequences compared to average.627

After each generation, it was again prompted with The validation experiment in cycle {current_cycle}628

is finished. These are the results: {validated_results}. and a system message reminding it about629

the output format, and the 10 best sequences found so far (Prompt A.4.1). The model was asked to630

generate 50 % overhead to each batch selection and rank the sequences in order of importance to631

avoid issues with overlapping generations, and instances of generations not existing in the labeled632

data. If too many sequences were invalid, the model was prompted to correct mistakes, or informed633

that “the following were invalid for experiments" and asked to generate new. To manage context634

limits and gracefully handle formatting issues, the off-the-shelf reasoning models were wrapped in a635

Langgraph context. This context allowed nodes to validate outputs, ask the model to correct errors,636

summarize conversations during longer campaigns, and extract sequences from prompts (Figure 10).637

Blind models were implemented with the same prompts, but replacing the background with an empty638

string.639

The LLM workflows were implemented identically to the workflows in the molecular domain, but640

with different tools. The models were able to sort by Hamming and Blosum62 similarity, regex,641

prediction, and UCB. Just as in the molecular task, we implemented an AGENT informed by the642

accumulated observations in the form or a table of sequences and fitness, and a SIMPLEAGENT643

without detailed data. The AGENT was only used for one task as we found SIMPLEAGENT greatly644

outperformed it. We also found that removing information about the predictive-model prediction645

range, fitness ranges, and letting the LLM rewrite tool descriptions improved performance and646

consistency further.647

A.2.5 Fine-Tuning648

We aimed to determine if a non-reasoning LLM could be fine-tuned to perform a generative task.649

Wang et al. [2025] showed that training a non-reasoning LLM on acquisitions by a statistical model650

in an artificial setting can improve the Bayesian behavior of the LLM. We created 14 biologically651

relevant synthetic datasets from the ESM2 embedding of the motifs provided by Yang et al. [2025].652

Fitness was assigned to the sequences using Algorithm 1, which is able to generate a large variety of653

fitness distributions. Step 9-13 are optional and were taken to increase the difficulty. No parameters654

were tuned significantly and all were assigned to create variance in the distributions while keeping655

them somewhat similar to the biological data. We ran 50 campaigns (batch size=10, initial656

size=10, budget=400 on each dataset using onehot embedding, DNN ensemble predictive model657
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Figure 10: LLM standalone BO structure showing the evolution node which prompts the LLM to analyze and
generate new variations for the next cycle, the count node which gives the LLM feedback if generations are
duplicates or invalid, the update state node which labels the proposed variations, and a simple summary node
which triggers if the message stream approaches context limit. The loop ends after a set number of cycles.

and TS acquisition function. From each trajectory, we drew 15 time points t with P (X = t) =658

t−1
∑40

i=1 i
−1, t ∈ [1, 40]. For each time point, we created a prompt where the past trajectory659

selections were added in context with their assigned fitness, and the next batch selection in the660

trajectory was used as a ground truth optimal selection. To further increase variance between the661

prompts, we permuted all sequence positions in each prompt and shuffled the order of the sequences662

in-context. This step was crucial for successful training. We attempted both Supervised Fine-Tuning663

(SFT) with the ground truth as a label, and Direct Preference Optimization (DPO) [Rafailov et al.,664

2024] with the ground truth contrasted with a randomly generated string or a string in the set of665

accumulated observations.666

SFT was run using SFTTrainer in TRL (trl 0.19.1, transformers 4.54.1, flash-attn 2.7.4, vllm 0.10.0)667

[von Werra et al., 2020] with per_device_batch_size=8, gradient_accumulation_steps=2,668

dtype=bf16, gradient_checkpointing=True, max_grad_norm=1, weight_decay=0.1,669

learning_rate=5e-6, warmup_ratio=0.05, lr_schedular_type=cosine for 3 epochs, and670

with early stopping on evaluation loss. Training was only made on the responses and not671

prompts. DPO was run with per_device_batch_size=1, gradient_accumulation_steps=16,672

dtype=bf16, gradient_checkpointing=True, max_grad_norm=1, weight_decay=0.1,673

learning_rate=5e-7, beta=0.9, lr_schedular_type=cosine for 2 epochs. The strong regu-674

larization to the reference model was essential for any results. DPO has been shown to work well675

for training LLMs to think like statistical models, but for this task, it performs poorly. The reason676

is likely that the difference between the chosen and rejected strings is too similar. The difference677

between an intelligently mutated string that deviates from most high performers by up to 2 positions,678

and a string generated at random can be almost identical. First training the model with SFT and then679

further with DPO reduces performance compared to only training with SFT.680

Qwen2.5-7B-Instruct was loaded from HuggingFace. The off-the-shelf model underperformed681

random selection because of formatting issues and an inherently greedy behavior. Training on 4682

NVIDIA A100-SXM4-80GB with accelerate and Deepspeed [Rasley et al., 2020] takes about 12 min683

for 0.5B models and 2 hours for 7B models.684

The fine-tuned model was optimized to generate 10 sequences per batch and was run with a tempera-685

ture of 0.7 during inference. When the model generated an invalid sequence, the in-context data was686

reshuffled and the model re-prompted. When the model generated duplicates of the in-context data,687

temperature was incremented by 0.05 in that cycle. Running a small campaign (batch size=10,688

starting size=10, budget=60) takes 11.9 s without any time optimization compared to 15.6 s689

with onehot+GP+Thompson (Proper posterior sampling of posterior approximated with 1000 Fourier690

features) on a single NVIDIA A100-SXM4-40GB.691
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Algorithm 1 Synthetic Fitness Generation

1: Input: Sequences S
2: Tokenize: E← ESM2(S),E ∈ Rn×d

3: Sample binary mask: m ∼ Bernoulli(p = 0.2)d

4: Sample log-weights: logw ∼ N (µ = −6.5, σ2 = 1.5)
5: Apply mask: w←m⊙ exp(logw)
6: Compute fitness: f ← E ·w
7: Add noise: log f ← N (log f , 0.012)
8: Normalize: f ← (f −min f)/(max f −min f)
9: Set 10% randomly to zero: fi ← 0 for i ∈ I ⊂ {1, . . . , n}

10: Set near-zero values to zero: fi ← 0 if fi < 0.001
11: while Quantile0.995(f) > 0.5 do
12: fi ← f1.5i
13: end while
14: return Dataset {(si, fi)}ni=1

A.3 Statistical Analysis692

Statistical intervals were defined as margin of error for a 95% confidence in population mean, defined693

as e = σ√
n
t0.975,n−1.694

A.3.1 Bootstrap695

Significance threshold was defined as 95% confidence in separation between a statistical method696

and all LLM-based methods, or an LLM-based method and all statistical methods. When comparing697

agents, or off-the-shelf models in the molecular task, to statistical methods, bootstrapping was made698

on shared random seeds (N = 10 for agent-statistical comparisons, N = 5 for Qwen3-statistical699

comparisons, N = 3 for GPT-5-statistical comparisons) because of the strong covariance between700

trajectories with the same starting point. N random seeds were drawn with replacement, the mean of701

the corresponding trajectories were compared between methods.702

When comparing statistical methods to off-the-shelf models in the protein task, bootstrapping was703

made on trajectories as the off-the-shelf models here are completely starting-point independent. We704

could therefore use a higher sample size for the statistical models. N = 50 random seeds and their705

respective trajectories were drawn with replacement from the set of random seeds used to initialize the706

statistical models, and N = 10 trajectories were drawn with replacement from the set of off-the-shelf707

LLM trajectories. The mean of the corresponding groups of trajectories were compared between708

methods.709

All bootstrap iterations were repeated 10,000 times.710
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A.4 Prompts and Responses711

A.4.1 Prompts712

Prompt 1: In-context acquisition prompt. "Oracle" here refers to the predictive model

You are selecting ligands for validation in an active learning campaign for
protein {protein}.

**OVERALL CAMPAIGN OBJECTIVE:** Maximize the total number of top high-
affinity ligands in the training data at the end of the campaign. A top
high-affinity ligand is in the top 2% of all ligand candidates.

**Campaign Status:**
- Cycle: {cycle}/{total_cycles}

**Historical Data:**
Used to train the Gaussian Process Regression oracle, sorted by RBFE:
<validated_ligands>
{self._compact_df(labeled_data, index=False)}
</validated_ligands>

3. **Candidates** [SMILES, predicted RBFE, std]:
Randomly ordered.
<candidates>
{self._compact_df(chunk)}
</candidates>

**Your task:**
- Reason about the chemical space, the candidates, the reliability of the

oracle model, and the overall campaign goal. Describe the rationale
behind your selection.

- Select exactly {budget} candidates to move on with (validate and add to
training data for next cycle). Output format:

<selected_indices>
[index1, index2, ...]
</selected_indices>

713

Prompt 2: Prompt to summarize chemical space

You are a chemoinformatic expert working in a team of chemoinformatic experts
selecting ligands for validation in an active learning campaign protein

{protein}.
You have access to a set of validated ligands, and your junior colleague has

access to a set of thousands of candidates to validate.
**Your task:**
- Create a concise summary of the validated chemical space that preserves all

structural features, patterns, and structure-activity relationships,
- Your junior colleague will use the summary to select candidates from his

large list. Include any crucial instructions for the selection process.
Your junior collegue will not have access to the training data.

- Consider number of validated ligands, and number of cycles left. What are
the most important features to preserve?

**Campaign Status:**
- Current cycle: {cycle}
- Total cycles: {total_cycles}
- Oracle model: {oracle_name}
- Overall Campaign Goal: Maximize number of validated high-affinity ligands

in the training data at the end of the campaign
714
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**Validated Training Data:**
{len(training_df)} ligands with measured RBFE values:
<validated_ligands>
{self._compact_df(training_df)}
</validated_ligands>

**Required output:**
<training_data_description>
Comprehensive but concise description of the training data to be used by the

junior colleague that fully encompasses the chemical space, and the
active learning context.

</training_data_description>

**Output Format:**
<training_data_description>
[Training data description that will be passed to the junior colleague]
</training_data_description>
Include exactly one instance of <training_data_description> tag in your

response

715

Response 2: Example of Qwen3 summary of chemical space

<training_data_description>
The validated ligand set (120 molecules) centers on **bipartite scaffolds**

linking aromatic/heteroaromatic rings via **amide/urea linkers**, with
key features:

1. **Core Architecture**: Two aromatic rings (often phenyl/pyridine) bridged
by amide/urea (-CONH-/-NHC(O)N-) linkers. Common substructures include *
ccnc(c)*âĂŞ*C(=O)N*âĂŞ*cccccX* (X = Cl/F/Br/O).

2. **Electron-Withdrawing Groups**: Para/meta halogens (Cl, F, Br) dominate
on terminal aromatics (e.g., *c(c(Cl)F)*, *c(c(Cl)Cl)*). Dual
fluorination (*c(c(F)F)*) improves RBFE (>9.5 kcal/mol).

3. **Hydrogen Bonding Motifs**: Urea/urethane linkers (*N=C(O)N*) enhance
activity (top 10% RBFE âĽě9.5 kcal/mol). Terminal nitroso/amino groups
(*-N(H)C=O*, *-NH2*) reduce activity (<8.5 kcal/mol).

4. **Aliphatic Chains**: N-linked methyl/ethyl groups (*-CH3*, *-CH2CH2-* in
*N(C)C(=O)N*) stabilize topologies. Longer chains (*-CH2CH2CH2-*)
correlate with reduced affinity (ÎŤRBFE âĽĹ -0.3âĂŞ0.5 kcal/mol per CH2).

5. **Steric Constraints**: Bulky substituents (e.g., *Br*, *N(C)(C)C*)
tolerate modestly (RBFE >9 kcal/mol if paired with strong ÏĂ-stacking
partners); avoid *I* or *NO2* due to poor performance (median RBFE ~7
kcal/mol).

6. **Orthogonal Features**: Ether linkers (*-O-CH2-*) improve water
solubility without sacrificing activity (best performers retain Cl/F on
aromatic rings).

**Selection Priorities for Next Cycles**:
- Fill gaps in **meta-fluorinated aromatics** and **mixed X/Y halogen pairs**

(e.g., *c(c(Cl)F)* vs *c(c(F)F)*).
- Test **shortened/cyclic spacers** (replace *CH2CH2* with *CH2* or *CH2OCH2

*) to optimize linker stiffness.
- Explore **triazine/triazole cores** as rigid alternatives to *ccnc(c)*

scaffolds.
- Avoid redundant modifications (e.g., additional Br/I substitutions or

longer aliphatic chains).
- Validate **heteroaryl replacements** (thienyl, furyl) adjacent to amide

linkers.
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Candidates must align with existing SAR while introducing minimal scaffold
novelty. Favor analogs expanding **fluorination patterns** and **
alkylation balance** across the bipartite framework.

</training_data_description>

717

Response 3: Example of GPT5 summary of chemical space

<training_data_description>
Context and goal
- You will down-select candidates (no access to training data) for TYK2

across 2 remaining cycles (currently 7/9). Oracle = Gaussian Process
regressor (uncertainty-aware). Objective = maximize the number of
validated high-affinity ligands in the training set by end of cycle 9.

What has worked (validated chemical space; 418 ligands; top RBFE up to ~12.2)
- Two privileged chemotypes dominate. Keep these intact unless explicitly

exploring:
1) "Triad" anilide series (majority, highest RBFE):

Left: 6-membered diazine/pyridine core, most often a 4-aminopyrimidine/
pyrimidinyl-pyridine, typically 5-alkyl (Me >> Et ~= iPr) and para-amine
bearing a small basic side chain (see "Left-side chains" below).
Middle: 2-aminopyridine (or 2-aminopyridinyl) most often 5-fluoro-
substituted.
Linker: secondary anilide/benzamide (--NH--C(=O)--Ar) with the amide NH
on the "middle ring" side (do not reverse the amide).
Right (distal aryl): dihalo phenyl; the recurring best pattern is ortho-
chloro + meta/para-fluoro; di-F is also strong; o-Cl/o-Cl is acceptable;
o-Br variants can be good. Occasional phenol tolerated but generally not
top.
Summary motif (abstract): [5-Me-(amino)pyrimidine/pyridyl]--NH--(5-F-2-
aminopyridyl)--NH--C(=O)--[o-Cl, m/p-F phenyl].

2) "Morpholine-tail heteroaryl amide" series (secondary cluster; many
9.8--11.7):
Acyl aryl similar to above (often F/Cl patterns).
Hinge-facing heteroaryl is more N-rich (e.g., Nc--cnn(c)--) bearing a
pendant N-morpholine or N-(2-oxa-5-azabicyclic) tertiary amine (--
N4CCOCC4). Keep the tertiary amine and the heteroaryl arrangement
together; they are synergistic.

Left-side chains (key to high RBFE, in order of priority)
- Small, conformationally constrained cations:

A) Azetidine (--N1CCC1--) on the left ring amine: repeatedly among the top
(~11--12.2).

B) Cyclopropyl-bearing secondary amines (--NC1CC1--) and small hydroxyalkyl
secondaries (--N--CH(CH3)--CH2OH or --N--CH2--CH2OH) are strong.

C) 4-hydroxyazetidine and other compact "N,O" motifs are good compromises.
D) Bulkier or more flexible amines (long chains, multiple heteroatoms) and

heavily N-methylated cations tend to underperform vs A--C.

Substituent SAR you can apply directly
- Distal aryl (acyl side):

Priority 1: o-Cl + m- or p-F (best-in-class recurring motif).
Priority 2: o-Cl + p-Cl or o-Cl + p-Br (slightly lower on average, but

still strong).
Priority 3: di-F (good); di-Cl (acceptable; generally slightly lower).
Deprioritize: strong donors (p-OMe/phenoxy), dense polar patterns, or

removal of ortho-halogen.
- Middle ring:

2-aminopyridine with 5-F consistently outperforms unsubstituted analogs;
removal of the 5-F is generally a drop.
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- Left heteroaryl core:
4-aminopyrimidine/related diazines with a 5-Me substituent are most common

in top tier. Me > Et ~= iPr; larger alkyls drop off.
- Amide orientation:

Preserve the "middle ring --NH--C(=O)-- distal aryl" orientation. Amide
reversal/urea/sulfonamide replacements are not supported by top data.

- Halogen count:
Retain at least one ortho-halogen on the distal aryl (Cl >> F for ortho);

removing it usually costs 0.5--1.0 RBFE.
- H-bond pattern:

Keep exactly one amide NH donor and two ring nitrogens across the triad;
adding extra strong donors/acceptors generally hurts.

What to avoid (seen repeatedly lower)
- Reversing the amide, swapping the amide for urea/sulfonamide, or breaking

the triad topology.
- Overly flexible or bulky cationic tails; long aliphatic chains; multiple

extra heteroatoms on the left side chain.
- Distal aryl without ortho-halogen; heavy electron-donation (e.g., para-OMe)

unless paired with the optimal ortho-halogen pattern.
- Extra ring nitrogens that overpolarize the middle ring (e.g., turning the 2-

aminopyridine into a more N-rich diazine) typically drops RBFE.
- Nitrile decorations and phenols appear in mid-tier but rarely at the top;

deprioritize unless needed for diversity.

Concrete selection rules for your candidate list
1) Hard filters (must pass)

- Contains the triad or morpholine chemotype:
a) Triad: left 6-membered N-containing ring (prefer 4-aminopyrimidine)
linked to 2-aminopyridine (prefer 5-F), linked via --NH--C(=O)-- to a
distal aryl.
b) Morpholine series: aryl amide paired with Nc--cnn(c)--(N-morpholine)
heteroaryl tail.

- Distal aryl includes an ortho-halogen (prefer Cl; Br acceptable; F only
if paired with another F/Cl).

- Exactly one amide linker (secondary amide; not reversed).
2) Prioritization scoring (apply additively; pick highest-scoring per cluster

)
+3: Left side chain is azetidine (--N1CCC1--).
+2: Left side chain is cyclopropyl secondary amine or small hydroxyalkyl
secondary amine.

+2: Middle ring = 2-aminopyridine with 5-F.
+2: Distal aryl = o-Cl + p-F (or o-Cl + m-F).
+1: Distal aryl = o-Cl + p-Cl (or o-Cl + p-Br) or di-F.
+1: Left ring = 4-aminopyrimidine with 5-Me.
-2: Reversed amide, missing ortho-halogen, or bulky/flexible tertiary
amines on the left.

-1: Extra strong donors (phenols, guanidines) or >1 extra heteroatom
beyond the patterns above.

3) Diversity protocol (to hedge with GP uncertainty; 2 cycles left)
- Cycle 7->8 (this round): 70% exploitation + 30% exploration

Exploitation: Pick close analogs within the triad keeping the features
above; systematically vary ONE position at a time:

R-distal: swap p-F <-> p-Cl <-> p-Br; move F m<->p; di-F vs o-Cl/p-F.
R-middle: 5-F -> 5-H (limited set) to quantify the drop; 2-

aminopyridine <-> 2-aminopyrimidine (very small set).
R-left chain: azetidine <-> hydroxyethyl secondary amine <->

cyclopropyl; Âśsingle N-methyl; Âśone OH.
Exploration: 3--4 small clusters outside the densest neighborhood:

- Replace distal phenyl with 2-pyridyl retaining o-Cl (on 3-position
relative to amide) and a para-F where possible.

- Swap 5-Me on the left ring to Et or iPr (single change) to probe
steric tolerance.
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- Morpholine-series pickups that match the same distal aryl patterns (
o-Cl with F).

- Cycle 8->9 (final): 85--90% exploitation
- Lock in the top 2--3 R-group patterns discovered; make nearest-
neighbor analogs (1 change only; keep ortho-Cl and 5-F).
- Reserve 10--15% for "safety" variants: same distal aryl but two best
left-chain options; same left chain but two best distal patterns.

Quick triage checklist (yes/no)
- Amide present and correctly oriented? Yes -> proceed; No -> drop.
- Distal aryl has ortho-Cl (or Br)? Yes -> proceed; No -> only keep if di-F

and everything else optimal.
- Middle ring is 2-aminopyridine with 5-F? Yes -> strong; No -> keep a few

for diversity only.
- Left chain is compact cation (azetidine/cyclopropyl/hydroxyethyl)? Yes ->

strong; No -> deprioritize.
- Left heteroaryl is 4-aminopyrimidine (5-Me)? Yes -> strong; No -> keep

minority for exploration.

If you must choose one "safe" pattern to maximize hits now
- Pick candidates matching: 4-aminopyrimidine (5-Me) --NH-- 5-F-2-

aminopyridine --NH--C(=O)-- 2,4-dihalo phenyl (o-Cl + p-F), with a left
azetidine side chain. Then explore Âś(p-F->p-Cl), Âś(azetidine->
cyclopropyl/hydroxyethyl), Âś(o-Cl/p-F->o-Cl/m-F).

What not to change this late
- Do not remove the ortho-halogen on the distal aryl or the 5-F on the middle

ring across the bulk of your picks.
- Do not invert the amide or replace it with urea/sulfonamide.
- Do not add bulky solubilizing tails; prefer small, rigid cations.

Submission format suggestion (to help us review quickly)
- Group selected candidates into small R-group matrices:

Matrix 1 (triad, fixed left = azetidine; vary distal p-substituent): {o-Cl/
p-F, o-Cl/p-Cl, o-Cl/p-Br, o-Cl/m-F}.

Matrix 2 (triad, fixed distal = o-Cl/p-F; vary left chain): {azetidine,
cyclopropyl secondary amine, hydroxyethyl secondary amine, 4-
hydroxyazetidine}.

Matrix 3 (morpholine series, fixed distal = o-Cl/p-F; vary heteroaryl N
pattern minimally).

- Within each matrix, avoid >1 simultaneous change relative to the
prototypical pattern.

Rationale link to RBFE observations
- The highest RBFE ligands co-occur with: compact left cations (especially

azetidine), 5-F on the central 2-aminopyridine, and ortho-Cl plus F on
the distal phenyl; Br is tolerated. When these features are removed,
drops of ~0.3--1.0 RBFE are common; when combined, RBFE >=10.5--12 is
frequent. The morpholine-tail chemotype is a reliable secondary path with
the same distal aryl patterns.

Use this guide to pre-filter and prioritize; then, if you have a model to
score uncertainty, allocate the exploration quota to the edges defined
above.

</training_data_description>
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Prompt 3: Strategist prompt. "Oracle" here refers to the predictive model

You are a senior medicinal chemist and expert in active learning performing
an active learning drug development campaign. Your task is to evaluate
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the current state of the campaign and delegate candidate selection to
junior colleagues who have strong computational skills but limited
chemical intuition. They need clear, specific instructions to filter the
molecular database effectively.

**CONTEXT AND DATA EXPLANATION:**
- SMILES: Chemical structure representation of molecules
- affinity: Validated binding affinity from experiments (RBFE score, higher

is better)
- predictions: Oracle model’s predicted affinity for unlabeled candidates
- std: Oracle model’s standard deviation in predictions
- max_per_cycle: Maximum affinity achieved in each cycle’s selected compounds
- mean_per_cycle: Average affinity of selected compounds in each cycle
- oracle RMSE: Root Mean Square Error between oracle predictions and

validated affinities for selected compounds at a given cycle (measurement
of the oracle’s performance on selected compounds, not nessecairily the

oracle’s performance on the entire database. If we heavily favor
exploitation one cycle, RMSE will appear lower because we are selecting
candidates that the model is confident about, but not necessarily the
best candidates.)

- Completed cycles: {cycles_completed}
- Total cycles: {total_cycles}
- Budget this cycle: {batch_size}
- Oracle model: Gaussian Process Regression
- Measure of affinity: RBFE (higher is better)
**Overall Campaign Goal**
From our ligand database, discover as many compounds as possible that would

rank in the top 2% by binding affinity. Success is measured by recall: of
all the truly high-affinity ligands in the database, how many can you

find within your experimental budget?

**Previous cycles performance**
- Max affinity in selected candidates (starting from cycle 0, should increase

over time): {max_per_cycle}
- Mean performance in selected candidates (starting from cycle 0, should

increase over time): {mean_per_cycle}
- Oracle RMSE on selected candidates a given cycle (starting from cycle 0,

not included in training data that cycle, should decrease over time): {
oracle_rmse_per_cycle}

**Previous Cycles Summaries:**
All Validated Candidates Used for Training or Current Cycle Oracle. Here

follows strategies implemented at previous cycles, and their respective
performance. Use this to inform your new strategies in the context of the
current cycle and campaign state, dont copy them.

<past_cycles_data>
{past_cycles_data}
</past_cycles_data>

**ANALYSIS:**
Analyze the current state of the campaign.

**CHEMICAL ANALYSIS REQUIREMENTS:**
Identify chemical regions for exploitation and exploration:
- Be specific: use chemical knowledge and terminology to describe patterns

and potential binding motifs. Look for both simple and complex (multiple
substructures) patterns.

- Similar targets: [Structural patterns in the training data that are
promising]

- Potential targets: [knowledge about protein {protein} that could be used to
guide the selection, hypothesis testing motifs]
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- Coverage gap: "Training data covers a [small/medium/large] portion of the
relevant feature space"

- What targets were explored in previous cycles? How did they perform?

**Active Learning Status:**
Identify if exploration or exploitation is more important:
- How are we doing towards the overall campaign goal?
- Passed progress: [is the current training data promising or is the oracle

plateauing? Are we stuck in a local optimum?]
- Exploration vs exploitation: [can we afford to explore more or should we

exploit more?]
- Is the oracle better or worse that our intuition?

**TASK:**
Design the optimal selection strategy for this cycle that your junior

colleagues can execute independently. Your junior colleagues don’t know
about each other’s work. This may be a single protocol or multiple
complementary protocols, depending on what’s most appropriate for the
current campaign state. Design hypotheses for testing and informing
coming cycles when suitable.

Provide only actionable filtering instructions - no explanations or chemical
rationale needed.

YOUR JUNIOR COLLEAGUES’ CAPABILITIES
They can filter candidates using:
- Computational approaches: Predictions
- Upper confidence bound (UCB): Predictions + beta * std, given beta
- Chemical approaches: Substructures (SMARTS or substructure names) and

similarity metrics
- Diversity approaches: Tanimoto similarity metrics (pairwise between

selected candidates or to training data)
- Hybrid approaches: Combining the above

EACH PROTOCOL SHOULD SPECIFY:
Exact number of candidates to select
Precise filtering criteria with numerical thresholds
Clear chemical and/or computational constraints

Ensure total candidate count across all protocols equals {batch_size}. Output
your analysis and strategies as soon as you are confindent in your

selection.
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Response 4: Example of cycle summary. "Oracle" here refers to the predictive model

Cycle 1:
# AL Campaign Acquisition Summary

## Implementation
All selection strategies were successfully implemented, yielding 60 total

compounds:
- 25 compounds balancing exploitation/exploration (pred >7.5, UCB beta=1.5)
- 20 exploration-focused compounds (UCB beta=3.0, high uncertainty)
- 10 structurally diverse compounds (Tanimoto <0.3)
- 5 compounds exploiting known SAR (fluorinated pyrimidines with halogens)

No substructure filters failed or needed to be released. Database contained
all requested chemical patterns.

## Campaign Impact
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The selections maintain a strategic 42/58 split between exploitation and
exploration:

- Exploitation (30 compounds): Targeting high-affinity regions through
predicted values >7.5 and known SAR patterns of fluorinated pyrimidines

- Exploration (30 compounds): Probing uncertain regions through high UCB
scores and ensuring structural diversity

This balanced approach is appropriate for the early campaign stage with
limited training data (60 compounds). The selections will expand chemical
space coverage while still leveraging emerging SAR patterns around

halogenated aromatics. The varying uncertainty thresholds (beta=1.5 vs
beta=3.0) provide a gradient of exploration intensity, helping to
systematically improve model reliability.

Strategy 1: Select 25 candidates with predictions >7.5 and UCB (beta=1.5) to
balance high-affinity exploitation with moderate uncertainty

Number final selections: 25
RMSE: 0.76
Mean: 9.60
Max: 10.63

Strategy 2: Select 20 candidates with UCB (beta=3.0) to prioritize
exploration of uncertain regions (std >0.45)

Number final selections: 20
RMSE: 1.14
Mean: 8.92
Max: 10.87

Strategy 3: Select 10 candidates with Tanimoto similarity <0.3 to the
training set to enforce diversity

Number final selections: 10
RMSE: 1.56
Mean: 8.29
Max: 9.57

Strategy 4: Select 5 candidates containing fluorinated pyrimidine core [n]1
cccc([F])c1 and [Cl] or [Br] substitutions

Number final selections: 5
RMSE: 0.75
Mean: 10.04
Max: 10.33
Selected candidates from cycle 1 with oracle predictions and std:
SMILES|affinity|oracle_prediction|oracle_std
c1cc(c(cc1N)C(=O)Nc2cc(ncc2F)NC(=O)C3CC3)Cl|8.96|9.84|0.173
CNC(=O)Nc1cc(ccn1)NC(=O)c2c(cccc2Cl)F|9.95|9.68|0.252
c1cc(c(cc1N)Cl)C(=O)Nc2cc(ncc2F)NC(=O)C3CC3F|10.5|9.7|0.178
...
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Prompt 4: Standalone Model Start Prompt

You are an expert protein engineer with deep chemical intuition leading a
directed evolution campaign. Apply rigorous chemical principles to
discover high-fitness variants within your experimental budget.

**CAMPAIGN OVERVIEW:**
- Target: Four-site region of {self.protein}
- Background: {background}
- Total Budget: {self.total_budget} experimental validations
- Batch Size: {self.batch_size} sequences per round
- Number of cycles: {self.max_cycles}
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- Sequence Length: 4 amino acids

This is the START of your campaign. You have no prior data.

**STRATEGIC APPROACH:**
At every cycle, you’ll receive previous results. Select {3*self.batch_size //

2} untested sequences using chemical logic and hypothesis testing.

**OUTPUT REQUIREMENTS:**
1. **Chemical Reasoning**: Evaluate the past cycles and explain your

mechanistic hypotheses and chemical logic for the next cycle. Add
reasoning within <reasoning> tags.

3. **Priority Ranking**: Sort by priority with chemical justification
4. **Final List**: End with {3*self.batch_size//2} ranked sequences for next

cycle validation for buffer, {self.batch_size} of which will be validated
in the next cycle.

Design sequences that test well-reasoned chemical hypotheses. Balance
thorough exploration with chemical principles to maximize discovery
potential through systematic, chemistry-guided experimentation.
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Prompt 5: Standalone Model System Message

You are an expert protein engineer with designing and controlling a directed
evolution campaign. You must strategically select protein sequences to
maximize fitness discovery within your experimental budget at the end of
the campaign.

Current cycle {state["current_cycle"]} of {state["max_cycles"]}.
Select {3*self.batch_size//2} sequences, optimal for the campaign goal, to

validate in next cycle.
Of these, {self.batch_size} will be validated in the next cycle, depending on

experimental feasibility.
Sort you selection by priority.

Highest performing sequences so far:
{self.validated_results.sort_values(by=’fitness’, ascending=False).head(10).

round(3).to_string(index=False)}

**Output format**: End your analysis with a list of {3*self.batch_size//2}
sequences (STRICTLY 4-letter codes like ’AMHG’, ’QPEI’).
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A.4.2 Response examples729

Prompt 6: GPT5 TrpB BLIND full campaign example.

You are an expert protein engineer with deep chemical intuition leading a
directed evolution campaign. Apply rigorous chemical principles to
discover high-fitness variants within your experimental budget.

**CAMPAIGN OVERVIEW:**-
- Target: Four-site region of unknown
- Background: No background available, we enter the campaign blind.
- Total Budget: 60 experimental validations
- Batch Size: 10 sequences per round
- Number of cycles: 6
- Sequence Length: 4 amino acids
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This is the START of your campaign. You have no prior data.

**STRATEGIC APPROACH:**
At every cycle, you’ll receive previous results. Select 15 untested sequences

using chemical logic and hypothesis testing.

**OUTPUT REQUIREMENTS:**
1. **Chemical Reasoning**: Evaluate the past cycles and explain your

mechanistic hypotheses and chemical logic for the next cycle.
3. **Priority Ranking**: Sort by priority with chemical justification
4. **Final List**: End with 15 ranked sequences for next cycle validation for

buffer, 10 of which will be validated in the next cycle.
4. **Output format**: List 15 sequences (STRICTLY 4-letter codes like ’AMHG’,

’QPEI’) at the end of your response.

Design sequences that test well-reasoned chemical hypotheses. Balance
thorough exploration with chemical principles to maximize discovery
potential through systematic, chemistry-guided experimentation.
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Response 5: GPT5 response

Chemical reasoning and strategy for Cycle 1 (blind start)
- With no prior data, we should maximize information gain per experiment by

spanning orthogonal physicochemical axes: net charge (positive vs
negative), hydrophobicity (aliphatic vs aromatic), polar H-bonding (Ser/
Thr vs Asn/Gln), conformational rigidity/flexibility (Pro/Gly), redox/
metal coordination (Cys/His, D-x-D), and secondary-structure propensities
(Ala/Leu/Ile/Val).

- The set below implements a fractional-factorial-like sweep across these
axes, so early results can reveal main effects and simple interactions by
comparing closely related contrasts (e.g., cationic vs anionic; aromatic
vs aliphatic; HXH vs D-x-D; rigid PxxP vs flexible PGPG).

- Prioritization favors maximal diversity first, then close contrasts to
refine mechanistic hypotheses.

Priority ranking with brief chemical justification
1) KRRR âĂŤ Strongly cationic, Arg/Lys-rich for electrostatic binding to

acidic/negatively charged targets (e.g., nucleic acids or acidic protein
patches).

2) DEED âĂŤ Strongly anionic, acidic cluster probe; contrasts directly with
KRRR to test electrostatic preference.

3) WFWY âĂŤ Aromatic-rich, tests piâĂŞpi/piâĂŞcation interactions and
hydrophobic packing using mixed F/W/Y.

4) LVIL âĂŤ Aliphatic hydrophobic core motif; contrasts WFWY to separate
aromatic-specific effects from generic hydrophobics.

5) STST âĂŤ Ser/Thr H-bond network and turn/helix edge propensity; probes
polar OH-mediated recognition.

6) HEGH âĂŤ HExH-like histidine motif; tests metal coordination and pH-
sensitive binding via His.

7) DADE âĂŤ D-x-D acidic motif; canonical divalent metal-binding/chelation
contrast to HEGH.

8) CAGC âĂŤ Cys pair (CxxC) enables redox/disulfide or soft-metal
coordination; probes thiol chemistry and structural constraint.

9) PGPG âĂŤ Alternating Pro/Gly for high turn propensity and conformational
flexibility; tests if tight turns are favored.

10) PAPP âĂŤ PxxP motif to enforce rigidity and SH3-like motif geometry;
contrasts PGPG for flexibility vs rigidity.

11) RKRK âĂŤ Alternating cationic pattern to test charge spacing vs clustered
cationic (KRRR).
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12) QNQQ âĂŤ Amide-rich polar H-bonding without charge; probes polar
recognition distinct from Ser/Thr chemistry.

13) FWLW âĂŤ Alternating aromatic/aliphatic to test interleaved hydrophobic/
aromatic patterns vs clustered aromatics (WFWY).

14) AAAA âĂŤ Helix-prone neutral baseline; a clean reference for main-effect
comparisons across positions.

15) LYKS âĂŤ Mixed motif (hydrophobic-aromatic-basic-polar) to sample
heterogeneous interfaces and potential piâĂŞcation (Y/K) interplay.

Final list of 15 sequences for next-cycle validation (top 10 prioritized
above):

KRRR, DEED, WFWY, LVIL, STST, HEGH, DADE, CAGC, PGPG, PAPP, RKRK, QNQQ, FWLW,
AAAA, LYKS
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The validation experiment in cycle 0 is finished. These are the results:
sequence fitness

AAAA 0.074
KRRR 0.045
LVIL 0.020
DADE 0.016
WFWY 0.013
STST 0.013
PAPP 0.010
RKRK 0.002
DEED 0.000
HEGH 0.000
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Cycle 1 analysis and hypotheses from cycle 0 data
- Small/neutral wins: AAAA is top (0.074), suggesting minimal side-chain bulk

and strong helix propensity (Ala) are beneficial. This points toward a
preference for compact, low-steric side chains and possibly an alpha-
helical segment.

- Cationic helps, especially Arg-rich clusters: KRRR is second-best (0.045),
while alternating cationic RKRK is poor (0.002). This implies clustered
or context-dependent cationic interactions are beneficial; Arg appears
superior to Lys (guanidinium vs ammonium).

- Hydrophobic tolerated but suboptimal: LVIL (0.020) and WFWY (0.013)
indicate hydrophobic packing/aromatics help but are inferior to A-rich.

- Acidic clusters and His motifs are disfavored: DEED (0.000), HEGH (0.000);
DADE (0.016) shows that isolated/alternating acidity with small residues
can be tolerated, but excess negative charge is detrimental.

- Polar OH acceptable but not optimal: STST (0.013) suggests limited benefit
from Ser/Thr networks.

Working hypotheses for next designs
1) Ala-rich background is optimal; adding limited positive charge (preferably

Arg) may boost fitness if positioned correctly. Test single-position Arg
and Lys scans on AAAA.

2) Arg likely outperforms Lys; quantify this across positions.
3) Two Arg in an Ala background may be better than one but worse than fully

charged; test spacing effects (AARR).
4) Small/polar (Ser) or smallest (Gly) substitutions might be position-

sensitive; edge vs internal effects may differ.
735
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5) Keep exploration limited for acidic/aromatic features; include one
âĂĲsentinelâĂİ acidic variant to measure penalty of an isolated negative
charge in an Ala carpet.

Priority ranking with justification
1) RAAA âĂŤ Single Arg at position 1 on AAAA; probes N-terminal placement of

cationic charge with minimal steric penalty.
2) ARAA âĂŤ Single Arg at position 2; tests internal Arg placement effect.
[...]
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The validation experiment in cycle 1 is finished. These are the results:
sequence fitness

AAAG 0.279
AAAS 0.221

[...]
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Cycle 2 analysis and mechanistic hypotheses
- Strong terminal preferences emerged:

- Position 4: Gly and Ser are highly beneficial (AAAG 0.279 > AAAS 0.221 >>
AAAA 0.074). This is signature of a C-terminal cap preference for small/

flexible or H-bonding residues that relieve steric clash and/or stabilize
a local turn/helix cap (G > S; next likely T, then Asn; bulkier polar

like Gln expected weaker).
- Position 1: Gly improves fitness (GAAA 0.119 > AAAA 0.074). N-terminal

flexibility or reduced steric bulk appears favorable.
- Charges are generally detrimental, especially Arg at any position (RAAA,

ARAA, AAAR all ~0âĂŞ0.01). Lys is tolerated only internally (AAKA âĽĹ
AAAA), but not beneficial; Lys at pos1 is harmful (KAAA 0.018). Acidic
residues are strongly disfavored (AADA 0.000). Hydrophobics/aromatics
also underperform.

- Therefore, the productive design space is: small/non-bulky residues,
especially G/S at termini; possibly T/N as alternative C-caps; internal
positions likely prefer A/S/G with caution about excessive flexibility
from multiple Gly.

Design strategy for Cycle 2
- Test additivity/epistasis by combining the best terminal features: G/S at

pos4 with G (and S) at pos1.
- Expand C-terminal cap chemistry: Thr and Asn; include Gln as a bulkier

polar comparator.
- Probe whether added flexibility internally helps or hurts: single Gly scans

at positions 2 and 3; single Ser scans at positions 2 and 3.
- Limit risky motifs (charge, aromatics, strong hydrophobics), reserving

budget for the productive small/polar space.

Priority ranking with chemical justification
1) GAAG âĂŤ Combines the two strongest single effects (G1 + G4); tests near-

maximal flexibility at termini; highest expected fitness.
2) GAAS âĂŤ G1 + S4; probes if H-bond cap at 4 with flexible N-terminus

rivals G1/G4.
[...]

738

35



<O>The validation experiment in cycle 2 is finished. These are the results:
sequence fitness

GAAS 0.315
SAAG 0.238

[...]
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Cycle 3 analysis and mechanistic hypotheses
- Clear SAR emerged: termini prefer very small/polar residues, centers prefer

Ala.
- C-terminal cap: S4 and G4 are strongly beneficial (AAAS 0.221; AAAG

0.279). Thr4 is highly deleterious (AAAT 0.008). Asn4 is roughly neutral/
slightly worse than baseline (AAAN 0.075).

- N-terminal: G1 improves baseline (GAAA 0.119). S1 is promising when
combined with favorable C-caps (SAAG 0.238; SAAS 0.186), but S1 alone is
unmeasured.

- Best family identified: X A A Y with X âĹĹ {G,S}, Y âĹĹ {G,S}; strongest
observed GAAS (0.315) > SAAG (0.238) > GAAG (0.202) > SAAS (0.186),
indicating terminal epistasis (S4 best with G1; G4 best with S1).

- Internal positions penalize flexibility/polarity: introducing Gly/Ser at
2 or 3 reduces fitness (AGAA 0.071; AAGA 0.023; AASA 0.036), though a
strong C-cap can partially rescue (AAGS 0.107). Centers prefer Ala.

Working hypotheses to guide next designs
1) The global maximum likely resides near XAA Y with X,Y âĹĹ {G,S}; we will

probe whether modest, chemically plausible deviations at positions 2âĂŞ3
(single Ser/Gly) can fine-tune the optimum under favorable terminal pairs
.

2) N-capping alternatives: Pro or Asn at position 1 might sometimes stabilize
local turns/caps; test them in the context of strong C-caps (S4/G4).

3) Cys as a small polarizable C-cap surrogate for Ser/Gly: test C4 with/
without G1 to map tolerance. Include one Gln4 sentinel to bound amide-cap
performance.

4) Complete missing single-mutant baselines: SAAA (S1 alone) and ASAA (S at
pos2) for positional sensitivity.

Priority ranking with justification
[...]
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The validation experiment in cycle 3 is finished. These are the results:
sequence fitness

GPAS 0.341
[...]
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Cycle 4 strategy and chemical reasoning
- Confirmed terminal epistasis: Position 4 strongly prefers S or G but with

context. G1 pairs best with S4 (GAAS 0.315 > GAAG 0.202); S1 pairs best
with G4 (SGAG 0.277 > SAAS 0.186). Amide caps (N/Q at 4) and Thr4 are
poor; Cys4 is mediocre. Keep 4 âĹĹ {S,G}.

- Internal positions favor Ala; introducing Gly or Ser at 2 or 3 depresses
fitness even under favorable termini (e.g., GGAS 0.100, GAGS 0.093, GSAS
0.085). Key exception: Proline at position 2 gives a real boost on the G1
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/S4 ridge (GPAS 0.341 > GAAS 0.315), likely via local turn/helix capping
and preorganization without over-flexibilizing the core.

- N-terminus: G1 and S1 are both good in the right context; S1-G4 and G1-S4
look like complementary optima. Nonpolar/hydrophobic or charged
substitutions were uniformly harmful earlier.

Hypotheses to test now
1) Proline-at-2 as a transferable enhancer: Move P2 to the S1/G4 ridge to

create SPAG; also test if P2 improves the weaker G1/G4 ridge (GPAG) and
the weaker S1/S4 ridge (SPAS). Expect SPAG to be competitive with the
current best.

2) Is P best kept at 2? Shift P to position 3 under strong terminals to
quantify penalty vs benefit (GAPS, GAPG, SAPG), anticipating lower but
mapping robustness.

3) N-cap alternatives: Thr1 can N-cap in helices; test TPAG/TPAS as
conservative variants against S1 with both C-termini.

4) How much turn bias is too much? Introduce P2-G3 tight turn (GPGS, SPGS)
and double-Pro core (GPPS, GPPG) as stress tests; expect reduced but
informative.

5) Is G1 essential for P2 benefit? Compare APAS vs GPAS baseline (already
known) to quantify the necessity of the G1 N-cap in the P2 motif.

6) Internal polarity under P2: Test GPSS to confirm S3 remains penalizing
even with P2.

Priority ranking with justification
1) SPAG âĂŤ Aligns with S1/G4 synergy; adds P2 which helped on G1/S4. Highest

likelihood to meet or exceed current best.
[...]
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The validation experiment in cycle 4 is finished. These are the results:
sequence fitness

TPAG 0.292
[...]

744

Cycle 5 chemical reasoning and goals
- Clear terminal epistasis remains: position 4 prefers S or G, but the

preference flips with N-terminus and with the presence of Pro at position
2.

- With G1 and P2 present, S4 is superior (GPAS 0.341 > GPAG 0.225).
- With T1 and P2, G4 is far superior (TPAG 0.292 >> TPAS 0.113).
- With S1 and P2, evidence from G3 sentinels suggests G4 > S4 (SPGG 0.172 >

SPGS 0.071); we now test this in the optimal A3 background.
- P2 is a key enhancer when used with optimal terminals; P3 is deleterious.

Internal polar/flexible residues at 2âĂŞ3 are generally harmful unless
they are precisely Pro2 or Gly2 in the S1/G4 context (SGAG 0.277 > SAAG
0.238).

- A3 appears optimal; G3/S3 consistently reduce fitness, but we will probe
whether a small hydrophobe (V3) can be tolerated/improve preorganization
under strong termini/P2.

- N-terminal identity strongly modulates the best C-cap when P2 is present;
we will systematically map X1 in {S,A,N} across Y4 in {G,S} with P2 fixed
to locate the global maximum near the GPAS/SPAG/TPAG ridge.

Priority ranking with justification
745
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1) SPAG âĂŤ Tests S1/P2 with G4; predicted to be high due to S1âĂŞG4 synergy
and P2 enhancement (cf. SGAG 0.277; P2 likely boosts further).

[...]
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The validation experiment in cycle 5 is finished. These are the results:
sequence fitness

GPVS 0.495
[...]
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