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Abstract

Diffusion-based generative models are emerging as powerful tools for long-horizon
planning in reinforcement learning (RL), particularly with offline datasets. How-
ever, their performance is fundamentally limited by the quality and diversity of
training data. This often restricts their generalization to tasks outside their training
distribution or longer planning horizons. To overcome this challenge, we propose
State-Covering Trajectory Stitching (SCoTS), a novel reward-free trajectory aug-
mentation method that incrementally stitches together short trajectory segments,
systematically generating diverse and extended trajectories. SCoTS first learns
a temporal distance-preserving latent representation that captures the underlying
temporal structure of the environment, then iteratively stitches trajectory segments
guided by directional exploration and novelty to effectively cover and expand this
latent space. We demonstrate that SCoTS significantly improves the performance
and generalization capabilities of diffusion planners on offline goal-conditioned
benchmarks requiring stitching and long-horizon reasoning. Furthermore, aug-
mented trajectories generated by SCoTS significantly improve the performance of
widely used offline goal-conditioned RL algorithms across diverse environments.
Our code is available athttps://github.com/leekwoon/scots/

1 Introduction

In many real-world applications, agents must plan over hundreds of steps, often receiving sparse
or delayed feedback until they reach a distant goal. Perfect knowledge of the environment allows
powerful planners like MPC (Tassa et al., [2012) and MCTS (Silver et al., 2016, [2017) to excel.
However, most real-world tasks instead require learning environment dynamics from data. Model-
based reinforcement learning (MBRL) (Sutton, 2018)) constructs such world models, offering sample-
efficient learning and improved generalization (Ha & Schmidhuber} 2018} Hafner et al., [2019} |[Kaiser
et al.,2020). However, autoregressive predictions from learned models accumulate small errors into
a cascade of inaccuracies. This compounding error can cause planners to exploit model inaccuracies
and generate trajectories that are suboptimal or even physically infeasible, especially in long-horizon
tasks (Talvitie, [2014; |Asadi et al., [2018; Janner et al.| [2019; |[Voelcker et al.| 2022; |Chen et al., [20244)).

To address these limitations, diffusion planners (Janner et al.,[2022; |Ajay et al.,[2023; [Liang et al.,
2023;|Chen et al.,|2024c) have recently emerged as a promising alternative for trajectory generation
in sequential decision-making. Instead of rolling out one step at a time, diffusion planners treat each
trajectory as a single high-dimensional sample, learning a denoising process that transforms noise
drawn from a simple prior into trajectories that match the target distribution (Ho et al.,[2020; Song
et al.,|2021). By operating on entire trajectories simultaneously, these methods inherently prevent
the compounding of prediction errors that undermine autoregressive dynamics models. Moreover,
the generative nature of diffusion models allows for flexible conditioning and guidance mechanisms,
enabling the synthesis of plans with properties like reaching specific goals or maximizing expected
returns (Dhariwal & Nichol, 2021)).
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In this paper, we propose State-Covering Trajectory Stitching (SCoTS), a reward-free trajectory
augmentation framework that systematically extends trajectories to cover diverse, unexplored regions
of the state space. Specifically, SCoTS employs a three-stage approach: First, we learn a temporal
distance-preserving latent representation by training a model to encode states based on learned
optimal temporal distances, facilitating efficient identification of viable trajectory segments. Second,
we introduce a novel iterative stitching strategy that balances directed exploration with state-space
coverage. In this process, trajectory segments are selected based on their progress along a learned
direction in the latent space and their novelty relative to previously explored regions within the rollout.
Finally, we refine the resulting stitched trajectories using a diffusion-based refinement procedure.
Consequently, the resulting trajectories exhibit broader state-space coverage while preserving dynamic
feasibility.

To summarize, our contribution in this paper is the introduction of SCoTS, a reward-free trajectory
augmentation approach designed to generate diverse, long-horizon trajectories that enhance diffusion
planners. Extensive experiments across diverse and challenging benchmark tasks show that SCoTS
significantly enhances the stitching capabilities and long-horizon generalization of diffusion planners.
Furthermore, augmented trajectories generated by SCoTS notably boost the performance of widely
used offline goal-conditioned reinforcement learning (GCRL) algorithms in across multiple trajectory
stitching benchmarks.

2 Planning with Diffusion Models

Diffusion-based planners (Janner et al., [2022} [Liang et al. 2023} |Chen et al. 2024c) provide a
promising framework for long-horizon decision-making by modeling entire trajectories as joint
distributions. A trajectory T is typically represented as a sequence of states s; and actions a; over a
planning horizon 7"
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where s; and a; denote the state and action at time step ¢, respectively. Diffusion planners utilize
diffusion probabilistic models (Sohl-Dickstein et al., [2015} [Ho et al.| [2020) to learn a trajectory
distribution py (7°) over noise-free trajectories 7°. This involves a predefined forward noising process



denoising steps

(/
‘-

) Search (b) Select (c) Stitch

Figure 2: Overview of the SCoTS stitching process. (a) Temporal Distance-Preserving Search:
Given the currently composed trajectory (red), we identify candidate segments (gray) by searching in
a latent space learned to preserve temporal distances. Candidates are selected based on proximity to
the endpoint of the current trajectory in latent space. (b) Exploratory Segment Selection: Among
the retrieved candidate segments, we select the segment (blue) that best balances directional progress
toward a randomly sampled latent direction and novelty relative to previously visited states in latent
space. (c) Diffusion-based Stitching Refinement: To ensure smooth transitions, a diffusion model
refines the stitching point between segments, generating dynamically consistent trajectories.

and a learned reverse denoising process. The forward process incrementally adds Gaussian noise to
the trajectories through M discrete diffusion timesteps with a variance schedule {3;}:

g(T|lr' ) = N5 V1= BT B, @
A key property is the direct sampling of intermediate trajectorieS'

g(r" | 7°) = N(7% Vi, (1 — o)1), 3)

where o; = H _,(1 = Bs). The schedule ensures that T M approximates a standard Gaussian
distribution A/ (O I). The reverse process learns to invert this noising process and define following
generative process with a standard Gaussian prior p( M.
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with a learnable Gaussian transition: pg (7' |7%) = N (77~ e (77, 1), 7).

Given an offline dataset D, diffusion models in practice simplify training by parameterizing a noise-
prediction network €y, trained to predict the noise € added during the forward process (Ho et al.,
2020):

L(0) :=Eierollle — ea(T", 1)), ®)

where i € {0,1,..., M} is the diffusion timestep, € ~ N(0, I) is target noise that was used to corrupt
clean trajectory 70 into 7 = /a; 70 4+ /1T — age.

Remark. Previous works generally assume the offline dataset D sufficiently covers diverse trajectories
with substantial length. Consequently, these studies have primarily focused on improving network
architectures, action generation methods, and planning strategies. In contrast, we explicitly aim to
generate an augmented dataset Dy, that extends trajectory coverage, enabling diffusion planners to
generalize effectively beyond their training distribution.

3 State-Covering Trajectory Stitching

We introduce State-Covering Trajectory Stitching (SCoTS), a novel reward-free trajectory augmenta-
tion framework designed to synthesize an augmented dataset D,,, from an offline dataset D. The core
idea of SCoTS is to iteratively construct long and diverse trajectories by repeatedly stitching short
segments guided by latent directional exploration, resulting in significantly improved generalization
and extended planning horizons for diffusion planners. SCoTS consists of three stages: (1) learning a
temporal distance-preserving embedding for efficient segment retrieval (Section [3.1)); (2) iterative
trajectory stitching driven by latent directional exploration and novelty-based selection (Section [3.2));
and (3) diffusion-based refinement to ensure dynamically consistent transitions (Section[3.3). The
overall procedure of SCoTS, including segment search, exploratory selection, and diffusion-based
refinement, is illustrated in Figure [2| The detailed algorithm is summarized in Algorithm



Algorithm 1 Overview of the SCoTS Framework

stitcher

1: Input: Offline dataset D, Temporal distance-preserving embedding ¢, Diffusion stitcher pj
2: Initialize: Augmented dataset Dyye = ()
3: forn =1,..., Ny, do

4: // Sample initial segment from offline data

5. Teomp ~ D

6: // Sample a random latent exploration direction

7. z~N(0,I); z<+ z/|z|

8: fort=1,..., Ngich do

9: // Retrieve nearest segments using temporal embedding
10 {T; }5:1 < TopKNeighbors(¢(end(Tcomp)), ¢(D), k)

11: // Compute directional progress and novelty scores

12: Compute scores S; = P; + BN; (Eq. (T1))
13: // Select best candidate segment

14: Thest < argmax; .S;

15: // Diffusion-based stitching refinement

16 7/~ pificher(. | g1 = end(Teomp), Sir = end(Tes))

17: // Concatenate refined segment to trajectory

18: Teomp < [Tcomp, T')

19:  end for

20:  Dayg < Daug U {Tcomp}

21: end for

22: Train diffusion planner on Dyye

3.1 Temporal Distance-Preserving Embedding

Identifying trajectory segments that are suitable for stitching requires accurately measuring their
temporal closeness. However, simply using raw state-space distances can yield temporally incoherent
results due to potential dynamic inconsistencies arising from ignoring state reachability. To address
this, we employ a temporal distance-preserving embedding ¢ : S — Z, which maps raw states
to a latent space Z designed such that the Euclidean distance ||¢(s) — ¢(g)||2 approximates the
optimal temporal distance d*(s, g), defined as the minimum number of environment steps required
to transition from state s to state g. Formally, we parameterize a goal-conditioned value function
V (s, g) following (Park et al., 2024a):

Vs, g) = —llo(s) — o(g)ll2, ©)

which is trained on the offline dataset D using a temporal difference objective inspired by implicit
Q-learning (Kostrikov et al., [2022):

Ly =E(sa,s.g~0 [(£(—1(s # g) = ll6(s)) = d(g)ll2 + [l6(s) — ¢(g)ll2)] , ©)

where gg is a target network (Mnih} 2013), ~ is a discount factor, and é? denotes the expectile
loss (Kostrikov et al., [2022; Newey & Powell, |1987)).

Remark. We note that the learned latent space is not a perfect metric representation of the MDP
(Park et all) [2024a). However, the reliability of SCoTS is grounded in its design, which does
not require a globally accurate temporal distance metric. Instead, as we detail next, our framework
leverages the latent distance for the more tractable local problem of retrieving promising and reachable
candidate segments at each step of the iterative stitching process. This local approach makes the
overall framework robust to the inherent imperfections of the embedding.

3.2 Directional and Exploratory Trajectory Stitching

Given the learned temporal distance-preserving embedding ¢, we iteratively construct extended
trajectories via stitching. We start each new trajectory by randomly sampling an initial segment Tyt
from the offline dataset D. To encourage diverse state coverage, we randomly sample a fixed latent
exploration direction z as a unit vector, i.e., 2 ~ N(0,1I), z < z/||z||, for each trajectory rollout.



At each stitching iteration, let Tcomp denote the currently composed trajectory. We define end(7)
as a function returning the final state of trajectory 7. We then identify a set of candidate segments
{7 }§=1 whose initial states are nearest neighbors to end(7comp) in the latent space:

{7} }§:1 = TopKNeighbors(¢(end(Tcomp)), ¢(D), k), )

where ¢(D) is a concise representation for the set of latent embeddings of the initial states of all
trajectories within the dataset D, and the distance metric is ||¢(end(Tcomp)) — #(S1,5)||2-

To select the best candidate for stitching, we evaluate each candidate segment 7; = (s1,j,...,85,;)
based on a composite score balancing directional progress and novelty. The progress score quantifies
the alignment in the latent space between the segment direction and the exploration direction z:

Py = (¢(end(7;)) — d(s1,5), 2)- ©

The novelty score promotes exploration and coverage of novel latent states by estimating the entropy
of the endpoint of each candidate segment 7; relative to previously visited latent states. Here, Vioiiout
denotes the collection of latent representations of every state along previously stitched segments.
Leveraging a non-parametric particle-based estimator (Liu & Abbeel, 2021) on our temporal distance-
preserving embeddings, we compute the novelty score as:

Nj = L > |¢(end(7;)) — ¢ ,- (10)

kdensity
$v€-NN (g(end(7;)), Vrottout, Kaensity )

A higher N; indicates greater novelty, signaling that the candidate segment expands coverage by
moving towards less-explored regions of the latent space. We combine these two metrics to form the
overall selection criterion:

S; = P; + BNj, (11)
where 3 balances progress and novelty. We then stitch the candidate Tyey With the highest score to
T comp-

3.3 Diffusion-based Stitching Refinement

Although the exploratory selection step identifies segments with desirable progress and novelty, the
stitching points, i.e., the connecting states between consecutive trajectory segments, may still exhibit
minor dynamic inconsistencies or sub-optimal transitions. To mitigate these issues, we introduce a
diffusion-based refinement step. Specifically, we train a diffusion model, termed the stitcher pfh°r,
which generates intermediate states conditioned on the boundary states of adjacent segments. Given

a selected segment Ty, the stitcher produces a refined trajectory 7/ by sampling from:

7_/ ~ pselilcher(
where end(7Tcomp) denotes the end state of the current composite trajectory Tcomp, and end(Tpest)
denotes the end state of the newly selected segment T,.. This diffusion-based refinement effectively
smooths out transitions, ensuring dynamic coherence and feasibility of the stitched trajectories.

| 81 = end(Teomp), Su = end(Thest)), (12)

By iteratively repeating segment search, exploratory selection, and this refinement process, we
construct a diverse set of augmented trajectories. To generate corresponding action sequences for these
trajectories, we train an inverse dynamics model a; = fy(s¢, s¢+1) on the offline dataset D, which
infers the actions that transition between consecutive states. The resulting state-action trajectories are
aggregated into the augmented dataset D,,,. This systematic and iterative augmentation approach
generates an augmented dataset that broadly covers the state space. Crucially, diffusion planners
trained on this augmented data exhibit significantly enhanced trajectory stitching capabilities and
improved long-horizon generalization, particularly for tasks requiring extensive trajectory stitching
and long-horizon reasoning (Section[4.3)).

4 Experiments

In this section, we empirically validate the effectiveness of our proposed SCoTS framework. Specif-
ically, we aim to investigate (1) whether SCoTS can generate diverse trajectories that extend sig-
nificantly beyond the planning horizons present in the original offline dataset, (2) whether training



diffusion planners on these augmented trajectories enhances their capability to produce feasible
long-horizon plans in unseen scenarios, and (3) whether the augmented dataset generated by SCoTS
provides significant performance improvements for existing offline goal-conditioned reinforcement
learning (GCRL) algorithms. Additional results can be found in Appendix [C|

4.1 Datasets and Environments

We evaluate SCoTS on OGBench benchmark (Park et al., |2025), spanning diverse difficulties,
environment sizes, agent state dimensions, and training data qualities. Specifically, the benchmark
includes three locomotion environments: PointMaze (controlling a 2D point mass) and AntMaze
(controlling an 8-DoF quadrupedal Ant). We consider two distinct dataset types, each designed
to evaluate specific challenges. The Stitch dataset comprises short, goal-reaching trajectories
limited to four cell units, thus requiring the agent to stitch multiple segments (up to 8) for successful
inference. In contrast, the Explore dataset assesses learning navigation behaviors from extensive
yet low-quality exploratory trajectories, collected by frequently resampling random directions and
injecting significant action noise. For each environment, we report the success rate averaged over all
evaluation episodes, where an episode is considered successful if the agent reaches sufficiently close
to the goal state within a predefined distance threshold. See Appendix |A|for dataset details.

4.2 Diversity and State Coverage Analysis

stitching iterations

7

To investigate whether SCoTS effectively pro-
motes diverse state-space coverage through tra-
jectory stitching, we evaluate its performance in £ =0
the PointMaze-Giant-Stitch environment.

As illustrated in Figure[3] we visualize the incre-

mental stitching process for different values of

the novelty weighting parameter 3 € {0, 2,20}. =2
We observe that when 8 = 0, trajectory stitch-

ing predominantly follows latent directional ‘
guidance, resulting in trajectories with limited f =20 1
coverage but clear directional distinctions. With

a moderate setting S = 2, trajectories exhibit a 1 ™
balanced trade-off, achieving substantial state-
space coverage with notable diversity. Con-
versely, at a higher novelty weight 5 = 20,
trajectories broadly cover the state space but
lose their distinctiveness, leading to overlapping
paths across different latent exploration direc-
tions. Based on these results, we use § = 2
across all environments in our experiments.
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Figure 3: Effect of novelty score on Trajectory
Stitching. Trajectory stitching examples in the
PointMaze-Giant-Stitch environment. The
original dataset (Stitch) consists of short seg-
ments limited to at most four maze cells. Different
colors represent trajectories generated from dis-
tinct latent exploration directions z.

4.3 Diffusion Planning with SCoTS-Augmented Data

We next demonstrate how SCoTS-generated trajectories enhance the ability of diffusion planners to
generate feasible, long-horizon plans beyond their training distribution. We compare our approach
with offline goal-conditioned reinforcement learning (GCRL) methods including goal-conditioned
implicit Q-learning (GCIQL) (Kostrikov et al.} 2022), Quasimetric RL (QRL) (Wang et al., [2023)),
Contrastive RL (CRL) (Eysenbach et al., 2022), and Hierarchical implicit Q-learning (HIQL) (Park
et al.l 2023)). We also include diffusion-based generative planning baselines explicitly designed for
long-horizon generalization, such as Generative Skill Chaining (GSC) (Mishra et al.| [2023)) and
Compositional Diffuser (CD) (Luo et al.| [2025)).

For our experiments, we adopt a hierarchical diffusion planner (HD) (Chen et al.,[2024c) that generates
plans through a two-level planning process. Specifically, the high-level diffusion model first generates
sparse, temporally coarse waypoints, after which a low-level diffusion model fills in the intermediate
states between these waypoints, producing a temporally dense trajectory. Initially constrained by
limited and short-horizon training data, we augment the original dataset with SCoTS-generated
trajectories. After dataset augmentation, we train diffusion planner and employ a value-based low-
level controller for action execution, following recent approaches (Yoon et al., [2025a; [Lu et al.,



Table 1: Quantitative results on locomotion tasks in OGBench. Results are averaged over 5
random seeds, each with 50 episodes per task. Standard deviations are reported after the + sign.

Env Type Size GCIQL QRL CRL HIQL GSC CD HD  SCoTS

Medium 21 +o 80+12 O0+1 T74+6 100+o 100+o0 24+3 100+o0
PointMaze Stitch Large 31 +2 84 +15 O0+o 13+6 100+o 100+o0 17+2 10040

Giant 0 +o 50+8 O0+o0 O=+o 29+3  68+3 040 10040
Medium 29 +6 59 +7 b3 +6 94+1  97+2  96+2 Tlt1 9741
Stitch Large 7 +2 18 +2 1142 6745 66+2 86+2 36+2 93+1
AntMaze Giant 0 +o 0 +o 0 +o0 2 42 20+1 6543  0+o0 87+2
Explore Medium 13 +2 1+1 3+2  37+10 90+2 8l+2 4243 9941
P Large 0=+o 0 +o 0+0 445 2143 27+1  13+2 9841
Average 12.6 36.5 8.4 36.4 65.3 77.9 254  96.8
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Figure 4: SCoTS enables long-horizon planning. We visualize trajectories generated by a diffusion

planner trained on SCoTS-augmented data, evaluated on two challenging AntMaze datasets: Explore

(top) and Stitch (bottom). The original Stitch dataset contains trajectories limited to four maze

cells per segment, necessitating extensive stitching, whereas the Explore dataset comprises low-

quality trajectories with large action noise. Despite these constraints, SCoTS augmentation allows

the planner to synthesize trajectories that substantially surpass the horizon and quality of the original
data, connecting specified start ® and goal ®.

AntMaze-Giant AntMaze-Large

2025). The plans generated by the diffusion planner serve as sequences of subgoals for the low-level
controller. At each step, the low-level controller executes actions toward a subgoal selected from
the generated plan; after a fixed horizon or once the subgoal is reached, it dynamically updates
the subgoal by selecting the next state at a specified horizon further along in the plan generated by
the diffusion planner. For each dataset, we upsample the original data to 5M samples. Additional
implementation details, including hyperparameters and specifics of the low-level controller, are
provided in Appendix

As shown in Table |1} integrating SCoTS consistently enhances the performance of the hierarchical
diffusion planner across all tasks, achieving near-optimal success rates. Notably, the advantage
of SCoTS becomes especially pronounced as the complexity and scale of the mazes increase,
with the gap between SCoTS and other baselines maximized in the largest (Giant) environments.
Furthermore, in the challenging Explore dataset of the AntMaze environment consisting of noisy
and short-range exploratory trajectories, augmentation via SCoTS significantly improves the planner
ability to generate coherent, long-range, goal-directed plans, clearly highlighting the effectiveness of
SCoTS.

4.4 Offline GCRL with SCoTS-Augmented Data

Although SCoTS is primarily designed for diffusion planners, we additionally evaluate whether
trajectories augmented by SCoTS can enhance the performance of existing offline goal-conditioned
RL (GCRL) algorithms. Specifically, we retrain widely used offline GCRL algorithms, including
GCIQL (Kostrikov et al., [2022), CRL (Eysenbach et al., 2022), and HIQL (Park et al., 2023), on
the SCoTS-augmented dataset. All hyperparameters remain identical to their original implementa-
tions. Additionally, we compare our approach with SynthER (Lu et al.,|2023), which employs an



Table 2: Performance enhancement of offline GCRL algorithms with SCoTS-augmented dataset.
Results are averaged over 5 seeds, each with 50 episodes per task. Standard deviations are indicated
by =+ sign.

GCIQL CRL HIQL
Env Type Size -
Original SynthER SCoTS Original SynthER SCoTS Original SynthER SCoTS
Medium 21 +9 30 +3 79 +1 0+1 0 +o 46 +2 74 +6 77 +a 82 +4
PointMaze Stitch Large 31 +2 35 +4 26 +2 0 +o0 0 +o 39 +2 13 +6 16 +3 67 +1
Giant 0 =o 0 +o0 0 +o 0 +o0 0 +o 18 +2 0 +o 0 +o 27 +2
Medium 29 +6 31 +3 35 42 53 +6 48 +3 65 +3 94 +1 91 +2 94 +1
Stitch  Large 7 <+2 3 +4 7 +1 11 +2 12 +2 19 +1 67 +5 65 +3 91 +2
AntMaze Giant 0 =o 0 +o0 0 +o 0 +o0 0 +o 241 2 +2 0 +o0 55 +5
Explore Medium 13 +2 12 +3 18 +3 3 +2 3+1 15 +3 37 +10 45 +8 94 +1
P Large 00 0 %0 00 00 241 1941 445 12 +3 77 2
Average 12.6 13.9 20.7 8.4 8.1 27.9 36.4 38.3 734

unconditional diffusion model for transition-level data augmentation. Results summarized in Table 2]
clearly demonstrate that SCoTS-generated trajectories consistently outperform SynthER and methods
trained solely on the original offline datasets, significantly boosting performance across all tested
algorithms. This indicates that augmenting data at the trajectory-level with SCoTS, which explicitly
considers long-term dynamics and diversity, provides more effective supervision for learning robust
trajectory stitching and long-horizon planning capabilities.

4.5 Ablation Studies
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Figure 5: Ablation study on low-level Figure 6: Dynamic MSE comparison at stitch-
controller horizon. Success rates in the ing points. Histograms showing the distribu-
AntMaze-Giant-Stitch environment compar- tions of Dynamic MSE at trajectory stitching
ing SCoTS against Compositional Diffuser (CD)  points in the AntMaze-Giant-Stitch environ-
(Luo et al.,|2025), across various low-level con-  ment, comparing results with and without the
troller horizon lengths. diffusion-based stitching refinement step.

Ablation study on low-level controller horizon. We investigate how the performance of our
approach (SCoTS) is influenced by varying the horizon length of the low-level controller in the
AntMaze-Giant-Stitch environment. As shown in Figure[5} SCoTS achieves consistently strong
performance across different horizon lengths H € {5, 10, 15, 20, 25}, outperforming the Composi-
tional Diffuser (CD) (Luo et al.l 2025). These results demonstrate that the diffusion planner trained
with SCoTS generates highly feasible subgoals, maintaining robustness and effectiveness regardless
of the chosen low-level execution horizon.

Effectiveness of diffusion-based stitching refinement. To further illustrate the effectiveness of
the diffusion-based stitching refinement step in our SCoTS framework, we quantitatively evaluate
its impact on dynamic consistency at stitching points. Specifically, we compute the Dynamic Mean
Squared Error (Dynamic MSE) (Lu et al.,[2023), defined as:

Dynamic MSE = ||f*(s,a) — s'||3,



which measures how closely the generated transitions adhere to the true environment dynamics f*.
Figure [6] compares the distribution of Dynamic MSE at stitching points before and after applying
refinement on a logarithmic scale. Results clearly show that diffusion-based refinement substantially
reduces dynamic inconsistencies, highlighting its critical role in generating dynamically feasible and
coherent trajectories.

Ablation SthY on .replanning. We €m- Table 3: Impact of replanning. Success rates on
ploy replanning during a YOI.IOUL enabling  OGBench PointMaze and AntMaze Stitch datasets,
the agent to recover from failures, such as  comparing SCoTS and CD (Luo et al.,[2025). v indi-

when the diffusion planner generates un- cates with replanning; X indicates without replanning.
reachable subgoals for the low-level con-

troller. In practice, we set a replanning in- . CD SCoTS
terval (e.g., every 200 steps); further im- " Size X % X %
plementation details are provided in Ap- Medium 100 20 100 to 100 2o 100 2o
pendix In Table @ we present an abla-  pointMaze Large 1000 10040 10040 100 o
tion study comparing performance with and Giant 5346 6843 89x2 100 xo
without replanning on the PointMaze and Medium 9242 9642 9741 97 41
AntMaze Stitch datasets from OGBench. AntMaze Large 7612 8612 9212 9341
SCoTS consistently outperforms Composi- Giant 2744 6543 84+2 8742
tional Diffuser (CD) (Luo et al., 2025)), the Average 74.7 85.9 93.7 96.2

best-performing baseline, even without re-
planning. Additionally, the performance with and without replanning is similar, highlighting the
reliability and efficacy of the SCoTS-augmented diffusion planner.

5 Related Work

Planning with Diffusion Models. Diffusion probabilistic models (Sohl-Dickstein et al.l 2015}
Ho et al., 2020) have emerged as powerful tools for reinforcement learning, especially in offline
settings. These models iteratively denoise sampled data from noise, effectively learning gradients
of the data distribution (Song & Ermon, 2019) and demonstrating strong capabilities in modeling
complex trajectories. Early work such as Diffuser (Janner et al. 2022) employed unconditional
diffusion models guided by learned value estimators (Dhariwal & Nichol,|2021). Subsequent methods
like Decision Diffuser (Ajay et al.l 2023 and AdaptDiffuser (Liang et al.| 2023) introduced classifier-
free guidance and progressive fine-tuning. Recent advancements further leveraged hierarchical
structures (Chen et al.| 2024c; |Li et al.| [2023)), multi-task conditioning (Ni et al., 2023 He et al.,
2023 |Dong et al.| 2024)), and multi-agent setups (Zhu et al.,2023)). Additionally, diffusion planners
have explored integration with tree search methods (Yoon et al.,|2025alb)), refined trajectory sampling
techniques (Lee et al.,[2023b} [Feng et al., 2024} [Lee & Choi} [2025), and investigated critical design
choices to improve robustness (Lu et al.| [2025)). Despite these advances, diffusion planners still
fundamentally depend on the quality and diversity of the offline training datasets, limiting their
ability to generate coherent and feasible long-horizon plans beyond their training distribution. Recent
approaches such as Generative Skill Chaining (GSC) (Mishra et al.l [2023) and Compositional
Diffuser (Luo et al.,|2025) address this by composing short segments at test time into long-horizon
trajectories. Our work presents an orthogonal solution by directly augmenting the offline dataset itself,
significantly enhancing the capability of diffusion planners to generalize to diverse and substantially
longer trajectories.

Data Augmentation for RL. Data augmentation is a recognized strategy for improving sample
efficiency and generalization in reinforcement learning (RL). In pixel-based RL, techniques like
random image transformations (e.g., cropping, translation) have proven effective in works such
as CURL (Laskin et al., 2020b), RAD (Laskin et al., [2020a)), and DrQ (Yarats et al., [2021). For
state-based observations, methods like S4RL (Sinha et al., 2022) and AWM (Ball et al.| 2021) often
introduce perturbations to states or learned dynamics models to enhance robustness. Recent advances
in generative models have enabled trajectory-level augmentation methods, either at the transition
level (Lu et al.,[2023} [Wang et al.|[2024) or the full trajectory level (He et al., [2023; Jackson et al.|
2024; Lee et al.,[2024)). For instance, MTDiff-S (He et al.| 2023) generates synthetic trajectories for
multi-task scenarios, while Policy-Guided Diffusion (PGD) (Jackson et al.,[2024) and GTA (Lee et al.|
2024) employ generative models to produce high-reward trajectories guided by policies or returns.



DiffStitch (L1 et al.|[2024) further systematically connects trajectories based on extrinsic rewards, yet
these methods typically require explicit reward signals and are limited to generating short-horizon
trajectories. In contrast, our proposed SCoTS method operates in a reward-free manner, systematically
synthesizing long-horizon, diverse, and dynamically consistent trajectories to significantly enhance
offline datasets, thereby facilitating the generation of feasible plans in downstream tasks requiring
extended horizon reasoning.

Temporal Distance in RL. Temporal distance has been widely adopted as a structural inductive
bias in various reinforcement learning (RL) paradigms, including imitation learning (Sermanet
et al.l 2018])), unsupervised skill discovery (Hartikainen et al., [2019; [Park et al.l |2024bla), goal-
conditioned RL (Durugkar et al., 2021; |[Eysenbach et all [2022; Wang et al., 2023} Bae et al.|
2024)), and curriculum learning (Zhang et al., [2020; [Kim et al., |2023). Recent methods such as
METRA (Park et al., 2024b), QRL (Wang et al.,|2023), HILP (Park et al.,|2024a), and TLDR (Bae
et al., [2024)) particularly focus on learning temporal distance-preserving representations to facilitate
diverse skill discovery or efficient goal-reaching behaviors. Distinct from prior methods, our SCoTS
framework explicitly leverages temporal distance-preserving representations to identify temporally
viable trajectory segments for stitching. This allows systematic synthesis of extended, diverse,
and dynamically consistent trajectories, significantly augmenting offline datasets and improving
long-horizon generalization for diffusion-based planners.

6 Conclusion

In this work, we introduced State-Covering Trajectory Stitching (SCoTS), a novel reward-free trajec-
tory augmentation approach designed to enhance the performance and generalization capabilities
of diffusion planners. By leveraging temporal distance-preserving embeddings, SCoTS iteratively
stitches together short trajectory segments, systematically extending the diversity and horizon of
offline data. Empirical results across challenging benchmarks demonstrated that SCoTS-generated tra-
jectories significantly improve the ability of diffusion planners to perform long-horizon planning and
generalize to novel tasks. Furthermore, we showed that our augmented dataset notably enhances the
performance of widely used offline goal-conditioned reinforcement learning algorithms, highlighting
the broad utility of our approach.

Limitations. While SCoTS achieves strong empirical performance, it exhibits certain limita-
tions. First, generating augmented trajectories through iterative stitching and diffusion-based re-
finement introduces significant computational overhead, especially due to the additional training of
the diffusion-based stitcher model and the trajectory augmentation process. Second, our temporal
distance-preserving embeddings do not capture the asymmetric temporal distances between states,
potentially limiting their effectiveness in highly asymmetric or disconnected Markov Decision Pro-
cesses (MDPs), such as object manipulation tasks involving irreversible actions or environments
containing isolated regions with sparse connectivity.

Impact Statement. This paper advances the field of diffusion-based planning by introducing a novel
trajectory augmentation method, enhancing long-horizon reasoning capabilities in reinforcement
learning. While we do not identify direct negative societal impacts stemming from this research,
practitioners are encouraged to carefully assess real-world implications, particularly regarding safety
and reliability, prior to deploying this method in practical scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions and scope of
our approach, supported by Sections [3]and ]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations regarding computational cost and assumptions in the temporal
embeddings are discussed explicitly in the Conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical proofs or results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details, including dataset and implementation specifics, are
provided in Sections ff] and Appendix [B] Our source code to replicate the results is also
included in the supplemental materials.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide source code in the supplemental materials to reproduce augmented
data and replicate all experimental results reported in the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed implementation details, including hyperparameters, are fully provided
in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results are presented with standard deviations computed over 5 random seeds
as detailed in Tables[[land

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources, including types of GPUs and execution times, are detailed
in Appendix B

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research complies fully with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed explicitly in the Conclusion section of the paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no risk of misuse as it focuses purely on offline reinforcement
learning benchmarks and controlled environments.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We clearly cite and reference the datasets used, such as OGBench.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce new datasets or other assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects or IRB considerations.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20


paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This research does not use large language models as part of its methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Datasets

We evaluate our method on the OGBench Table 4: Dataset specifications.
benchmark (Park et al., 2025ﬂ Since our TR
primary goal is to assess trajectory stitching Env Type  Size  #Transitions #Episodes "y,
capability and long-horizon reasoning, we _ _ Medium M 5,000 200
. ye . PointMaze Stitch Large M 5,000 200
specifically utilize the Stitch and Explore Giant M 5,000 200
datasets. As shown in Figure[7] the Stitch Medium M 5,000 200
dataset is explicitly designed to challenge  , impe 0 e iy 2000 fot
trajectory stitching ability, comprising short, Explore Medimm M 10,000 500

goal-reaching trajectories limited to a maxi- Large M 10000 500

mum length of four cell units. Consequently, agents must effectively stitch together multiple short
segments (up to eight) to successfully complete long-horizon tasks. In contrast, the Explore dataset
is designed to test navigation skills learned from extensive yet low-quality trajectories. These trajec-
tories are generated by commanding a low-level policy with random movement directions re-sampled
every ten steps, along with significant action noise. Each demonstration trajectory typically spans
only two to three blocks, resulting in noisy and clustered paths that pose additional challenges for
evaluating the ability to learn effective policies from highly suboptimal data.

®
® ®
=1
[S]

(a) PointMaze-Medium-Stitch (b) PointMaze-Large-Stitch (c)PointMaze-Giant-Stitch

(g) AntMaze-Medium-Explore (h) AntMaze-Large-Explore

Figure 7: Visualization of trajectories from OGBench datasets. Each sub-figure illustrates example
trajectories from different combinations of environments and datasets used in our experiments.

B Implementation Details

Network architecture. We utilize DiT1D (Peebles & Xiel [2023)) as the neural network backbone
for both the diffusion planner and the stitcher, due to its large receptive field and effectiveness in
modeling trajectory-level dependencies. Following prior studies (Dong et al., 2023; Lu et al., 2025),
we employ a DiT1D architecture with a hidden dimension of 256, a head dimension of 32, and a total
of 8 DiT blocks consistently across all environments.

"https://github.com/seohongpark/ogbench
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Table 5: Hyperparameters for SCoTS.

Component Hyperparameter

Value

Tuning Choices

SCoTS: Temporal Distance-Preserving Embedding (¢)

Learning Rate
Latent Dimension
Batch Size
Training Steps
Network Backbone
MLP Dimensions
Expectile (¢ for £7)

3x 1074

32

1024
1,000,000
MLP
(512,512, 512)
0.95

SCoTS: Inverse Dynamics Model (for actions in Dy,,)

Network Backbone MLP -

MLP Dimensions (256, 256, 256) -

Training Steps 200,000 -
SCoTS: Stitching Process Parameters

Top-k Candidates (Search) 10 -

Kdensity (Novelty Score) 30 -

Novelty Weight (3) 2.0 -

Augmented Dataset Size
Niiten (Stitches per Traj.)
Ny, (Generated Traj.)

~5M transitions
Task-dependent (e.g., 40)
Task-dependent (e.g., 5,000)

SCoTS: Diffusion-based Stitcher (pg)

Network Backbone DiT1D -
Learning Rate 2x 1074 -
Weight Decay 1x107° -
Batch Size 64 -
Training Steps 1,000,000 -
Solver DDIM -
Sampling Steps (DDIM) 20 -
Horizon (H stitcher) 26 -
Hierarchical Diffusion Planner (HD)
Network Backbone DiT1D -
Learning Rate 2x 107 -
Weight Decay 1x107° -
Batch Size 64 -
Training Steps 1,000,000 -
Solver DDIM -
Sampling Steps (DDIM) 20 -

Plan Horizon (on original data)
Plan Horizon (on Dyy,)
Temporal Jump

101 (Stitch), 401 (Explore)
501 (M/L), 1001 (G/Explore)
26

Execution Parameters
Low-level Controller Horizon
Replanning Interval

Tuned
Tuned

{5,10,15,20, 25}

{50,100, 200}
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Details of the low-level controller. A key challenge in diffusion-based planning is balancing global
trajectory coherence with effective low-level control in high-dimensional state-action spaces (Chen
et al., 2024alb; [Yoon et al., [2025a). Previous approaches, such as PlanDQ (Chen et al.| 2024b)
and MCTD (Yoon et al., |2025a)), address this issue by integrating high-level diffusion planners
with separately trained low-level controllers. Similarly, we adopt a hierarchical strategy, where the
diffusion planner generates plans based primarily on compact, lower-dimensional state representations
(e.g., positions of the agent itself), delegating the fine-grained, low-level action execution to a
dedicated low-level controller. In our experiments, we specifically employ GCIQL (Kostrikov
et al., [2022) as the learned low-level policy in the PointMaze environments and CRL (Eysenbach
et al.| 2022)) in the AntMaze environments. A detailed visualization of generated subgoals and their
corresponding execution rollouts can be seen in Figure[9} Furthermore, an ablation study examining
the impact of the horizon length of the low-level controller is presented in Figure [5]

Implementation details for SCoTS and diffusion planning. In the temporal distance-preserving
search stage of SCoTS, we retrieve the top £ = 10 candidate segments based on their proximity
in the learned latent embedding space during each stitching step. For computing the novelty score,
we utilize a density estimator parameter kgensity = 30 and set the novelty weighting factor 3 = 2.0
consistently across all tested environments. The horizon length for the diffusion-based stitcher is
uniformly set to Hiicher = 26.

To generate the augmented dataset Daug, we perform the stitching procedure Nstitch iterations
per trajectory, creating a total of Ny, trajectories, thus ensuring the augmented dataset comprises
approximately 5 million transitions. Specifically, in the AntMaze-Large-Stitch environment, we
set Ngiiten = 40 and Ny, = 5000.

For configuring the Hierarchical Diffusion (HD) planner (Chen et al.| 2024c), parameters are adapted
according to the properties of the training data. When training on the original Stitch and Explore
datasets, which contain inherently shorter trajectories (as detailed in Table[d] column "Data Episode
Length"), we set the high-level planning horizon to 101 steps for Stitch and 401 steps for Explore,
both with temporal jumps of 26 steps between waypoints. However, when utilizing SCoTS-augmented
datasets that feature longer and more diverse trajectories, we extend this planning horizon to 501
steps for Medium and Large environments, and to 1001 steps for Giant environments, maintaining
the temporal jump of 26 steps. Similarly, for SCoTS-augmented Explore datasets, we also use a
planning horizon of 1001 steps with 26-step jumps.

We apply jumpy denoising with DDIM sampling (Song et al.l [2020) using 20 denoising steps
across all environments. Additionally, we tune the replanning interval from the set {50, 100,200}
steps and tune the horizon for the low-level controller from {5, 10, 15,20, 25}. A full list of the
hyperparameters is reported in Table 3]

Practical implementation of temporal distance-preserving search. Our SCoTS framework relies
on a learned latent space Z where the Lo distance, ||¢(s) — ¢(g)]|2, approximates the optimal
temporal distance d*(s, g) between states (as detailed in Section[3.1). A critical step in SCoTS is
the efficient identification of suitable candidate trajectory segments from a large offline dataset D.
This requires a fast nearest neighbor search mechanism within the learned latent space Z. To achieve
this, we employ an Inverted File (IVF) index from the Faiss library (Douze et al.| 2024), which is
specifically designed for large-scale similarity searches.

The practical implementation of this search mechanism involves several stages. First, we prepare
the data for indexing. This consists of computing the latent embeddings ¢(siy;) for the initial states
sinit Of all trajectories within the offline dataset D. Let d denote the dimensionality of these latent
embeddings. An IVF index is then constructed upon this collection of d-dimensional vectors. The
construction process begins by partitioning the latent vectors into ny clusters using the k-means
algorithm. Each cluster is represented by a centroid c; € {c,..., ¢y, }. Subsequently, each latent
vector ¢(Siy;) in our collection is assigned to its nearest centroid, and for each centroid, an inverted
list is maintained, storing references to the vectors belonging to its cluster.

During the temporal distance-preserving search phase of SCoTS (detailed in Algorithm/[I] line 10),
the latent embedding of the current composed trajectory endpoint, ¢(end(Tcomp)), serves as the query
vector q. To find the k nearest neighbors for q, the IVF index first identifies a limited set of clusters
whose centroids {c; } are closest to the query vector q. The search for neighbors is then confined to
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the latent vectors stored within the inverted lists corresponding to these selected clusters. This targeted
approach significantly prunes the search space compared to an exhaustive search. Furthermore, the
Faiss library provides support for GPU acceleration, which can further expedite this search process
and enable efficient candidate retrieval. Once the k nearest latent embeddings corresponding to initial
states of segments are identified, we retrieve the full original trajectory segments from D to form the
candidate set for the stitching process.

Computational resources and runtimes. All experiments were conducted using a single NVIDIA
A10 GPU. The approximate execution times for each component of our method are as follows:

* Temporal distance-preserving embedding training: 1.5 hours
¢ Inverse dynamics model training: 0.25 hours

* Low-level controller training: 2.5 hours

* Diffusion-based stitcher training: 7 hours

* Trajectory augmentation via SCoTS: 0.5 hours

* Diffusion planner training: 18 hours

These times are per model training instance or data generation run and may vary slightly depending
on the specific environment and dataset characteristics.

C Additional Results

Ablation study on temporal distance-preserving Table 6: Ablation on the temporal distance-
embedding. To isolate the contribution of our preserving embedding. Success rates on
learned latent space, we compare the performance OGBench PointMaze and AntMaze Stitch
of the HD (Chen et al.| 2024¢) planner trained on datasets. X indicates stitching guided by raw
SCoTS-augmented data where the stitching pro- state-space distances (w/o temporal embed-
cess was guided by either our temporal distance- ding), while v indicates guidance from learned
preserving embedding or raw state space. As shown temporal embedding.

in Table[6] temporal distance-preserving represen-
tation is crucial for effective stitching. This is espe- . SCoTS
cially true in high-dimensional environments like Env Size x v
AntMaze, where a small Euclidean distance in the
raw state space (e.g., between two similar joint con-

PointMaze Large 93+0 10040

figurations) does not guarantee reachability. Even Giant 5241 100+
in Pointmaze, where state-space distance is more Large 4541 9341

intuitive, the learned compact latent space provides AntMaze Giant Tio  STio

a better-structured representation for stitching tem-

porally extended trajectories. Average 49.3 950

Ablation study on diffusion-based Table 7: Ablation on diffusion-based stitching refine-
stitching refinement. To demonstrate ment. Success rates on AntMaze Stitch datasets for
the importance of the refinement step, HD (Chen et al}, 2024¢) and HIQL (Park et al 2023).
we compare the performance of both a X indicates training on SCoTS data generated without re-

diffusion planner (HD) and a GCRL al-  finement, while v indicates training on data generated
gorithm (HIQL) trained on SCoTS data  with refinement.

generated with and without the diffusion-
based refinement. The results, summa- . HD HIQL
rized in Table [7] reveal the critical im- Env Size X % X %
portance of this component. Without re-

finement, the connection points between AntMaze Large 85+3 93+1 52+2  9l+o
stitched segments can suffer from large Giant 53+1 87x2 1li2 5545
dynamic inconsistency errors, as illus- Average 690 90.0 315 73.0
trated in Figure [6] This performance
degradation is particularly significant when training GCRL algorithms like HIQL, which are highly
sensitive to the dynamic validity of the training transitions.
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Sensitivity analysis on the novelty weight 5. As illustrated in Figure 3] using only the progress
score (8 = 0), which quantifies the alignment with a latent exploration direction, is effective at
generating long, temporally-extended trajectories with clear directional distinctions. However, relying
solely on this directional guidance can be suboptimal. The learned temporal distance-preserving
embedding ¢ is a powerful but imperfect approximation of the true environment topology. Due to
embedding errors, the geometry of the latent space can be distorted. Consequently, a straight line
between two latent states, ¢(s) and ¢(s’), may not correspond to a feasible path in the underlying
MDP. Therefore, exploratory detours are often necessary to find a valid temporally extended path.
This is precisely where the novelty score becomes critical. It encourages these exploratory detours by
rewarding the selection of segments that lead to less-visited states. This allows the agent to navigate
around the imperfections and distortions in the learned latent space, discovering feasible and often
more effective paths. To demonstrate this complementary effect quantitatively, we conducted an
additional ablation study on 2 OGBench tasks. The table below compares the performance of the
HD planner trained with SCoTS data generated using different novelty weights 3 (5 seeds). The
results, summarized in Table |8 suggest that while directional stitching alone (5 = 0) provides a
notable performance improvement, introducing and balancing it with the novelty score (3 > 0) yields
substantial further gains. This effect is especially pronounced on the more complex Giant task.

Table 8: Sensitivity to novelty weight (.
Env Type Size HD (=0 p=2 p=4 (=8

Large 36+2 87+2 93+1 92+1 8543
Giant 0O+o 6343 87+2 89+2 7443

AntMaze Stitch

Sensitivity analysis on sub-trajectory length /. As shown in Table[9] performance on the Stitch
dataset is relatively robust to the choice of H. However, on the Explore dataset, shorter segments
perform best. We hypothesize this is because the Explore dataset consists of low-quality, noisy
trajectories. Using shorter segments allows SCoTS to be more selective, finding and connecting the
temporally-extended parts of trajectories.

Table 9: Sensitivity to sub-trajectory length 7.
Env Type Size H=26 H=52 H=104

Stitch  Giant 87+2  89+2 8T+2
Explore Large 98+1 93+1 88+2

AntMaze

Sensitivity analysis on the number of retrieved segments K. Table[I0]shows that performance
is robust as long as K is not too small. A very small K limits the diversity of candidate segments,
hindering the effectiveness of our progress and novelty-based selection. While performance is stable
for larger K, we expect an excessively large K could eventually degrade performance by increasing
the chance of retrieving dynamically inconsistent segments.

Table 10: Sensitivity to number of retrieved segments K.
Env Type Size K=3 K=10 K=20

Stitch  Giant 65+3 87+2 89+2
Explore Large 72+2 9841 97+1

AntMaze

Evaluation on dense-reward offline RL benchmarks. While our paper focuses on tasks where
extrinsic rewards are absent, the SCoTS framework is not limited to goal-conditioned tasks. To
demonstrate its applicability to general, dense-reward offline RL, we conducted additional experi-
ments on four standard MuJoCo locomotion benchmarks from D4RL (Kumar et al., [2020), utilizing
suboptimal medium and medium-replay datasets. It is important to clarify that our use of reward-
free refers to the stitching mechanism itself, which is guided by the intrinsic temporal structure of the
data rather than extrinsic task rewards. This allows the core data augmentation to be task-agnostic.

For a fair comparison, we used the same Diffuser architecture and planning horizon (32) as described
in the original paper (Janner et al., 2022). We upsample the original data to 2M samples using
the same SCoTS procedure, with sub-trajectory lengths set to 4. Additionally, to label these new
trajectories with rewards, we additionally trained a reward model, r; = f,,(s¢, a¢), on the original
offline dataset. As shown in Table [IT] training on SCoTS-augmented data consistently improves
the performance of the original Diffuser. Even without architectural or sampling strategy changes,
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by stitching sub-trajectories in a way that is temporally extended and exploratory, SCoTS generates
novel behaviors (e.g., trajectories that travel further) that are not present in the original suboptimal
dataset.

Table 11: Performance on D4RL benchmarks. We report normalized average returns of the Diffuser
and Diffuser trained on SCoTS-augmented data. Results are averaged over 50 planning seeds.

Dataset Diffuser Diffuser + SCoTS (ours)
hopper-medium-v2 74.3+1.4 93.5+1.2
walker2d-medium-v2 79.6+0.6 80.2+0.5
hopper-medium-replay-v2 93.6+0.4 96.7+0.6
walker2d-medium-replay-v2 70.6+1.6 78.5+1.9
Average 79.5 87.2

Evaluation on noisy and partially observable navigation. To evaluate the robustness of SCoTS
on noisy and low-quality data beyond the controlled OGBench settings, we conducted additional
experiments using a mobile robot navigation task in realistic, large-scale environments (a 35m x 39m
corridor and a 50m x 110m building), following the setup from HRL (Lee et al.,[2023a). We simulated
low-quality data by generating short, disconnected segments. Specifically, trajectories were collected
by randomly selecting start and goal locations within short ranges (5m) using HRL (Lee et al.|
2023a). To handle the noisy raw 2D LiDAR measurements (512 rays over 360-degree), we converted
these scans into 64x64 occupancy grid images. These images were then encoded using a pre-trained
(B-VAE (Higgins et al.,2017) into a compact 8-dimensional latent representation, providing structured,
low-dimensional state inputs for the agent. Subsequently, the SCoTS stitching method was applied
to augment this fragmented dataset. The results, shown in Table[I2] clearly indicate that SCoTS
effectively enhances performance, even with highly fragmented and noisy datasets, demonstrating its
robustness and practical applicability to robot navigation tasks.

Table 12: Performance on a mobile robot navigation task. Goal-reaching success rates are reported
over 100 episodes for the HIQL (Park et al., [2023) trained with and without SCoTS augmentation.

Environment HIQL HIQL + SCoTS (ours)
Building (50m x 110m) 277 53+4
Corridor (35m x 39m) 0+o 3145

Visualization of temporal distance-preserving latent representations. We train temporal
distance-preserving latent representations with dimension 32 across all environments. To visu-
alize these learned representations, we apply a ¢-distributed stochastic neighbor embedding (t-SNE)
to project the 32-dimensional latent vectors onto a 2-dimensional plane, as shown in Figure [} Recall
from Equation E] that we parameterize a goal-conditioned value function V' (s, g) following (Park
et al.l [2024a):

Vs, g) = —llo(s) — o(g)ll2, (13)

which approximates the optimal goal-conditioned value function, defined as the maximum possible
return (cumulative sum of rewards) for sparse-reward settings. Specifically, an agent receives a
reward of 0 if the /5 distance between states s and g is within a small threshold &4, and —1 otherwise.
The embedding function ¢ is trained using a temporal-difference objective inspired by implicit
Q-learning (Kostrikov et al.,|2022) on the offline dataset D. As illustrated in Figure (8] the learned
representations effectively capture the temporal proximity between states, resulting in latent spaces
where states that are temporally close in the environment are also clustered closely in the embedding
space.

Visualization of rollout execution. We visualize a generated plan by the diffusion plan-
ner trained on SCoTS-augmented data, along with its corresponding rollout execution in the
AntMaze-Giant-Stitch environment, as illustrated in Figure[9] The initial image (top-left) shows
the overall planned trajectory generated by the diffusion planner, with subgoals marked by green
spheres. Subsequent images provide sequential snapshots from the rollout execution, demonstrating
the agent actively pursuing and reaching these subgoals. This visualization highlights how effectively
the generated high-level plan guides the low-level controller during task execution.
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Figure 8: Visualization of learned temporal distance-preserving latent representations. The left-
most column shows original states from maze environments of varying sizes (Medium, Large, Giant).
Subsequent columns illustrate t-SNE projections of latent embeddings ¢(s) for corresponding OG-
Bench datasets, maintaining the same color scheme for consistency. This visualization demonstrates
how spatial proximity and structure in the original state space are preserved and reflected in the
learned latent representations.

Visualization of trajectories generated by SCoTS. In Figure and [12] we present rep-
resentative examples of trajectories synthesized by our SCoTS framework across all considered
environments and dataset types. Compared to the original trajectories provided in Figure [/ the
SCoTS-generated trajectories clearly demonstrate extended coverage, illustrating the effectiveness of
our method in augmenting the original offline datasets.

D Baseline Performance Sources

Performance scores reported for offline goal-conditioned reinforcement learning (GCRL) methods,
including Goal-Conditioned Implicit Q-Learning (GCIQL) (Kostrikov et al.l 2022), Quasimetric RL
(QRL) (Wang et al.,[2023), Contrastive RL (CRL) (Eysenbach et al., [2022), and Hierarchical Implicit
Q-Learning (HIQL) (Park et al., [2023)), are sourced from Table 2 in Park et al.|(2025). Scores for
diffusion-based generative planning methods explicitly designed for long-horizon generalization,
including Generative Skill Chaining (GSC) (Mishra et al.,|2023)) and Compositional Diffuser (CD)
(Luo et al.,[2025), are sourced from Tables 1 and 2 in|Luo et al. (2025).
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Figure 9: Visualization of diffusion Planner rollout execution. The top left image shows the
planned trajectory generated by the diffusion planner, with subgoals marked by green spheres.
Subsequent images sequentially illustrate the agent progressing toward these subgoals in the
AntMaze-Giant-Stitch environment, demonstrating effective guidance provided by the generated
plan.
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Figure 10: SCoTS-augmented trajectories for PointMaze Stitch datasets. For each PointMaze
Stitch dataset, the leftmost column shows trajectories from the original OGBench dataset. The
subsequent columns are examples of SCoTS-generated trajectories.
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Figure 11: SCoTS-augmented trajectories for AntMaze Stitch datasets. For each AntMaze Stitch
dataset, the leftmost column shows trajectories from the original OGBench dataset. The subsequent
columns are examples of SCoTS-generated trajectories.
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Figure 12: SCoTS-augmented trajectories for AntMaze Explore datasets. For each AntMaze
Explore dataset, the leftmost column shows trajectories from the original OGBench dataset. The
subsequent columns are examples of SCoTS-generated trajectories.
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