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ABSTRACT

Adaptive loss balancing algorithms play a crucial role in improving the perfor-
mance of Physics-Informed Neural Networks (PINNs) by effectively managing
the weights assigned to different loss components. Most notably, Wang et al.
(2022a) introduced Causal Physics-Informed Neural Networks (Causal PINNs),
which achieve superior performance by simply reformulating the loss function
based on the causal structure that emerges from time dependency. However, de-
spite their empirical success, a solid theoretical analysis for the effectiveness of
Causal PINNs has not received adequate attention. This paper addresses this gap
by providing a theoretical rationale for Causal PINNs through the Belief Propa-
gation (BP) algorithm, which is commonly used for causal inference. In addition,
motivated by this analysis, we propose a Message Passing PINNs (MP-PINNs),
a novel adaptive weighting algorithm. Through extensive numerical experiments,
we demonstrate that the proposed MP-PINNs significantly outperform existing
adaptive weighting methods, exhibiting superior performance in solving complex
PDEs. Our findings highlight the potential of MP-PINNs as a powerful tool to
enhance both the accuracy and efficiency of PINNs.

1 INTRODUCTION

Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving
scientific and engineering problems by integrating physical laws directly into the learning process.
These networks leverage the principles of physics to guide the training of neural networks, allowing
them to learn not only from data but also from the underlying governing equations of the phenomena
being modeled. This innovative approach has been successfully applied to various domains, includ-
ing fluid dynamics, structural mechanics, and heat transfer, demonstrating significant improvements
in accuracy and generalization capabilities compared to traditional data-driven methods Raissi et al.
(2019); Karniadakis et al. (2021).

Adaptive loss balancing algorithms are essential for enhancing the performance of PINNs by man-
aging the weights assigned to different loss components . These algorithms help mitigate potential
imbalances that may arise during the training process, thereby improving the overall efficiency of
data-driven learning that incorporates physical principles. PINNs have demonstrated considerable
promise in addressing a wide range of scientific and engineering challenges, making them valuable
tools in these fields.

Causal Physics-Informed Neural Networks (Causal PINNs) represent a significant advancement in
this area, achieving superior performance by explicitly reformulating the loss function to respect
causality Wang et al. (2022a). However, despite their empirical success, a solid theoretical justifi-
cation for the effectiveness of Causal PINNs has been lacking. The absence of a robust theoretical
foundation may limit the applicability and extension of these approaches, posing a critical barrier to
the advancement of PINNs.

The Belief Propagation (BP) algorithm is a message-passing (MP) algorithm used for causal infer-
ence. For instance, in certain scientific fields, if causality is established between instances, BP can
be utilized to infer their exact causal relationships Chang et al. (2014). Also the mechanism of the
MP algorithm is already widely applied in machine learning and deep learning areas (Scarselli et al.,
2008; Gilmer et al., 2017; 2020). However, there have been no attempts to connect this to adaptive
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weighting algorithms for PINNs. We note that Causal PINNs only consider time-dependency, al-
though spatial dependency may also influence the calculate of the residual loss. Furthermore, Daw
et al. (2022) discussed how information from the initial and boundary conditions can propagate to
interior collocation points. In this context, the BP algorithm may suggests a method for analyzing
the causal relationships between each collocation point.

This paper addresses the gap between the performance of Causal PINNs and the lack of analyt-
ical understanding by providing a theoretical reformulation of their algorithms based on the BP
algorithm. Furthermore, building on this analysis, we propose a novel adaptive weighting algo-
rithm, termed Message Passing PINNs (MP-PINNs). Through extensive numerical experiments,
we demonstrate that the proposed MP-PINNs significantly outperform existing adaptive weighting
methods, exhibiting superior performance in solving complex partial differential equations (PDEs).
Our findings highlight the potential of MP-PINNs as a powerful tool for enhancing both the accuracy
and efficiency of PINNs.

The main contributions of this work can be summarized as follows:

• We reframe Causal PINNs from the perspective of the BP algorithm

• Inspired by this analysis, we propose a novel adaptive weighting algorithm termed
Message-Passing PINNs (MP-PINNs)

• We demonstrate, through numerical experiments, that the proposed MP-PINNs signifi-
cantly outperform existing adaptive weighting algorithms.

1.1 RELATED WORKS

Failure modes of PINNs Despite the applicability of PINNs for solving various PDEs, there are
still various problems to solve. Escepcially, (Krishnapriyan et al., 2021) presented a possible failure
mode of PINN, describing the challenging loss landscape that can appear in time-dependent PDEs.

Adaptive weights of PINNs One strategy to improve PINN training is the use of adaptive weighting
methods. For example, McClenny & Braga-Neto (2020) introduced a self-adaptive approach based
on a soft attention mechanism, where weights are trained adversarially. Son et al. (2023) framed
PINNs as a constrained optimization problem and applied the augmented Lagrangian method to de-
fine an unconstrained minimax problem. By solving this using gradient descent and ascent, they
demonstrated the effectiveness of a loss-balancing algorithm. Additionally, Wang et al. (2020) pro-
posed a balancing method that directly influences gradient statistics, while Wang et al. (2022b)
explored the Neural Tangent Kernel of PINNs to further enhance training.

Causal PINNs To address the failure modes of PINNs, (Wang et al., 2022a; Penwarden et al., 2023)
defined this issue as the failure to deliver accurate information to collocation points that are distant
from the initial points. Furthermore, they employed weighted loss to train PINNs, using namely
causal weights. However this approach only considers the causality of time dependency rather than
spatial dependency.

2 BACKGROUND

2.1 CAUSAL WEIGHTS FOR TRAINING PINNS

The causal PINN is based on the causal weights which is defined on the time-dependent PDEs
(Wang et al., 2022a). For details, they consider the specific form of PDE given as

R[u](t, x) := ∂tu(t, x) +N [u](t, x) = 0, t ∈ [0, T ), x ∈ Ω

subject to the initial and boundary conditions

I[u](0, x) = 0, x ∈ Ω,

B[u](t, x) = 0, t ∈ [0, T ), x ∈ ∂Ω

2
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where N [·] is a linear or nonlinear differential operator, B[·] is a boundary operator and u is a
unknown solution. To solve this, PINN loss generally defined as follows:

L(θ) = λicLic(θ) + λbcLbc(θ) + Lr(θ), (1)

Lic(θ) =
1

Nic

Nic∑
i=1

|I[uθ](0, xiic)|2, (2)

Lbc(θ) =
1

Nbc

Nbc∑
i=1

|B[uθ](tibc, xibc)|2 (3)

and the residual loss Lr of general equation is defined as the weighted sum over fixed time grids
t1, . . . , tNt

dividing [0, T ), using causal weights given as follows:

Lr(θ) =

Nt∑
i=1

wi(θ)Lr(ti; θ),

Lr(t; θ) =
1

Nx

Nx∑
j=1

|R[uθ](t, xj)|2,

wi(θ) = exp(−ϵ
i−1∑
k=1

Lr(tk; θ))

where causality parameter ϵ determines the steepness of the weight wi, which is controlled through
an annealing strategy involving an increasing sequence of ϵ values.

2.2 BELIEF-PROPAGATION ALGORITHM

In this section, we introduce the Belief Propagation (BP) with sum–product message passing which
is used to infer a marginal probability for each single random variables over a given Markov random
field. More specifically, we only consider the case that every potential function ψ related to each
factor of the random field has two input variables, i.e. the joint probability has the form

P(Xi = xi,∀i ∈ V ) =
∏

{i,j}∈E

ψi,j(xi, xj).

with random variables Xi : Si → R corresponds to each nodes i of given factor graph G =
(V,E, ψ). The BP algorithm for marginal inference is consisting of two stages: (1) message-passing
process MP and (2) normalization process NM . Through these stages, the message µi→j :=

µ{i,j}→j : Sj → [0, 1] from factor {i, j} ∈ E to node j ∈ V is calculated iteratively, i.e. µ(τ+1) :=

{µ(τ+1)
i→j }{i,j}∈E = (NM ◦MP )(µ(τ)) for each iteration step τ . First, the massage-passing process

is as follows:
MP (µ(τ))i→j(xj) =

∑
xi∈Si

ψi,j(xi, xj)
∏

k∈Ni\{j}

µ
(τ)
k→i(xi), (4)

for each {i, j} ∈ E, xj ∈ Sj and iteration τ where Nj denotes the neighborhood of j, i.e. Nj :=
{v ∈ V : {j, v} ∈ E}. Next, for the normalization process, All messages are normalized in L1
sense, i.e.

µ
(τ+1)
i→j (xj) := NM(MP (µ(τ)))i→j =

MP (µ(τ))i→j(xj)∑
x∈Sj

MP (µ(τ))i→j(x)
for each xj ∈ Sj .

Note that when G has no loops, then the BP algorithm naturally requires only a single iteration.
However, if there’s a loop, then it conditionally converges. After τ iterations, the marginal inference
for P(Xi = xi) for each Xi is conducted by calculating belief b(τ)i : Si → [0, 1] for each node i as

P(Xi = xi) ≈ b
(τ)
i (xi) =

∏
j∈N(i) µ

(τ)
j→i(xi)∑

x∈Si

∏
j∈N(i) µ

(τ)
j→i(x)

for each xi ∈ Sj .
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3 THE CONNECTION BETWEEN THE BP ALGORITHM AND CAUSAL
WEIGHTS

In this section, we will demonstrate how the causal weights can be connected to the causal inference
over a Markov random field and derived using the BP algorithm. In the formulation of 2.1, the
factor graph G = (V,E, ψ) is defined as:

V = {vi : i = 1, . . . , Nt, }
E = {ei := (vi, vi+1) : i = 1, . . . , Nt − 1}

based on the collocation points (ti, xj) for training PINN uθ(t, x) with trainable parameter θ. Fur-
thermore, for each random variable Xi := Xvi : Si → R related to the node v ∈ V , the sample
space Si is defined as {−1, 1}, and the joint probability of {Xi}Nt

i=1 is defined as

P(Xi = xi, i = 1, . . . , Nt; θ) =

Nt−1∏
i=1

ψei(xi, xi+1; θ)

where the potential function ψei : Si × Si+1 → [0,∞) is defined as

ψei(xi, xi+1; θ) =


exp(−ϵLr(ti; θ)), for xi = 1, xi+1 = 1,

1− exp(−ϵLr(ti; θ)), for xi = 1, xi+1 = −1,

0, for xi = −1, xi+1 = 1,

1, for xi = −1, xi+1 = −1

for each i = 1, . . . , Nt − 1.

To find the marginal P(Xi) for each Xi, the message-passing process of BP algorithm runs as
follows:

µi→i+1(xi+1) =

{
1 · µi−1→i(−1) + (1− exp(−ϵLr(ti; θ))) · µi−1→i(1), (xi+1 = −1)

0 · µi−1→i(−1) + exp(−ϵLr(ti; θ)) · µi−1→i(1) (xi+1 = 1)

for i = 2, . . . Nt − 1 and

µi+1→i(xi) =

{
1 · µi+2→i+1(−1) + 0 · µi+2→i+1(1), (xi = −1)

(1− exp(−ϵLr(ti; θ))) · µi+2→i+1(−1) + exp(−ϵLr(ti; θ)) · µi+2→i+1(1) (xi = 1)

for i = 1, . . . Nt − 2 where the boundary conditions are given as
µ1→2(1) = exp(−ϵLr(t1; θ)), µNt→Nt−1(1) = 0.5.

Finally, we obtain the marginal

P(Xi = 1) = bi(1) = µi+1→i(1) · µi−1→i(1) = exp(−ϵ
i−1∑
j=1

Lr(tj ; θ)),

which is equivalent to the definition of causal weights.

4 MESSAGE-PASSING WEIGHTS FOR TRAINING PINNS FOR
TIME-DEPENDENT PDES

The remaining problem is how to build the weights adapting the connection in Section 3. In fact, the
normalizing process of BP algorithm was not displayed in Section 3, since they are already naturally
normalized in L1 sense. Now, we shall define the weights for training PINNs, namely Message-
Passing weights (MP weights), motivated by Section 3, which resemble the message-passing process
of BP algorithm without the normalization process. For details, we first consider the domain Ω =

[0, T ) ×
∏d

k=1 Ik ⊂ Rd+1 whose boundary consist of the Cartesian products of closed intervals.
Next, we define the undirected graph G = (V,E) whose nodes are the set of uniformly spaced
collocation points of Ω with a gap size of δ. Then we can define G as follows:

V = {(tj , xi1 , . . . , xid) : j = 1, . . . , Nt, ik = 1, . . . , Nk, k = 1, . . . , d}

E = {(v, w) ∈ V 2 : ||v, w||L1 = δ} \ ({0} ×
d∏

k=1

Ik)
2

4
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where || · ||L1 is an L1 norm. Then Motivated from the Eq. 4 and the connection in 3, we can
define the message-passing process on this graph, with the customized messages µ(τ)

y→x(θ) ∈ [0, 1]
calculated for internal iteration steps τ = 1, . . . , D in each training loop, as:

µ(τ+1)
y→x (θ) = exp(−ϵN [uθ](y)

2)
∏

(y,z)∈E,z ̸=x

µ(τ)
z→y(θ), ∀(x, y) ∈ E.

Especially, for two-dimensional time dependent case with Ω = [0, T )× I , the messages are defined
as:
µ
(τ)
(t,x)→(t−δ,x)(θ) = 1,

µ
(τ+1)
(t,x)→(t+δ,x)(θ) = exp(−ϵN [uθ](t, x)

2)µ
(τ)
(t−δ,x)→(t,x)(θ)µ

(τ)
(t,x−δ)→(t,x)(θ)µ

(τ)
(t,x+δ)→(t,x)(θ),

µ
(τ+1)
(t,x)→(t,x−δ)(θ) = exp(−ϵN [uθ](t, x)

2)µ
(τ)
(t−δ,x)→(t,x)(θ)µ

(τ)
(t,x−δ)→(t,x)(θ),

µ
(τ+1)
(t,x)→(t,x+δ)(θ) = exp(−ϵN [uθ](t, x)

2)µ
(τ)
(t−δ,x)→(t,x)(θ)µ

(τ)
(t,x+δ)→(t,x)(θ)

whenever t− δ, x− δ and x+ δ are valid coordinates of points in V with fixed conditions
µ(τ)
v→w(θ) = 1, ∀v ∈ V ∩ ∂Ω,∀w ∈ V \ Ω

for each inernal iteration τ = 1, . . . , D and
µ(1)
v→w(θ) = 1, ∀v, w ∈ V.

Finally, we define the MP-weights

wMP(x, θ) :=
∏

(x,y)∈E

µ(D)
y→x(θ), ∀x ∈ V

which is used to define the new residual loss LMP
r (θ) in Eq. 1 as

LMP
r (θ) :=

∑
x∈V

wMP(x; θ)|R[u](x)|2, ∀x ∈ V.

To facilitate the better understanding, we visualized the evolution of MP weights during the learning
process for viscous Burgers equation in the Figure 1.

In practice, the hyperparameter D was set to 20. Additionally, adjusting causality has a crucial
impact on the training and validation of PINNs. If the causality is too small, the differences in
the residuals have less effect; if it is too large, convergence of the weights during the training may
not be achieved. To measure the efficiency and effectiveness of loss balancing ability simultane-
ously, we applied the following process for determining causality: the causality parameter ϵ for each
Causal PINN and MP-PINN was initially set to a sufficiently large value (practically set to 1000)
and decreased exponentially by a factor of 1/10. This process was stopped and the value of ϵ was
determined when the weights fully converged to 1, i.e. ||w − 1|| < δ = 0.1, within the training
epochs.

5 EXPERIMENTS

To demonstrate the performance of MP-weights, we aggregate the various time-dependent PDE
examples as a benchmark from (Krishnapriyan et al., 2021; Wang et al., 2022a; Son et al., 2023),
which are Convection, Allen-Cahn, viscous Burgers, and Klein-Gordon equation. Also, to verify the
effectiveness of MP-PINN, we compared it with PINN, Causal PINN and AL-PINN that how MP-
PINN overcome these methods and analyze the superiority over other adaptive weighting alogrithms.
The results are displayed in Table 1. Notably, We aim to show that the superiority of MP-PINN is due
to its causal inference capabilities and present the following two experimental settings. First, each
PDE has Dirichlet boundary conditions. This is because, from the perspective of supervised learning
in PINNs, the initial and boundary conditions serve as true labels, which transmit information to the
interior collocation points. Second, we propose early stopping based on loss without any learning
scheduler during optimization. Since adaptive weighting algorithms adjust weights according to
the residual magnitudes from the governing equation, initial, and boundary conditions, they can
effectively guide the learning process. This suggests that these algorithms have an inherent ability
to self-regulate learning. To directly compare this capability, we performed full-batch training using
the Adam optimizer for 300,000 epochs. Finally, we used uniformly spaced collocation points, as
well as initial and boundary points, for the training and test datasets.
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Figure 1: The process of increasing MP weights for viscous Burgers equation displayed with squared
residuals (First row) and MP weight value (Second row) for each collocation points.

Table 1: Comparison of Relative L2 errors.
Experiments PINNs Causal PINNs AL-PINNs MP-PINNs

Convection 7.91e-03 2.34e-03 7.93e-03 2.51e-03

Allen-Cahn 5.24e-01 6.85e-02 6.45e-01 4.34e-02

viscous Burgers 3.18e-01 1.47e-02 4.29e-01 1.16e-02

Klein-Gordon 4.18e-03 2.43e-02 3.28e-03 1.26e-03

5.1 CONVECTION EQUATION

We first consider the Convection equation given as

∂tu+ β∂xu = 0, for (t, x) ∈ [0, 1)× [0, 2π],

u(0, x) = sin(x), for x ∈ [0, 2π],

u(t, x) = sin(−βt), for (t, x) ∈ [0, 1)× {0, 2π}

with β = 30. Figure 2 illustrates the absolute error between the true solution and the approximated
solutions of each PINN. Both Causal PINN and MP-PINN achieved significantly better approxima-
tions compared to other PINNs. This demonstrates that MP-PINN has also successfully learned the
time dependency in this problem.

Figure 2: The true solution for Convection equation and comparison of absolute error map |uθ − u|
for each PINNs. In the error map, all values exceeding 0.02 were clipped to a constant.

6
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5.2 ALLEN-CAHN EQUATION

Next, we consider the Allen-Cahn equation given as

∂tu+ β∂2xu+ 5u(u2 − 1) = 0, for (t, x) ∈ [0, 1)× [−1, 1],

u(0, x) = x2 cos(πx), for x ∈ [−1, 1],

u(t, x) = −1, for (t, x) ∈ [0, 1)× {−1, 1}

with β = 10−4. Figure 3 illustrates that both Causal PINN and MP-PINN outperform other PINNs.
However, this example demonstrates that spatial causality is also important for training PDE. Figure
4 shows the cross-section of the Allen-Cahn equation where the mean absolute error is the largest
for each weight across all time grids. As demonstrated, while Causal PINN fails to preserve spatial
causality, MP-PINN maintains it even in the worst-case scenario. This highlights that MP-PINN
respects the spatial causality of Allen-Cahn equation.

Figure 3: The true solution for Allen-Cahn equation and comparison of absolute error map |uθ − u|
for each PINNs. In the error map, all values exceeding 1 were clipped to a constant.

Figure 4: The comparison between the true solution (red dashed line) and the approximated solution
(blue dotted line) from each PINN for the Allen-Cahn equation is shown at the time where the mean
absolute error of the cross-section is the largest. The selected time points are t = 0.0 for Causal
PINN and t = 1.0 for the others.
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5.3 VISCOUS BURGERS EQUATION

To emphasize that MP-PINN effectively respects spatial causality, we considered the following vis-
cous Burgers equation:

∂tu+ u∂xu− ν∂2xu = 0, for (t, x) ∈ [0, 1)× [−1, 1],

u(0, x) = − sin(πx), for x ∈ [−1, 1],

u(t, x) = 1, for (t, x) ∈ [0, 1)× {−1, 1}

where ν = 0.01/π. As demonstrated by the true solution in Figure 5, the viscous Burgers equation
exhibits very sharp spatial variations along the horizontal line x = 0. While Causal PINN struggles
to capture these changes, MP-PINN effectively smooths the steep spatial errors.

Figure 5: The true solution for viscous Burgers equation and comparison of absolute error map
|uθ − u| for each PINNs. In the error map, all values exceeding 0.2 were clipped to a constant.

5.4 KLEIN-GORDON EQUATION

Finally, we will investigate whether the MP-PINN effectively learns in the case where the second
derivative, rather than the first derivative of time, is provided in the given equation. For this, We
consider the Klein-Gordon Equation given as

∂2t u− ∂2xu+ u3 = f(t, x), for (t, x) ∈ [0, 1)× [0, 1],

u(0, x) = g1(x), for x ∈ [0, 1],

∂tu(0, x) = g2(x), for x ∈ [0, 1],

u(t, x) = h(t, x), for (t, x) ∈ [0, 1)× {0, 1}.

with the unknown f, g1, g2, h are derived from the pre-given solution

u(t, x) = x cos(5πt) + (tx)3.

Figure 6 illustrated that all benchmark datasets, including Causal PINN, fail to capture the signifi-
cant information transmitted from the upper boundary x = 1, resulting in large errors in the central
diagonal region. In contrast, MP-PINN successfully reduces these errors, providing evidence of
respecting spatial causality.

6 CONCLUSIONS

In this study, we have developed a novel method, MP weights which respect the causality between
the training of each collocation points. This was achieved by considering not only time depen-
dency but also spatial causality, leading to superior performance respect to other adaptive weighting
algorithms and the ability to handle a wider variety of PDE types.
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Figure 6: The true solution for Klein-Gordon equation and comparison of absolute error map |uθ−u|
for each PINNs.

A limitation of our research is the increase in computational cost for weight calculations and running
time. Additionally, further theoretical analysis is required for the hyperparameter D, which repre-
sents the number of message-passing iterations. Specifically, as the number of collocation points
increases, D inevitably needs to increase as well, requiring proper adjustment.

While this paper concludes with just a modification of the BP algorithm in the context of MP-PINN,
in future research, we plan to investigate whether this can be related to actual causal inference.
Additionally, we expect that more experiments for general types of PDEs can be conducted.

7 REPRODUCIBILITY STATEMENT

We provide the detailed experimental setup for each PDEs and PINNs in Appendix A.
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A EXPERMENTAL SETUP

We adopt the true solution as the analytic solution for Convection, viscous Burgers and Klein-
Gordon equation. For Allen-Cahn equation, we use chebfun package Platte & Trefethen (2010)
to generate the numerical solution. The training settings for the benchmark PINNs, except for those
specifically mentioned in the main text, are consistent with those in (Krishnapriyan et al., 2021;
Wang et al., 2022a; Son et al., 2023), as detailed in Table 2.

Table 2: Settings for training are displayed for each PINN (VN: PINN, CS: Causal PINN, AL: AL-
PINN and MP: MP-PINN). For the network structure, MLP refers to a fully-connected network with
hyperbolic tangent as activation functions, where all layers are initialized via Xavier initialization,
and ResNet refers to an MLP with residual connections. The numeric values for Network Structure
denote (hidden layer width) × (hidden layer depth). The remaining settings are represented as fol-
lows: learning rate ηθ for PINNs, initial and boundary coefficients λic and λbc respectively, causality
parameter ϵ for CS and MP, and learning rate ηλ for weight of AL.

Experiment Weight Network
Structure

Train Grid /
Test Grid ηθ λic, λbc ϵ ηλ

Convection

VN
MLP,
50× 4

50× 50 /
201× 512

10−3 102

- -

CS 1 -

AL - 1

MP 10−5 -

Allen-Cahn

VN
MLP,

128× 4
50× 50 /
201× 512

10−3 102

- -

CS 102 -

AL - 1

MP 10−4 -

viscous Burgers

VN
ResNet,
64× 8

50× 50 /
100× 200

10−4 1

- -

CS 102 -

AL - 10−3

MP 10−4 -

Klein-Gordon

VN
ResNet,
64× 8

50× 50 /
100× 200

10−3 5× 102

- -

CS 10−2 -

AL - 1

MP 10−8 -
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B ADDITIONAL COMPARISON OF RESPECTING SPATIAL CAUSALITY

To clarify the results, we provide figures Figure 7, 8 and 9, comparing the cross-sectional error for
other equations except Allen-Cahn.

Figure 7: The comparison between the true solution (red dashed line) and the approximated solution
(blue dotted line) from each PINN for the Convection equation is shown at the time where the mean
absolute error of the cross-section is largest. The selected time points are t = 0.98 for MP-PINN
and t = 1.0 for the others.

Figure 8: The comparison between the true solution (red dashed line) and the approximated solution
(blue dotted line) from each PINN for the viscous Burgers equation is shown at the time where the
mean absolute error of the cross-section is largest. The selected time points are t = 0.62, t = 1.0,
t = 0.57 and t = 0.77 for PINN, Causal PINN, AL-PINN and MP-PINN, respectively
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Figure 9: The comparison between the true solution (red dashed line) and the approximated solution
(blue dotted line) from each PINN for the Klein-Gordon equation is shown at the time where the
mean absolute error of the cross-section is largest. The selected time points are are t = 0.64,
t = 0.85, t = 0.72 and t = 0.27 for PINN, Causal PINN, AL-PINN and MP-PINN, respectively
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