
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE INVARIANCE STARVATION HYPOTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are known to learn and rely on spurious correlations during
training, preventing them from being reliable and able to solve highly complex
problems. While there exist many proposed solutions that overcome such reliance
in different, tailored settings, current understanding regarding the formation of
spurious correlations is limited. All proposed solutions with promising results
assume that networks trained with empirical risk minimization will learn spurious
correlations due to a preference for simpler features and that a solution to this
problem requires further processing on the networks’ learned representations or
re-training on a modified dataset where the proportion of training data with spurious
features is significantly lower. In this paper, we aim to form a better understanding
regarding the formation of spurious correlations by performing a rigorous study
regarding the role that data plays in the formation of spurious correlations. We
show that in reasoning tasks with simple input samples, simply drawing more
data from the same training distribution overcomes spurious correlations, even
though we maintain the proportion of samples with spurious features. In other
words, we find that if the network has enough data to encode the invariant function
appropriately, it no longer relies on spurious features, regardless of its strength.
We observe the same results in settings with more complex distributions with an
intractable number of participating features, such as vision and language. However,
we find that in such settings, drawing more samples from the training distribution
while maintaining proportion can exacerbate spurious correlations at times, due
to the introduction of new samples that are significantly different from samples in
the original training set. Taking inspiration from reasoning tasks, we present an
effective remedy to this problem to ensure that drawing more samples from the
distribution always overcomes spurious correlations.

1 INTRODUCTION

Deep neural networks tend to form correlations between weakly predictive, spurious features and tar-
get labels during training. In practice, these networks often prefer these correlations over correlations
formed between general, fully predictive invariant features and target labels. Thus, in the event of
a distribution shift, where such spurious correlations may no longer hold, these networks begin to
malfunction. Of the many factors that influence the degree of spurious feature reliance, the primary
factor commonly discussed in literature is that of predictive power. In other words, what proportion of
the training set contains the spurious feature and can, thus, enable the correct classification of during
training. Intuitively, the larger the proportion, the greater the reliance of the network on the spurious
feature. Thus, to prevent the formation of spurious correlations during training, common practice
in deep learning encourages sampling training data from many different training environments, to
reduce the proportion of samples in the training set that contain the spurious features and overcome
selection bias (Arjovsky et al., 2019). Such sampling, however, is expensive and not always feasible.

In this paper, we attempt to answer the following questions: What if one continued to sample more
data from the same training environments? In other words, what would happen if one were to maintain
the proportion of the training data that contained the spurious feature but simply increased the amount
of training data, drawn from the same distribution. What would be the impact on spurious feature
reliance?

With answers to these questions, we describe the novel contributions and insights presented in this
paper:
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Selection Bias does not form Spurious Correlations. Starving Networks of Sufficient Training
Data Does. Through our experiments, we find that, although we maintain the proportion of
samples that contain the spurious feature, simply drawing more data from the training distribution
can overcome a model’s reliance on spurious correlations and improve its robustness to distributional
shifts. We show that if the network has sufficient data to encode the general, invariant function
appropriately, it no longer learns and relies on spurious correlations present in the training data. Past
works simply state that since deep neural networks are biased toward simpler predictive features, they
are certain to learn and rely on spurious correlations. We refute this claim by showing that if the
network is provided sufficient data to encode the invariant function well, it will no longer rely on
simpler, weakly predictive spurious features present in the data.

In Settings with Complex Distributions, Drawing More Samples from the Training Distribution
can Exacerbate Spurious Correlations. In vision and language settings, drawing more samples
from the training distribution can exacerbate spurious correlations. We find that this happens due
to the introduction of new samples which contain general features that are not well represented
in the original training set but also contain the spurious feature. If the general feature is not well
represented and the network struggles to generalize to it, it forces the network to rely on spurious
biases to minimize loss for that sample during training. We observe that in reasoning tasks, the
input space is comprised of only a small number of objects, thereby making all samples, and by
extension all general features, highly typical. Such typicality facilitates the easy reliance on general
features over spurious ones. Hence, we use this knowledge to provide the model with samples that
are generally well represented in the training distribution. This way, we overcome starvation and
spurious correlations without running the risk of exacerbation.

Present novel insights regarding the formation of spurious correlations across three domains:
reasoning, vision, and language. We provide comprehensive empirical evaluation across three
domains that are commonly studied in deep learning and show that our claims and observations are
consistent across all three domains. That is, we show in all three domains that spurious correlations
are formed due to deep networks being starved of sufficient data to be able to appropriately encode the
general, invariant feature. Additionally, we utilize insights from reasoning tasks to better understand
the nature of spurious correlations in more complex settings: vision and language. This direction, to
the best of our knowledge, is novel.

2 RELATED WORK

Spurious Correlations. Deep neural networks have a tendency to learn and rely on simpler, spurious
cues that can aid in learning only a portion of a task (Arjovsky et al., 2019; Sagawa et al., 2020a;b;
Ahmed et al., 2021; Liu et al., 2021; Zhang et al., 2022a; Kirichenko et al., 2022). This makes them
brittle to distributional shifts as the spurious features that are relied upon may disappear or become
correlated with a different task during testing. While there exists a large body of work that studies
spurious correlations, combating this problem remains an open problem. Most proposed techniques
that mitigate spurious correlations require domain knowledge, are effective only in specific settings or
negatively impact test accuracy. In this work, by studying reasoning tasks, we provide novel insights
fundamental to deep neural network training that can help solve the spurious correlations problem.

Simplicity Bias Past work has shown that deep neural networks are biased towards simpler features,
where in the presence of two fully predictive features, a model will rely only on the simpler feature
and fully ignore the complex feature (Shah et al., 2020). Recent works have shown that even in
settings where the simpler feature is not fully predictive of the task, the model still relies strongly
on these features (Geirhos et al., 2020; Kirichenko et al., 2022). Such simplicity bias is considered
as the primary reason behind the formation of spurious correlations. In this work, we form a better
understanding regarding the role of simplicity bias in the formation of spurious correlations. We
show that if the network has enough data to learn the general feature appropriately, it no longer relies
on simpler, weakly predictive spurious features. Our observations disagree with the current notion
which simply assumes that spurious correlations will always be formed in the presence of simpler,
predictive, spurious features.

Reasoning in Deep Learning. There has been an increasing interest in deep neural networks
solving reasoning tasks that are either mathematical, visual, physical, or algorithmic in nature (Saxton
et al., 2019; Bakhtin et al., 2019; Velickovic et al., 2022). Most existing works show that deep
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Figure 1: LEGO, Task 1 and 2. Spurious rule is in red.

Figure 2: Modified Pointer Value Retrieval, Task 3. Spurious rule is in red.

neural networks are capable of understanding and solving reasoning tasks. To better enable deep
neural networks to understand reasoning tasks, recent works also recommend making architectural
and optimization changes to the learning process Ahmed et al. (2022; 2023); Zhang et al. (2023a);
Marconato et al. (2023a); Giunchiglia et al. (2022). In this paper, we study specific behaviors of
transformer-based models on sequential reasoning tasks. A growing body of work has shown that deep
neural networks have a tendency to converge to short-cut solutions to solve reasoning tasks (Liu et al.,
2023; Abbe et al., 2023). These short-cut solutions, at times, prevent deep networks from generalizing
to different or unseen settings and domains (Zhang et al., 2022b; Zhou et al., 2024). Zhang et al.
(2023b) find that deep networks rely on attributes of the training set to make predictions. A good
example of this is the length generalization problem where a network that has been trained on a
shorter sequential reasoning task fails to generalize to samples with longer sequences that require
the same set of rules (Zhang et al., 2022b; Zhou et al., 2024). For another instance, Marconato et al.
(2023b) show that NeSy predictors can, at times, misunderstand concepts in the training data.

3 DEEP NEURAL NETWORKS ARE STARVED OF INVARIANT INFORMATION

We begin our study with reasoning tasks commonly studied in literature that are based on learning
rules that operate on a small set of features. In particular, we study the Learning Equality and Group
Operations (LEGO) Zhang et al. (2022b) and Pointer Value Retrieval (PVR) Zhang et al. (2021) tasks.
Through our experiments, we highlight a novel failure mode of deep networks on reasoning tasks,
where a network learns the invariant rule but also learns spurious rules due to minor imperfections
that are inherent to real-world data. We detail our experimental set-up below.

3.1 LEARNING EQUALITY AND GROUP OPERATIONS (LEGO)

The LEGO task is a sequential reasoning task where the input is a sequence of variable assignments
and operations on these variables (Input in Fig. 1). The solution for the LEGO task takes the form
of a loop where values for variables are resolved one at a time and every new variable encountered is
resolved using the previously resolved variable (Sequence and Output in Fig. 1). While Zhang
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Figure 3: Test accuracy shown on Test Set with the same distribution as Train Set and Spurious Test
Set. (Every sample follows the invariant rule but breaks the spurious rule.)

et al. (2022b) show that an encoder-only transformer model can learn the invariant rule, they only
train on a dataset that is ideal and unrealistic. They curate such a set by sampling variables, operations,
values, and positions uniformly. We show that once we step away from this ideal environment, the
network’s generalizability suffers.

3.2 POINTER VALUE RETRIEVAL (PVR)

In the original PVR task, each training instance consists of a sequence of numbers, where the first
number in the sequence behaves as a pointer which points to the label of the training instance, which
is the number in the sequence that is indexed by the pointer. An example is shown in Standard
in Fig. 2. As in the LEGO task, the original PVR task sequences are sampled uniformly, thereby
creating an ideal environment for invariant rule learning.

3.3 TRAINING DETAILS

For both tasks, we use a pre-trained BERT, an encoder-only transformer model, for training and a
pre-trained BERT tokenizer for tokenization. Consistent with the original implementation for LEGO,
we use cross entropy loss averaged over the 4 clauses belonging to each sample during training. For
PVR, we use standard cross entropy loss. The network is trained for 100 epochs with a batch size of
1,000 samples and optimized with Adam using a learning rate 5e-5 and cosine learning rate schedule
with Tmax = 100. In Task 1, Task 2 and Task 3, we maintain the training set size as 30,000, 4,000
and 37,500, respectively.

3.4 TASK DEFINITIONS AND OBSERVATIONS

In this paper, we curate and study the impact of training on the following three tasks:

Task 1: For Task 1, based on LEGO, we create a dataset where the variables q and p always occur
together and q is equal to the negation of p, as shown in Task 1 in Fig. 1. Note that not all samples
contain all literals and thus, this rule is only enforced in a portion (majority) of all samples.

Observation: On testing on a uniform test set, we observe that almost all misclassified samples are
those where p and q have the same ground truth value or if q is preceded by any literal in the loop
that contains the same ground truth value. This results in poor testing accuracy, as shown in Fig. 3(a).

Task 2: We create a dataset based on LEGO where the variable q always has the value 1, as shown
in Task 2 in Fig. 1. Here, the variable q occurs in even fewer samples than it would have been a
part of if one were to create a dataset by sampling uniformly.

Observation: Again, we observe that all misclassified samples are those that contain a q but its
ground truth value is 0, resulting in poor testing accuracy (Fig. 3(b)).

In both tasks, we observe that the network makes a mistake only once it encounters the variables
participating in the broken spurious rule. Until then, all predicted values are correct. Interestingly,
once a network makes a mistake, for most of the samples, every subsequent predicted value is
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Figure 4: Drawing more samples from the same training distribution can mitigate spurious rule
reliance. Note that we maintain the proportion of samples that encode the spurious rules.

incorrect (Figs. 3(a) and 3(b)), implying that it goes back to relying on the invariant rule after relying
on the spurious rule. This is because a variable can take only one of two values, and thus, if subsequent
incorrect predictions were caused by randomness, not all predictions would be incorrect, but only
about 50% of the predictions would be incorrect.
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Figure 5: In the low data regime, the net-
work makes use of the spurious rules to
increase its margin (i.e., confidence). In
the high data regime, it no longer needs
to rely on them. Confidence values are
computed on the logit values of the bi-
nary classification task in Task 1.

Task 3: We create small modifications to the original
PVR task. First, we make the task more complex by
introducing additional steps to the task, where the index
is computed in three steps instead of one. The label is
computed by making 3 hops and the size of each hop is
determined by the number at the position the hop lands
on. The number after all hops is the label for that instance
(Fig. 2). Next, we modify the data generation process
such that in a significant portion of the dataset, the label is
always equal to (number at last hop+3)%9+1, as shown
in Task 3 in Fig. 2.

Observation: On testing on a uniform test set, we observe
that most misclassifications occur when the samples do not
encode the spurious rule, resulting in poor test accuracy
(Fig. 3(c)).

4 OVERCOMING SPURIOUS CORRELATIONS
IN REASONING TASKS BY DRAWING MORE
SAMPLES FROM THE SAME DISTRIBUTION

In all three tasks, we observe that by simply sampling more
data from the same training distribution with spurious fea-
tures, the network overcomes reliance on the spurious
feature present in the training data, attaining perfect ac-
curacies on datasets that break the spurious rule but still
perfectly encode the invariant rule as shown in Fig. 4.
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Note that we simply sample more data from the same distribution and thus, maintain the proportion
of samples that encode the spurious rule. The network still overcomes the reliance on spurious
correlations. In other words, if we provide enough invariant information to a network such that it is
able to encode the invariant, fully predictive function properly, it will learn to ignore spurious signals
irrespective of their strength.

We verify our claim by observing differences in confidence/margin when a network is trained on a
dataset that encodes both the invariant and the spurious rule against one that is trained on a dataset
that only encodes the invariant rule. We see that in the low data regime, the network is unable to
encode the invariant function properly and thus, it utilizes the spurious rule to increase its confidence
during training as shown in Fig. 5. However, as we scale up the size of the training dataset and the
network is able to classify training instances with sufficient confidence, the network no longer relies
on spurious cues to increase its confidence.

Based on these observations, we ask the following question: Are deep neural networks simply
starved of invariant information? Can supplying sufficient invariant information overcome spurious
correlations, regardless of the strength of the spurious signal? We examine these questions in settings
with complex data distributions that have abundant representative data, vision and language.

5 DRAWING MORE SAMPLES CAN EXACERBATE SPURIOUS CORRELATIONS
IN COMPLEX DISTRIBUTIONS

In this section, we verify if our findings from reasoning tasks apply to popular benchmarks studied in
literature that exhibit more complex distributions with abundant representative data.

5.1 EXPERIMENTAL SET-UP

We detail our experimental set-up below:

• CelebA (Liu et al., 2015). We create a gender classification task using the CelebA dataset,
where a small fraction of the Male samples contain eyeglasses, which is the spurious feature
in our setting. We estimate the degree of spurious feature reliance by measuring the number
of Female samples with eyeglasses that are misclassified during testing. The lower the
accuracy for Female samples with eyeglasses, the greater the degree of spurious feature
reliance.

• MultiNLI (Williams et al., 2018). Inspired by experiments in Sagawa et al. (2020a), we
create a three-class classification task with the target labels - entailed by, neutral with, or
contradicts. In our experimental setting, the contradicts class contains a few samples with
negation words, which is the spurious feature in our setting. We estimate the degree of
spurious feature reliance by measuring the number of samples belonging to the neutral
with or entailed by classes that contain negation words that are misclassified during
testing. The lower the accuracy for these samples, the greater the degree of spurious feature
reliance.

Note that our evaluation is consistent with current practice, where we estimate the degree of spurious
feature reliance by measuring Worst-Group Accuracy (WGA), which computes the accuracy of test
samples that contain the spurious feature associated with the other class during training. Additionally,
consistent with all works that study spurious correlations, we perform hyperparameter tuning using a
validation split to optimize for worst group accuracy (Sagawa et al., 2020a;b; Liu et al., 2021; Zhang
et al., 2022a; Ahmed et al., 2021; Kirichenko et al., 2022).

5.2 TRAINING DETAILS

In the CelebA setting, we use an ImageNet pre-trained ResNet-50 model that we train for 25 epochs,
optimized using SGD with a static learning rate 1e-3, weight decay 1e-4, and batch size 64. In the
MulitNLI setting, we use a pre-trained BERT model that we train for 20 epochs, optimized using
AdamW with a linearly decaying starting learning rate 2e-5 and a batch size of 32. In the CelebA
setting, we maintain the training set size as 1,000, while in the MultiNLI setting we maintain the
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Figure 6: In settings with more complex data distributions such as vision and language, drawing
more data from the distribution can hurt Worst Group Accuracy (WGA), implying an exacerbation in
spurious correlations.

training set size as 6,000. In both settings, we start with this fixed number of samples per group and
repeatedly double that amount. Each time we increase the dataset size, we measure and plot the worst
group accuracy, as shown in Fig. 6.

5.3 OBSERVATIONS

Through our experiments, we find that in both settings, simply drawing more samples from the same
distribution exacerbates spurious correlations. Note that we,

• Maintain the proportion of spurious vs. invariant information. In other words, we maintain
the proportion of samples which contain the spurious feature in the training set.

• Introduce only a small number of samples with the spurious feature, and thus, each time
we double the training set size while maintaining the proportion of spurious-to-invariant
information, the number of new samples without spurious feature is a lot greater than the
number of new samples with the spurious feature.

Despite this, drawing more samples from the same training distribution exacerbates spurious correla-
tions in settings with complex distributions. This is in contrast to the experimental results shown for
reasoning tasks (please refer to Fig. 4), where drawing more samples from the training distribution
overcomes spurious correlations.

RANDOM SAMPLING CAN INTRODUCE SAMPLES THAT CONTRIBUTE STRONGLY TO SPURI-
OUS FEATURE RELIANCE IN COMPLEX DISTRIBUTIONS

In the reasoning settings studied above, all tasks have training distributions where the input space is
comprised of only a small number of features. In such a setting, it is unlikely that the network will
encounter samples that are atypical or poorly represented in the training distribution. In other words,
training samples are highly similar to each other and this remains true regardless of the number of
additional samples that we add to this training pool. This is in contrast to tasks in vision and language
that have more complex distributions with abundant representative data, comprised of general features
that exhibit high variance from sample to sample. Sub-sampling from these distributions may
introduce multiple samples with core, invariant features that are not well represented in the original
training dataset and are even harder for a network to understand. We observe that the maximum error
(||p(w, x) − y||2) a model attains on a sample during training in the reasoning tasks is almost the
same as the minimum error a model attains on a sample (3.1003e-05 and 1.4378e-05, respectively).
This is in sharp contrast to the CelebA setting studied, where the maximum error is far greater than
the mininum error a model attains on a sample (2.047e-1 and 2.8412e-11, respectively).

In such settings with complex distributions, randomly sampling more data from the training distribu-
tion, as was effectively done in reasoning tasks, can introduce many samples that are difficult for a
network to understand, thereby forcing it to rely strongly on spurious biases present in these samples
when minimizing training loss.
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Figure 7: Drawing typical samples overcomes spurious correlations. Drawing atypical samples
significantly exacerbates spurious correlations. Note that we maintain the proportion of samples
containing the spurious feature in all three, Typical, Random and Atypical.

As such, in these settings, it is important to carefully draw from the training distribution to overcome
invariance starvation. More specifically, to overcome starvation in such settings, it is important to
draw samples with clear invariant information that represents the initial sub-sampled training set
well.

5.4 OVERCOMING STARVATION IN COMPLEX DISTRIBUTIONS

To overcome starvation in settings with complex distributions, we aim to provide the network with
additional training data that contains general features that are well represented or typical in the
original training data.

To identify such samples in the training distribution, we first train the network on the entire (available)
training distribution for that task. We then compute the training error early in training. This method
of estimating which samples are well represented in the training distribution is inspired by Paul et al.
(2021) that assigns a similar score for each sample in a dataset to determine which samples one must
prune for efficient training. They claim that samples that have a lower error early during training are
redundant/typical. Alternatively, samples that have a higher error during training are atypical.

We follow a similar method of estimating if a sample is well represented in a training distribution.
Those samples that have a low error early in training are samples that are easy to learn and are typical
and well represented in the training distribution. We compute such scores after the 10th and 5th

epochs in the CelebA and MultiNLI settings, respectively. Note that in our experimental settings,
the spurious features exhibit significantly lower variances than their general counterparts and thus,
loss during training is primarily determined by the core features. So for instance, in the MultiNLI
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setting, the spurious features takes the form of a couple of negation words that are exactly the same
throughout the dataset.

In Fig. 7, we show that simply drawing more samples with typical or easy to learn general features can
overcome spurious correlations while maintaining the proportion of spurious samples in the training
set. Interestingly, providing new samples which contain core features that are poorly understood
and are not well represented in the training distribution (atypical samples) exacerbates spurious
correlations far more than when one were to simply sample randomly. Note that to show the efficacy
of our technique in the CelebA, we start with a training set where the proportion of samples containing
the spurious feature is greater than in the set-up shown in Section 5.1. This is because, in the original
setting, the worst group accuracy is initially very high. However, for completeness, we still show the
impact of random sampling in the new setting.

6 CONCLUSION

Summary. We show that in practice, deep neural networks are often starved of invariant information,
making them highly sensitive to spurious features present in training data. We show that in reasoning
tasks, while maintaining the proportion of spurious samples of the original training distribution,
simply drawing more samples from the training distribution can overcome spurious correlations. We
find that if the model has sufficient invariant information, the model does not rely on spurious features
even if the proportion of spurious information is maintained. Surprisingly, in tasks with more complex
distributions with abundant representative data, drawing more samples from the training distribution
exacerbates spurious correlations. We find that this happens due to the existence of samples that are
atypical or difficult for a network to generalize to, forcing them to rely on weakly predictive spurious
features present in these samples. Finally, we show that in such settings, if one carefully draws
samples with easier invariant features from the training distribution, one can overcome invariance
starvation and mitigate spurious correlations.

Impact.

• Deep neural networks do not always prefer simpler predictive features. Current
notion regarding the nature and formation of spurious correlations assumes that deep neural
networks trained using empirical risk minimization will always form and rely on spurious
correlations as deep neural networks are biased towards simpler features. Shah et al. (2020)
show that in the presence of two fully predictive features, a model will choose to rely only on
the simpler feature and completely ignore the complex feature. More recent works show that
even if the simpler feature is not fully predictive of the task, a network will still rely strongly
on these features and often ignore the general, invariant feature (Kirichenko et al., 2022).
As such, it is assumed that spurious correlations will always be learned in the presence of
simpler, partly predictive spurious features and that to overcome this problem, one must
alter the network’s biased representations or reduce the predictive power of the spurious
feature in the dataset.
Our paper is the first to show that models are not always biased to simpler features. We show
that if the network is provided with enough data to encode the general, invariant function
well, it will ignore the simpler, weakly predictive spurious features.

• Sampling from multiple different training environments is not necessary. Past works
state that to avoid the formation of spurious correlations during training, one must sample
from multiple different training environments or up-weight samples from environments that
do not contain strong spurious cues (Arjovsky et al., 2019; Sagawa et al., 2020a; Liu et al.,
2021). This ensures that the proportion of samples in the training dataset that contain strong
spurious cues is reduced. In this paper, we show that one can continue to draw from the
same training environments and maintain the same proportion of samples with spurious
features but still overcome spurious correlations by simply providing more data.

• More data can exacerbate spurious correlations and hurt generalizability. Current
notion in deep learning assumes that more data is almost always beneficial for generaliz-
ability. Through our experiments, we show that this is not always true as more data can
exacerbate spurious correlations and that one must be careful when using more data to train
their models.

9
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