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Abstract

Federated learning is a distributed learning paradigm where multiple agents, each
only with access to local data, jointly learn a global model. There has recently been
an explosion of research aiming not only to improve the accuracy rates of federated
learning, but also provide certain guarantees around social good properties such as
total error. One branch of this research has taken a game-theoretic approach, and
in particular, prior work has viewed federated learning as a hedonic game, where
error-minimizing players arrange themselves into federating coalitions. This past
work proves the existence of stable coalition partitions, but leaves open a wide
range of questions, including how far from optimal these stable solutions are. In
this work, we motivate and define a notion of optimality given by the average error
rates among federating agents (players). First, we provide and prove the correctness
of an efficient algorithm to calculate an optimal (error minimizing) arrangement
of players. Next, we analyze the relationship between the stability and optimality
of an arrangement. First, we show that for some regions of parameter space, all
stable arrangements are optimal (Price of Anarchy equal to 1). However, we show
this is not true for all settings: there exist examples of stable arrangements with
higher cost than optimal (Price of Anarchy greater than 1). Finally, we give the first
constant-factor bound on the performance gap between stability and optimality,
proving that the total error of the worst stable solution can be no higher than 9
times the total error of an optimal solution (Price of Anarchy bound of 9).

1 Introduction

Recent advances of machine learning techniques has made it possible to apply powerful prediction
algorithms to a variety of domains. However, in real-world situations, data is often distributed across
multiple locations and cannot be combined to a central repository for training. For example, consider
patient medical data located at hospitals or student educational data at different schools. In each case,
the individual agents (hospitals or schools) who hold the data wish to find a model that minimizes
their error. However, the data at each location may be insufficient to train a robust model. Instead, the
agents may prefer to build a model using data from multiple agents: multiple hospitals or schools.
Collectively, the combined data may be able to produce a model with much higher accuracy, providing
more powerful predictions to each agent and increasing overall welfare. However, it may be infeasible
to transfer the data to some coordinating entity to build a global model: privacy, data size, and data
format are all possible reasons that would make transferring data not a reasonable solution.

Federated learning is a novel distributed learning paradigm that aims to solve this problem (McMahan
et al. [2016]). Data remains at separate local sites, which individual agents use to learn local model
parameters or parameter updates. Then, only the parameters are transferred to the coordinating entity
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(for example, a technology company), which averages together all of the parameters in order to form
a single global model, which all of the agents use. Federated learning is a rapidly growing area of
research (Li et al. [2020], Kairouz et al. [2019], Lim et al. [2020]).

However, research has also noted that federated learning, in its traditional form, may not be the best
option for each agent (Yu et al. [2020], Bagdasaryan and Shmatikov [2019], Li et al. [2019], Mohri
et al. [2019]). In the real world, agents may differ in their true distribution: the true model of patient
outcomes at hospital A may differ from the true model at hospital B, for example. If these differences
are large enough, federating agents may see their error increase under certain situations, potentially
even beyond what they would have obtained with only local learning. For example, a player with
relatively few samples may end up seeing its model “torqued” by the presence of a player with many
samples. For this reason, agents may not wish to federate with every other potential agent.

Instead, each agent faces a choice: given the costs and benefits of federating with different players, it
must determine which of the exponentially many combinations of players it would prefer to federate
with. Simultaneously, every other agent is also attempting to identify and join a federating group that
it prefers - and agents may have conflicting preferences. Prior work (Donahue and Kleinberg [2021],
Hasan [2021]) has formulated this problem as a hedonic game, which each player derives some cost
(error) from the coalition they join. The aim of such research has been to identify partitions of players
that are stable against deviations, for varying definitions of stability. A hedonic game in general may
not have any stable arrangements, so the area’s contributions in the analysis of stability adds valuable
insight into the incentives of federating agents.

However, this framework also leaves open multiple game theoretic questions. While the federating
agents have individual incentives to reduce their error, society as a whole also has an interest in
minimizing the overall error. In the school example, individual schools wish to find coalitions that
work well on their own sub-populations, while the overall district or state may have an interest in
finding an overall set of coalitions that minimizes the overall error. This analysis of a coalition
partition’s overall cost falls under the game theoretic notion of optimality.

One natural question relates to the tension between these two goals: the self-interested goal of the
individual actors (stability) and the overall goal of reducing total cost (optimality). Given a that set of
self-interested agents has found a stable solution, how far from optimal could it be? This is reflected
by the Price of Anarchy of a game, the canonical approach to study optimality and stability jointly
(Papadimitriou [2001], Koutsoupias and Papadimitriou [1999]). The Price of Anarchy (PoA) is a
ratio where the numerator is equal to the highest-cost stable arrangement and the denominator is
equal to the lowest-cost arrangement (the optimal arrangement). It is lower bounded by 1, a bound
that it achieves only if all stable arrangements are optimal. A higher Price of Anarchy value implies a
greater trade off between stability and optimality, and bounding the Price of Anarchy for a particular
game puts a limit on this trade-off. Federated learning is a situation where questions of stability have
been analyzed, but to our knowledge there has been no systematic analysis of the Price of Anarchy in
a model of federated learning.

The present work: A framework for optimality and stability in federated learning In this
work, we make two main contributions to address this gap. First, we provide an efficient, constructive
algorithm for calculating an optimal federating arrangement. Secondly, we prove the first-ever
constant bound on the Price of Anarchy for this game, showing that the worst stable arrangement is
no more than 9 times the cost of the best arrangement.

We begin Section 4 by defining optimality, drawing on a notion of weighted error derived from the
standard objective in federated learning literature. The main contribution of this section is an efficient,
constructive algorithm for calculating an optimal arrangement, along with a proof of its optimality.
However, as demonstrated in Section 5, optimality and stability are not always simultaneously
achieved. This section analyzes the Price of Anarchy, which measures how far from optimal the worst
stable arrangement can be. First, we demonstrate that the optimal arrangement is not always stable.
Next, we show that there exist sub-regions where the Price of Anarchy is equal to 1. Finally, this
section proves an overall Price of Anarchy bound of 9, the first constant bound for this game.

It is worth emphasizing that, beyond the Price of Anarchy bound itself, part of the contribution of
this work is the optimization and analysis to produce this bound. The proofs for this contribution are
modular and illuminate multiple properties about the broader federated learning game under study.
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As such, these contributions could be useful for further investigating this model. For example, the
modular structure of our proof is what enables us to establish stronger bounds for certain sub-cases.

The results in this paper are theoretical and do not depend on any experiments or code. However,
while writing the paper, we found it useful to write and work with code to check conjectures. Some
of that code is publicly available at github.com/kpdonahue/model_sharing_games.

2 Related work

Federated learning As we mentioned previously, federated learning has recently seen numerous
advances. In this section, we highlight a few papers in federated learning that are especially related to
our work.

The idea that agents might differ in their true models (that data might be generated non-i.i.d. across
multiple agents) is commonly acknowledged in the federated learning literature. For example, Yu
et al. [2020], Bagdasaryan and Shmatikov [2019] empirically demonstrate that federated learning,
and especially privacy-related additions, can cause a wide disparity in error rates. Some techniques
have been developed specifically towards this problem. For example, hierarchical federated learning
adds an additional layer of hierarchical structure to federated learning, which could be used to reduce
latency or to cluster together similar players (Lin et al. [2018], Liu et al. [2020]). Many other works
also relate to clustering, such as (Lee et al. [2020], Sattler et al. [2020], Shlezinger et al. [2020],
Wang et al. [2020], Duan et al., Jamali-Rad et al. [2021], Caldarola et al. [2021]). Nagalapatti and
Narayanam [2021] uses tools from cooperative game theory to selectively combine gradient updates
from multiple agents. These works, which tend to be more applied than our work, may also differ in
that they analyze situations where additional information is known, such as the data distribution at
each location.

Other work aims to improve accuracy rates by selecting acquiring additional data (Blum et al. [2017],
Duan et al. [2021]). Some papers specifically analyze federated learning for high-stakes situations
such as medical settings (Xia et al. [2021], Guo et al. [2021], Vaid et al. [2021], Kumar et al. [2021],
Zhang et al. [2021]). In general, all of these works have the goal of reducing the average error over
all federating agents, which we will use to motivate our definition of optimality in later sections.

Game theory in federated learning The closest work to this current paper is our prior paper
Donahue and Kleinberg [2021], which we discuss in greater detail in Section 3. Another paper using
hedonic game theory to analyze federated learning games is Hasan [2021], which gives conditions
for Nash stability in federated learning. Other works analyze the incentives of players to contribute
resources towards federated learning: Blum et al. [2021] analyzes fairness and efficiency in sampling
additional points for federated learning and Le et al. [2021] analyzes incentives for agents to contribute
computational resources in federated learning. Interestingly, multiple works take a game theoretic
approach towards coalition formation in cloud computing, but with the aim of minimizing some cost
besides error, such as electricity usage Guazzone et al. [2014], Anglano et al. [2018].

3 Model and assumptions

We assume that there are M total agents (sometimes referred to as players). Each agent i 2 [M ] has
drawn ni data points from their true local distribution g(✓i), where ✓i are their true local parameters
and g(·) is some true labeling function. A player’s goal is to learn a model with low expected error
on its own distribution. If a player opts for local learning, then it uses its local estimate of these
parameters g(✓̂i) to predict future data points, obtaining error erri({i}). If a set of players C are
federating together, we say that they are in a coalition or cluster together. They combine their local
estimates of parameters into a single federated estimate, governed by the weighted average of their
parameters:

✓̂C =
1P

i2C
ni

·
X

i2C

ni · ✓̂i (1)

A federating player i obtains error erri(C): note that this value may differ between players in the
same coalition. For example, if player j has more samples than player k, then ✓̂C will be weighted
more towards player j, meaning that player j will have lower expected error than k.
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The weighted average method in Equation 1 is commonly used in federated learning (McMahan et al.
[2016]). Because it is the most straightforward method, it is sometimes called “vanilla” federated
learning. Alternative ways of federation might involve customizing the model for individuals, as in
domain adaptation. For example, Donahue and Kleinberg [2021] models three methods of federation:
vanilla (called “uniform”), as well as two models of domain adaptation.

There are multiple reasons why we opted to analyze the federation method in Equation 1 in this
work. First of all, this federation method is the most straightforward method, and as such it is the
natural candidate to begin analysis. Secondly, this federation method is the most interesting to
analyze technically. Domain adaptation serves to increase the incentives of an individual agent to
participate in federation: it reduces the tension between an individual’s incentives and the optimal
overall arrangement. Because of this, for Price of Anarchy it is more valuable and challenging to
explore the case in Equation 1, where incentives are more opposed.

3.1 Theoretical model of federation from Donahue and Kleinberg [2021]

Federated learning has been the subject of both applied and theoretical analysis; our focus here is on
the theoretical side. In addition, for game theoretical reasoning to be feasible, we need a model that
gives exact errors (costs) for each player, rather than bounds: these are needed in order to be able to
argue that a certain arrangement is optimal, for example.

We opt to use the model developed in our prior work Donahue and Kleinberg [2021], which produces
the closed-form error value seen in Lemma 1 below. While we work within this model, we emphasize
that Donahue and Kleinberg [2021] asked different questions from this paper’s focus: our prior
work focused on developing the federated learning model and analyzing the stability of federating
coalitions, while our current work analyzes optimality and Price of Anarchy.
Lemma 1 (Lemma 4.2, from Donahue and Kleinberg [2021]). Consider a mean estimation task
as follows: player j is trying to learn its true mean ✓j . It has access to nj samples drawn i.i.d.
Y ⇠ Dj(✓j , ✏2j ), a distribution with mean ✓j and variance ✏

2
j
. Given a population of players, each

has drawn parameters (✓j , ✏2j ) ⇠ ⇥ from some common distribution ⇥. A coalition C federating
together produces a single model based on the weighted average of local means (Eq. 1). Then, the
expected mean squared error player j experiences in coalition C is:

errj(C) =
µeP
i2C

ni

+ �
2 ·

P
i2C,i6=j

n
2
i
+

⇣P
i2C,i 6=j

ni

⌘2

�P
i2C

ni

�2 (2)

where µe = E(✓i,✏2i )⇠⇥[✏
2
i
] (the average noise in data sampling) and �

2 = V ar(✓i) (the average
distance between the true means of players).

Note that Donahue and Kleinberg [2021] also analyzes a linear regression game with a similar cost
function, though in this work we will restrict our attention to the mean estimation game.

We use some of the same notion and modeling assumptions as Donahue and Kleinberg [2021]. For
example, we use C to refer to a coalition of federating agents and ⇧ to refer to a collection of
coalitions that partitions the M agents. We will use NC to refer to the total number of samples
present in coalition C: NC =

P
i2C

ni. In a few lemmas we will re-use minor results proven in
Donahue and Kleinberg [2021], citing them for completeness.

For technical assumptions, we assume number of samples {ni} is fixed and known by all. We also
assume that the parameters µe,�

2 are approximately known: in particular, results will depend on
whether the number of samples is larger or smaller than the critical threshold µe

�2 . We assume that
a player does not know anything else about its own true parameters ✓i or the parameters of other
players: for example, it does not know the true generating distribution ⇥ or if its true parameters
are likely to lie far from the parameters of other players. We assume that each player has a goal of
obtaining a model with low expected test error on its personal distribution, and that the federating
coordinator is motivated to minimize some notion of total cost, but is otherwise impartial.

Finally, it is worth emphasizing key differences between this current work and Donahue and Kleinberg
[2021]. The focus of Donahue and Kleinberg [2021] is defining a theoretical model of federated
learning and analyzing the stability of such an arrangement. As such, it focuses solely on individual
incentives, rather than overall societal welfare. On this other hand, this current work focuses on

4



discussions of optimality (overall welfare) and Price of Anarchy. Finally, this paper work is in some
ways more general: while some results in Donahue and Kleinberg [2021] only allow players to have
two different numbers of samples (“small” or “large”), every result in our work holds for arbitrarily
many players with arbitrarily many different numbers of samples. This distinction is a function of the
questions analyzed in each paper: questions of stability (as in Donahue and Kleinberg [2021]) are
much harder to analyze for players with arbitrarily many different sizes.

4 Optimality

We will begin with the question of optimality. As motivation, it is useful to consider the objective
function of most federated learning papers McMahan et al. [2016]:

min
✓

errw(✓) =
MX

i=1

pi · erri(✓) =⇤ 1
P

M

i=1 ni

MX

i=1

ni · erri(✓)

While the weights can be any pi > 0,
P

M

i=1 pi = 1, the ⇤ equality reflects the common setting where
they are taken to be the empirical average. In this work, we will take the empirical average as our
cost function:
Definition 1. A coalition partition ⇧ is optimal if it minimizes the weighted sum of errors across
players, as defined below:

fw(⇧) =
X

C2⇧

fw(C) =
X

C2⇧

X

i2C

ni · erri(C)

We will say that a coalition partition ⇧ is in OPT if it achieves minimal cost. Note that multiple
partitions may achieve minimal cost, so OPT is a set of partitions.

Because ⇧ is a disjoint partition over the M players, fw(⇧) is simply the error errw(✓) scaled by a
constant. Therefore, minimizing fw(⇧) is equivalent to minimizing the weighted average of errors.

Some machine learning papers modify the empirical average objective to achieve other goals. For
example, Li et al. [2019], Mohri et al. [2019] consider variants where this goal is re-weighted in order
to achieve certain fairness goals. Appendix A discusses other possible cost functions.

All of the above analysis holds for any model of federated learning. Lemma 2, below, gives the
specific form of cost for federated learning using the model from Donahue and Kleinberg [2021].
The remaining analysis in this paper will assume this cost function. Proofs for results in this section
are given in Appendix B.
Lemma 2. Consider a partition ⇧ made up of coalitions {Ci}. Then, using the error form given in
Equation 2, the total cost of ⇧ is given by

fw(⇧) =
X

C2⇧

⇢
µe + �

2 ·NC � �
2

P
i2C

n
2
i

NC

�

The two most common arrangements in machine learning tasks are local learning (which we will
denote by ⇡l) and the federation in the grand coalition (⇡g), where all of the players are federating
together in a single coalition. However, Lemmas 3 and 4 demonstrate that either of these could
perform arbitrarily poorly as compared the cost-minimizing (optimal) arrangement.
Lemma 3. 8⇢ > 1, there exists a setting where local learning results in average error more than ⇢

times higher than optimal: fw(⇡l)
fw(OPT ) > ⇢.

Lemma 4. 8⇢ > 1, there exists a setting where federating in the grand coalition results in average
error more than ⇢ times higher than optimal: fw(⇡g)

fw(OPT ) > ⇢.

A priori, finding a partition of players that minimizes total cost seems extremely challenging. There
are exponentially many options for partitions, and two lemmas above have shown that either of the
most common choices could be arbitrarily far from optimal. However, the next section will provide an
efficient, constructive algorithm to calculate an optimal partition of players into federating coalitions.
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4.1 Calculating an optimal arrangement

The main contribution of this section is Theorem 1, which gives an algorithm for minimizing the total
weighted error of the federating agents.
Theorem 1. Consider a set of players {ni}. An optimal partition ⇧ can be created as follows:
first, start with every player doing local learning. Then, begin by grouping the players together
in ascending order of size, stopping when the first player would increase its error by joining the
coalition from local learning. Then, the resulting partition ⇧ is optimal.

Though the algorithm in Theorem 1 is straightforward, proving the optimality of the resulting partition
⇧ requires several sub-lemmas. Each sub-lemma is a building-block that describes certain operations
that either increase or decrease total cost. The proof of Theorem 1 largely consists of sequentially
using these sub-lemmas in order to demonstrate the optimality of the calculated partition.

Statement and description of supporting lemmas First, Lemma 5 demonstrates a close relation-
ship between movements of players that reduce total cost and movements of players that are in that
player’s self-interest (recall that players always wish to minimize their expected error). Specifically,
it shows that a player wishes to join a coalition from local learning if and only if that move would
reduce total cost for the entire partition.
Lemma 5 (Equivalence of player preference and reducing cost). Take any coalition Q and any player
j. Then, a player wishes to join that coalition (from local learning) if and only if doing so would
reduce total cost. That is,

fw({nj}) + fw(Q) � fw({nj} [Q) , errj({nj}) � errj({nj} [Q)

Next, Lemma 6 shows that “swapping” the roles of two players (one doing local learning, one
federating in a coalition) reduces total cost when the larger player is removed to local learning.
Lemma 6 (Swapping). Take any set Q including a player nj > nk, where the player nk is doing
local learning. Then, swapping the roles of players k and j always decreases total cost.

fw(Q [ {nj}) + fw({nk}) > fw(Q [ {nk}) + fw({nj})

Lemmas 7 and 8 give results for when players are incentivized to leave or join a particular coalition:
they show that such incentives are monotonic in the size of the player. By Lemma 5, these results
also show the monotonicity of cost-reducing operations. Note that these lemmas are not equivalent:
they differ in whether the reference player j is already in the coalition or not.
Lemma 7 (Monotonicity of joining). If a player of size nj would prefer local learning to joining a
coalition Q, then any player of size nk � nj also prefers local learning to joining the same coalition.
That is, for nk � nj ,

errj(Q [ {nj}) � errj({nj}) ) errk(Q [ {nk}) � errk({nk})
Conversely, if a player j wishes to join Q, then any other player of size nk  nj would have also
wanted to join. That is, for nj � nk,

errj(Q [ {nj})  errj({nj}) ) errk(Q [ {nk})  errk({nk})

Lemma 8 (Monotonicity of leaving). Take any coalition Q. Then, if any player j 2 Q of size nj

wishes to leave Q for local learning, then any player of size nk � nj also wishes to leave for local
learning. That is, for nk � nj

errj(Q) � errj({nj}) ) errk(Q) � errk({nk})
Conversely, if a player j 2 Q of size nj does not wish to leave Q for local learning, then any player
k 2 Q of size nk  nj also does not wish to leave. That is, for nk  nj

errj(Q)  errj({nj}) ) errk(Q)  errk({nk})

All of the above lemmas have analyzed situations where a single player is moving between coalitions.
Lemma 9 analyzes cases where multiple players are rearranged simultaneously. Specifically, it
provides an algorithm for combining together two separate groups (and then removing certain
players) that is guaranteed to keep constant or reduce total cost.
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Coalition structure erra(·), na = 1 errb(·), nb = 8 errc(·), nc = 15 fw(⇧) errw(⇧)
{a, }, {b}, {c} 10 1.25 0.667 30 1.25
{a}, {b, c} 10 1.285 0.677 30.435 1.268
{a, c}, {b} 2.382 1.25 0.633 21.875 0.911
{a, b}, {c} 2.691 1.136 0.667 21.778 0.907
{a, b, c} 1.834 1.253 0.670 21.917 0.913

Table 1: Example with µe = 10,�2 = 1 example with three players of size na = 1, nb = 8, nc = 15.
Note that {a, b}, {c} minimizes total cost, but is not individually stable: player a wishes to leave its
coalition to join player c, which welcomes that player joining it. This produces {a, c}, {b}, which
is the only individually stable arrangement, giving a Price of Anarchy value of 21.875/21.778 =
1.0045.

Lemma 9 (Merging). Consider two groups of players, P,Q. First, merge together the two groups to
form P [Q. Then, remove players from P [Q to local learning, removing them in descending order
of size. Stop removing players when the first player would prefer to stay (removing it would increase
its error). Then, this overall process maintains or decreases total error. In other words,

fw(Q) + fw(P ) � fw({Q [ P} \ L) +
X

i2L

fw({ni}) (3)

where L is the set of large players removed in descending order of size. The inequality is strict so
long as the final structure is not identical to the first, up to renaming of players, and it is not the case
that all the players have the exact same size.

The proof of Theorem 1 is given simply by applying the lemmas sequentially to show that any other
partition ⇧0 can be converted to the described partition ⇧ through a series of operations that decrease
or hold constant total cost.

5 Price of Anarchy

The previous section defined the “optimality” of a federating arrangement as its average error, and
additionally provided an efficient algorithm to calculate a lowest-cost arrangement. Given that much
of prior work (Donahue and Kleinberg [2021], Hasan [2021]) has studied the stability of cooperative
games induced by federated learning, the next natural question is to study the relationship between
stability and optimality. This section analyzes this relationship, using the canonical game theoretic
tools of Price of Anarchy and Price of Stability. All proofs for this section are in Appendix C.

First, we will define the notions of stability under analysis, which are all drawn from standard
cooperative game theory literature (Bogomolnaia and Jackson [2002]). A partition of players ⇧ is
core stable if there does not exist a set of players that all would prefer leave their location in ⇧ and
form a coalition together. A partition is individually stable (IS) if there does not exist a single player
i that wishes to join some existing coalition C, where all members of C weakly prefer that i join.
Our results will primarily use the notion of individual stability.

As a reminder, the Price of Anarchy (PoA) is the ratio between the worst (highest-cost) stable
arrangement and the best (lowest-cost) arrangement. The Price of Stability is the ratio of the best
stable arrangement and the best overall arrangement (regardless of if it is stable or not) (Anshelevich
et al. [2008]). Note that the Price of Stability is 1 when there exists an optimal arrangement that is
also stable.

First, we will show that for certain ranges of parameter space, the Price of Anarchy and/or Price
of Stability are equal to 1. Specifically, Lemma 10 shows that when all players have relatively few
samples (no more than µe

�2 each), the grand coalition ⇡g is core stable, implying a Price of (Core)
Stability of 1. Recall that µe and �

2 are parameters of the federated learning model reflecting the
average noise of the data and the average dissimilarity between federating agents, respectively.
Lemma 10. For a set of players with ni  µe

�2 8i, the grand coalition ⇡g is always core stable.

On the other hand, Lemma 11 shows that when all players have relatively many samples (at least µe

�2

each), every core or individually stable arrangement is also optimal, which means that the Price of
Anarchy for this situation is 1.
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Lemma 11. For a set of players with ni � µe

�2 8i, any arrangement that is core stable or individually
stable is also optimal.

However, it is not the case that either the Price of Stability or Price of Anarchy is always 1. Table 1
contains an example demonstrating this: there exists a simple three-player case where the optimal
arrangement is not individually stable. However, the Price of Anarchy value here is quite small,
which suggests the prospect that the Price of Anarchy in general could be bounded.

The main result of this section is Theorem 2, which proves a Price of Anarchy bound of 9 for this
problem: the cost of the highest stable arrangement is no more than 9 times the cost of the optimal
(lowest cost) arrangement.
Theorem 2 (Price of Anarchy). Denote ⇧M to be a maximum-cost individually stable (IS) partition
and ⇧opt to be an optimal (lowest-cost) partition. Then,

PoA =
fw(⇧M )

fw(⇧opt)
 9

In Theorem 2, the numerator is the cost of ⇧M , a maximum-cost partition, and the denominator is
⇧opt, an optimal (lowest-cost) partition. Recall that Definition 1 gives the cost of an arrangement as
the weighted sum of the errors of the respective players. Therefore, to get an upper bound on the
Price of Anarchy, we will upper bound the errors players experience in ⇧M and lower bound on the
error players experience in ⇧opt.

Summary of proof technique Again, this section will show how the larger theorem is the result
of several lemmas that act as building blocks. In particular, the lemmas will take two separate
approaches towards creating the bound. Lemmas of the first type (12, 13, 14) all provide upper or
lower bounds on the errors certain players can experience. These conditions depend on the size of the
player (how many samples it has) and the size of the group it is federating with (how many samples
in total the rest of the coalition has). For example, Lemmas 12 and 13 taken together show that a
player with at least µe+�

2

2�2 samples has a worst-case error no more than 2 times its best-case error.
The same pair of lemmas give a multiplicative bound of 9 for players with numbers of samples that
falls between µe

9·�2 and µe+�
2

2�2 . Finally, Lemmas 14 and 13 together give a factor of 7.5 for players
with fewer than µe

9·�2 samples that are federating with other players of total size at least µe

3·�2 . Taken
together, these errors show that, for almost all cases, the highest error a player experiences is no more
than 9 times higher than the lowest error it might experience.

The final case that needs to be addressed is when a player of size  µe

9·�2 is federating in a group with
other players of total size  µe

3·�2 . Lemma 15 handles this last case by an argument around stability.
Specifically, it shows that any players in such an arrangement can only be stable if all of them are
grouped together into a single federating coalition. In the proof of Theorem 2, this result ends up
enabling an additive factor to the Price of Anarchy bound, which is absorbed into the other factors for
a total Price of Anarchy value of 9.

Statement and description of supporting lemmas Next, we will walk through each lemma specif-
ically. Lemma 12 gives an upper bound of µe

ni
on the error any player experiences in ⇧M .

Lemma 12. If ⇧M is a maximum-cost IS partition, then erri(⇧M )  µe

ni
for all players i.

Proof. Because ⇧M is individually stable, every player must get error no more than the error it would
receive alone (doing local learning). By Lemma 1 with C = ni, a player with samples ni player gets
error µe

ni
alone.

Next, Lemma 13 provides lower bounds on the error a player can receive in ⇧opt. It does this by
bounding the minimum error a player could get in any arrangement. Again, because the cost of
⇧opt is simply the weighted sum of errors of each individual player, this helps to upper bound the
Price of Anarchy. First, Lemma 13 shows that for players with at least µe+�

2

2�2 samples, the lowest
possible error it could experience is 1

2 · µe

nj
, which is a factor of 2 off from its worst-case error in

Lemma 12. For players with fewer samples than µe+�
2

2�2 , Lemma 13 says that the lowest error a player
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could experience is �2. This means that the ratio between the two errors is lower than 9 so long as
nj � µe

9·�2 . Therefore, in order to get a factor of 9 bound for the overall Price of Anarchy, we need to
handle the case of players with size  µe

9·�2 , when players have very few samples.
Lemma 13. Consider a player nj and any set of players C. Then, we can lower bound the error
player j recieves by federating with C:

errj(C [ {nj}) �
(

1
2 · µe

nj
nj � µe+�

2

2�2

�
2 otherwise

Lemma 14 is the first of two lemmas handling the case of players with very few samples. It shows
that, if a player of size  µe

3·�2 is federating with a set of players of total size at least µe

3·�2 , it is possible
to upper bound on the error of players in ⇧M by 7.5 · �2. Given the lower bound of �2 in Lemma 13,
these together show that there is a ratio of 7.5 at most between the error this player experiences in its
best and worst-case arrangements.
Lemma 14. Consider a player j federating with a coalition C. If the total number of samples NC is
at least µe

3�2 , then errj(C [ {nj})  7.25 · �2.

However, Lemma 14 does not handle one situation: what if a player of size  µe

9·�2 is federating
with a group of players of total size  µe

3·�2 ? Lemma 15 addresses this last case: it shows that
the only such arrangement that is stable is one where all such players are grouped together into a
single arrangement. Note that this lemma is itself should not be obvious: it is composed of multiple
sub-lemmas which are stated and proved in the appendix. The fact that there can be only one group
of such players is used in the Theorem 2 to create an overall bound of 9.
Lemma 15. Consider an arrangement of players, all of size  µe

3�2 , where at least one player is in
a federating cluster where the total mass of its partners is no more than µe

3�2 . Then, the only stable
arrangement of these players is to have all of them federating together.

The full proof of Theorem 2 uses these lemmas collectively in order to get an overall Price of Anarchy
bound of 9, showing that the worst individually stable arrangement has total cost no more than 9
times the optimal cost.

6 Conclusion

In this work, we have given the first Price of Anarchy bound for a game-theoretic model of federated
learning. This bound quantifies a key tension between individual incentives and overall societal
goals, answering a key question left open in prior literature. Beyond this bound, we also provide an
efficient algorithm to calculate an optimal partition of players into federating coalitions, and have
characterized conditions where the Price of Anarchy and/or Price of Stability is equal to 1.

There are multiple fascinating extensions to this work. To begin with, other definitions of societal cost
(for example, weighting players’ errors differently) could produce different Price of Anarchy bounds.
Additionally, further work could model more sophisticated methods of federation, including models
of domain adaptation. Finally, it would be interesting to explore other notions of societal interest.
For example, one vein of research is fairness: how are error rates divided among federating players?
Questions might revolve around the maximum gap in error rates between players and whether players
that contribute more samples are always rewarded with lower error. Beyond these avenues, though,
we believe that the broad topic of federated learning will continue to contain multiple useful and
interesting research directions.

7 Ethics and societal impact

Given this work’s focus defining notions of optimality, there are important ethical considerations. In
particular, “optimality” can be defined in multiple different ways: Section 4 motivates the definition
we use and Appendix A discusses the merits of other definitions. In particular, it is worth emphasizing
that “optimality” is a technical term in optimization and game theory which is always with respect
to a given objective function and does not imply a more holistic notion of how desirable a certain
solution is. For example, an arrangement could be “optimal” and still be unfair in how errors are
distributed among players.

9



Although our methodology is application-agnostic, federated learning is a machine learning tool that
could be applied towards positive goals (e.g. predicting patient outcomes at hospitals) or negative
goals (e.g. used to surveil and control populations). It is also worth considering, for each application,
whether there could be some other approach that would better address the need. For example, it may
be worth considering whether approaches aiming at increasing the number of samples available for
low-resource agents would do a better job of increasing the benefit of a federated learning solution.
It may even be the case that a solution beyond machine learning would be preferable, such as
interventions to reduce the need for a predictive model.
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Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu,
Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova,
Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng
Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong,
Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in
federated learning, 2019.

Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Annual Symposium on
Theoretical Aspects of Computer Science, pages 404–413. Springer, 1999.

Rajesh Kumar, Abdullah Aman Khan, Jay Kumar, A Zakria, Noorbakhsh Amiri Golilarz, Simin
Zhang, Yang Ting, Chengyu Zheng, and WenYong Wang. Blockchain-federated-learning and deep
learning models for covid-19 detection using ct imaging. IEEE Sensors Journal, 2021.

Yassine Laguel, Krishna Pillutla, Jerôme Malick, and Zaid Harchaoui. A superquantile approach to
federated learning with heterogeneous devices. In 2021 55th Annual Conference on Information
Sciences and Systems (CISS), pages 1–6. IEEE, 2021.

Tra Huong Thi Le, Nguyen H. Tran, Yan Kyaw Tun, Minh N. H. Nguyen, Shashi Raj Pandey, Zhu
Han, and Choong Seon Hong. An incentive mechanism for federated learning in wireless cellular
network: An auction approach. IEEE Transactions on Wireless Communications, pages 1–1, 2021.
doi: 10.1109/TWC.2021.3062708.

J. Lee, Jaehoon Oh, Yooju Shin, and S. Yoon. Accurate and fast federated learning via iid and
communication-aware grouping. ArXiv, abs/2012.04857, 2020.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated
learning, 2019.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, May 2020. ISSN
1558-0792. doi: 10.1109/msp.2020.2975749. URL http://dx.doi.org/10.1109/MSP.2020.
2975749.

W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang, D. Niyato, and C. Miao.
Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications
Surveys Tutorials, 22(3):2031–2063, 2020. doi: 10.1109/COMST.2020.2986024.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local sgd, 2018.

Lumin Liu, Jun Zhang, S.H. Song, and Khaled B. Letaief. Client-edge-cloud hierarchical federated
learning. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Jun 2020.
doi: 10.1109/icc40277.2020.9148862. URL http://dx.doi.org/10.1109/icc40277.2020.
9148862.

11

http://dx.doi.org/10.1109/CCGrid.2014.37
http://dx.doi.org/10.1109/CCGrid.2014.37
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/icc40277.2020.9148862
http://dx.doi.org/10.1109/icc40277.2020.9148862


H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2016.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning, 2019.

Lokesh Nagalapatti and Ramasuri Narayanam. Game of gradients: Mitigating irrelevant clients in
federated learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(10):9046–
9054, May 2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/17093.

Christos Papadimitriou. Algorithms, games, and the internet. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pages 749–753, 2001.

Felix Sattler, Klaus-Robert Muller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on
Neural Networks and Learning Systems, page 1–13, 2020. ISSN 2162-2388. doi: 10.1109/tnnls.
2020.3015958. URL http://dx.doi.org/10.1109/TNNLS.2020.3015958.

N. Shlezinger, S. Rini, and Y. C. Eldar. The communication-aware clustered federated learning
problem. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 2610–2615,
2020.

Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani,
Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, et al. Federated learning of electronic health
records to improve mortality prediction in hospitalized patients with covid-19: Machine learning
approach. JMIR medical informatics, 9(1):e24207, 2021.

Hao Wang, Hsiang Hsu, Mario Diaz, and Flavio P. Calmon. To split or not to split: The impact of
disparate treatment in classification, 2020.

Yingda Xia, Dong Yang, Wenqi Li, Andriy Myronenko, Daguang Xu, Hirofumi Obinata, Hitoshi
Mori, Peng An, Stephanie Harmon, Evrim Turkbey, et al. Auto-fedavg: Learnable federated
averaging for multi-institutional medical image segmentation. arXiv preprint arXiv:2104.10195,
2021.

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local adaptation,
2020.

Weishan Zhang, Tao Zhou, Qinghua Lu, Xiao Wang, Chunsheng Zhu, Haoyun Sun, Zhipeng Wang,
Sin Kit Lo, and Fei-Yue Wang. Dynamic fusion-based federated learning for covid-19 detection.
IEEE Internet of Things Journal, 2021.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17093
http://dx.doi.org/10.1109/TNNLS.2020.3015958

	Introduction
	Related work
	Model and assumptions
	Theoretical model of federation from donahue2020model

	Optimality
	Calculating an optimal arrangement

	Price of Anarchy
	Conclusion
	Ethics and societal impact
	Alternate definitions of optimality
	Optimality calculation
	Price of Anarchy

