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Abstract

Self-supervised learning (SSL) is the prevalent paradigm for representation learning often
relying on pairwise similarity between multiple augmented views of each example. Numerous
learning methods with various complexities such as gradient stopping, negative sampling,
projectors, additional regularization terms, were introduced in the past years. These methods
can be effective, but they require careful hyperparameter tuning, have increased computational
and memory requirements and struggle with latent dimensionality collapse. Furthermore,
complexities such as gradient stopping make them hard to analyse theoretically and confound
the essential components of SSL. We introduce a simple parametric instance discrimination
method, called Datum IndEx as its Target (DIET). DIET has a single computational
branch, without explicit negative sampling, gradient stopping or other hyperparameters. We
empirically demonstrate that DIET (1) can be implemented in a memory-efficient way; (2)
achieves competitive performance with state-of-the-art SSL methods on small-scale datasets;
and (3) is robust to hyperparameters such as batch size. We uncover tight connections
to Spectral Contrastive Learning in the lazy training regime, leading to practical insights
about the role of feature normalization. Compared to SimCLR or VICReg, DIET also has
higher-rank embeddings on CIFAR100 and TinyImageNet, suggesting that DIET captures
more latent information.

∗Equal contribution.
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Figure 1: Overview of the Datum IndEx as its Target (DIET) method: The typical pipeline for SSL
involves selecting a data augmentation strategy, a model architecture, and defining a loss function along with
its corresponding hyperparameters. State-of-the-art SSL methods often involve complex design choices across
all three aspects. In contrast, DIET simplifies this process: the DIET pipeline has only one computational
branch, does not require explicit negative sampling, regularization or elaborate techniques such as stop
gradients or parameter averaging.

1 Introduction
Self-supervised representation learning (SSL) has become a powerful method for training neural networks
without relying on labeled data (Chen et al., 2020; Misra & Maaten, 2020). What makes self-supervised
learning (SSL) possible is solving an auxiliary unsupervised task, enabling to pretrain models on large
unlabeled datasets. The different principles include reconstruction-based methods such as MAEs (He et al.,
2022a), as well as contrastive (Chen et al., 2020; HaoChen et al., 2021b; Radford et al., 2021; Khosla et al.,
2020) and non-contrastive methods (Bardes et al., 2021; Chen & He, 2021; Caron et al., 2021a; Oquab et al.,
2024; Zbontar et al., 2021). Contrastive Learning (CL) relies on mapping similar samples (called positive
pairs) close to each other in latent space, while embedding dissimilar samples (called negative samples) far
from each other. Non-contrastive methods do not have negative pairs, they avoid a collapsed representation
via regularization terms. This principle led to many successful applications of SSL in the tasks of semantic
classification (Chen et al., 2020), image segmentation (Caron et al., 2021a), and monocular depth estimation
(Fu et al., 2018), as well as across diverse data domains, ranging from medical imaging (Eslami et al., 2021)
to remote sensing (Tao et al., 2020).
The increasing interest in SSL has led to the emergence of a plethora of methods, each introducing its own
variation of the core principles. SSL relies on asymmetric computational branches, predictor and projector
networks, stop gradients, and many other techniques. Though these might address specific challenges, the
field faces many problems. Problems include dimensionality collapse (Jing et al., 2021; von Kügelgen et al.,
2021), when some latent factor is not captured, high compute and memory requirements due to large batch
sizes and storing augmented samples (Chen et al., 2020), not to mention the need to carefully tune various
hyperparameters. This additional complexity not only made it harder to navigate the SSL landscape in
practice, it also confounds the truly essential components of SSL. Furthermore, highly complex methods,
even though they might improve performance, are less amenable to theoretical analysis. We aim to build up
the simplest SSL pipeline to uncover the essential components of self-supervised representation learning. We
propose DIET, a parametric instance discrimination (PID) method that solves a classification task based on
the sample index, i.e., it learns to distinguish each pair of samples. DIET has a single computational branch,
does not require explicit negative sampling, is robust to hyperparameters, and has advantageous learning
dynamics with higher-rank embeddings compared to SimCLR (Chen et al., 2020) or VICReg (Bardes et al.,
2021). The inherent limitation of instance discrimination is that the classifier head linearly grows with the
dataset size, limiting its scalability. Our insight from the DIET loss is that we can accurately approximate
the gradients without keeping the whole classifier in memory, significantly improving efficiency. Additionally,
we exploit the structure of stateful optimizers such as Adam (Kingma & Ba, 2014) for further gains—we
call this version Scaled DIET (s-DIET). We provide theoretical insights on a parameterized feature model,
pinpointing the positive effect of feature normalization and demonstrate the feasibility of (scaled) DIET.
Empirically, DIET offers a simple yet state-of-the-art alternative to existing SSL baselines on small-scale
datasets, providing practical value for practitioners working with specialized, limited data. The modifications
introduced in s-DIET enable DIET to scale more effectively to larger settings such as CIFAR-100 and
TinyImageNet, while preserving its advantages on small-scale datasets. Our contributions are:
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• We propose Datum IndEx as its Target (DIET) as a simple parametric instance discrimination (PID)
method for self-supervised representation learning (§ 3);

• We provide theoretical insights into the behavior of DIET in comparison to existing SSL methods
and pinpoint the advantages of feature normalization (§ 4);

• We show how instance discrimination can be scaled up in form of Scaled DIET (s-DIET) (§ 5);
• We provide extensive empirical evidence that DIET is competitive on downstream classification with

SOTA on small datasets, and it has a higher-rank embedding (§ 6).

2 Background: Why Self Supervised Learning Needs Occam’s Razor
The SSL model zoo. SimCLR (Chen et al., 2020) measures the distance between latent representations
with cosine similarity, which is scaled by a tunable temperature parameter. DINO (Caron et al., 2021b)
utilizes a student-teacher Vision Transformer (ViT) architecture (Dosovitskiy et al., 2020) to minimize the
cross-entropy between the student and teacher probability distributions across K classes. SWaV (Caron
et al., 2020) incorporates clustering to assign labels to representations, ensuring consistent cluster assignments
between data points and their transformed counterparts. MAE (He et al., 2021) uses masking as data
augmentation, encouraging the model to learn representations by reconstructing the masked-out information.
CLIP (Radford et al., 2021) relies on caption-image pairs as a self-supervised signal. Although the training
pipeline for SSL is consistent overall (Morningstar et al., 2024, cf. Fig. 1), approaches differ regarding data
augmentations, model architecture, and the loss function.

SSL is over-specialized. SSL development was mostly driven by industry, thus, focused on large-scale
natural images and sounds (Radford et al., 2021; Oquab et al., 2024; Siméoni et al., 2025). This led to a
point where methods are architecture- and dataset-specific (He et al., 2022b; Assran et al., 2023; Oquab et al.,
2024). This overspecialization imposes a high barrier of adaptation:

(i) Uninformative loss w.r.t. the DNN’s quality (Reed et al., 2021; Garrido et al., 2022): as the last few
layers (the projector) are discarded after training, the loss is not necessarily indicative of performance;

(ii) Too many hyperparameters: for loss, projector, and augmentations, with hard-to-predict effect on
performance (Grill et al., 2020a; Tian et al., 2021; He & Ozay, 2022);

(iii) Lack of hyperparameter transferability across datasets and architectures (Zhai et al., 2019;
Cosentino et al., 2022);

(iv) Heavy code refactoring, compared to supervised models, e.g., for generating positive pairs, handling
asymmetric computational branches, and parameter moving averages (Grill et al., 2020b; Caron et al.,
2021b).

This makes SSL implementation more costly than supervised learning, often requiring distributed training
and long training schedules that reduce the accessibility and inclusivity of SSL research (Crowell, 2023).

3 Datum IndEx as its Target (DIET): a simple SSL method
Motivation: A Simple SSL Method. Recent SSL methods rely on various design choices and techniques
to structure learned representations while avoiding representation collapse, including regularization terms,
specialized architectures, and specific data transformations, leading to a multitude of sensitive hyperparameters
that require careful tuning. This is a barrier to practical adaptation and theoretical study. In contrast,
instance discrimination formulates SSL as cross-entropy maximization over instance labels, i.e., “learning by
distinguishing individual data points within a dataset.” As we will show, this provides a simpler SSL pipeline,
has incentives to capture more information, and is more amenable to theoretical study.

Intuitition. SSL often requires large batch size to provide accurate entropy estimates in high dimensions
to maximize the uniformity loss (Wang & Isola, 2020; Zhai et al., 2023). The batchwise perspective is not
only limited by GPU memory, but also by how it changes the underlying problem. Contrastive objectives
such as InfoNCE/SimCLR can be thought of as solving an underlying classification problem, discriminating
the positive pair from all negative samples, given the anchor sample. This formulation only constrains
relationships between data samples in the batch. This makes it possible that (negative) samples not in a
batch have very similar representations to the anchor or positive sample—unless the batch size equals the
dataset size. On the other hand, instance discrimination requires distinguishing each pair of data samples,
eliminating the above failure case. Intuitively, this incentivizes capturing more information, as, e.g., two
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images of similar dogs need to be distinguished, which might be possible by picking up subtle variations such
as in fur color.

3.1 The DIET method
Instance discrimination focuses on distinguishing individual samples within a dataset by treating each sample
as its own class. Alexey et al. (2015) introduced parametric instance discrimination (PID), where they
constructed surrogate classes via an elaborate gradient-norm–based strategy and designed class prototypes as
trainable parameters, whereas Wu et al. (2018) introduced a non-parametric alternative, where prototypes
are selected from a memory bank of previously observed samples. We adopt PID with a nonlinear backbone
(encoder) fθ with parameters θ and a linear projection WH . We use the sample (datum) index as the
classification label and call our method Datum IndEx as its Target (DIET). We optimize the cross-entropy
between the probability distribution of a sample’s predicted and ground truth indices:

LDIET(xn) = XEnt(WHfθ(xn), yn = n), (1)

where xn ∈ RD denotes inputs, yn the corresponding label, which equals, n, i.e., the dataset index. The
encoder fθ maps inputs to latents zn = fθ(xn). The learnable projection matrix WH then maps zn to logits
corresponding to the dataset indices.

The simplicity of DIET boils down to (cf. Appx. C.1 for pseudocode):
(i) No explicit negative sampling: DIET relies on WH to ensure distinct representations for each

sample instead of negative sampling.
(ii) One computational branch: as the index contains the information that augmented views of the

same sample belong together, there is no need for two computational branches;
(iii) No specialized solutions: no stop gradients, asymmetric computational graphs, exponential moving

averages and hyperparameters make DIET simple.
The astute reader might notice one limiting factor in DIET: WH ∈ RN×d grows proportionally to the dataset
size N . However, this limitation can be overcome, as we show in § 5.

4 Theoretical analysis
Our main argument for DIET in § 3 was its simple pipeline. However, these simplifications also make the
connection to other popular SSL methods non-obvious. Thus, we present a theoretical analysis to show that
under some assumptions, the instance discrimination loss of DIET has the same minimizer as the popular
InfoNCE method (Chen et al., 2020; Zimmermann et al., 2021a). Our formulation also suggests that if we
replace the cross entropy loss function in (1) with a Mean Squared Error (MSE) loss, then this MSE-DIET
loss has the same minimizers as the Spectral Contrastive Learning (SCL) loss (HaoChen et al., 2021b). These
results indicate that for the theoretical guarantees of these methods, not all bells and whistles are necessary,
as the much simpler DIET algorithm can learn the same representations. Last, our formulation also enables
us to better understand theoretically why feature normalization can yield better representations (§ 4.2).

4.1 A Framework Connecting Pairwise SSL Losses and Instance Discrimination
Given a model f : Rd → Rm and dataset D, many SSL losses in the literature are defined based on the
pairwise similarity between embeddings zj = f(xj) of samples from the dataset (Chen et al., 2020; Chen
& He, 2021; Grill et al., 2020a)—often instantiated as the cosine similarity, which for unit-norm vectors is
equivalent to the inner product z⊤

1 z2. We call such losses pairwise similarity losses and denote them by
Lps(D; f) = lps({z⊤

1 z2}). This is in contrast to instancewise losses Lin(D,Y; f) = 1
|D|
∑

(x,y) lin(f(x), y)
defined as the average of a loss applied on each sample against labels Y, which are more common in the
broader machine learning literature.
While pairwise losses avoid an explicit dependence on labels, their specialized construction has made SSL
difficult to analyze theoretically, and prevents the direct application of tools from the broader literature aimed
at addressing instancewise losses. We bridge this gap by developing a connection between models trained
with pairwise loss and models with a single additional linear projection trained with an instancewise loss and
labels Y that are simply the datum index. Relying on the invariance of the inner product in the SCL loss up
to orthogonal transformations, empirical and theoretical results about the linearity of feature spaces learned
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by neural networks (Roeder et al., 2020; Reizinger et al., 2024; Park et al., 2023), and the invariance of linear
probe performance to invertible linear transformations (HaoChen et al., 2021a), we assume that the inner
products are preserved by the projector, i.e. that the projector is column-orthogonal.
Definition 1. Let H be a hypothesis class and D = {xi} a dataset. For pairwise loss function Lps, define
the optimization program

min
f∈H
Lps(D; f) (2)

We call instancewise loss Lin with instance labels Y = {yi}i∈D an instancewise equivalent of Lps if, for model
WHf constructed by appending linear layer WH ∈ Rm×p to the base model f , the optimization program

min
f∈H,WH ∈Rm×p

Lin(D,Y; WHf) (3)

satisfies the following
• If (f,WH) is a minimizer of 3 and WH is column-orthogonal, then f is a minimizer of 2.
• If f is a minimizer of 2, then there exists WH such that WH is column-orthogonal and (f,WH) is a

minimizer of 3.
The motivation behind the above definition is to reframe a pairwise loss as an instancewise loss by simply
adding a linear projector, potentially opening new avenues of theoretical and empirical analysis. Our main
theoretical result is to show that some commonly studied pairwise SSL losses have natural instancewise
equivalents.

InfoNCE Loss. The InfoNCE objective is the most well-studied pairwise loss and the basis of the popular
SimCLR method (Chen et al., 2020; Zimmermann et al., 2021a). Since SimCLR uses unit-normalized
representations, which have been shown to provide better performance, we consider the hypothesis class of
functions that produce representations on the unit hypersphere H = {f : Rd → S|D|−1}. Under this setting,
we find that the instancewise equivalent of the InfoNCE loss is the DIET loss from § 3!
Theorem 1. For the hypothesis class of unit-normalized embedding functions, DIET is an instancewise
equivalent of the InfoNCE loss.

Spectral Contrastive Learning One of the most well-understood pairwise losses in theoretical analysis is
the spectral contrastive loss (SCL) (HaoChen et al., 2021a), where δ is the Kronecker delta. 1

LSCL = − E
(x1,y1),(x2,y2)∼D

[
δy1,y2f(x1)⊤f(x2)

]
+ 1

2 E
(x1,y1),(x2,y2)∼D

[
(f(x1)⊤f(x2))2] . (4)

Just as SCL can be viewed as a simplification of the InfoNCE objective by dropping the softmax objective,
we call also define an MSE-DIET loss with one-hot encoded labels.

LMSE
DIET = 1

2Exi∼D
[
∥WHf(xi)− ei∥2] . (5)

We assume f is a parametric feature model f(x) = Wϕ(x) constructed by composing a fixed, potentially
high-dimensional and non-linear feature map ϕ with a learnable linear operator W ∈ Rm×N with m ≤ N .
This setting captures the lazy training or neural tangent kernel (NTK) regime of neural networks which is
common in theoretical analysis and accurate for neural networks in the infinite width limit (Jacot et al.,
2018). In this setting, we again find a simple instancewise equivalent.
Theorem 2. For the hypothesis class of parametric feature models, MSE-DIET is an instancewise equivalent
of the SCL loss.
The proofs are presented in Appx. A.2. These results indicate that, at least in a simplified setting, simple
instancewise losses can accomplish the same as the more complex pairwise losses. With DIET and MSE-DIET
being instancewise equivalents to the well known SSL losses, this justifies the exploration of parametric
instance discrimination as an alternative approach to SSL. From a wider perspective, this creates a rigorous
connection between the theory on SSL losses, which has been largely independent and self-contained, and the
broader machine learning literature, which focuses primarily on instancewise losses. We provide empirical
evidence of the given equivalences in § 6 with additional validation in Appx. D.7.

1Equation (4) differs from some previous definitions by a few constant factors. This does not affect any of the analysis, cf.
Appx. A.1.2
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Table 1: DIET trained on small datasets achieves similar accuracy to Imagenet pre-trained SSL for
numerous small-scale datasets. Benchmarks are taken from †:Yang et al. (2022), +:Ericsson et al. (2021)

Arch. Pretrain Method Aircraft DTD Pets Flower CUB-200 Food101 Cars

Resnet18 IN100† SimCLR 24.19 54.35 46.46 75.00 16.73 - -
- DIET 37.29 50.62 64.06 72.01 33.03 62.00 42.55

Resnet50 IN-1k+

SimCLR 44.90 74.20 83.33 90.87 42.74 67.47 43.73
SimCLRv2 46.38 76.38 84.72 92.90 52.78 73.08 50.37
MoCov2 41.79 73.88 84.00 90.07 43.84 71.63 39.87
BYOL 53.87 76.91 89.10 94.50 52.14 73.01 56.40
VICReg 53.41 76.12 89.45 93.72 62.37 75.59 61.51
SimSiam 5.97 53.03 62.17 57.93 15.34 35.45 0.85
DeepClusterv2 54.49 78.62 89.36 94.72 59.06 77.94 58.60
Swav 54.04 77.02 87.60 94.62 54.14 76.62 54.06

- DIET 44.81 51.75 67.08 73.32 41.03 71.58 55.82
SwinTiny - DIET 33.15 51.88 58.06 70.78 32.11 8.86 47.12
Convnext-S - DIET 43.13 9.52 61.72 67.72 31.44 69.84 40.63

4.2 Learning More Features via Normalization

Normalizing features to the hypersphere is common SSL (Zimmermann et al., 2021b). We seek to understand
how normalization affects the features learned by DIET. For this, we analyze feature learning with content
and style latents (von Kügelgen et al., 2021) in a variant of sparse coding that is common in feature learning
(Wen & Li, 2021; Zou et al., 2021; Chen et al., 2023; Xue et al., 2023)—cf. Appx. A.1.4 for details.
We model the interaction of content and style concepts in a simple additive model. Let C = {1, . . . , C} label
a set of latent concepts. To each c ∈ C we assign a content (low noise) feature uc and a style (high noise)
feature vc. For a cat, a content feature could be ear shape (almost always a pointed one), while a style
feature could be fur color (often highly varying between breeds), with vc,uc ∈ Rd. We assume all ui and vi

are orthonormal, the feature noises ϵu, ϵv are drawn from symmetric, zero-mean distributions p(ϵu), p(ϵv)
with variances σ2

u < σ2
v and a bounded support such that for νu, νv < 1, |u| ≤ νu and |v| ≤ νv, while the

background noise ξ is drawn from a Gaussian distribution scaled by some parameter φ.

ϕ(x) = (1 + ϵu)uc + (1 + ϵv)vc + ξ; ,

where c ∈ C. We define data augmentation A to replace the noise components ϵu, ϵv, ξ with a different
realization from the same distribution.
By studying the standard and normalized MSE DIET losses, we can prove that only normalized DIET
captures both features (proof is in Appx. A.3):

Theorem 3. If W minimizes LMSE
DIET and WN minimizes LMSE

DIET−NORM then

∥W vc∥
∥W uc∥

= σ2
u

σ2
v

+ o(1); 1− νu

1 + νv
≤ ∥WN vc∥
∥WN uc∥

≤ 1 + νu

1− νv

Thm. 3 shows that the smaller variance (content) feature u implies a small alignment between the weight
matrix W and the style feature vc at the optimum of LMSE

DIET. Thus, DIET may fail to learn style features if
a content feature is present—in line with a similar result for contrastive learning from von Kügelgen et al.
(2021). Thm. 3 characterizes the alignment quantitatively, supplementing the qualitative non-identifiability
result of von Kügelgen et al. (2021). Informally, in the unnormalized model, the larger noise from the style
feature introduces a larger loss, so to minimize the loss the model ends up focusing primarily on the lower
noise content feature. In contrast, normalization introduces an additional dependency between the directions,
which has the effect of balancing the learning between the directions. We show that normalized DIET learns
both features approximately equally so long as the noise does not significantly corrupt the features. For
example, if the noise ratio is bounded by νu, νv ≤ 1

2 , then the alignment with the style feature and the content
feature will differ by at most a factor of 3. We validate these findings in § 7.
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Table 2: DIET achieves higher validation accuracy on medical datasets than SSL with standard
hyper-parameters. The supervised model is pretrained on ImageNet1k and a linear probe is trained on
top of fixed representations.

Architecture Pretraining Method DermaMNIST BloodMNIST PathMNIST

Resnet18

- SimCLR 66.88 14.56 11.80
- MoCov2 66.88 53.70 18.97
- BYOL 65.89 80.56 65.68
- VICReg 66.78 47.18 11.31
- SimSiam 66.88 43.23 17.17
- DIET 73.92 89.24 44.53
- s-DIET 76.71 98.16 84.78
IN-1k+ Supervised 74.06 88.13 59.37

5 Making DIET Memory Efficient
5.1 Batch Cross Entropy
DIET’s classifier head WH scales with the number of examples, limiting scalability due to memory requirements.
For our insight, we consider the gradients w.r.t. wk (the derivation is in Appx. A.4)

∇wk
LDIET = − 1

B

B∑
i=1

(yi,k − p(k|zi))zi, (6)

where yi.k is the ith component of the true, one-hot label of sample k, and p(k|zi) is the predicted class
probability distribution, given the embedding of sample i and only the logits corresponding to samples in the
batch appear. Thus, for a batch XI with B elements and with indices I ⊆ [N ], let WH [I] ∈ RB×d collect
the ith row of WH , for all i ∈ I. We hypothesize that this subsampling provides a reasonable approximation
of the gradients of all parameters θ:

∇θXEntN (WHfθ(XI), I) ≈ ∇θXEntB(WH [I]fθ(XI)). (7)

Instead of calculating standard cross entropy on the N -dimensional outputs of WH , we select its B rows
corresponding to the indices in the batch, reassign samples a distinct label from {0, . . . , B − 1} and calculate
a B-dimensional batch cross entropy. This can be interpreted as batchwise instance discrimination. For
empirical validation, cf. § 7.3, for an illustration, Fig. 2.

Memory savings: an illustration on ImageNet. Batch cross entropy requires only that B rows of WH

are in memory, which in the standard dim x≫ dim z case provides a small memory cost compared to loading
the data. For example, 256 ImageNet (Deng et al., 2009) images with 224× 224 resolution require 150 MB
per batch, as opposed to only 2 MB for the 2048−dimensional classifier.

5.2 Multi batch crossentropy

Figure 2: Batch cross entropy: The index set I
collects all sample indices that are in the current
batch. We then use I to select which rows of WH to
load into memory, decreasing the memory footprint

Although our experiments were built around the batch
cross entropy loss, there is a generalization, where we
decouple the batch size from the number of rows of WH

loaded. Instead of only loading the rows of WH that
correspond to index set I, we would actually load a
number of heads corresponding to m ·B samples from
an index set Im, where m is chosen arbitrarily large.
In this case, we would make sure that the upcoming m
batches, each with B elements, cover exactly, without
overlap or hiatus, the training datapoints from Im.

6 Experiments
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Figure 3: GPU Memory Comparison rel-
ative to SimCLR with a batch size of 256.
OOM indicates out-of-memory on an Nvidia
A40 GPU. DIET requires 2x, SimCLR up to
2.2x more memory than s-DIET. Absolute val-
ues are deferred to Tab. 15

Setup. We perform experiments on a toy, a synthetic, and
4 real-world datasets: CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), ImageNet-100 (Tian et al., 2020), and TinyIm-
ageNet (Le & Yang, 2015). For our models, we study the
ResNet family of architectures, specifically ResNet-18 and
ResNet-50 (He et al., 2016), and vision transformers (ViT)
(Dosovitskiy et al., 2020), specifically ViT-B/16. ResNet-18,
ResNet-50, and Vit-B/16 have embedding dimensions 512,
2048, and 768, respectively. We use a three-layer ReLU MLP
as a projection head during the training of s-DIET. We fix
the default label smoothing to 0.8 and the data augmentation
pipeline to a combination of cropping, flipping, color jitter
and gaussian blurring. Details on data augmentation are pre-
sented in Alg. 3. We use an AdamW optimizer with a 10−3

learning rate and 0.05 weight decay with a cosine learning
rate decay. We fix the batch size to 256 for all experiments
and train DIET and s-DIET for 5000 epochs. Our baselines
were trained until convergence using the same data augmenta-
tion as for DIET. All baseline hyper-parameters were kept to
the default values proposed by the original works. After training, we evaluate our representations by training
a linear classifier on top of frozen representations to perform semantic classification on the validation set.

6.1 An edge on small datasets

Transfer learning. We investigate how a trained-from-scratch DIET performs on small datasets that
are commonly handled by SSL through transfer learning: Aircraft (Maji et al., 2013), DTD (Cimpoi et al.,
2014), Pets (Parkhi et al., 2012), Flowers (Nilsback & Zisserman, 2008), CUB200 (Wah et al., 2011), Food101
(Bossard et al., 2014), Cars (Krause et al., 2013). These datasets have much fewer samples than Imagenet
but their image distribution is often much less diverse, e.g., focusing only on aircraft. The current SOTA
is to pretrain one’s favorite SSL method on a larger dataset such as Imagenet100 or Imagenet-1k and to
fine-tune on the target dataset. But pretraining over large, uncurated datasets can introduce risks such
as data poisoning or bias amplification, which are critical to avoid in high-stakes scenarios (Zhang et al.,
2024). Perhaps surprisingly, DIET provides an alternative without pre-training i.e., by training
directly on the small dataset—this can be leveraged in scenarios where tight control over the data is
required, e.g., to avoid data poisoning. Tab. 1 shows that DIET matches or surpasses SimCLR pre-trained
on ImageNet-1K across three of the evaluated transfer datasets. When compared to SimCLR trained on
IN100, DIET consistently outperforms it—often substantially. These findings suggest that DIET can serve as
a simpler yet competitive alternative to more complex and less interpretable methods in small-scale settings.

DIET is SOTA beyond Natural Images. Medical datasets generally have very few samples as such
data is notoriously hard to collect. Furthermore, pre-training on ImageNet is less sensible as the data
distributions differ significantly. Thus we compare SSL methods (DIET, SimCLR, MoCov2, VICReg) trained
from scratch on three datasets from the MedMNISTv2 medical imaging benchmark (Yang et al., 2023) (i)
PathMNIST (90, 000−7, 180 train/test split); (ii) DermaMNIST (10, 015−2, 005 split); and (iii) BloodMNIST
(17, 092− 3, 421 split). For SimCLR, MoCov2, VICReg, we use the default hyperparameters from Susmelj
et al. (2020) which yield good performance (> 80%) on CIFAR10, a comparably small dataset of 60, 000
images. All algorithms achieve high training accuracy via a linear probe, but the baseline SSL methods
do not generalize well to the test sets (Tab. 2). By contrast, DIET achieves much higher performance.
For an ablation for DIET with ViT, see Appx. C.8, and training curves in Fig. 16, showing that DIET’s
hyperparameters transfer. DIET also has a speed advantage: for ResNet18, DIET is 1.75x faster than SimCLR
(and 1.72x faster than VICReg). These findings provide strong practical guidance for SSL practitioners:
On small-scale in-the-wild datasets—often characterized by distribution shifts from standard
image benchmarks—DIET serves as a simple yet effective alternative for achieving state-of-
the-art performance. BYOL is a strong baseline, and on the largest of the medical examples we consider,
PathMNIST, it even outperforms supervised learning.
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Table 3: s-DIET achieves higher accuracy than existing CL methods by up to 2.72%. Linear
probe accuracy of s-DIET against DIET and various SSL baselines on CIFAR-10, CIFAR-100, ImageNet-100,
and TinyImageNet. s-DIET obtains state-of-the-art with limited GPU memory.

Method CIFAR-10 CIFAR-100 ImageNet-100 TinyImageNet
ResNet-18 ResNet-50 ResNet-18 ResNet-50 ResNet-50 ResNet-50

SimCLR 90.00 91.64 63.56 67.90 79.68 46.32
MoCov2 81.30 82.53 63.75 68.10 70.90 38.81
BYOL 90.76 92.32 65.26 68.10 (OOM) 40.72
VICReg 91.15 92.67 66.76 70.11 - 43.05
Simsiam 90.78 92.42 65.66 69.62 80.12 40.48
DIET 54.64 89.70 62.93 68.96 73.50 51.66
s-DIET 91.48 93.08 66.88 72.34 80.16 52.52

6.2 Scaling DIET to Large-Scale Natural Datasets
While DIET achieves near state-of-the-art performance on smaller datasets like CIFAR-10/-100 (50,000
samples), its original formulation begins to show limitations when scaled to more challenging datasets such
as ImageNet-100 and TinyImageNet (Tab. 3). On ImageNet-100, DIET struggles to match SOTA, while on
TinyImageNet DIET is no longer memory efficient due to the larger number of samples which directly impact
the size of WH (Fig. 3). In these scenarios, we use batch cross entropy (§ 5) to improve the memory efficiency
of DIET, while adding representation normalization to improve the feature learning ability of DIET (§ 4.2).

Table 4: Training time of s-DIET
versus SimCLR on CIFAR 10/100, in
hours, on a single NVIDIA A5000
GPU. Although more memory efficient,
s-DIET compromises on training time.

Method Model Training Time
s-DIET ResNet-18 16.2
SimCLR ResNet-18 3.9
s-DIET ResNet-50 51.0
SimCLR ResNet-50 11.5

A three-layer MLP projection head is added during training and
removed at evaluation, following prior findings that this improves the
learning efficacy of self-supervised methods (Bordes et al., 2022; Xue
et al., 2024). The full S-DIET algorithm is summarized in Apdx. D.1.
This scaled version of DIET (s-DIET) achieves a balance betweeen the
simplicity of DIET and practical performance: s-DIET is more than
2x more memory efficient than DIET on TinyImageNet and up to 2.2x
more memory efficient than other SSL methods, while outperforming
SSL baselines by up to 2.72% points. The compromise is that s-DIET
is slower to converge (§ 6.2). Improving the convergence rate of
s-DIET is an interesting direction for future research. For an ablation
with a ViT backbone, cf. Tab. 21. In Tab. 3, we find that s-DIET
matches and outperforms popular SSL methods for ImageNet-100
and TinyImageNet respectively. For even larger datasets such as ImageNet-1k, DIET is completely infeasible
due to the size of WH , so s-DIET must be used to avoid memory inefficiencies. However, we find that the
slow convergence rate of s-DIET is a limiting factor, especially in resource limited scenarios: s-DIET achieves
52.01% linear probe accuracy after 500 epochs, whereas SOTA SSL methods can achieve around 65% accuracy
using the same number of epochs.

7 Ablations
In the previous sections, we evaluate DIET and its extended variant, s-DIET, on standard semantic classifica-
tion benchmarks. We now shift focus to a more general unsupervised evaluation of the learned representations.

7.1 Improved Feature Learning
Table 5: The effect of normal-
ization on downstream classifi-
cation accuracy in CIFAR-100.

Normalization Accuracy
Yes (s-DIET) 66.88
No (DIET) 62.60

Toy Setting: clean and noisy features. We use the setup presented
in § 4.2 with 4 latent classes and noise parameters σu = 0.01, σv = 0.1 (for
details, cf. Appx. D.4) and compare the alignment between the weights
and the clean and noisy feature of the first class. As illustrated in (Fig. 4),
normalization enables the model to learn both features, whereas, without
it, only the clean feature is learned.

Normalization Increases Embedding Rank. Interestingly, we show that the normalization applied in
s-DIET further improves the singular value spectrum of DIET embeddings, resulting in representations with
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Figure 4: Normalization leads to richer representations. (left & middle) Alignment of weight
matrix W with clean feature u1 and noisy feature v1 (calculated as ∥W u1∥ and ∥W v1∥, respectively) when
using DIET (left) and normalized DIET (right). DIET only learns the clean feature but normalized DIET
learns both features almost equally. (right) Singular values of representations for CIFAR-100 are sorted in
decreasing order. Values are normalized by the largest singular value.

even higher rank (Tab. 7). We also confirm that these enhancements translate into richer representations,
in line with prior findings (Garrido et al., 2022; Thilak et al., 2024), and they also translate into improved
classification accuracy on CIFAR-100 (Tab. 5).

Combined MNIST and CIFAR-10. We construct a synthetic dataset modelling the data generation
process from § 4.2 where each input example consists of a CIFAR-10 image and a MNIST image of the same
label index concatenated along the channel dimension—akin to the design of Shah et al. (2020); Chen et al.
(2021). We use weaker augmentations on the MNIST image, making the MNIST image the content and the
CIFAR-10 image the style feature (for details, cf. Appx. D.5).

Table 6: The effect of masking on down-
stream classification accuracy on the com-
bined MNIST and CIFAR-10 dataset.

Normalization No Masking Masking
Yes (s-DIET) 83.9 84.06
No (DIET) 13.76 43.56

We train a ResNet-18 using DIET with and without normaliza-
tion. During linear probe evaluation, we may mask the MINST
digit to compare how well the models learned the CIFAR-10
image. We observe in the inset table that DIET quickly overfits
the MNIST digit, even when it is masked, indicating that the
CIFAR-10 features are not well learned. Normalization main-
tains high performance regardless of whether the MNIST digit
is present, showing that the CIFAR-10 features are learned.
Higher-rank inputs can improve downstream linear classifier performance (Cover, 1965), which inspired recent
works to propose the rank-based RankMe (Garrido et al., 2022) and LiDAR (Thilak et al., 2024) metrics
to evaluate the embedding rank in SSL. (Garrido et al., 2022; Thilak et al., 2024) find that these metrics
strongly correlate with downstream accuracy.

Table 7: DIET produces high-rank embeddings: DIET
achieves substantially higher RankMe and LiDAR scores
using ResNet18 architectures.

Dataset Method RankMe (↑) LiDAR (↑)

CIFAR100

DIET 499.58 479.21
SimCLR 355.05 326.58
VICReg 422.28 377.37
MoCov2 313.49 309.17
SimSiam 441.52 308.88
BYOL 261.42 222.38

TinyImageNet

DIET 318.38 414.88
SimCLR 365.87 343.13
VICReg 408.02 391.60
MoCov2 335.73 394.33
SimSiam 419.42 294.21
BYOL 238.04 208.03

DIET learns high-rank embeddings.
As real-world datasets do not grant access to
ground-truth features, we also adopt a proxy-
based evaluation using rank-based metrics and
track singular values of the learned representa-
tions, as in (Xue et al., 2022). In Tab. 7, we
compare the RankMe (Garrido et al., 2022) and
LiDAR (Thilak et al., 2024) scores on CIFAR-
100 and TinyImageNet. We find that, despite
its simplicity, DIET improves dimensional col-
lapse, a challenge typically addressed with bells
and whistles, resulting in capturing a richer
set of features. In addition, we show that the
singular values of DIET’s embeddings converge
faster to a narrow range, whereas SSL base-
lines converge slower and span a wider range,
showing DIET’s clear advantage (c.f., Fig. 11).
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7.2 Experimental Validation of Thm. 5

Figure 5: Procrustes distance
between embeddings learned by
MSE-DIET and SCL vanishes.

We train a model using SCL and MSE-DIET on the toy dataset described
in § 4.2 and Appx. D.4. We then convert the MSE-DIET model into
an equivalent model where the head is column-orthogonal as described
in Lemma 1, and then we compare the procrustes distance between the
embeddings produced by the SCL and equivalent DIET model. Figure 5
shows that the procrustes distance vanishes, indicating that the models
learn the same embeddings up to an orthogonal transformation. This
finding is especially interesting in light of our loss ablation in Appx. C
and Tab. 8, where the MSE and cross entropy formulations of the DIET
objective show substantially different classification performance. This
finding is in line with the known trade-off between the richness of the
representation and downstream performance (Rusak et al., 2024).

7.3 Sensitivity analysis
Finally, we explore the sensitivity of DIET to its remaining hyper-parameters.

Table 8: The effect of the loss on
downstream classification accuracy.

Model MSE CE

CIFAR100 RN18 58.21 66.88
RN50 64.44 72.34

Loss Function. We compare the performance of using mean-squared
versus cross entropy loss on CIFAR-100 (Tab. 8). Although our experi-
mental validation of Thm. 5 shows that the embeddings learned by the
MSE-DIET and SCL objectives have a vanishing procrustes distance,
this similarity does not necessarily transfer to similar downstream per-
formance. Namely, we find that the cross-entropy loss provides better
performance in practice. This is consistent with standard practice in supervised learning.

Batch size. We investigate the effect of batch size on TinyImagenet and report the accuracy in Tab. 9.
Remarkably, the performance of DIET is stable across a broad range of batch sizes, and even as low as 16
causes a relative performance drop of only 5%. Similar conclusions are drawn for s-DIET (Fig. 8).

Table 9: The effect of batch size on down-
stream classification accuracy on TinyIma-
genet (3000 training epochs).

batch size 16 32 64 128 256 512
RN18 37.942.743.443.343.743.7

Batch Cross Entropy. To confirm that batch cross entropy
closely approximates standard cross entropy, we calculate the
cosine similarity of base model gradients (i.e., excluding the
projection head or classifier head) of randomly initialized models
on CIFAR-100 for the base model. Tab. 10 shows that the cosine
similarity between the gradients of batch cross entropy and full
cross entropy is nearly 1 across the board, with higher cosine
similarity for larger models and batch sizes.

Table 10: Cosine similarity of gradi-
ents for CE and batch CE with ResNet
models on CIFAR-100. Batch CE ap-
proximates CE.

Batch Size RN18 RN50
64 0.9944 0.9960
128 0.9965 0.9980
256 0.9975 0.9990
512 0.9980 0.9995

Label smoothing. Finally, we investigate the effect of label
smoothing (LS) on downstream performance and observe that apply-
ing LS with values between 0.4 and 0.8 significantly accelerates the
convergence rate of DIET. As a result, label smoothing also enhances
the performance of DIET as much as ∼5% points when training for
a fixed number of epochs, as shown in Fig. 14.

Projector network. A projector network is often used in SSL
to improve performance (Chen et al., 2020; He et al., 2022b). We
observe that a 3-layer ReLU MLP as a projector also improves linear
probe accuracy for s-DIET on CIFAR-100 (Tab. 11). Table 11: The effect of the

projector network on linear
probe accuracy on CIFAR-100.

Model Pre-project. Post-project.
RN18 66.88 63.46
RN50 72.34 67.60

Data Augmentations. Previous works have emphasized the impor-
tance of data augmentation (DA) for the success of SSL (Balestriero
et al., 2023; Morningstar et al., 2024; Ciernik et al., 2024). Thus, we
consider three DA regimes: Low only includes random crops and hor-
izontal flips; Intermediate further adds color jittering and grayscaling;
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and High further adds Gaussian blur and random erasing (Zhong et al., 2020)—for the exact setup, cf. Alg. 3.
Tab. 12 shows that on TinyImagenet (for ablations, cf., Fig. 15 and Tab. 16) DIET greatly benefits from
intermediate DA, however, the high regime does not have a large further improvement.

8 Discussion
Table 12: The effect of
data augmentation strength
on downstream classification ac-
curacy in CIFAR-100. Refer to
the text for details

DA Low Inter. High
RN18 31.48 43.62 43.88
RN50 40.24 48.80 50.81
RN101 40.07 49.74 50.76

Our work focuses on understanding the simplest set of components that
make SSL work, for which we introduce Datum IndEx as its Target
(DIET), a parametric instance discrimination (PID) method. DIET has
only one computational branch and requires no explicit negative sampling
or other specialized techniques such as stop gradients. In a simplified linear
model, we provide theoretical insights about how feature normalization
can help recover more features in the presence of content (lower variance)
and style (high variance) features and investigate connections to the well
known InfoNCE and SCL objectives from contrastive learning. To improve
memory efficiency, we introduced a batched cross entropy strategy based
on analyzing the gradients of DIET, providing a scalable version of the algorithm.
Through extensive evaluation, we show that DIET offers state-of-the-art results over other SSL methods on
small-scale datasets. We also demonstrate DIET’s memory efficiency on ImageNet-100 and TinyImageNet
and find that DIET learns higher-rank embeddings, corroborating our insights about the role of feature
normalization. As SSL continues to be adopted across a wider range of tasks and domains, DIET offers
a simple yet effective approach for real-world applications, requiring minimal tuning while learning rich
representations in small-scale settings.
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Supplementary Materials
The supplementary materials is providing the proofs of the main’s paper formal results. We also provide
as much background results and references as possible throughout to ensure that all the derivations are
self-contained. Some of the below derivation do not belong to formal statements but are included to help the
curious readers get additional insights into current SSL methods.

sample1 sample2

Training dataset

. . .

sampleN

select
samplen

N-way classifier

Deep Network

XEnt(n,WHfθ(samplen))

• no siamese/teacher-student/projector DNN
• no representation collapse
• informative training loss
• out-of-the-box across architectures/datasets

Figure 6: DIET uses the datum index (n) as the class-target –effectively turning unsupervised learning into a
supervised learning problem. In our case, we employ the cross-entropy loss (X-Ent), no extra care needed to handle
different dataset or architectures. As opposed to current SOTA, we do not rely on a projector nor positive views i.e
no change needs to be done to any existing supervised pipeline to obtain DIET. As highlighted in Fig. 7, DIET’s
training loss is even informative of downstream test performances, and as ablated in Appx. C there is no degradation
of performance with longer training, even for very small datasets (Tab. 1).

A Theoretical Analysis and Proofs
A.1 Technical Setup
A.1.1 Notation and Setup
We use regular font for scalars, bold lowercase font for vectors, bold uppercase font for matrices.
We use ∥ · ∥ to represent the Euclidean norm for vectors and ∥ · ∥F to represent the Frobenius norm for
matrices. The vector ei represents the i-th standard basis vector. For a matrix M , we write M † for the
Moore-Penrose pseudoinverse of M .
We say a matrix M ∈ Rm×n is an isometry if M⊤M = Im. Equivalently, ⟨Mv1,Mv2⟩ = ⟨v1,v2⟩ for all
v1,v2 ∈ Rn. We say M is a partial isometry if M acts as an isometry on the orthogonal complement of its
kernel.
For a matrix M ∈ Rm×n and a scalar function g : Rm×n → R, ∂g

∂M consists of the partial derivatives of g
with respect to the entries of M , namely

∂g

∂M
=


∂g

∂M11
. . . ∂g

∂M1n

...
. . .

...
∂g

∂Mm1
. . . ∂g

∂Mmn


We use the Kronecker delta function δi,j , which is defined as 1 if i = j otherwise 0.

A.1.2 Definition of Spectral Contrastive Loss
Recall the given definition of the spectral contrastive loss

Lscl = E
(x1,y1),(x2,y2)∼D

[
−δy1,y2f(x1)⊤f(x2)

]
+ E

(x1,y1),(x2,y2)∼D

[
(f(x1)⊤f(x2))2] ,

In Xue et al. (2023), the positive pair term in the contrastive loss was instead defined as

E(x,y),(x,y′)∼D,y=y′ [−2f(x)⊤f(x′)]
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so that
L∗

scl = E
(x,y),(x,y′)∼D,y=y′

[−2f(x)⊤f(x′)] + E
(x1,y1),(x2,y2)∼D

[
(f(x1)⊤f(x2))2] ,

This only differs from the current definition by a some constant multiple α, where α is the inverse of the
probability that a randomly chosen pair is a positive pair. The reason for changing this normalization is that
with the original formulation, the norm of the optimal weights and embeddings would grow with the number
of classes. Quantitatively, it is not hard to check that

L∗
scl(αf) = α2Lscl(f)

That is, the loss landscape of the two loss functions is the same up to rescaling. It turns out this is the correct
scaling factor to keep the norm of the optimal weights and embeddings bounded, with scale matching those
produced by DIET.

A.1.3 Isometric Classifier Head
Assumption 4. The embedding dimension is at most the number of labels. That is, m ≤ n.

If Assumption 4 is satisfied, then requiring that WH be an isometry does not restrict the expressivity of the
model class since any model can be converted into an equivalent one where WH is an isometry:
Lemma 1. Suppose Assumption 4 holds and f is a linear model fW (x) = W x and WH is the projection
head. For any model (WH ,W ), there exists another model (W ′

H ,W
′) such that the model outputs agree, i.e.

WHW = W ′
HW ′, and W ′

H is an isometry.

Proof. Let WH = UΣV ⊤ be an SVD of WH , where U ∈ Rn×n,Σ ∈ Rn×m,V ∈ Rm×m. Since rank WH ≤
m ≤ n, this decomposition can be truncated so that

WH = U1Σ1V ⊤

where U1 ∈ Rn×m,Σ1 ∈ Rm×m and U⊤
1 U1 = Im. Then taking W ′

H = U1 and f ′ = Σ1V ⊤f works.

A.1.4 Theoretical Setting for Normalization Theory
In this section, we formally define the theoretical setup used in § 4.2.
Let C ∈ Z+, νu, νv, σu, σv, ϕ ∈ R+ be constants. Let C = {1, . . . , C} label a set of latent concepts. To each
c ∈ C we assign a content (low noise) feature uc and a style (high noise) feature vc. For a cat, a content
feature could be ear shape (almost always a pointed one), while a style feature could be fur color (often
highly varying between breeds), with vc,uc ∈ Rd. We assume all ui and vi are orthonormal, the feature
noises ϵu, ϵv are drawn from symmetric, zero-mean distributions p(ϵu), p(ϵv) with variances σ2

u < σ2
v and a

bounded support such that for νu, νv < 1, |u| ≤ νu and |v| ≤ νv, while the background noise is drawn from
a Gaussian distribution scaled by some parameter ϕ.
We also make the following technical assumptions:

1. Balanced classes: The number of examples from each latent class are equal.

2. Isometric classifier head: WH is a fixed isometry. As before, this allows us to study the structure
of the embedding space induced by the loss function without worrying about the effect of WH .

3. Alignment: For all i, hi = ∥W ⊤
H ei∥ ≠ 0. If hi = 0, then the model outputs would always be

perpendicular to ei, so the normalized DIET loss on xi would be a constant. Requiring hi ̸= 0 ensures
that xi can contribute to the learning.

4. Initialization: We initialize W = 0, and train using gradient descent on the population loss.

5. Sparse concepts: |C| = o(d).

While some of these theoretical assumptions are idealized, we demonstrate that similar behavior occurs in
more general real-world settings in Section 7.
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A.1.5 Normalization of Zero
Note that normalizing the zero vector is not well-defined. This can be an issue in the setup of Theorem 3
because we initialize W = 0. In PyTorch, this is handled by redefining norm(x)← x

max{∥x∥,ϵ} for negligible
ϵ. We will take a similar approach, where we simply define norm(0) = 0 and the Jacobian as Jnorm(0) = I.
This can be seen as taking ϵ→ 0 and rescaling the Jacobian at 0 so that it does not blow up. Note that in
the standard formula for the Jacobian of the normalization function,

J = 1
∥x∥

(I − 1
∥x2∥

xx⊤)

the same formula holds when x = 0 if we drop the ∥x∥ terms. In the following proofs, this is how we will
interpret such formulas in case we need to normalize a zero vector.

A.2 Proof of Theorems
A.2.1 Proof of Thm. 1
Proof. A result from Lu & Steinerberger (2021) shows that the global minimizer of DIET is the simplex
ETF configuration. Awasthi et al. (2022) showed that the global minimizer of the InfoNCE object is also
the simplex ETF configuration. Since an orthogonal transformation preserves both norms and simplex ETF
structure, the theorem follows.

A.2.2 Proof of Thm. 2
The statement of Thm. 2 is equivalent to the following:
Theorem 5. Suppose that Assumption 4 holds and f is a parametric feature model f(x) = Wϕ(x). Then,
• If (W ,WH) is a global minimizer of LMSE

DIET and WH is column-orthogonal, then W is a global minimizer
of LSCL.

• If W is a global minimizer of LSCL, then there exists WH such that WH is column-orthogonal and
(W ,WH) is a global minimizer of LMSE

DIET.
Denote by N = |D| be the size of the augmented dataset. We represent this dataset in matrix form

D = (X,Y ) ∈ Rd×N × Rn×N

where every column of X is the representation of an augmented input in feature space and the corresponding
column of Y is a one-hot encoding of the label.
Define the following useful matrices to characterize the structure of the data:

M = E(x,y)∼D[xx⊤] = 1
N

XX⊤

Mpos = E(x1,y1),(x2,y2)∼D[x1x⊤
2 δy1,y2 ] = 1

N2 XY ⊤Y X⊤

Here M is the expected outer product of all examples with themselves, and Mpos is the expected outer
product between pairs of examples if they are in the same class (known as positive pairs).
We outline the proof as follows. First we leverage a result from Xue et al. (2023) which characterizes the
critical points and global minima of the spectral contrastive loss in the same setting. We then prove a
relationship between the critical points of MSE diet and the sepctral contrastive loss. Finally, we prove a
relationship between the global minima of the two loss functions.
For the rest of this section, we will just write Ldiet in place of Lmse

diet .
The following is a statement and slightly simplified proof of the key theorem from Xue et al. (2023):
Theorem 6. A linear function f(x) = W x is a critical point of Lscl iff there is a basis such that

M †Mpos = diag(λ1, . . . , λr, λr+1, . . . , λd)
W ⊤W M = diag(λ1, . . . , λr, 0, . . . , 0)

W ⊤W Mpos = diag(λ2
1, . . . , λ

2
r, 0, . . . , 0)
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with λ1, . . . , λd ≥ 0 and we have r ≤ rank W ≤ m.
It is a global minimum of Lscl iff it satisfies

W ⊤W M = [M †Mpos]m

Proof. The first order condition for Lscl

∂Lscl

∂W
= −W Mpos + W MW ⊤W M = 0 (8)

Since M and Mpos are positive semidefinite, M †Mpos is diagonalizable. Therefore we can construct a basis
{v1, . . . ,vd} of eigenvectors of M †Mpos with corresponding eigenvalues λ1, . . . , λd.
Now we have im Mpos ⊂ im M , which implies that Mpos = MM †Mpos. Then Equation 8 implies that

(W ⊤W M)2vi = W ⊤W M(M †Mpos)vi = λiW
⊤W Mvi

Thus either W ⊤W Mvi = 0 or W ⊤W Mvi is an eigenvector of W ⊤W M with eigenvalue λi. Since
W ⊤W M is diagonalizable, the latter implies that vi is also an eigenvalue of W ⊤W M with W ⊤W Mvi =
λivi = M †Mposvi

Thus, with possible reordering of the vi, we have a basis v1, . . . ,vr, . . . ,vd such that in this basis

M †Mpos = diag(λ1, . . . , λr, λr+1, . . . , λd)
W ⊤W M = diag(λ1, . . . , λr, 0, . . . , 0)

W ⊤W Mpos = diag(λ2
1, . . . , λ

2
r, 0, . . . , 0)

with λ1, . . . , λd ≥ 0 and we have and r ≤ rank W ≤ m.
Note that if W admits the above form, then

W ⊤W Mpos = W ⊤W MW ⊤W M

which implies

W Mpos = W MW ⊤W M

hence all such W are critical points.
Then for all such W ,

L = Tr[−2W ⊤W Mpos + W ⊤W MW ⊤W M ]

= −2
r∑

i=1
λ2

i +
r∑

i=1
λ2

i

= −
r∑

i=1
λ2

i

It is clear from the above expression that the minimum among critical points is achieved when r is maximal
and λ1, . . . , λm are the largest eigenvalues. This happens if and only if

W ⊤W M = [M †Mpos]m

It remains to check the behavior as ∥W ∥F grows large. Equivalently, W ⊤W has a large eigenvalue λ. Let
w be a corresponding eigenvector. If w ∈ ker M , then Mw = Mposw = 0, so we see that the loss is
unchanged. Otherwise, w has some nonzero alignment with im(W ). But then Tr[W ⊤W MW ⊤W M ] grows
quadratically in λ, but Tr[−2W ⊤W Mpos] grows at most linearly in λ, hence the loss is large. We conclude
that the previously found condition in fact specifies the global minimizers of L.

The following lemma establishes a connection between the critical points of Ldiet versus Lscl.
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Lemma 2. The following are true:

• If (W ,WH) is a critical point of Ldiet and WH is an isometry, then W is a critical point of Lscl.

• If W is a critical point of Lscl, then there exists a partial isometry WH such that (W ,WH) is a
critical point of Ldiet.

Proof. The first order condition for Ldiet requires that

∂Ldiet

∂W
= W ⊤

H (WHW X − Y )X⊤ = 0 (9)

∂Ldiet

∂WH
= (WHW X − Y )X⊤W ⊤ = 0 (10)

On the other hand, the first order condition for Lscl is

W Mpos = W MW ⊤W M .

Indeed, if W is a critical point of Ldiet, then Equation 9 implies

W XX⊤ = W ⊤
H Y X⊤ (11)

And Equation 10 gives

WHW XX⊤W ⊤ = Y X⊤W ⊤

Taking transposes, we have

W XX⊤W ⊤W ⊤
H = W XY ⊤ (12)

Right multiplying by WH and using the fact that W ⊤
H WH = Im gives

W XX⊤W ⊤ = W XY ⊤WH (13)

Combining Equations 11 and 13, we get

W XX⊤W ⊤W XX⊤ = W XY ⊤WHW ⊤
H Y X⊤

We claim that

W XY ⊤WHW ⊤
H = W XY ⊤

Indeed, since WH is an isometry, W ⊤
H is a partial isometry, so WHW ⊤

H has a basis {v1, . . . ,vn} such that
WHW ⊤

H vi = vi or WHW ⊤
H vi = 0. If the former is true, then clearly W XY ⊤WHW ⊤

H vi = W XY ⊤vi. If
the latter is true, then we know that W ⊤

H vi = 0. But then by Equation 12 we have

W XY ⊤vi = W XX⊤W ⊤W ⊤
H vi = 0

Since equality holds on a basis, we conclude the two matrix products are equal, as claimed.
Thus we now have

W XX⊤W ⊤W XX⊤ = W XY ⊤Y X⊤

Substituting the values M = XX⊤ and Mpos = XY ⊤Y X,

W Mpos = W MW ⊤W M

as desired.
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For the converse, suppose that W is a critical point of Lscl, namely

W Mpos = W MW ⊤W M

Let V = ker(Mpos−MW ⊤W M). Since Mpos−MW ⊤W M is symmetric, V ⊥ is spanned by eigenvectors
with nonzero eigenvalues. Let v be such an eigenvector with eigenvalue λ ̸= 0. Then

0 = W (Mpos −MW ⊤W M)v = λW v

It follows that W v = 0, so V ⊥ ⊂ ker W .
Set U = (W XX⊤)(V ), Z = (Y X⊤)(V ). Since

(Y X⊤)⊤(Y X⊤) = Mpos = MW ⊤W M = (W XX⊤)⊤(W XX⊤)

when restricted to V , there exists an isometry W ′
H : U → Z such that Y X⊤ = WHW XX⊤ on V and

XY ⊤ = XX⊤W ⊤W ⊤
H on Z. Extend W ′

H to a partial isometry WH : Rm → Rn such that WH |U = W ′
H

and WH |U⊥ = 0.
Now using the fact that im(W ⊤) = ker(W )⊥ ⊂ V , we have

Y X⊤W ⊤ = WHW XX⊤W ⊤

Also

XY ⊤WH = XX⊤W ⊤W ⊤
H WH

because any vector in Rm can be written as u + u⊥ where u ∈ U,u⊥ ∈ U⊥ and

XY ⊤WH(u + u⊥) = XY ⊤WHu

= XX⊤W ⊤W ⊤
H WHu

= XX⊤W ⊤W ⊤
H WH(u + u⊥)

These are the two conditions for being a critical point of Ldiet, completing the proof.

We now narrow our attention from critical points to global minima. The above Lemma means that we can
restrict our study to the critical points of Lscl. Using this fact, we can now characterize the global minimizers
of Ldiet as follows:
Theorem 7. Assume that WH is an isometry. Then (W ,WH) is global minimizer of Ldiet iff the following
hold

W ⊤W M = [M †Mpos]m
1
N

Tr(W XY ⊤W ⊤
H ) = Tr[[M †Mpos]m]

Proof. Suppose (W ,WH) is a global minimizer of Ldiet and WH is an isometry. By Lemma 2, W is a critical
point of Lscl. By Theorem 6, there is a basis such that

M †Mpos = diag(λ1, . . . , λr, λr+1, . . . , λd)
W ⊤W M = diag(λ1, . . . , λr, 0, . . . , 0)

W ⊤W Mpos = diag(λ2
1, . . . , λ

2
r, 0, . . . , 0)

with λ1, . . . , λd ≥ 0 and we have r ≤ rank W ≤ m.
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Now calculating the value of the loss

Ldiet = 1
2ED[∥WHW xi − eyi

∥2]

= 1
2N ∥WHW X − Y ∥2

F

= 1
2N Tr((WHW X − Y )⊤(WHW X − Y ))

= 1
2N Tr(X⊤W ⊤W ⊤

H WHW X −X⊤W ⊤W ⊤
H Y − Y ⊤WHW X + Y ⊤Y )

= 1
2N

(
Tr(W ⊤W XX⊤)− 2 Tr(W XY ⊤WH) + Tr(Y ⊤Y )

)
Observe that

1
N

Tr(W ⊤W XX⊤) = Tr(W ⊤W M) =
r∑

i=1
λi

Also W ⊤W Mpos = 1
N2 W ⊤W XY ⊤Y X⊤ and 1

N2 W XY ⊤Y X⊤W ⊤ are diagonalizable and have the same
nonzero eigenvalues, namely λ2

1, . . . , λ
2
r. Using the fact that

W XY ⊤WHW ⊤
H = W XY ⊤

we have
( 1
N

W XY ⊤WH)( 1
N

W XY ⊤WH)⊤ = 1
N2 W XY ⊤Y X⊤W ⊤,

we conclude by the Spectral Theorem that

1
N

Tr(W XY ⊤WH) ≤
r∑

i=1
λi (14)

Finally, note that Tr(Y ⊤Y ) is a constant. Therefore the minimum possible value of the loss is when
W ⊤W M = [M †Mpos]m and equality holds in equation 14 with r = m and λ1, . . . , λm the m largest
eigenvalues of M †Mpos. It only remains to show this value of the loss is achievable.
Indeed, it is not hard to find W such that W ⊤W M = [M †Mpos]m (for example take a global minimizer of
Lscl).
Let W XY ⊤ = UΣV ⊤ be a singular value decomposition of W XY ⊤. Let WH : Rm → Rn map the ith
eigenvector of U to the ith eigenvector of V for i = 1, . . . , p. Then

W XY ⊤WH = UΣU⊤.

In particular, W XY ⊤WH is a positive semidefinite matrix, and

1
N2 (W XY ⊤WH)2 = 1

N2 W XY ⊤Y X⊤W ⊤

has nonzero eigenvalues λ2
1, . . . , λ

2
r, so 1

N W XY ⊤WH has eigenvalues λ1, . . . , λr. Thus 1
N Tr(W XY ⊤WH) =∑r

i=1 λi and (W ,WH) as constructed achieves the minimum value of Ldiet. This completes the proof.

With the above two results, we obtain the desired result:
Theorem 5. Suppose that Assumption 4 holds and f is a parametric feature model f(x) = Wϕ(x). Then,
• If (W ,WH) is a global minimizer of LMSE

DIET and WH is column-orthogonal, then W is a global minimizer
of LSCL.

• If W is a global minimizer of LSCL, then there exists WH such that WH is column-orthogonal and
(W ,WH) is a global minimizer of LMSE

DIET.

Proof. The first claim is immediate from Theorems 6 and 7. For the second claim, we in fact constructed the
necessary WH in the proof of Theorem 7.
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A.3 Proof of Theorem 3

We will first prove the claim about Ldiet. Then we will prove the claim about Lmse
diet−norm in a sequence of

lemmas.

Lemma 3. If W is a minimizer of Lmse
diet as defined in Equation 5, then

∥W vc∥
∥W uc∥

= σ2
1
σ2

2
+ o(1)

Proof. Since WH is fixed, minimizing Ldiet is in fact just standard linear regression. The closed form solution
is well known:

W = W ⊤
H

(
1
n

n∑
i=1

EA[eiA(xi)⊤]
)(

1
n

n∑
i=1

EA[A(xi)A(xi)⊤]
)−1

(15)

Now we calculate

EA[A(xi)A(xi)⊤] = EA[((1 + ϵ1)uC(i) + (1 + ϵ2)vC(i) + ξ)((1 + ϵ1)uC(i) + (1 + ϵ2)vC(i) + ξ)⊤]
= (1 + σ2

1)uC(i)u
⊤
C(i) + vC(i)u

⊤
C(i) + uC(i)v

⊤
C(i) + (1 + σ2

2)vC(i)v
⊤
C(i)

+ ϕ2

d
(Id − uC(i)u

⊤
C(i) − vC(i)v

⊤
C(i))

Therefore

1
n

n∑
i=1

EA[A(xi)A(xi)⊤] = 1
n

n∑
i=1

(1 + σ2
1)uC(i)u

⊤
C(i) + uC(i)v

⊤
C(i)(1 + σ2

2)vC(i)v
⊤
C(i) + vC(i)u

⊤
C(i)

+ ϕ2

d
(Id − uC(i)u

⊤
C(i) − vC(i)v

⊤
C(i))

= 1
C

( C∑
c=1

α1ucu⊤
c + ucv⊤

c + vcu⊤
c + α2vcv⊤

c

)
+ ϕ2

d
(Id −

C∑
c=1

ucu⊤
c − vcv⊤

c )

where we set α1 = 1 + σ2
1 + (C−1)ϕ2

d , α2 = 1 + σ2
2 + (C−1)ϕ2

d . Taking the inverse,

(
1
n

n∑
i=1

EA[A(xi)A(xi)⊤]
)−1

= C

α1α2 − 1

( C∑
c=1

α2ucu⊤
c − ucv⊤

c − vcu⊤
c + α1vcv⊤

c

)

+ d

ϕ2 (Id −
C∑

c=1
ucu⊤

c − vcv⊤
c )

Also, we have

1
n

n∑
i=1

EA[eiA(xi)⊤] = 1
n

n∑
i=1

EA[ei((1 + ϵ1)uC(i) + (1 + ϵ2)vC(i) + ξ)⊤]

= 1
n

n∑
i=1

ei(uC(i) + vC(i))⊤
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Now using the previously calculated expressions,

W uc = W ⊤
H

(
1
n

n∑
i=1

EA[eiA(xi)⊤]
)(

1
n

n∑
i=1

EA[A(xi)A(xi)⊤]
)−1

uc

= W ⊤
H

(
1
n

n∑
i=1

EA[eiA(xi)⊤]
)(

Cα2

α1α2 − 1uc −
C

α1α2 − 1vc

)

= W ⊤
H

 1
n

∑
C(i)=c

(
Cα2

α1α2 − 1 −
C

α1α2 − 1

)
ei


= C(α2 − 1)
n(α1α2 − 1)

∑
C(i)=c

W ⊤
H ei

=
C(σ2

2 + (C−1)ϕ2

d )
n(α1α2 − 1)

∑
C(i)=c

W ⊤
H ei

Similarly, we have

W vc =
C(σ2

1 + (C−1)ϕ2

d )
n(α1α2 − 1)

∑
C(i)=c

W ⊤
H ei

It follows that

∥W vc∥
∥W uc∥

=
C(σ2

1+ (C−1)ϕ2
d )

n(α1α2−1)

C(σ2
2+ (C−1)ϕ2

d )
n(α1α2−1)

=
σ2

1 + (C−1)ϕ2

d

σ2
2 + (C−1)ϕ2

d

Using the fact that C = o(d), this shows that ∥W vc∥
∥W uc∥ = σ2

1
σ2

2
+ o(1), as desired.

For normalized diet, we prove the result via the following lemmas. First we define some notation.
Let C(i) ∈ C represent the concept associated with xi, and set rc =

∑
C(i)=c W ⊤

H ei. Also as shorthand we
write

L(i)
diet−norm =1

2EA[∥WH(norm(W (A(xi)))− ei∥2]

LMSE
diet−norm = 1

n

n∑
i=1
L(i)

diet−norm

Lemma 4 (Useful facts). In the assumed setting, the following hold

1. If i ̸= j, then (W ⊤
H ei)⊤(W ⊤

H ej) = 0

2. If C(i) = c, then r⊤
c W ⊤

H ei = h2
i .

Proof. Since WH is an isometry by assumption, W ⊤
H is a partial isometry. Since ei ⊥ ej , the first claim

follows.
For the second claim, we calculate that

r⊤
c W ⊤

H ei =
∑

C(j)=c

(W ⊤
H ej)⊤W ⊤

H ei

= (W ⊤
H ei)⊤W ⊤

H ei

= h2
i
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Lemma 5 (Step 1). When training with LMSE
diet−norm, at every step in training W uc and W vc are parallel to

rc, and W p = 0 for any p orthogonal to all the uc and vc.

Proof. We proceed by induction on the iteration of SGD.
The base case follows from the initialization W = 0.
For the inductive step, we calculate the change due to the gradient descent update.
We first note that the inductive hypothesis implies the following useful fact: if C(i) = c and q ∈ Rd is
orthogonal to uc and vc, then W q ∈ Span({rc′ : c′ ≠ c}). In particular, by Lemma 4, W q and W ⊤

H ei are
orthogonal.
Now denoting xA

i = A(xi), zA
i = W xA

i , the gradient is

∂L(i)
diet−norm

∂W
= EA

[
1
∥zA

i ∥

(
I − 1
∥zA

i ∥2 zA
i (zA

i )⊤
)

W ⊤
H (WHzA

i − ei)(xA
i )⊤

]
= EA

[
1
∥zA

i ∥

(
I − 1
∥zA

i ∥2 zA
i (zA

i )⊤
)

zA
i (xA

i )⊤ − 1
∥zA

i ∥

(
I − 1
∥zA

i ∥2 zA
i (zA

i )⊤
)

W ⊤
H ei(xA

i )⊤
]

= −EA

[
1
∥zA

i ∥

(
I − 1
∥zA

i ∥2 zA
i (zA

i )⊤
)

W ⊤
H ei(xA

i )⊤
]

Thus

∂L(i)
diet−norm

∂W
uc = −EA

[
(xA

i )⊤uc

∥zA
i ∥

(
I − 1
∥zA

i ∥2 zA
i (zA

i )⊤
)

W ⊤
H ei

]

We now consider two cases. First assume C(i) = c. Writing xA
i = (1 + ϵ1)uc + (1 + ϵ2)vc + ξ, and

W ((1 + ϵ1)uc + (1 + ϵ2)vc) = αcrc

∂L(i)
diet−norm

∂W
uc = EA

[
1 + ϵ1
∥zA

i ∥

(
I − 1
∥zA

i ∥2 (αcrc + W ξ)(αcrc + W ξ)⊤
)

W ⊤
H ei

]
Now by the symmetry of the noise distribution, we can replace ξ with −ξ. By induction, W ξ is orthogonal
to rc, this does not change ∥zi∥, so the above is equal to

= EA

[
1 + ϵ1
∥zA

i ∥

(
I − 1

2∥zA
i ∥2 ((αcrc + W ξ)(αcrc + W ξ)⊤ + (αcrc −W ξ)(αcrc −W ξ)⊤)

)
W ⊤

H ei

]
= EA

[
1 + ϵ1
∥zA

i ∥

(
I − 1
∥zA

i ∥2 (α2
crcr⊤

c + (W ξ)(W ξ)⊤)
)

W ⊤
H ei

]
Using the useful fact from above and Lemma 4, this is equal to

= EA

[
1 + ϵ1
∥zA

i ∥
W ⊤

H ei −
(1 + ϵ1)α2

cr⊤
c W ⊤

H ei

∥zA
i ∥3 rc

]
= EA

[
1 + ϵ1
∥zA

i ∥
W ⊤

H ei −
(1 + ϵ1)α2

ch
2
c

∥zA
i ∥3 rc

]

Now suppose C(i) = c′ ̸= C. A similar calculation shows that

∂L(i)
diet−norm

∂W
uc = EA

[
ξ⊤uc

∥zA
i ∥

(
I − 1
∥zA

i ∥2 (αc′rc′ + W ξ)(αc′rc′ + W ξ)⊤
)

W ⊤
H ei

]
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Again using the symmetry of the noise and the useful fact, this is equal to

= 1
2EA

[
ξ⊤uc

∥zA
i ∥

(I − 1
∥zA

i ∥2 (αc′rc′ + W ξ)(αc′rc′ + W ξ)⊤)W ⊤
H ei

+ −ξ⊤uc

∥zA
i ∥

(I − 1
∥zA

i ∥2 (αc′rc′ −W ξ)(αc′rc′ −W ξ)⊤)W ⊤
H ei

]
= −EA

[
ξ⊤uc

∥zA
i ∥3

(
αc′rc′(W ξ)⊤ + (W ξ)(αc′rc′)⊤)W ⊤

H ei

]
= −EA

[
αc′(ξ⊤uc)(r⊤

c′ W ⊤
H ei)

∥zA
i ∥3 W ξ

]
= −EA

[
αc′h2

c′(ξ⊤uc)
∥zA

i ∥3 W ξ

]
Now isolating the component of ξ along uc, write ξ = ξcuc + ξ′. Again by the symmetry of the noise, we can
consider replacing ξ′ with −ξ, so

−EA

[
αc′h2

c′(ξ⊤uc)
∥zi∥3 W ξ

]
= −EA

[
αc′h2

c′ξc

2∥zi∥3 W (ξcuc + ξ′ + ξcuc − ξ′)
]

= −EA

[
αc′h2

c′ξ2
c

∥zi∥3 W uc

]
Combining all these results, we have

∂LMSE
diet−norm

∂W
uc = 1

n

n∑
i=1

∂L(i)
diet−norm

∂W

= − 1
n

∑
C(i)=c

EA

[
1 + ϵ

(i)
1

∥zA
i ∥

W ⊤
H ei −

(1 + ϵ
(i)
1 )(α(i)

c )2h2
c

∥zA
i ∥3 rc

]

+ 1
n

∑
C(i)=c′ ̸=c

EA

[
α

(i)
c′ (ξ(i)

c )2h2
c′

∥zA
i ∥3 W uc

]

= −EA

[
1 + ϵ1
∥zA∥

]
rc + 1

n

∑
C(i)=c

EA

[
(1 + ϵ

(i)
1 )(α(i)

c )2h2
c

∥zA
i ∥3

]
rc

+ 1
n

∑
C(i)=c′ ̸=c

EA

[
α

(i)
c′ (ξ(i)

c )2h2
c′

∥zA
i ∥3

]
W uc

By the inductive hypothesis W uc is parallel to rc, so the change from the gradient update is parallel to rc.
The same argument shows that W vc is parallel to rc.
Now consider any p orthogonal to all the vi and ui. We calculate that

∂LMSE
diet−norm

∂W
p = − 1

n

n∑
i=1

EA

[
(xA

i )⊤p

∥zA
i ∥

(
I − 1
∥zi∥2 zA

i (zA
i )⊤

)
W ⊤

H ei

]
Decomposing x = βp + γ, by the symmetry of the noise we can replace β with −β. Since W p = 0 by
induction zi does not change, so we have

∂LMSE
diet−norm

∂W
p = − 1

2n

n∑
i=1

EA

[
(xA

i )⊤p− (xA
i )⊤p

∥zA
i ∥

(
I − 1
∥zi∥2 zA

i (zA
i )⊤

)
W ⊤

H ei

]
= 0

28



Published in Transactions on Machine Learning Research (12/2025)

Thus the change from the gradient update is 0,
This completes the induction.

Lemma 6 (Step 2). Assume that we train to convergence using LMSE
diet−norm. Then r⊤

c W uc, r⊤
c W vc ̸= 0.

Proof. Using the gradient calculation from the proof of step 1:

r⊤
c

∂LMSE
diet−norm

∂W
uc = −EA

[
1 + ϵ1
∥zA∥

]
∥rc∥2 + 1

n

∑
C(i)=c

EA

[
(1 + ϵ

(i)
1 )(α(i)

c )2h2
c

∥zA
i ∥3

]
∥rc∥2

+ 1
n

∑
C(i)=c′ ̸=c

EA

[
α

(i)
c′ (ξ(i)

c )2h2
c′

∥zA
i ∥3

]
r⊤

c W uc

= −EA

[
1 + ϵ1
∥zA∥

]
∥rc∥2 + 1

n

∑
C(i)=c

EA

[
(1 + ϵ

(i)
1 )(α(i)

c )2h2
c

∥zA
i ∥3

]
∥rc∥2

Recall from Lemma 4 that h2
c ≤ 1. Also note that by definition (α(i)

c )2 ≤ ∥zi∥2. Hence

r⊤
c

∂LMSE
diet−norm

∂W
uc = −EA

[
1 + ϵ1
∥zA∥

]
+ 1
n

∑
C(i)=c

EA

[
(1 + ϵ

(i)
1 )(α(i)

c )2h2
c

∥zA
i ∥3

]
< 0

This implies that r⊤
c

∂LMSE
diet−norm

∂W uc < 0. This contradicts the fact that we have converged to a point where
∂LMSE

diet−norm

∂W = 0.

Lemma 7 (Proof of Theorem for Normalized Diet). Assume that we train to convergence using Lnorm
diet . Then

1− ν1

1 + ν2
≤ ∥W vc∥
∥W uc∥

≤ 1 + ν1

1− ν2

Proof. From the previous steps, there exists a1, . . . , aC , b1, . . . , bC ̸= 0 such that W uc = acrc and W vc = bcrc.
Therefore, for a given example xi with C(i) = c, the distribution W (A(xi)) over choice of augmentation A
takes the form

(ac + acϵ1 + bc + bcϵ2)rc +
∑
c′ ̸=c

ϕ2

d

√
a2

c′ + b2
c′ξc′rc′ (16)

where ϵ1 ∼ G1, ϵ2 ∼ G2, and ξc′ ∼ N (0, 1) for each c′. To ease notation, set κc = ac + acϵ1 + bc + bcϵ2 and
λc = ϕ2

d

√
a2

c + b2
cξc. Note that since the rc are orthogonal, ∥W (A(xi))∥ follows the distribution

√
κ2

c∥rc∥2 +
∑
c′ ̸=c

λ2
c′∥rc′∥2

We can now treat the loss as a multivariate function in a1, . . . , aC , b1, . . . , bC . Suppose we vary ac and bc

such that acdac + bcdbc = 0. It suffices to calculate the directional derivative induced by this variation and
show that it cannot be zero if | ba | >

1+ν1
1−ν2

or | ba | <
1−ν1
1+ν2

.
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The loss term due to an example xi is

L(i)
diet−norm = 1

2EA[∥WH(norm(W (A(xi)))− ei∥2]

= 1
2E


∥∥∥∥∥∥ WH(κC(i)rC(i) +

∑
c′ ̸=C(i) λc′rc′)√

κ2
C(i)∥rC(i)∥2 +

∑
c′ ̸=C(i) λ

2
c′∥rc′∥2

− ei

∥∥∥∥∥∥
2


= 1− E

e⊤
i WH(κC(i)rC(i) +

∑
c′ ̸=C(i) λc′rc′)√

κ2
C(i)∥rC(i)∥2 +

∑
c′ ̸=C(i) λ

2
c′∥rc′∥2


= 1− E

 κC(i)e
⊤
i WHrC(i)√

κ2
C(i)∥rC(i)∥2 +

∑
c′ ̸=C(i) λ

2
c′∥rc′∥2


= 1− E

 κC(i)h
2
c√

κ2
C(i)∥rC(i)∥2 +

∑
c′ ̸=C(i) λ

2
c′∥rc′∥2


Observe that by construction d(a2

c + b2
c) = 0, which implies dλc = 0. Thus if C(i) ̸= c, the change in the loss

L(i)
diet−norm is zero.

On the other hand, if C(i) = c, we now calculate the derivatives

∂

∂ac
L(i)

diet−norm = ∂

∂ac
EA[∥WH(norm(W (A(xi)))− ei∥2]

= −E
[

h2
c

∑
c′ ̸=c λ

2
c′∥rc′∥2

(κ2
c∥rc∥2 +

∑
c′ ̸=c λ

2
c′∥rc′∥2) 3

2
(1 + ϵ1)

]
∂

∂bc
L(i)

diet−norm = −E
[

h2
c

∑
c′ ̸=c λ

2
c′∥rc′∥2

(κ2
c∥rc∥2 +

∑
c′ ̸=c λ

2
c′∥rc′∥2) 3

2
(1 + ϵ2)

]
Hence

dLMSE
diet−norm =

∑
C(i)=c

∂L(i)
diet−norm

∂ac
dac +

∂L(i)
diet−norm

∂bc
dbc

=
∑

C(i)=c

−E

[
h2

c

∑
c′ ̸=c λ

2
c′∥rc′∥2

(κ2
c∥rc∥2 +

∑
c′ ̸=c λ

2
c′∥rc′∥2) 3

2
((1 + ϵ1)dac + (1 + ϵ2)dbc)

]

First consider the case that a
b > 0. Suppose for the sake of contradiction |ab | >

1+ν1
1−ν2

. Then

0 > 1 + ν1 −
a

b
+ a

b
ν2

> 1 + ϵ1 −
a

b
+ a

b
(−ϵ2)

= (1 + ϵ1)− a

b
(1 + ϵ2)

In the case that a
b < 0

0 > 1 + ν1 −
∣∣∣a
b

∣∣∣+
∣∣∣a
b

∣∣∣ ν2

> 1− ϵ1 + a

b
− a

b
ϵ2

= 2− ((1 + ϵ1)− a

b
(1 + ϵ2))

(1 + ϵ1)− a

b
(1 + ϵ2) > 2
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Figure 7: DIET’s training loss is indicative of downstream test performance. We depict DIET’s training
loss (y-axis) against the online test linear probe accuracy (x-axis) for all the models, hyper-parameters, and training
epochs. Yellow to purple correspond to different label smoothing which plays a role in DIET’s convergence speed
(Appx. C). For a given label smoothing parameter, there exists a strong relationship between DIET’s training loss
and the downstream test accuracy enabling label-free quantitative quality assessment one’s model.

Table 13: DIET is competitive and works out-of-the-box across architectures. We keep the settings of
Fig. 9. Benchmarks from 1:Dubois et al. (2022), 2 :Ozsoy et al. (2022).

Imagenet-100 (IN100)
Resnet18

SimMoCo 58.20∗

MocoV2 60.52∗

SimCo 61.28 ∗

W-MSE2 69.06 2

ReSSL 74.02•

DINO 74.16•

MoCoV2 76.48•

BYOL 76.60•

SimCLR 77.042

SimCLR 78.722

MocoV2 79.282

VICReg 79.402

BarlowTwins 80.382

Resnet50
MoCo+Hyper. 75.60 ⋆

MoCo+DCL 76.80 ⋆

MoCoV2 + Hyper. 77.70 ⋆

BYOL 78.76 2

MoCoV2 + DCL 80.50 ⋆

SimCLR 80.70 ⋆

SimSiam 81.602

SimCLR + DCL 83.10 ⋆

DIET
resnet18 64.31
wide_resnet50_2 71.92
resnext50_32x4d 73.07
densenet121 67.46
convnext_tiny 69.77

resnet50 73.50
convnext_small 71.06
MLPMixer 56.46
swin_t 67.02
vit_b_16 62.63

Either way (1 + ϵ1)− a
b (1 + ϵ2) is strictly positive or strictly negative. Now write

(1 + ϵ1)dac + (1 + ϵ2)dbc =
(

(1 + ϵ1)− a

b
(1 + ϵ2)

)
dac

Combined with the fact that
h2

c

∑
c′ ̸=c

λ2
c′ ∥rc′ ∥2

(κ2
c∥rc∥2+

∑
c′ ̸=c

λ2
c′ ∥rc′ ∥2)

3
2

is always nonnegative and not always zero, it follows

that dLMSE
diet−norm ̸= 0, contradicting the fact that we have converged to a local minima.

The same argument shows that b
a ≤

1+ν2
1−ν1

, giving the lower bound.
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Table 14: DIET trained on small datasets competes with Imagenet pre-trained SSL. We also report
performances for a ViT based architecture (SwinTiny) to demonstrate the ability of DIET to handle different models
out-of-the-box following Fig. 9. Benchmarks from †:Yang et al. (2022), +:Ericsson et al. (2021)

Arch. Pretrain Frozen
Aircraft DTD Pets Flower CUB-200 Food101 Cars

N= 6667 1880 2940 1020 11788 68175 6509
C= 100 47 37 102 200 101 196

Resnet18 IN100†
Yes SimCLR 24.19 54.35 46.46 75.00 16.73 - -

+CLAE 25.87 52.12 43.55 76.82 17.58 - -
+IDAA 26.02 54.97 46.76 77.99 18.15 - -

None No DIET 37.29 50.62 64.06 72.01 33.03 62.00 42.55

Resnet50

IN-1k+ Yes

InsDis 36.87 68.46 68.78 83.44 - 63.39 28.98
MoCo 35.55 68.83 69.84 82.10 - 62.10 27.99
PCL. 21.61 62.87 75.34 64.73 - 48.02 12.93
PIRL 37.08 68.99 71.36 83.60 - 64.65 28.72
PCLv2 37.03 70.59 82.79 85.34 - 64.88 30.51
SimCLR 44.90 74.20 83.33 90.87 - 67.47 43.73
MoCov2 41.79 73.88 83.30 90.07 - 68.95 39.31
SimCLRv2 46.38 76.38 84.72 92.90 - 73.08 50.37
SeLav2 37.29 74.15 83.22 90.22 - 71.08 36.86
InfoMin 38.58 74.73 86.24 87.18 - 69.53 41.01
BYOL 53.87 76.91 89.10 94.50 - 73.01 56.40
DeepClusterv2 54.49 78.62 89.36 94.72 - 77.94 58.60
Swav 54.04 77.02 87.60 94.62 - 76.62 54.06

None No DIET 44.81 51.75 67.08 73.32 41.03 71.58 55.82
SwinTiny None No DIET 33.15 51.88 58.06 70.78 32.11 68.86 47.12
Convnext-S None No DIET 43.13 49.52 61.72 67.72 31.44 69.84 40.63

A.4 Gradient Analysis
Consider a batch of B representations {zi}B

i=1, with class probabilities {yi}B
i=1 for N classes and a set of N

class prototypes {wk}N
k=1. The cross-entropy loss for a batch is given by:

LCE = − 1
B

B∑
i=1

N∑
k=1

yi,k log p(k|zi),

where

p(k|zi) = exp(w⊤
k zi)∑

j exp(w⊤
j zi)

.

To compute the derivative with respect to zi, we proceed as follows:

∂LCE

∂zi
= − 1

B

N∑
k=1

yi,k
∂

∂zi
log p(k|zi).

Since

log p(k|zi) = w⊤
k zi − log

N∑
j

exp(w⊤
j zi),

we have
∂

∂zi
log p(k|zi) = wk −

N∑
j

p(j|zi)wj .

Substituting back, we get:

∂LCE

∂zi
= − 1

B

N∑
k=1

yi,k

wk −
N∑
j

p(j|zi)wj

 .

32



Published in Transactions on Machine Learning Research (12/2025)

Table 15: GPU Memory Usage in MiB for s-DIET, DIET, and other SSL methods with a batch size of 256.
OOM indicates out-of-memory on an Nvidia A40 GPU, which has 46068 MiB of memory. s-DIET reduces
the memory requirements of DIET by more than 2x on large datasets such as TinyImageNet, and make it up
to 2.2x more memory efficient than CL methods.

Method CIFAR ImageNet-100 Tiny-Imagenet
ResNet-18 ResNet-50 ResNet-50 ResNet-50

Barlow Twins 4026 17090 44698 4532
BYOL 4512 17296 (OOM) 4842
SimCLR 3896 16408 40322 4352
Simsiam 3964 16562 45264 4390
DIET 2556 9720 31164 6676

s-DIET 2312 7770 23634 2976

Due to
∑N

k=1 yi,k = 1, we simplify to:

∂LCE

∂zi
= − 1

B

N∑
k=1

(yi,k − p(k|zi)) wk = − 1
B

(
N∑

k=1
yi,kwk −

N∑
k=1

p(k|zi)wk

)

To compute the derivative of LCE with respect to wk, we start with:

LCE = − 1
B

B∑
i=1

N∑
k=1

yi,k log p(k|zi) = − 1
B

B∑
i=1

N∑
k=1

yi,kwT
k zi + 1

B

B∑
i=1

N∑
k=1

yi,k log
N∑

j=1
exp(wT

j zi),

LCE = − 1
B

B∑
i=1

N∑
k=1

yi,k log p(k|zi) = − 1
B

B∑
i=1

N∑
k=1

yi,kwT
k zi + 1

B

B∑
i=1

log
N∑

k=1
exp(wT

j zi),

We then apply the partial derivation operator,

∂LCE

∂wk
= − 1

B

B∑
i=1

yi,kzi + 1
B

B∑
i=1

p(k|zi)zi,

∂LCE

∂wk
== − 1

B

B∑
i=1

(yi,k − p(k|zi))zi = − 1
B

(
B∑

i=1
yi,kzi −

B∑
i=1

p(k|zi)zi

)
,

In summary, the gradients of the DIET objectives according to class prototypes and representations are
defined by:

LCE(Y,Z,W, δ) = − 1
B

B∑
i=1

N∑
k=1

yδ
i,k log exp(w⊤

k zi)∑
j exp(w⊤

j zi)

∇zi
LCE = − 1

B

N∑
k=1

yi,kwk + 1
B

N∑
k=1

p(k|zi)wk = − 1
B

N∑
k=1

(yi,k − p(k|zi)) wk.

∇wk
LCE = − 1

B

B∑
i=1

yi,kzi + 1
B

B∑
i=1

p(k|zi)zi = − 1
B

B∑
i=1

(yi,k − p(k|zi))zi

B Extended Related Works
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Figure 8: Linear Probe Perfor-
mance vs batch size of S-DIET on
CIFAR-100 with ResNet-18. Perfor-
mance is consistent, even for small
batch sizes.

Despite DIET’s simplicity, we could not find an existing method
that considered it perhaps due to the common belief that dealing
with hundreds of thousands of classes (N in Fig. 6, the training set
size) would not produce successful training. As such, the closest
method to ours is Exemplar CNN Alexey et al. (2015) which extracts
a few patches from a given image dataset, and treats each of them
as their own class; this way the number of classes is the number
of extracted patches, which is made independent from N . A more
recent method, Instance Discrimination Wu et al. (2018) extends
this by introducing inter-sample discrimination. However, they do so
using a non-parametric softmax, i.e., by defining a learnable bank of centroids to cluster training samples; for
successful training those centroids must be regularized to prevent representation collapse. Lastly, methods
such as Noise as Targets Bojanowski & Joulin (2017) and DeepCluster Caron et al. (2018) are quite far
from DIET as (i) they perform clustering and use the datum’s cluster as its class, i.e., greatly reducing the
dependency on N ; and (ii) they perform clustering in the output space of the model fθ being learned which
brings multiple collapsed solutions that force those methods to employ complicated mechanisms to ensure
training to learn non-trivial representations. We note that while the added complexity enables those methods
to scale to large datasets, it also greatly increases the performance sensitivity to the training hyper-parameters.

B.1 The Effect of Projection Head in DIET

This section discusses how the results from Xue et al. (2024) can be applied to analyze the benefits of using a
projection head with DIET.
Given an l layer linear model f(x) = Wl . . .W1x, Xue et al. (2024) all show that when training with gradient
flow with any loss function and initialization Wi(0)Wi(0)⊤ = Wi+1(0)⊤Wi+1(0), then

Wi(t)Wi(t)⊤ = Wi+1(t)⊤Wi+1(t) (17)

holds at all training times t. We note that if weight decay is used, then Equation 17 holds for all 1 ≤ i ≤ l− 1
regardless of initialization when taking t→∞ .
Now Equation 17 implies that the singular values of each layer are equal, and hence weighting of features by
the model change exponentially as we go deeper into the model. As a result, intermediate layers learn more
balanced and less specialized representations.
The setup from § 4 can easily be translated to a two layer model l = 2 with W1 = W the weight matrix
of the linear model and W2 = WH the classifier head. This can also be generalized to the case where we
explicitly include a projection head along with the classifier head. Specifically, given a j layer linear backbone
model and a k layer projection head, this equates to a setup with l = j + k + 1 where the linear model is
represented by Wj . . .W1, the projection head is represented by Wj+k . . .Wj+1, and the classifier head is
represented by Wj+k+1.

C Additional Experimental Details: DIET

C.1 DIET Pseudocode and setup

C.2 Training dynamics

To understand feature learning in DIET, we compare its learning dynamics to other SSL methods, which
exhibit step-wise learning dynamics (Zimmermann et al., 2021b; Rusak et al., 2024; von Kügelgen et al., 2021;
Reizinger et al., 2024) , i.e., with small-scale initialization, the eigenvalues of the learned representations
evolve in discrete steps rather than continuously (Simon et al., 2023). We observe the same for DIET. In
Fig. 11 and Fig. 12, we show that training a ResNet18 on CIFAR100 and TinyImageNet using DIET leads to
a step-wise increase of the embedding’s singular values, similarly to other SSL methods. Additionally, we
observe that the range of the singular values drops substantially for DIET, much more than for SimCLR and
VicReg methods. DIET representations are thus high-rank embeddings compared to other SSL methods.
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Algorithm 1 DIET’s algorithm and dataset loader.
# take any p r e f e r r e d DNN e . g . r e s n e t 5 0
# see Alg. 2 f o r o t h e r examples
f = t o r c h v i s i o n . models . r e s n e t 5 0 ( ) # fθ

# f comes wi th a c l a s s i f i e r so we remove i t
K = f . f c . i n _ f e a t u r e s
f . f c = nn . I d e n t i t y ( )

# d e f i n e DIET ’ s l i n e a r c l a s s i f i e r and XEnt
W = nn . L i n e a r (K, N, b i a s=F a l s e ) # WH in Equation (1)
XEnt = nn . C ro s sE n t rop yL os s ( l abe l_smooth i ng =0.8)

# d e f i n e d a t a s e t and t r a i n (Fig. 6)
t r a i n _ d a t a s e t = D a t a s e t W i t h I n d i c e s ( t r a i n _ d a t a s e t )
t r a i n _ l o a d e r = DataLoader ( t r a i n _ d a t a s e t , . . . )

f o r x , n i n t r a i n _ l o a d e r :
l o s s = XEnt (W( f ( x ) ) , n ) # Equation (1)

# backprop / o p t i m i z e r / s c h e d u l e r

from t o r c h . u t i l s . data impor t Dataset ,
DataLoader

from t o r c h v i s i o n . d a t a s e t s impor t CIFAR100

c l a s s D a t a s e t W i t h I n d i c e s ( Datase t ) :
d e f __init__ ( s e l f , d a t a s e t ) :

s e l f . d a t a s e t = d a t a s e t
d e f __getitem__ ( s e l f , n ) :

# d i s r e g a r d the l a b e l s
x , _ = s e l f . d a t a s e t [ n ]
r e t u r n x , n

d e f __len__ ( s e l f ) :
r e t u r n l e n ( s e l f . d a t a s e t )

# example w i th CIFAR100
C100 = CIFAR100 ( r o o t )
C100_w_ind = D a t a s e t W i t h I n d i c e s ( C100 )

DIET’s experimental setup:
• Official Torchvision architectures (no changes in init./arch.), only swapping the classification layer with DIET’s

one (right of Fig. 6), no projector DNN
• Same DA pipeline (T in Fig. 6) across datasets/architectures with batch size of 256 to fit on 1 GPU
• AdamW optimizer with linear warmup (10 epochs) and cosine annealing learning rate schedule, XEnt loss

(right of Fig. 6) with label smoothing of 0.8
• Learning rate/weight-decay of 0.001/0.05 for non transformer architectures and 0.0002/0.01 for transformers
Figure 9: In underlined are the design choices directly ported from standard supervised learning (not
cross-validated for DIET), in italic are the design choices cross-validated for DIET but held constant across
this study unless specified otherwise. Batch-size sensitivity analysis is reported in Tab. 16 and Fig. 15
showing that performances do not vary when taking values from 32 to 4096. XEnt’s label smoothing
parameter plays a role into DIET’s convergence speed, and is cross-validated in Fig. 14 and Tab. 16; we
also report DA ablation in Fig. 15 and Tab. 16.

Table 16: Ablation studies indicate that DIET benefits from longer training and stronger data
augmentation while being robust to architecture and batch-size changes. We report top1 test
accuracy on CIFAR100 with varying training epochs (top left), on TinyImagenet with varying DA pipelines
(Alg. 3), and on TinyImagenet with 3k training epochs and with varying batch-size (bottom) with learning
rate 0.001 bs

256 ; additional comparisons on MedMNIST Tab. 17.

Epochs 50 100 200 500 1000 5000 10000
resnet18 33.46 42.94 48.24 54.54 58.81 62.63 63.29
resnet50 37.71 47.86 54.04 60.23 64.24 69.51 69.91
resnet101 34.03 46.59 54.3 60.8 64.71 70.56 71.39

DA strength 1 2 3
resnet18 31.48 43.62 43.88
resnet34 32.93 45.60 45.75
resnet50 40.24 48.80 50.81
resnet101 40.07 49.74 50.76

batch-size 8 16 32 64 128 256 512 1024
resnet18 32.9 37.9 42.7 43.4 43.3 43.7 43.7 42.6

C.3 Impact of Training Time and Label Smoothing

In Figure 14 we show the performance of DIET on CIFAR100 across three label smoothing settings. We find
higher values of label smoothing speed up convergence, although in this setting all cases greatly benefit from
longer training schedules; final linear probe performances are reported in Tab. 16.

C.4 Impact of Mini-Batch Size

We show in 15 ablations for TinyImagenet using DIET. In addition we show DIET’s robustness to batch size
by conducting an additional ablation by varying the batch size for the Derma MedMNIST dataset with batch
sizes as low as 8. As shown in Table 17, we see DIET performs well even with very small batch sizes.
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Algorithm 2 Get the output dimension and remove the linear classifier from a given torchvision model (Pytorch
used for illustration).
model = t o r c h v i s i o n . models . __dict__ [ a r c h i t e c t u r e ] ( )

# CIFAR p r o c e d u r e to a d j u s t to the l owe r image r e s o l u t i o n
i f i s _ c i f a r and " r e s n e t " i n a r c h i t e c t u r e :

model . conv1 = t o r c h . nn . Conv2d (3 , 64 , k e r n e l _ s i z e =3, s t r i d e =1, padd ing =2, b i a s=F a l s e )
model . maxpool = t o r c h . nn . I d e n t i t y ( )

# f o r each a r c h i t e c t u r e , remove the c l a s s i f i e r and get the output dim . (K)
i f " a l e x n e t " i n a r c h i t e c t u r e :

K = model . c l a s s i f i e r [ 6 ] . i n _ f e a t u r e s
model . c l a s s i f i e r [ 6 ] = t o r c h . nn . I d e n t i t y ( )

e l i f " convnext " i n a r c h i t e c t u r e :
K = model . c l a s s i f i e r [ 2 ] . i n _ f e a t u r e s
model . c l a s s i f i e r [ 2 ] = t o r c h . nn . I d e n t i t y ( )

e l i f " convnext " i n a r c h i t e c t u r e :
K = model . c l a s s i f i e r [ 2 ] . i n _ f e a t u r e s
model . c l a s s i f i e r [ 2 ] = t o r c h . nn . I d e n t i t y ( )

e l i f " r e s n e t " i n a r c h i t e c t u r e or " r e s n e x t " i n a r c h i t e c t u r e or " r e g n e t " i n a r c h i t e c t u r e :
K = model . f c . i n _ f e a t u r e s
model . f c = t o r c h . nn . I d e n t i t y ( )

e l i f " den sene t " i n a r c h i t e c t u r e :
K = model . c l a s s i f i e r . i n _ f e a t u r e s
model . c l a s s i f i e r = t o r c h . nn . I d e n t i t y ( )

e l i f " mob i l e " i n a r c h i t e c t u r e :
K = model . c l a s s i f i e r [ −1 ] . i n _ f e a t u r e s
model . c l a s s i f i e r [ −1] = t o r c h . nn . I d e n t i t y ( )

e l i f " v i t " i n a r c h i t e c t u r e :
K = model . heads . head . i n _ f e a t u r e s
model . heads . head = t o r c h . nn . I d e n t i t y ( )

e l i f " sw in " i n a r c h i t e c t u r e :
K = model . head . i n _ f e a t u r e s
model . head = t o r c h . nn . I d e n t i t y ( )

Figure 10: Reprise of Appx. C.2 on additional datasets depicting how DIET is able to compete with supervised
learning for in-distribution generalization in very small dataset regime.

Batch-size does not impact DIET’s performance. One important question when it comes to training a
method with low resources is the ability to employ (very) small batch sizes. This is in fact one reason hindering
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Figure 11: Dynamics of SSL: (left) Step dynamics similar to (Simon et al., 2023), we find that the embeddings’
singular values increase in a sequential and step-wise fashion. (right) Top 200 singular values across the first 2000
training steps for DIET (left), SimCLR (middle), VicReg (right) on TinyImageNet. We find that for DIET the range
of values taken by the singular values drops during training.

Figure 12: Dynamics of SSL: (left) Step dynamics similar to (Simon et al., 2023), we find that the embeddings’
singular values increase in a sequential and step-wise fashion. (right) Top 200 singular values across the first 2000
training steps for DIET (left), SimCLR (middle), VicReg (right) on CIFAR100. We find that for DIET the range of
values taken by the singular values drops during training.

Figure 13: DIET matches supervised learning on datasets with only a few samples per class. Depiction
of DIET’s downstream performances (blue) against supervised learning (red) controlling training set size (x-axis);
evaluation is performed over the original full evaluation set. DIET is able to learn highly competitive representations
when the dataset is small with only a few samples per classes. See Fig. 10 for additional datasets.

the deployment of SSL methods which require quite large batch sizes to work (256 is a strict minimum in
most cases). Therefore, we perform a small sensitivity analysis in Tab. 16 where we vary the batch size
from 8 to 2048 without any hyper-parameter tuning other than the standard learning rate scaling used in
supervised learning: lr = 0.001 bs

256 . We observe small fluctuations of performances (due to a sub-optimal
learning rate) but no significant drop in performance, even for batch size of 32. When going to 16 and 8, we
observe slightly lower performances, likely due to batch-normalization Ioffe & Szegedy (2015) which is known
to behave erratically below a batch size of 32 Ioffe (2017).

37



Published in Transactions on Machine Learning Research (12/2025)

Resnet18

Resnet50

Resnet101

Figure 14: Depiction of the evolution of linear top1 accuracy throughout epochs on CIFAR100 with three
Resnet variants and three label smoothing parameters represented by the different shades of blue going
from light to dark shades with values of 0.1, 0.4, and 0.8 respectively.

Batch Size 8 32 64 128 512
DIET 71.87 72.52 73.07 74.36 71.02
MoCov2 66.88 64.64 66.73 66.88 61.40
SimCLR 63.14 66.43 66.83 66.88 66.83
VICReg 65.84 60.45 64.79 66.78 66.88

Table 17: Reprise of Tab. 16: DIET’s performance across varying batch sizes on the Derma MedMNIST
dataset with all other hyperparameter fixed demonstrating the stability of DIET do that hyper-parameter
and across training iterations. All models are trained for 500 epochs.

C.5 Impact of Data-Augmentation

To further study the effect of data augmentation in DIET we study varying data augmentation strengths
for TinyImageNet in Fig. 15. We also examine the effect of weaker data augmetnations for smaller medical
images using PathMNIST in Tab. 18.
Data-Augmentation sensitivity is similar to SSL. When using DA, DIET is able to perform on par
with highly engineered state-of-the-art methods. Yet, knowing which DA to employ is not trivial, e.g., many
data modalities have no obvious DA. One natural question is, thus, concerning the sensitivity of DIET’s
performance to the employed DA. To that end, we propose three DA regimes, one only consistent of random
crops and horizontal flips (strength:1), which could be considered minimal in computer vision, one which
adds color jittering and random grayscale (strength:2), and one last which further adds Gaussian blur and
random erasing Zhong et al. (2020) (strength:3); the exact parameters for those transformations are given in
Alg. 3. We observe on TinyImagenet and with a Resnet34 the following performances 32.93± 0.6, 45.60± 0.2,
and 45.75± 0.1 respectively over 5 independent runs, details and additional architectures provided in Fig. 15
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Figure 15: Left:TinyImagenet with fixed number of epochs and a single learning rate which is adjusted for each
case using the LARS rule therefore per batch-size learning cross-validation can only improve performances,
see Tab. 16, , the per-epoch time includes training, testing, and checkpointing. Right: TinyImagenet, see
Tab. 16 for table of results, and the specific DAs can be found in Alg. 3.

Algorithm 3 Custom dataset to obtain the indices (n) in addition to inputs xn and (optionally) the labels yn to
obtain train_loader used in Appx. C.1 (Pytorch used for illustration).
t r a n s f o r m s = [

RandomResizedCropRGBImageDecoder ( ( s i z e , s i z e ) ) ,
RandomHor i zon ta lF l i p ( ) ,

]
i f s t r e n g t h > 1 :

t r a n s f o r m s . append (
T. RandomApply (

t o r c h . nn . Modu l eL i s t ( [T . C o l o r J i t t e r ( 0 . 4 , 0 . 4 , 0 . 4 , 0 . 2 ) ] ) , p=0.3
)

)
t r a n s f o r m s . append (T. RandomGrayscale ( 0 . 2 ) )

i f s t r e n g t h > 2 :
t r a n s f o r m s . append (

T. RandomApply (
t o r c h . nn . Modu l eL i s t ( [T . G a u s s i a n B l u r ( ( 3 , 3) , ( 1 . 0 , 2 . 0 ) ) ] ) , p=0.2

)
)
t r a n s f o r m s . append (T. RandomErasing ( 0 . 2 5 ) )

and Tab. 16 in the Appendix. We thus observe that while DIET greatly benefit from richer DA (strength:1
7→ 2), it however does not require heavier transformation such as random erasing.

C.6 Impact of Label Smoothing

Label smoothing helps. One important difference in training behavior between supervised learning and
SSL is in the number of epochs required to see the quality of the representation plateau. Due to the different
loss used in DIET, one might wonder about the differences in training behavior. We observe that DIET takes
more epochs than SSL until the loss converges. However, by using large values of label smoothing, e.g., 0.8,
it is possible to obtain faster convergence. We provide a sensitivity analysis in Fig. 14 and Tab. 16 in the
Appendix. In fact, one should recall that within a single epoch, only one of each datum/class is observed,
making the convergence speed of the classifier’s WH matrix the main limitation; we aim to explore improved
training strategies in the future as discussed in § 8.
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Figure 16: DIET MedMNIST training loss curves for the DIET criterion (left) and training accuracy (right)
with a ResNet18 backbone.

C.7 DIET compared to supervised learning
DIET matches supervised learning on datasets with only a few samples per class. In Appx. C.2
we directly compare DIET with supervised learning on a variety of models and datasets but with controlled
training size. We clearly observe that for small dataset, i.e., for which we only use a small part of the original
training set (less than 30 images per class), DIET’s learned representation is as efficient as the supervised one
for the in-distribution classification downstream task.

DIET works with scattering network architectures As an additional test, scattering networks (Oyallon
et al., 2018; Gauthier et al., 2022) hard-code part of the model parameters to be wavelet filter-banks. That
specification naturally makes such scattering networks very competitive for small data regimes since the
number of degrees of freedom is reduced. We therefore performed two additional experiments: Training
a hybrid scattering network in a supervised setting Training a hybrid scattering network with DIET and
then learning a linear probe on top (keeping the hybrid scattering frozen) We perform both cases above on
the full CIFAR10 training set and on a reduced training set of 5000 (10% of the training data) samples.
Supervised training of the scattering network results in 72.1% (58.2%) test set accuracy, whereas unsupervised
DIET pretraining followed by a linear probe results in 77.64% (62.8%) for the same architecture. From
that experiment we obtain two novel insights. First, DIET works out-of-the-box on DNs such as the hybrid
scattering network, with a reduced number of parameters. Second, even in that regime, DIET provides strong
performances.

C.8 Additional Results for MedMNIST
In Figure 16 we show training curves for DIET with a ResNet18 architecture. We perform ad-
ditional experiments with DIET using a vision transformer architecture (ViT-Small with patch size
4) based on the architecture from https://github.com/lucidrains/vit-pytorch/blob/main/
vit_pytorch/vit_for_small_dataset.py. We find DIET achieves good performance on the same
MedMNIST datasets with this ViT architecture without additional hyperparameter tuning as shown in Table
19 and in comparison to all three baseline SSL methods in Table 18.
We find evidence of the default augmentations for PathMNIST being too aggressive and confirm DIET’s
performance improves with the use of weaker augmentations in Table 18. Surprisingly, we find DIET performs
quite well with no augmentations at all, a setting in which most standard SSL methods would be impossible
to train.

D Additional Experimental Details: S-DIET
D.1 S-DIET Pseudocode

1 """
2 Uppercase v a r i a b l e s s t o r e d on d i s k
3 Lowercase v a r i a b l e s s t o r e d i n memory
4
5 X: t r a i n data
6 H: c l a s s i f i e r head
7 M: f i r s t moment f o r c l a s s i f i e r head
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bloodmnist dermamnist pathmnist
train test train test train test

DIET 77.65 81.85 71.03 68.88 56.37 21.27
SimCLR 82.48 79.45 69.13 32.37 69.45 21.80
VICReg 86.71 81.03 69.89 46.33 82.94 12.76
MoCov2 62.76 51.01 66.78 63.39 72.9 41.75

DIET PathMNIST
Augmentation train test
Default 56.37 21.27
Weak 44.90 48.95
None 44.65 45.67

Table 18: Top:DIET performance across the three MedMNIST datasets using a transformer (ViT-S)
architecture with patch size 4 in comparison to standard SSL baselines with the same ViT architecture.
Bottom:Comparing DIET’s performance across data augmentations for PathMNIST using a transformer
(ViT-S) architecture with patch size 4. Weak augmentation corresponds to only random resized cropping and
horizontal flipping.

Table 19: DIET performance across the three MedMNIST datasets using a transformer (ViT-S) architecture with
patch size 4. In the first row we show the performance of a baseline SimCLR model with the default ResNet18 encoder
for comparison.

dataset bloodmnist dermamnist pathmnist
train test train test train test

DIET 77.65 81.85 71.03 68.88 56.37 21.27

Table 20: DIET is competitive and works out-of-the-box across architectures. We keep the settings of
Fig. 9. Benchmarks from 1:Dubois et al. (2022), 2 :Ozsoy et al. (2022)

TinyImagenet
Resnet18

SimSiam 44.54 ‡

DIET 45.07
SimCLR 46.21‡

BYOL 47.23‡

MoCo 47.98 ‡

SimCLR 48.70 1

DINO 49.20 1

Resnet50
SimSiam 46.76 2

SimCLR 48.12 2

DIET 51.66

DIET
resnet18 45.07
resnet34 47.04
resnet101 51.86
wide_resnet50_250.03
resnext50_32x4d 52.45
densenet121 49.38

resnet50 51.66
convnext_tiny 50.88
convnext_small 50.05
MLPMixer 39.32
swin_t 50.80
vit_b_16 48.38

Imagenet-100 (IN100)
Resnet18

SimMoCo 58.20∗

MocoV2 60.52∗

SimCo 61.28 ∗

W-MSE2 69.06 2

ReSSL 74.02•

DINO 74.16•

MoCoV2 76.48•

BYOL 76.60•

SimCLR 77.042

SimCLR 78.722

MocoV2 79.282

VICReg 79.402

BarlowTwins 80.382

Resnet50
MoCo+Hyper. 75.60 ⋆

MoCo+DCL 76.80 ⋆

MoCoV2 + Hyper. 77.70 ⋆

BYOL 78.76 2

MoCoV2 + DCL 80.50 ⋆

SimCLR 80.70 ⋆

SimSiam 81.602

SimCLR + DCL 83.10 ⋆

DIET
resnet18 64.31
wide_resnet50_2 71.92
resnext50_32x4d 73.07
densenet121 67.46
convnext_tiny 69.77

resnet50 73.50
convnext_small 71.06
MLPMixer 56.46
swin_t 67.02
vit_b_16 62.63

8 V: second moment f o r c l a s s i f i e r head
9

10 i n d i c e s : i n d i c e s f o r the c u r r e n t batch
11 """
12 d e f t r a i n _ s t e p (X, H, M, V, i n d i c e s , model , c r i t e r i o n , o p t i m i z e r ) :
13 # Load data , head we ights , and head o p t i m i z e r s t a t e i n t o memory
14 i n p u t s , head , optimizer_m , o p t i m i z e r _ v = X[ i n d i c e s ] , H[ i n d i c e s ] , M[ i n d i c e s ] , V [ i n d i c e s ]
15 l a b e l s = [ 0 , 1 , . . . , l e n ( i n d i c e s ) −1]
16
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17 # Forward and backward pas s
18 ou tpu t s = head ( model ( i n p u t s ) )
19 l o s s = c r i t e r i o n ( outputs , l a b e l s )
20 o p t i m i z e r . ze ro_grad ( )
21 l o s s . backward ( )
22 o p t i m i z e r . s t e p ( )
23 head , m, v = perform_mult istep_adamw_head_update ( head , m, v )
24
25 # Save head w e i g h t s and head o p t i m i z e r s t a t e
26 # Done a s y n c h r o n o u s l y
27 H[ i n d i c e s ] , M[ i n d i c e s ] , V [ i n d i c e s ] = head , m, v
28
29
30 d e f perform_mult istep_adamw_head_update ( head , m, v ) :
31 g = head . grad
32
33 # f i r s t s t e p
34 head = (1 − l r ∗ weight_decay ) ∗ head
35 m = beta1 ∗ m + (1 − beta1 ) ∗ g
36 v = beta2 ∗ v + (1 − beta2 ) ∗ g ∗ g
37 head = head − l r ∗ m / ( s q r t ( v ) + eps )
38
39 # a l l o t h e r s t e p s
40 mu = beta1 / s q r t ( beta2 )
41 a lpha1 = (1 − l r ∗ weight_decay ) ∗∗ ( t − 1)
42 a lpha2 = ( a lpha1 ∗ l r ∗ mu − l r ∗ (mu ∗∗ t ) ) / (1 − l r ∗ weight_decay − mu)
43
44 head = a lpha1 ∗ head − a lpha2 ∗ m / ( s q r t ( v ) + eps )
45 m = ( beta1 ∗∗ ( t − 1) ) ∗ m
46 v = ( beta2 ∗∗ ( t − 1) ) ∗ v

Listing 1: Pseudocode for a S-DIET training step

D.2 Handling Stateful Optimizers in s-DIET
AdamW. Stateful optimizers provide a further opportunity. Considering the AdamW update rules (Loshchilov
& Hutter, 2019):

mt ← β1mt−1 + (1− β1)gt, vt ← β2vt−1 + (1− β2)g2
t , θt ← (1− ηλ)θt−1 − ηψt

mt√
vt + ϵ

where ψt =
√

1−βt
2

1−βt
1

. For simplicity, we replace ψt = 1. For default settings β1 = 0.9, β2 = 0.999, this can be
interpreted as learning rate warmup. As the optimizer may update the weights even if their gradient at the
current step gt is zero. Thus it would require loading the entire WH even with batch cross entropy. The i-th
row of WH is used only with sample i in the batch; otherwise the corresponding batch cross entropy gradient
is zero. Since not each batch contains sample i, when it does, we perform t optimizer steps on the i-th row of
WH . As we do not exactly know t, i.e. is the number of steps until the sample i is again in the batch, we
approximate t = N

B . This yields what we call the multistep update formula for AdamW. Assuming we have
dropped the ψt term and ϵ is negligible, if gt = 0 for all t, the above update formulas for AdamW become an
inhomogeneous linear recurrence relation which has a closed form solution:

mt = βt
1m0, vt = βt

2v0, θt = (1− ηλ)tθ0 + (1− ηλ)tηµ− ηµt+1

1− ηλ− µ
m0√
v0 + ϵ

. (18)

where µ denotes the ratio β1√
β2

. In summary, at each step we only update the weights and optimizer state
of rows of WH that were selected for batch cross entropy at that step. We perform the update by first
taking one step with gt as the calculated gradient, and then apply the multistep update given by Eq. 18 for
t = N

b − 1.
SGD with Momentum. Recall the update rule of SGD with learning rate η, momentum µ, dampening τ ,
weight decay λ:

mt ←− µmt−1 + τgt, θt ←− (1− ηλ)θt−1 − ηmt (19)

If gt = 0 for all t, the above update formulas for SGD with momentum become an inhomogeneous linear
recurrence relation which has an exact solution:

mt = µtm0, θt = (1− ηλ)tθ0 + (1− ηλ)tηµ− ηµt+1

1− ηλ− µ m0 (20)
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D.3 SSL Methods
Pretrained models for SSL methods are obtained using the solo-learn library (da Costa et al., 2022). We use
the batch size and augmentations as specified in the previous section, and change the precision to 32-bit for
consistency. All other hyperparameters are left unchanged.

D.4 Toy Dataset
We instantiate the scenario from Section 4.2 with a more realistic training setup:

• we make the classifier head WH trainable from random initialization.

• instead of taking the expectation over all augmentations, we sample a single random augmentation
of the input at each step.

• We also choose G1,G2 to follow normal distributions (this eliminates the requirement of bounded
feature noise).

We set C = 4, d = 16,m = 4, n = 32, σ1 = 0.01, σ2 = 0.1, ϕ = 0.004. We train for 5000 steps using the Adam
optimizer with learning rate 0.1 and cosine learning rate schedule. We reset the state of the Adam optimizer
after the first step to eliminate the effect of gradient blowup from normalizing zero vectors, see Appx. A.1.5
for details.

D.5 Synthetic Dataset
For the synthetic dataset described in Section 7.1, we modify the first convolutional layer of the ResNet
model to take 4 input channels instead of 3. For MNIST augmentations, we replace random horizontal flip
and random grayscale with gaussian blur. We also modify the random cropping to keep at least 0.75 of the
area of the original image. We train for 500 epochs. All other hyperparameters are set as described above.

D.6 Equivalence of DIET and Spectral Contrastive Learning for Ideal Encoders
A common line of study is to analyze the minima of loss functions assuming an ideal encoder, namely one
that can realize any output configuration, since such analysis depends only on the loss function and not
how exactly the encoder is parameterized. Thm. 5 directly covers this case, as an ideal encoder can be
parameterized as a fixed feature map ϕ which maps the inputs to a linearly independent set and then applying
a linear encoder. In this case, the global minima of the spectral contrastive loss is any encoder for which

1. All augmentations of an example are collapsed to a single unit vector

2. Embeddings of different examples are orthogonal.

We note that this recovers a result from Johnson et al. (2023), which, after applying the rescaling discussed
in Appx. A.1.2 states that the global minima of spectra is achieved when

Kθ(x1,x2) = f(x1)⊤f(x2) = δy1,y2

Meanwhile, minimizing the MSE DIET loss requires that the outputs of the classifier be exactly equal to
the specified targets. Assuming that the classifier head is an isometry, we exactly recover the previous two
conditions on the learned embeddings.

D.7 Comparison Between DIET and CL
In Figure 17, we compare t-SNE visualizations (van der Maaten & Hinton, 2008) of test embeddings produced
by s-DIET and SimCLR (Chen et al., 2020) on CIFAR-10 with ResNet-50. We observe that the high level
structure of the embeddings is remarkably similar for both methods.

D.8 s-DIET experiments with ViT backbone
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(a) DIET (b) SimCLR

Figure 17: TSNE of embeddings produced by DIET and SimCLR on CIFAR-10 using ResNet-50.
Table 21: Linear Probe Accuracy of ViT trained with DIET and s-DIET. Again s-DIET provides significant
performance gains over DIET.

Method ImageNet-100 TinyImageNet

DIET 62.63 48.38
s-DIET 74.04 55.82

E Acronyms

CL Contrastive Learning

DIET Datum IndEx as its Target

MSE Mean Squared Error

PID parametric instance discrimination

s-DIET Scaled DIET
SCL Spectral Contrastive Learning
SSL self-supervised learning
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