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ABSTRACT

Neural network pruning is useful for discovering efficient, high-performing subnet-
works within pre-trained, dense network architectures. However, more often than
not, it involves a three-step process—pre-training, pruning, and re-training—that is
computationally expensive, as the dense model must be fully pre-trained. Luckily,
several works have empirically shown that high-performing subnetworks can be
discovered via pruning without fully pre-training the dense network. Aiming to
theoretically analyze the amount of dense network pre-training needed for a pruned
network to perform well, we discover a theoretical bound in the number of SGD
pre-training iterations on a two-layer, fully-connected network, beyond which prun-
ing via greedy forward selection (Ye et al., 2020) yields a subnetwork that achieves
good training error. This threshold is shown to be logarithmically dependent upon
the size of the dataset, meaning that experiments with larger datasets require more
pre-training for subnetworks obtained via pruning to perform well. We empirically
demonstrate the validity of our theoretical results across a variety of architectures
and datasets, including fully-connected networks trained on MNIST and several
deep convolutional neural network (CNN) architectures trained on CIFAR10 and
ImageNet.

1 INTRODUCTION

The proposal of the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) has led to significant
interest in using pruning techniques to discover small (sometimes sparse) models that perform well.
LTH has been empirically validated and is even applicable in large-scale settings (Chen et al., 2020;
Frankle et al., 2019; Gale et al., 2019; Liu et al., 2018; Morcos et al., 2019; Zhou et al., 2019; Zhu
& Gupta, 2017), revealing that high-performing subnetworks can be obtained by pruning dense,
pre-trained models and fine-tuning the pruned weights to convergence (i.e., either from their initial
values or some later point) (Chen et al., 2020a; Girish et al., 2020; Renda et al., 2020).

Neural network pruning tends to follow a three step process, including pre-training, pruning, and
re-training, where pre-training is the most costly step (Frankle & Carbin, 2018; You et al., 2019). To
circumvent the cost of pre-training, several works explore the possibility of pruning networks directly
from initialization (i.e., the “strong lottery ticket hypothesis”) (Frankle et al., 2020; Ramanujan et al.,
2019; Wang et al., 2020), but subnetwork performance could suffer. Adopting a hybrid approach,
good subnetworks can also be obtained from models with minimal pre-training (Chen et al., 2020b;
You et al., 2019) (i.e., “early-bird” tickets), providing hope that high-performing pruned models can
be discovered without incurring the full training cost of the dense model.

Extensive empirical analysis of pruning techniques has inspired associated theoretical developments.
Several works have derived bounds for the performance and size of subnetworks discovered in
randomly-initialized networks (Malach et al., 2020; Orseau et al., 2020; Pensia et al., 2020). Other
theoretical works analyze pruning via greedy forward selection (Ye et al., 2020; Ye et al., 2020). In
addition to enabling analysis of subnetwork performance with respect to subnetwork size, pruning
via greedy forward selection was shown to work well in practice for large-scale architectures and
datasets. Although some findings from these works apply to randomly-initialized networks given
proper assumptions (Ye et al., 2020; Malach et al., 2020; Orseau et al., 2020; Pensia et al., 2020), no
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work yet analyzes how different levels of pre-training impact the performance of pruned networks
from a theoretical perspective.

This paper. We adopt the greedy forward selection pruning framework and analyze subnetwork
performance with respect to the number of SGD pre-training iterations performed on the dense model.
From this analysis, we discover a threshold in the number of pre-training iterations—logarithmically
dependent upon the size of the dataset—beyond which subnetworks obtained via greedy forward
selection perform well in terms of training error. Such a finding offers theoretical insight into the early-
bird ticket phenomenon and provides intuition for why discovering high-performing subnetworks is
more difficult in large-scale experiments (You et al., 2019; Renda et al., 2020; Liu et al., 2018). We
validate our theoretical analysis through extensive experiments (i.e., two-layer networks on MNIST
and CNNs on CIFAR10 and ImageNet), finding that the amount of pre-training required to discover
a subnetwork that performs well is consistently dependent on the size of the dataset.

2 PRELIMINARIES

Notation. Vectors are represented with bold type (e.g., x), while scalars are represented by normal
type (e.g., x). ‖ · ‖2 represents the `2 vector norm. Unless otherwise specified, vector norms are
always considered to be `2 norms. [N ] is used to represent the set of positive integers from 1 to N
(i.e., [N ] = {1 . . . N}). We denote the ball of radius r centered at µ as B(µ, r).

Network Parameterization. We consider two-layer neural networks of width N :

f(x,Θ) = 1
N

N∑
i=1

σ(x,θi), (1)

where Θ = {θ1, . . . ,θN} represents all weights within the two-layer neural network. In equation 1,
σ(·,θi) represents the activation of a single neuron as shown below:

σ(x,θi) = biσ+(a>i x). (2)
Here, σ+ is an activation function with bounded first and second-order derivatives; see Assumption 1
in Section 4. The weights of a single neuron are represented by θi = [bi,ai] ∈ Rd+1, where d is the
dimension of the input vector.

Two-layer networks are relevant to larger-scale architectures and applications (Belilovsky et al., 2019;
Hettinger et al., 2017; Nøkland & Eidnes, 2019) and have the special property of separability between
hidden neurons—the network’s output can be derived by computing equation 2 separately for each
neuron. Notably, we do not leverage any results from mean-field analysis of two-layer networks (Mei
et al., 2018; Ye et al., 2020), choosing instead to analyze the network’s performance when trained
directly with SGD (Oymak & Soltanolkotabi, 2019).

The Dataset. We assume that our network is modeling a dataset D, where |D| = m. D ={
x(i), y(i)

}m
i=1

, where x(i) ∈ Rd and y(i) ∈ R for all i ∈ [m]. During training, we consider an
`2-norm regression loss over the dataset:

L[f ] = 1
2 · E(x,y)∼D

[
(f(x,Θ)− y)2

]
. (3)

We define y =
[
y(1), y(2), . . . , y(m)

]
/
√
m, which represents a concatenated vector of all labels

within the dataset scaled by a factor
√
m. Similarly, we define φi,j = σ(x(j),θi) as the output of neu-

ron i for the j-th input vector in the dataset and construct the vector Φi = [φi,1, φi,2, . . . , φi,m] /
√
m,

which is a scaled, concatenated vector of output activations for a single neuron across the entire
dataset. We useMN to denote the convex hull over such activation vectors for all N neurons:

MN = Conv {Φi : i ∈ [N ]} . (4)
Here, Conv{·} denotes the convex hull.MN forms a marginal polytope of the feature map for all
neurons in the two-layer network across every dataset example. We use Vert(MN ) to denote the
vertices of the marginal polytopeMN (i.e., Vert(MN ) = {Φi : i ∈ [N ]}). Using the construction
MN , the `2 loss can be easily defined as follows:

`(z) =
1

2
‖z− y‖2, (5)

where z ∈MN . Finally, we define the diameter of the spaceMN as DMN
= max

u,v∈MN

‖u− v‖2.
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3 PRUNING WITH GREEDY FORWARD SELECTION

Figure 1: Depiction of pruning with
greedy forward selection as expressed
in equations 8 through 10.

We assume the existence of a dense, two-layer network
of width N , from which the pruned model is constructed.
For now, no assumption is made regarding the amount of
pre-training for the dense model. Given a subset of neuron
indices from the dense model S ⊆ [N ], we denote the
output of the pruned subnetwork that only contains this
subset of neurons as follows:

fS(x,Θ) = 1
|S|

∑
i∈S

σ(x,θi). (6)

Beginning from an empty subnetwork (i.e., S =
∅), we aim to discover a subset of neurons S? =
arg minS⊆[N ] L[fS ] such that |S?| � N . Instead of dis-
covering an exact solution to this difficult combinatorial
optimization problem, greedy forward selection (Ye et al.,
2020) is used to find an approximate solution. The pruned
network is constructed by selecting at each iteration k the
neuron that yields the largest decrease in loss:

Sk+1 = Sk ∪ i?, i? = arg min
i∈[N ]

L[fSk∪i]. (7)

Using constructions from Section 2, we write the update
rule for greedy forward selection as follows:

(Select new neuron): qk = arg min
q∈Vert(Mn)

`
(
1
k · (zk−1 + q)

)
(8)

(Add neuron to subnetwork): zk = zk−1 + qk (9)

(Uniform average of neuron outputs): uk =
1

k
· zk. (10)

In words, equations 8 through 10 include the output of a new neuron, given by qk, within the current
subnetwork at each pruning iteration based on a greedy minimization of the training loss `(·). Then,
the output of the pruned subnetwork over the entire dataset at the k-th iteration, given by uk ∈MN ,
is computed by taking a uniform average over the activation vectors of the k active neurons in zk. This
pruning procedure, depicted in Figure 1, is the same as that of (Ye et al., 2020), but more explicitly
matches the procedure in equation 7 by adopting a fixed, uniform average over selected neurons at
each iteration. Within our analysis, rewriting the update rule as in equations 8 through 10 makes the
comparison of subnetwork and dense network loss intuitive, as the output of both dense and pruned
networks is formulated as a uniform average over neuron activations.

Notably, the greedy forward selection procedure in equations 8 through 10 can select the same
neuron multiple times during successive pruning iterations. Such selection with replacement could
be interpretted as a form of training during pruning—multiple selections of the same neuron is
equivalent to modifying the neuron’s output layer weight bi in equation 2. Nonetheless, we highlight
that such “training” does not violate the core purpose and utility of pruning: we still obtain a smaller
subnetwork with performance comparable to the dense network from which it was derived.

4 HOW MUCH PRE-TRAINING DO WE REALLY NEED?

As previously stated, no existing theoretical analysis has quantified the impact of pre-training on the
performance of a pruned subnetwork. Here, we solve this problem by extending existing analysis for
pruning via greedy forward selection to determine the relationship between SGD pre-training and
subnetwork training loss. Full proofs are deferred to Appendix A, but we provide a sketch of the
analysis within this section. We begin with all assumptions that are necessary for our analysis.
Assumption 1. For some constant δ ∈ R, we assume the first and second derivatives of the network’s
activation function are bounded, such that |σ′+(·)| ≤ δ and |σ′′+(·)| ≤ δ for σ+ defined in equation 2.
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In comparison to (Ye et al., 2020), Assumption 1 lessens restrictions on the activation function1 and
removes boundedness assumptions on data and labels. Under these assumptions, we provide a bound
for the loss of a subnetwork obtained after k iterations of greedy forward selection.
Lemma 1. The following expression for the objective loss is true for iterates derived after k iterations
of the update rule in equations 8 through 10 with a two-layer network of width N :

`(uk) ≤ 1

k
`(u1) +

1

2k
D2
MN

+
k − 1

k
LN (11)

Here, LN represents the loss achieved by the dense network.

This result is similar in flavor to (Ye et al., 2020); yet, here it is derived under milder assumptions and
modified to consider the loss of the dense network. Because assumptions in Lemma 1 match those
of (Oymak & Soltanolkotabi, 2019), the expression above can be generalized to the stochastic case
(i.e., with respect to randomness over SGD iterations) and modified to consider the number of SGD
pre-training iterations performed on the dense network.
Theorem 1. Assume Assumption 1 holds and that a two-layer network of width N was pre-trained
for t iterations with SGD over a dataset D of size m. Additionally, assume that Nd > m2 and
m > d, where d represents the input dimension of data in D.2 Then, a subnetwork obtained from this
dense network via k iterations of greedy forward selection satisfies the following

E[`(uk)] ≤ 1

k
E[`(u1)] +

1

2k
E[D2

MN
] +

(k − 1)ζ

2mk

(
1− c d

m2

)t
L0

where L0 is the loss of the dense network at initialization, c and ζ are positive constants, and all
expectations are with respect to randomness over SGD iterations on the dense network.

Trivially, the loss in Theorem 1 only decreases during successive pruning iterations if the rightmost
L0 term does not dominate the expression (i.e., all other terms decay as O( 1

k )). If this term does not
decay with increasing k, the upper bound on subnetwork training loss deteriorates, thus eliminating
any guarantees on subnetwork performance. Interestingly, we discover that the tightness of the upper
bound in Theorem 1 depends on the number of dense network SGD pre-training iterations as follows.3

Theorem 2. Adopting identical assumptions and notation as Theorem 1, assume the dense network
is pruned via greedy forward selection for k iterations. The resulting subnetwork is guaranteed
to achieve a training loss ∝ O( 1

k ) if t—the number of SGD pre-training iterations on the dense
network—satisfies the following condition:

t ' O
(

− log(k)

log
(
1− c d

m2

)) , where c is a positive constant. (12)

Otherwise, the loss of the pruned network is not guaranteed to improve over successive iterations of
greedy forward selection.

Discussion.4 Our O( 1
k ) rate in Lemma 1 matches that of previous work under mild assumptions

and explicitly expresses the loss of the subnetwork with respect to the loss of the dense network.
Assumption 1 is chosen to align with the analysis of (Oymak & Soltanolkotabi, 2019). This combina-
tion enables the training loss of the pruned subnetwork to be expressed with respect to the number
of pre-training iterations on the dense network as shown in Theorem 1. Then, we derive our main

1We only require the first and second-order derivatives of the activation function to be bounded, whereas (Ye
et al., 2020) imposes a Lipschitz bound and a bound on the maximum output value of the activation function.

2This overparameterization assumption is mild in comparison to previous work (Allen-Zhu et al., 2018; Du
et al., 2019). Only recently was an improved, subquadratic requirement derived (Song et al., 2021).

3We also derive a similar result using gradient descent (GD) instead of SGD; see Appendix A.
4We prove that a faster rate can be achieved with greedy forward selection given Assumption 1 if B(y, γ) ∈

MN ; see Appendix A.1.2. We include this result as it still holds under our milder assumptions, but the proof
is similar to (Ye et al., 2020). It is true that such a result indicates that subnetworks perform well without
pre-training when B(y, γ) ∈ MN , which seems to lessen the significance of Theorem 2. However, we analyze
this assumption practically within Appendix B and show that, even for extremely small scale experiments, the
assumption i) never holds at initialization and ii) tends to require more training for larger datasets, which aligns
with findings in Theorem 2.
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result—the discovery of the pre-training threshold outlined in Theorem 2—by manipulating the
expression in Theorem 1.

In words, Theorem 2 states that a threshold exists in the number of SGD pre-training iterations
of a dense network, beyond which subnetworks derived with greedy selection are guaranteed to
achieve good training loss. Denoting this threshold as t?, in the case that m2 � d, limm→∞ t? =∞,
implying that larger datasets require more pre-training for high-performing subnetworks to be
discovered. Similarly, when m2 ≈ d, limm→cd t

? = 0, demonstrating that minimal pre-training is
required for subnetworks to perform well on smaller datasets. Interestingly, t? scales logarithmically
with the size of the dataset, implying that the amount of required pre-training will plateau as the
underlying dataset becomes increasingly large.

Our finding provides theoretical insight regarding i) how much pre-training is sufficient to discover a
subnetwork that performs well and ii) the difficulty of discovering high-performing subnetworks in
large-scale experiments (i.e., large datasets require more pre-training). Because several empirical
heuristics for discovering high-performing subnetworks without full pre-training have already been
proposed (You et al., 2019; Yin et al., 2019), we choose to not focus on deriving novel empirical
methods. Additionally, our results specifically focus upon training accuracy, while generalization
performance could be a more realistic assessment of subnetwork quality. It is possible that our
analysis can be combined with theoretical results for neural network generalization performance
(Arora et al., 2019; Li et al., 2018), but we leave such analysis as future work.

Proof Sketches. We now provide brief sketches of the theoretical results within this section. The
proof of Lemma 1 is similar to that of (Ye et al., 2020). From here, we adopt the analysis of (Oymak
& Soltanolkotabi, 2019) to unroll LN within Lemma 1 and arrive at Theorem 1 as follows.5

• Manipulating the analysis of (Oymak & Soltanolkotabi, 2019), we invoke independence of
expectations and unroll the expected loss of the dense network with respect to randomness over
SGD iterations to derive the following upper bound, where L0 represents the loss of the dense
network at initialization:

E
[
‖f(X,Θt)−Y‖22

]
≤
[

max

(
κ,

(
1− c1

(
c2

√
m

d

) 1
Nd

))]−1(
1− c d

m2

)t
L0

• By taking the expectation over `(uk) in Lemma 1 and substituting the expression above for
E[LN ], we derive the following:

E[`(uk)] ≤ 1

k
E[`(u1)] +

1

2k
E[D2

MN
] +

(k − 1)ζ

2mk

(
1− c d

m2

)t
L0,

where ζ =
[
max

(
κ,
(

1− c1
(
c2
√

m
d

) 1
Nd

))]−1
.

Now, the upper bound in Theorem 1 can be analyzed as follows to derive Theorem 2.

• All terms in the upper bound of Theorem 1 decay asO( 1
k ), aside from the L0 term with coefficient

O(k−1k ).
• After analyzing all terms that are not constants within the upper bound in Theorem 1, we find

that increasing t is the only way to eliminate this factor of k − 1 in the numerator.
• To cancel the term of k − 1 within the numerator of the above expression, we realize that the

value of t must be increased such that
(
1− c d

m2

)t ≈ O( 1
k ). We then re-arrange terms to derive

the approximate value for t given in Theorem 2. After noticing that any value of t beyond this
approximate value would also lead to a good pruning loss, we obtain the final result.

5 RELATED WORK

Many variants have been proposed for both structured (Han et al., 2016; Li et al., 2016; Liu et al.,
2017; Ye et al., 2020) and unstructured (Evci et al., 2019; 2020; Frankle & Carbin, 2018; Han

5In order for the Theorems in (Oymak & Soltanolkotabi, 2019) to be applicable, overparameterization
assumptions on the two-layer neural network must be satisfied, given by Nd > m2 and m > d. Additionally,
we must adopt Assumption 1.
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Figure 2: Accuracies of pruned, two-layer models on MNIST. Sub-plots depict different dense network
sizes, while the x and y axis depict number of pre-training iterations and sub-dataset size, respectively.
Models are pruned to 200 hidden neurons every 1K iterations to measure subnetwork performance.
Color represents training accuracy, and the red line depicts the point at which subnetworks surpass
the performance of the best pruned model on the full dataset for different sub-dataset sizes.

et al., 2015) pruning. Generally, structured pruning, which prunes entire channels or neurons of
a network instead of individual weights, is considered more practical, as it can achieve speedups
without leveraging specialized libraries for sparse computation. Existing pruning criterion include
the norm of weights (Li et al., 2016; Liu et al., 2017; Zhuang et al., 2018), feature reconstruction
error (He et al., 2017; Luo et al., 2017; Ye et al., 2020; Yu et al., 2017), or even gradient-based
sensitivity measures (Baykal et al., 2019; Wang et al., 2020; Zhuang et al., 2018). While most
pruning methodologies perform backward elimination of neurons within the network (Frankle &
Carbin, 2018; Frankle et al., 2019; Liu et al., 2017; 2018; Yu et al., 2017), some recent research has
focused on forward selection structured pruning strategies (Ye et al., 2020; Ye et al., 2020; Zhuang
et al., 2018). We adopt greedy forward selection within this work, as it has been previously shown to
yield superior performance in comparison to greedy backward elimination.

Our analysis resembles that of the Frank-Wolfe algorithm (Frank et al., 1956; Jaggi, 2013), a widely-
used technique for constrained, convex optimization. Recent work has shown that training deep
networks with Frank-Wolfe can be made feasible in certain cases despite the non-convex nature
of neural network training (Bach, 2014; Pokutta et al., 2020). Instead of training networks from
scratch with Frank-Wolfe, however, we use a Frank-Wolfe-style approach to greedily select neurons
from a pre-trained model. Such a formulation casts structured pruning as convex optimization over a
marginal polytope, which can be analyzed similarly to Frank-Wolfe (Ye et al., 2020; Ye et al., 2020)
and loosely approximates networks trained with standard, gradient-based techniques (Ye et al., 2020).
Alternative methods of analysis for greedy selection algorithms could also be constructed with the
use of sub-modular optimization techniques (Nemhauser et al., 1978).

Much work has been done to analyze the convergence properties of neural networks trained with
gradient-based techniques (Chang et al., 2020; Hanin & Nica, 2019; Jacot et al., 2018; Zhang et al.,
2019). Such convergence rates were originally explored for wide, two-layer neural networks using
mean-field analysis techniques (Mei et al., 2019; 2018). Similar techniques were later used to extend
such analysis to deeper models (Lu et al., 2020; Xiong et al., 2020). Generally, recent work on
neural network training analysis has led to novel analysis techniques (Hanin & Nica, 2019; Jacot
et al., 2018), extensions to alternate optimization methodologies (Jagatap & Hegde, 2018; Oymak &
Soltanolkotabi, 2019), and even generalizations to different architectural components (Goel et al.,
2018; Li & Yuan, 2017; Zhang et al., 2019). By adopting and extending such analysis, we aim to
bridge the gap between the theoretical understanding of neural network training and LTH.

6 EXPERIMENTS

In this section, we empirically validate our theoretical results from Section 4, which predict that
larger datasets require more pre-training for subnetworks obtained via greedy forward selection to
perform well. Pruning via greedy forward selection has already been empirically analyzed in previous
work. Therefore, we differentiate our experiments by providing an in-depth analysis of the scaling
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properties of greedy forward selection with respect to the size and complexity of the underlying
dataset. In particular, we produce synthetic “sub-datasets” of different sizes and measure the amount
of pre-training required to discover a high-performing subnetwork on each.

We perform analysis with two-layer networks on MNIST (Deng, 2012) and with deep CNNs (i.e.,
ResNet34 (He et al., 2015) and MobileNetV2 (Sandler et al., 2018)) on CIFAR10 and ImageNet
(Krizhevsky et al., 2009; Deng et al., 2009). We find that i) high-performing subnetworks can be
consistently discovered without incurring the full pre-training cost, and ii) the amount of pre-training
required for a subnetwork to perform well increases with the size and complexity of the underlying
dataset in practice. All experiments are run on an internal cluster with two Nvidia RTX 3090 GPUs.

6.1 TWO-LAYER NETWORKS

We perform structured pruning experiments with two-layer networks on MNIST6 (Deng, 2012) by
pruning hidden neurons via greedy forward selection. To match the single output neuron setup
described in Section 2, we binarize MNIST labels by considering all labels less than five as zero and
vice versa. Our model architecture matches the description in Section 2 with a few minor differences.
Namely, we adopt a ReLU hidden activation and apply a sigmoid output transformation to enable
training with binary cross entropy loss. Experiments are conducted with several different hidden
dimensions (i.e., N ∈ {5K, 10K, 20K}). Hyperparameters are tuned using a hold out validation set;
see Appendix C.1 for more details.

To study how dataset size impacts subnetwork performance, we construct sub-datasets of sizes 1K to
50K (i.e., in increments of 5K) from the original MNIST dataset by uniformly sampling examples
from the 10 original classes. The two-layer network is pre-trained for 8K iterations in total and
pruned every 1K iterations to a size of 200 hidden nodes; see Appendix C.1 for a precise, algorithmic
description of the two-layer network pruning process. After pruning, the accuracy of the pruned
model over the entire training dataset is recorded (i.e., no fine-tuning is performed), allowing the
impact of dataset size and pre-training length on subnetwork performance to be observed. See Figure
2 for these results, which are averaged across three trials.

Discussion. The performance of pruned subnetworks in Figure 2 matches the theoretical analysis
provided in Section 4 for all different sizes of two-layer networks. Namely, as the dataset size
increases, so does the amount of pre-training required to produce a high-performing subnetwork. To
see this, one can track the trajectory of the red line, which traces the point at which the accuracy of the
best performing subnetwork for the full dataset is surpassed at each sub-dataset size. This trajectory
clearly illustrates that pre-training requirements for high-performing subnetworks increase with the
size of the dataset. Furthermore, this increase in the amount of required pre-training is seemingly
logarithmic, as the trajectory typically plateaus at larger dataset sizes.

Interestingly, despite the use of a small-scale dataset, high-performing subnetworks are never dis-
covered at initialization, revealing that some minimal amount of pre-training is often required to
obtain a good subnetwork via greedy forward selection. Previous work claims that high-performing
subnetworks may exist at initialization in theory. In contrast, our empirical analysis shows that this is
not the case even in simple experimental settings.

6.2 DEEP NETWORKS

We perform structured pruning experiments (i.e., channel-based pruning) using ResNet34 (He et al.,
2015) and MobileNetV2 (Sandler et al., 2018) architectures on CIFAR10 and ImageNet (Krizhevsky
et al., 2009; Deng et al., 2009). We adopt the same generalization of greedy forward selection to
pruning deep networks as described in (Ye et al., 2020) and use ε to denote our stopping criterion; see
Appendix C.2 for a complete algorithmic description. We follow the three-stage methodology—pre-
training, pruning, and fine-tuning—and modify both the size of the underlying dataset and the amount
of pre-training prior to pruning to examine their impact on subnetwork performance. Standard data
augmentation and splits are adopted for both datasets.

CIFAR10. Three CIFAR10 sub-datasets of size 10K, 30K, and 50K (i.e., full dataset) are created
using uniform sampling across classes. Pre-training is conducted for 80K iterations using SGD with

6Images are flattened before being passed as input to the model. No data augmentation is used.
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Model Dataset Size Pruned Accuracy Dense Accuracy
20K It. 40K It. 60K It. 80K It.

MobileNetV2
10K 82.32 86.18 86.11 86.09 83.13
30K 80.19 87.79 88.38 88.67 87.62
50K 86.71 88.33 91.79 91.77 91.44

ResNet34
10K 75.29 85.47 85.56 85.01 85.23
30K 84.06 91.59 92.31 92.15 92.14
50K 89.79 91.34 94.28 94.23 94.18

Table 1: CIFAR10 test accuracy for subnetworks derived from dense networks with varying pre-
training amounts (i.e., number of training iterations listed in top row) and sub-dataset sizes.

Model FLOP (Param) Pruned Accuracy Dense Accuracy
Ratio 50 Epoch 100 Epoch 150 Epoch

MobileNetV2 60% (80%) 70.05 71.14 71.53 71.7040% (65%) 69.23 70.36 71.10

ResNet34 60% (80%) 71.68 72.56 72.65 73.2040% (65%) 69.87 71.44 71.33

Table 2: Test accuracy on ImageNet of subnetworks with different FLOP levels derived from dense
models with varying amounts of pre-training (i.e., training epochs listed in top row). We report the
FLOP/parameter ratio after pruning with respect to the FLOPS/parameters of the dense model.

momentum and a cosine learning rate decay schedule starting at 0.1. We use a batch size of 128
and weight decay of 5 · 10−4.7 The dense model is independently pruned every 20K iterations, and
subnetworks are fine-tuned for 2500 iterations with an intial learning rate of 0.01 prior to being
evaluated. We adopt ε = 0.02 and ε = 0.05 for MobileNet-V2 and ResNet34, respecitvely, yielding
subnetworks with a 40% decrease in FLOPS and 20% decrease in model parameters in comparison
to the dense model.8

The results of these experiments are presented in Table 1. The amount of training required to discover
a high-performing subnetwork consistently increases with the size of the dataset. For example, with
MobileNetV2, a winning ticket is discovered on the 10K and 30K sub-datasets in only 40K iterations,
while for the 50K sub-dataset a winning ticket is not discovered until 60K iterations of pre-training
have been completed. Furthermore, we observe that subnetwork performance often surpasses the
performance of the fully-trained dense network without completing the full pre-training procedure.

ImageNet. We perform experiments on the ILSVRC2012, 1000-class dataset (Deng et al., 2009) to
determine how pre-training requirements change for subnetworks pruned to different FLOP levels.9
We adopt the same experimental and hyperparameter settings as (Ye et al., 2020). Models are pre-
trained for 150 epochs using SGD with momentum and cosine learning rate decay with an initial
value of 0.1. We use a batch size of 128 and weight decay of 5 · 10−4. The dense network is
independently pruned every 50 epochs, and the subnetwork is fine-tuned for 80 epochs using a cosine
learning rates schedule with an initial value of 0.01 before being evaluated. We first prune models
with ε = 0.02 and ε = 0.05 for MobileNetV2 and ResNet34, respectively, yielding subnetworks
with a 40% reduction in FLOPS and 20% reduction in parameters in comparison to the dense model.
Pruning is also performed with a larger ε value (i.e., ε = 0.05 and ε = 0.08 for MobileNetV2 and
ResNet34, respectively) to yield subnetworks with a 60% reduction in FLOPS and 35% reduction in
model parameters in comparison to the dense model.

7Our pre-training settings are adopted from a popular repository for the CIFAR10 dataset (Liu, 2017).
8These settings are derived using a grid search over values of ε and the learning rate with performance

measured over a hold-out validation set; see Appendix C.2.
9We do not experiment with different sub-dataset sizes on ImageNet due to limited computational resources.
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The results of these experiments are reported in Table 2. Although the dense network is pre-trained
for 150 epochs, subnetwork test accuracy reaches a plateau after only 100 epochs of pre-training in
all cases. Furthermore, subnetworks with only 50 epochs of pre-training still perform well in many
cases. For example, the 60% FLOPS ResNet34 subnetwork with 50 epochs of pre-training achieves a
testing accuracy within 1% of the pruned model derived from the fully pre-trained network. Thus,
high-performing subnetworks can often be discovered with minimal pre-training even on large-scale
datasets like ImageNet.

Discussion. These experiments demonstrate that the number of dense network pre-training iterations
needed to reach a plateau in subnetwork performance i) consistently increases with the size of the
dataset and ii) is consistent across different architectures given the same dataset. Discovering a
high-performing subnetwork on the ImageNet dataset takes roughly 500K pre-training iterations
(i.e., 100 epochs). In comparison, discovering a subnetwork that performs well on the MNIST and
CIFAR10 datasets takes roughly 8K and 60K iterations, respectively. Thus, the amount of required
pre-training iterations increases based on the size of dataset even across significantly different scales
and domains. Such an observation indicates that dependence of pre-training requirements on dataset
size may be an underlying property of discovering high-performing subnetworks no matter the
experimental setting.

According to Theorem 2, the size of the dense network will not impact the number of pre-training
iterations required for a subnetwork to perform well. This is observed to be true within our ex-
periments; e.g., MobileNet and ResNet34 reach plateaus in subnetwork performance at similar
points in pre-training for CIFAR10 and ImageNet in Tables 1 and 2. However, the actual loss of
the subnetwork, characterized by Lemma 1, has a dependence on several constants that may impact
subnetwork performance despite having no aymptotic impact on Theorem 2. For example, a wider
network could increase the width of the polytope DMN

or initial loss `(u1), leading to a looser upper
bound on subnetwork loss. As a result, different sizes of dense networks, despite both reaching a
plateau in subnetwork performance at the same point during pre-training, may yield subnetworks
with different performance levels.

Interestingly, we observe that dense network size does impact subnetwork performance. In Figure
2, subnetwork performance varies based on dense network width, and subnetworks derived from
narrower dense networks seem to achieve better performance. Similarly, in Tables 1 and 2, subnet-
works derived from MobileNetV2 tend to achieve higher relative performance with respect to the
dense model. Thus, subnetworks derived from smaller dense networks seem to achieve better relative
performance in comparison to those derived from larger dense networks, suggesting that pruning
via greedy forward selection may demonstrate different qualities in comparison to more traditional
approaches (e.g., iterative magnitude-based pruning (Liu et al., 2018)). Despite this observation,
however, the amount of pre-training epochs required for the emergence of the best-performing
subnetwork is still consistent across architectures and dependent on dataset size.

7 CONCLUSION

In this work, we theoretically analyze the impact of dense network pre-training on the performance
of a pruned subnetwork. By expressing pruned network loss with respect to the number of SGD
iterations performed on its associated dense network, we discover a threshold in the number of
pre-training iterations beyond which a pruned subnetwork achieves good training loss. Furthermore,
we show that this threshold is logarithmically dependent upon the size of the dataset, which offers
intuition into the early-bird ticket phenomenon and the difficulty of replicating pruning experiments
at scale. We empirically verify our theoretical findings over several datasets (i.e., MNIST, CIFAR10,
and ImageNet) with numerous network architectures (i.e., two-layer networks, MobileNetV2, and
ResNet34), showing that the amount of pre-training required to discover a winning ticket is con-
sistently dependent on the size of the underlying dataset. Several open problems remain, such as
extending our analysis beyond two-layer networks, deriving generalization bounds for subnetworks
pruned with greedy forward selection, or even using our theoretical results to discover new heuristic
methods for identifying early-bird tickets in practice.
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8 REPRODUCIBILITY STATEMENT

Theoretical Results. The full proofs, including all relevant assumptions, for all of our Theorems in
Section 4 are provided within Appendix A. Further, supplementary theoretical results that we refer to
in the main text (but do not explicitly include as a main Theorem or Lemma) have full proofs within
Appendix A. We utilize some Theorems from (Oymak & Soltanolkotabi, 2019) within our analysis.
We fully restate these relevant Theorems within Appendix A, along with all needed assumptions, to
ensure that our proofs are understandable and reproducible.

Empirical Results. All code used within our experiments is provided within the supplementary mate-
rial. Further, an algorithmic descsription of our exact pruning algorithm (for both two-layer networks
and CNNs) is provided in Appendix C for those wishing to implement the pruning themselves. To
avoid the possibility of hyperparameter tuning inhibiting reproducibility, we explain our experimental
setup in detail within Section 6. All hyperparameter choices not explained within Section 6 are
deferred to Appendix C, where we provide further details about all of the included experiments.
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A PROOFS

A.1 CONVERGENCE ANALYSIS

Prior to presenting the proofs of the main theoretical results, we introduce several relevant technical
lemmas.
Lemma 2. Consider uk,uk−1 ∈MN , representing adjacent iterates of equation 8-equation 10 at
step k. Additionally, consider an arbitrary update q ∈ Vert(MN ), such that zk = zk−1 + q and
uk = 1

kzk. Then, we can derive the following expression for the difference between adjacent iterates
of equations 8 through 10:

uk − uk−1 =
1

k
(q− uk−1)

Lemma 3. Because the objective `(·), defined over the spaceMN , is both quadratic and convex,
the following expressions hold for any s ∈MN :

`(s) ≥ `(uk−1) + 〈∇`(uk−1), s− uk−1〉
`(s) ≤ `(uk−1) + 〈∇`(uk−1), s− uk−1〉+ ‖s− uk−1‖22

Observation 1. From Lemma 3, we can derive the following inequality.

LN ≥ L?N = min
s∈MN

`(s)

≥ min
s∈MN

{`(uk−1) + 〈∇`(uk−1), s− uk−1〉}

= `(uk−1) + 〈∇`(uk−1), sk − uk−1〉 .

Lemma 4. Assume there exists a sequence of values {zk}k≥0 such that z0 = 0 and

|zk+1|2 ≤ |zk|2 − 2β|zk|+ C, ∀k ≥ 0

where C and β are positive constants. Then, it must be the case that |zk| ≤ max
(√

C, C2 ,
C
2β

)
for

k > 0.

Proof. We use an inductive argument to prove the above claim. For the base case of z0 = 0, the
claim is trivially true because |z0| = 0 ≤ max

(√
C, C2 ,

C
2β

)
. For the inductive case, we define

f(x) = x2 − 2βx+ C. It should be noted that f(·) is a 1-dimensional convex function. Therefore,
given some closed interval [a, b] within the domain of f , the maximum value of f over this interval
must be achieved on one of the end points. This fact simplifies to the following expression, where a
and b are two values within the domain of f such that a ≤ b.

max
x∈[a,b]

f(x) = max{f(a), f(b)}

From here, we begin the inductive step, for which we consider two cases.

Case 1: Assume that |zk| ≤ C
2β . Then, the following expression for |zk+1| can be derived.

|zk+1|2 ≤ f(|zk|) ≤ max
z

{
f(z) : z ∈

[
0, C2β

]}
= max

{
f(0), f

(
C
2β

)}
= max

{
C,

C2

4β2

}
≤
[
max

(√
C,

C

2
,
C

2β

)]2

Case 2: Assume that |zk| ≥ C
2β . Then, the following expression can be derived.

|zk+1|2 ≤ |zk|2 − 2β|zk|+ C
i)

≤ |zk|2 ≤
[
max

(√
C,

C

2
,
C

2β

)]2
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where i) holds because 2β|zk| ≥ C. In both cases, it is shown that |zk+1| ≤ max
(√

C, C2 ,
2
2β

)
.

Therefore, the lemma is shown to be true by induction.

Observation 2. We commonly refer to the value of LN , representing the quadratic loss of the
two-layer network over the full dataset. The value of LN can be expressed as follows.

LN = `

 1

N

∑
v∈Vert(MN )

v

 =
1

2m
‖f(X,Θ)−Y‖22

The expression above is derived by simply applying the definitions associated with `(·) that are
provided in Section 2.

A.1.1 PROOF OF LEMMA 1

We now present the proof of Lemma 1.

Proof. We define L?N = min
s∈MN

`(s). Additionally, we define sk as follows.

sk = arg min
s∈MN

{〈∇`(uk−1), s− uk−1〉} = arg min
s∈Vert(MN )

{〈∇`(uk−1), s− uk−1〉} .

The second equality holds because a linear objective is being optimized on a convex polytopeMN .
Thus, the solution to this optimization is known to be achieved on some vertex v ∈ Vert(MN ).
Recall, as stated in Section 2, that DMN

denotes the diameter of the marginal polytopeMN .

We assume the existence of some global two-layer neural network with N hidden neurons from
which the pruned network is derived. It should be noted that the N neurons of this global network
are used to define the vertices v ∈ Vert(MN ) as described in Section 2. As a result, the loss of
this global network, which we denote as LN , is the loss achieved by a uniform average over the N
vertices ofMN (i.e., see equation 1). In other words, the loss of the global network at the time of
pruning is given by the expression below; see Observation 2.

LN = `

 1

N

∑
v∈Vert(MN )

v


It is trivially known that LN ≥ L?N . Intuitively, the value of LN has an implicit dependence on the
amount of training underwent by the global network. However, we make no assumptions regarding
the global network’s training (i.e., LN can be arbitrarily large for the purposes of this analysis). Using
Observation 1, as well as Lemmas 2 and 3, we derive the following expression for the loss of iterates
obtained with equation 10.

`(uk)
i)
= min

q∈Vert(MN )
`

(
1

k
(zk−1 + q)

)
ii)

≤ `

(
1

k
(zk−1 + sk)

)
iii)

≤ `(uk−1) +

〈
∇`(uk−1),

1

k
(zk−1 + sk)− uk−1

〉
+

∥∥∥∥1

k
(zk−1 + sk)− uk−1

∥∥∥∥2
2

iv)
= `(uk−1) +

〈
∇`(uk−1),

1

k
(sk − uk−1)

〉
+

∥∥∥∥1

k
(sk − uk−1)

∥∥∥∥2
2

v)

≤ `(uk−1) +

〈
∇`(uk−1),

1

k
(sk − uk−1)

〉
+

1

k2
· D2
MN

= `(uk−1) +
1

k
〈∇`(uk−1), sk − uk−1〉+

1

k2
· D2
MN

vi)

≤
(

1− 1

k

)
`(uk−1) +

1

k
· L?N +

1

k2
· D2
MN

vii)

≤
(

1− 1

k

)
`(uk−1) +

1

k
· LN +

1

k2
· D2
MN
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where i) is due to equations 8 through 10, ii) is because sk ∈ Vert(MN ), iii) is from Lemma 3,
iv) is from Lemma 2 since it holds 1

kzk−1 − uk−1 = − 1
kuk−1 ⇒ uk−1 = 1

k−1zk−1, v) is from the
definition of DMN

, and vi− vii) are due to Observation 1. This expression can then be rearranged
to yield the following recursive expression:

`(uk) ≤
(

1− 1

k

)
`(uk−1) +

1

k
· LN +

1

k2
· D2
MN
⇒

`(uk)− LN −
1

k
· D2
MN
≤
(

1− 1

k

)
·
(
`(uk−1)− LN −

1

k
· D2
MN

)

By unrolling the recursion in this expression over k iterations, we get the following:

`(uk)− LN −
1

k
· D2
MN
≤

k∏
i=2

(
1− 1

i

)
·
(
`(u1)− LN −

1

2
· D2
MN

)
⇒

`(uk)− LN −
1

k
· D2
MN
≤ 1

k
·
(
`(u1)− LN −

1

2
· D2
MN

)

By rearranging terms, we arrive at the following expression

`(uk) ≤ 1

k
·
(
`(u1)− LN +

1

2
· D2
MN

)
+ LN ≤ O

(
1

k

)
+ LN (13)

From here, we expand this expression as follows, yielding the final expression from Lemma 1.

`(uk) ≤ 1

k

(
`(u1)− LN +

1

2
D2
MN

)
+ LN

=
1

k

(
`(u1) +

1

2
D2
MN

)
+
k − 1

k
LN

=
1

k
`(u1) +

1

2k
D2
MN

+
k − 1

k
LN

A.1.2 PROOF OF A FASTER RATE

Similar to Ye et al. (2020), we can obtain a faster O( 1
k2 ) rate under assumption 1 and the assumption

that B(y, γ) ∈MN .

Lemma 5. Assume that Assumption 1 holds and B(y, γ) ∈ MN . Then, the following bound is
achieved for two-layer neural networks of width N after k iterations of greedy forward selection:

`(uk) = O
(

1

k2 min(1, γ)

)
, where γ is a positive constant.

Proof. We define wk = k(y − uk). Also recall that `(z) = 1
2‖z − y‖22. Furthermore, we define

sk+1 as follows.
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sk+1 = arg min
s∈MN

∇`(uk)>(s− uk)

= arg min
s∈MN

〈∇`(uk), s− uk〉

i)
= arg min

s∈MN

〈uk − y, s− uk〉

= arg min
s∈MN

〈−wk, s− uk〉

= arg min
s∈MN

〈wk,uk − s〉

= arg min
s∈MN

{〈wk,uk〉+ 〈wk,−s〉}

= arg min
s∈MN

〈wk,−s〉

= arg min
s∈MN

〈wk,y − s〉

where i) follows from equation 5. Notice that sk minimizes a linear objective (i.e., the dot product
with wk) over the domain of the marginal polytopeMN . As a result, the optimum is achieved on
a vertex of the marginal polytope, implying that sk ∈ Vert(MN ) for all k > 0. We assume that
B(y, γ) ∈ MN . Under this assumption, it is known that s? = y + γ wk

‖wk‖2 ∈ MN , which allows
the following to be derived.

〈wk,y − sk+1〉 = min
s∈MN

〈wk,y − s〉

≤ 〈wk,y − s?〉
= −γ‖wk‖2 (14)

From equation 10, the following expressions for uk and qk can be derived.

uk =
1

k
· zk =

1

k
· [(k − 1)uk−1 + qk] (15)

qk = arg min
q∈Vert(MN )

`

(
1

k
[zk−1 + q]

)
= arg min

q∈Vert(MN )

∥∥∥∥1

k
[(k − 1)uk−1 + q]− y

∥∥∥∥2
2

(16)
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Combining all of this together, the following expression can be derived for ‖wk‖22, where DMN
is

the diameter ofMN :

‖wk‖22 = ‖k(y − uk)‖22 = ‖k(uk − y)‖22
i)
= min

q∈MN

‖k( 1
k [(k − 1)uk−1 + q]− y)‖22

= min
q∈MN

‖(k − 1)uk−1 + q− ky‖22
= min

q∈MN

‖ − (k − 1)y + (k − 1)uk−1 + q− y‖22
= min

q∈MN

‖ −wk−1 − y + q‖22
= min

q∈MN

‖wk−1 + y − q‖22
ii)

≤ ‖wk−1 + y − sk‖22
= ‖wk−1‖22 + 2〈wk−1,y − sk〉+ ‖y − sk‖22
≤ ‖wk−1‖22 + 2〈wk−1,y − sk〉+D2

MN

iii)

≤ ‖wk−1‖22 − 2γ‖wk−1‖2 +D2
MN

where i) follows from equation 15 and equation 16, ii) follows from the fact that sk ∈MN , and iii)
follows from equation 14. Therefore, from this analysis, the following recursive expression for the
value of ‖wk‖2 is derived:

‖wk‖22 ≤ ‖wk−1‖22 − 2γ‖wk−1‖2 +D2
MN

(17)

Then, by invoking Lemma 4, we derive the following inequality.

‖wk‖22 ≤ max

{
DMn ,

D2
MN

2
,
D2
MN

2γ

}
= O

(
1

min(1, γ)

)
With this in mind, the following expression can then be derived for the loss `(uk) achieved by
equations 8 through 10 after k iterations.

`(uk) =
1

2
‖uk − y‖22 =

‖wk‖22
2k2

= O
(

1

k2 min(1, γ)2

)
This yields the desired expression, thus completing the proof.

A.2 TRAINING ANALYSIS

Prior to analyzing the amount of training needed for a good pruning loss, several supplemental
theorems and lemmas exist that must be introduced. From (Oymak & Soltanolkotabi, 2019), we
utilize theorems regarding the convergence rates of two-layer neural networks trained with GD
and SGD. We begin with the theorem for the convergence of GD in Theorem 3, then provide the
associated convergence rate for SGD within Theorem 4. Both Theorems 3 and 4 are simply restated
from (Oymak & Soltanolkotabi, 2019) for convenience purposes.

Theorem 3. (Oymak & Soltanolkotabi, 2019). Assume there exists a two-layer neural network
and associated dataset as described in Section 2. Denote N as the number of hidden neurons
in the two-layer neural network, m as the number of unique examples in the dataset, and d as
the input dimension of examples in the dataset. Assume without loss of generality that the input
data within the dataset is normalized so that ‖x(i)‖2 = 1 for all i ∈ [m]. A moderate amount of
overparameterization within the two-layer network is assumed, given by Nd > m2. Furthermore, it
is assumed that m > d and that the first and second derivatives of the network’s activation function
are bounded (i.e., |σ′+(·)| ≤ δ and |σ′′+(·)| ≤ δ for some δ ∈ R). Given these assumptions, the
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following bound is achieved with a high probability by training the neural network with gradient
descent.

‖f(X,Θt)−Y‖2 ≤
(

1− c d
m

)t
· ‖f(X,Θ0)−Y‖2 (18)

In equation 18, c ∈ R, Θt = {θ1,t, . . . ,θN,t} represents the network weights at iteration t of
gradient descent, f(·, ·) ∈ Rm represents the network output over the full dataset X ∈ Rm×d, and
Y = [y(1), . . . , y(m)]T represents a vector of all dataset labels. Θ0 is assumed to be randomly
sampled from a normal distribution (i.e., Θ0 ∼ N (0, 1)).
Theorem 4. (Oymak & Soltanolkotabi, 2019). Here, all assumptions of Theorem 3 are adopted, but
we assume the two-layer neural network is trained with SGD instead of GD. For SGD, parameter
updates are performed over a sequence of randomly-sampled examples within the training dataset
(i.e., the true gradient is not computed for each update). Given the assumptions, there exists some

event E with probability P [E] ≥ max
(
κ, 1− c1

(
c2
√

m
d

) 1
Nd

)
, where c1, c2, κ ∈ R, 0 ≤ c1 ≤ 4

3 ,
and 0 < κ ≤ 1. Given the event E, with high probability the following bound is achieved for training
a two-layer neural network with SGD.

E
[
‖f(X,Θt)−Y‖221E

]
≤
(

1− c d
m2

)t
· ‖f(X,Θ0)−Y‖22 (19)

In equation 19, c ∈ R, Θt represent the network weights at iteration t of SGD, 1E is the indicator
function for event E, f(·, ·) represents the output of the two layer neural network over the entire
dataset X ∈ Rm×d, and Y ∈ Rm represents a vector of all labels in the dataset.

It should be noted that the overparameterization assumptions within Theorems 3 and 4 are very mild,
which leads us to adopt this analysis within our work. Namely, we only require that the number of
examples in the dataset exceeds the input dimension and the number of parameters within the first
neural network layer exceeds the squared size of the dataset. In comparison, previous work lower
bounds the number of hidden neurons in the two-layer neural network (i.e., more restrictive than
the number of parameters in the first layer) with higher-order polynomials of m to achieve similar
convergence guarantees (Allen-Zhu et al., 2018; Du et al., 2019; Li & Liang, 2018).

In comparing the convergence rates of Theorems 3 and 4, one can notice that these linear convergence
rates are very similar. The extra factor of m within the denominator of Theorem 4 is intuitively due
to the fact that m updates are performed in a single pass through the dataset for SGD, while GD uses
the full dataset at every parameter update. Such alignment between the convergence guarantees for
GD and SGD allows our analysis to be similar for both algorithms.

We now state a relevant technical lemma based on Lemma 1. Beginning from equation 13, the
following can be shown.

A.2.1 PROOF OF THEOREM 1

We now provide the proof for Theorem 1.

Proof. From Theorem 4, we have a bound for E
[
‖f(X,Θt)−Y‖221E

]
, where ‖f(X,Θt)−Y‖22

represents the loss over the entire dataset after t iterations of SGD (i.e., without the factor of 1
2 ).

Two sources of stochasticity exist within the expectation expression E
[
‖f(X,Θt)−Y‖221E

]
: i)

randomness over the event E and ii) randomness over the t-th iteration of SGD given the first t− 1
iterations. The probability of event E is independent of the randomness over SGD iterations, which
allows the following expression to be derived.

E
[
‖f(X,Θt)−Y‖221E

] i)
= E

[
‖f(X,Θt)−Y‖22

]
· E [1E ]

ii)

≥ max

(
κ, 1− c1

(
c2

√
m

d

) 1
Nd

)
E
[
‖f(X,Θt)−Y‖22

]
where i) holds from the independence of expectations and ii) is derived from the probability expres-
sion for event E in Theorem 4. Notably, the expectation within the above expression now has only a
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single source of stochasticity—the randomness over SGD iterations. Combining the above expression
with equation 19 from Theorem 4 yields the following, where two possible cases exist.

Case 1: max
(
κ, 1− c1(c2

√
m
d )
)

= 1− c1(c2
√

m
d )(

1− c1
(
c2

√
m

d

) 1
Nd

)
E
[
‖f(X,Θt)−Y‖22

]
≤
(

1− c d
m2

)t
‖f(X,Θ0)−Y‖22 ⇒

E
[
‖f(X,Θt)−Y‖22

]
≤
(

1− c1
(
c2

√
m

d

) 1
Nd

)−1(
1− c d

m2

)t
‖f(X,Θ0)−Y‖22 (20)

Case 2: max
(
κ, 1− c1(c2

√
m
d )
)

= κ

κ · E
[
‖f(X,Θt)−Y‖22

]
≤
(

1− c d
m2

)t
‖f(X,Θ0)−Y‖22 ⇒

E
[
‖f(X,Θt)−Y‖22

]
≤ κ−1

(
1− c d

m2

)t
‖f(X,Θ0)−Y‖22 (21)

From here, we use Observation 2 to derive the following, where the expectation is with respect to
randomness over SGD iterations (i.e., we assume the global two-layer network of width N is trained
with SGD).

E[LN ] = E
[

1

2m
‖f(X,Θt)−Y‖22

]
i)
=

1

2m
E
[
‖f(X,Θt)−Y‖22

]
Here, the equality in i) holds true because 1

2m is a constant value given a fixed dataset. Now, notice
that this expectation expression E

[
‖f(X,Θt)−Y‖22

]
is identical to the expectation within equations

20 and 21 (i.e., both expectations are with respect to randomness over SGD iterations). Thus, the
above expression can be combined with equation 20 and equation 21 to yield the following.

E[LN ] ≤ 1

2m

[
max

(
κ,

(
1− c1

(
c2

√
m

d

) 1
Nd

))]−1(
1− c d

m2

)t
‖f(X,Θ0)−Y‖22 (22)

Then, we can substitute equation 22 into Lemma 1 to derive the final result, where expectations
are with respect to randomness over SGD iterations. We also define L0 = ‖f(X,Θ0) −Y‖22 and

ζ =
[
max

(
κ,
(

1− c1
(
c2
√

m
d

) 1
Nd

))]−1
> 0.

E[`(uk)] ≤ 1

k
E[`(u1)] +

1

2k
E[D2

MN
] +

k − 1

k
E[LN ]

≤ 1

k
E[`(u1)] +

1

2k
E[D2

MN
] +

(k − 1)ζ

2mk

(
1− c d

m2

)t
‖f(X,Θ0)−Y‖22

=
1

k
E[`(u1)] +

1

2k
E[D2

MN
] +

(k − 1)ζ

2mk

(
1− c d

m2

)t
L0 (23)

A.2.2 PROOF OF THEOREM 2

We now provide the proof for Theorem 2.

Proof. We begin with equation 23 from the proof of Theorem 1.

E[`(uk)] ≤ 1

k
E[`(u1)] +

1

2k
E[D2

MN
] +

(k − 1)ζ

2mk

(
1− c d

m2

)t
L0
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It can be seen that all terms on the right-hand-side of the equation above will decay to zero as k
increases aside from the rightmost term. The rightmost term of equation 23 will remain fixed as k
increases due to its factor of k − 1 in the numerator.

Within equation 23, there are two parameters that can be modified by the practitioner: N (i.e., ζ
depends on N ) and t. All other factors within the expressions are constants based on the dataset that

cannot be modified. N only appears in the 1 − c1
(
c2
√

m
d

) 1
Nd factor of ζ, thus revealing that the

value of N cannot be naively increased within equation 23 to remove the factor of k − 1.

To determine how t can be modified to achieve a better pruning rate, we notice that a setting of(
1− c d

m2

)t
= O

(
1
k

)
would cancel the factor of k− 1 in equation 23. With this in mind, we observe

the following.

(
1− c d

m2

)t
= O

(
1

k

)
⇒

t · log

(
1− c d

m2

)
= O(− log(k))⇒

t =
O(− log(k))

log(1− c d
m2 )

⇒

t ≈ O
(
− log(k)

log(1− c d
m2 )

)
(24)

If the amount of training in equation 24 is satisfied, the factor of k − 1 in the rightmost term in Eq.
equation 23 will be canceled, causing the expected pruning loss to decay to zero as k increases. Based
on Theorem 4, it must be the case that (1− c d

m2 ) ∈ [0, 1] in order for SGD to converge. As a result,
lim
t→∞

(1− c d
m2 )t = 0, causing the rightmost term in equation 23 to approach zero as t→∞. In other

words, the value of t can increase beyond the bound in equation 24 without damaging the loss of the
pruned network, as the rightmost term in equation 23 will simply become zero. This observation that
t can increase beyond the value in equation 24 yields the final expression for the number of SGD
iterations required to achieve the desired O( 1

k ) pruning rate.

t ' O

(
− log(k)

log(1− c d
m2 )

)

A.2.3 SUPPLEMENTAL RESULT AND PROOF WITH GD

In addition to the proof of Theorem 2, we provide a similar result for neural networks trained with GD
to further support our analysis of the amount of training required to achieve good loss via pruning.

Theorem 5. Assume a two-layer neural network of widthN was trained for t iterations with gradient
descent over a dataset of sizem. Furthermore, assume thatNd > m2 andm > d, where d represents
the input dimension of data in D. When the network is pruned via equation 8-equation 10, it will
achieve a loss L′ ∝ O( 1

k ) if the number of gradient descent iterations t satisfies the following
condition.

t ' O

(
− log(k)

log
(
1− c dm

)) (25)

Otherwise, the loss of the pruned network will not improve during successive iterations of equations
8 through 10.
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m MNIST CIFAR10

1000 1 4
2000 1 7
3000 1 6
4000 2 9
5000 2 10

Table 3: Results of empirically analyzing whether y ∈MN . For each of the possible datasets and
sizes, we report the number of training epochs required before the assumption was satisfied for the
best possible learning rate setting.

Proof. Beginning with Lemma 1, we can use Theorem 3 to arrive at the following expression. Here,
we define L0 = ‖f(X,Θ0)−Y‖22 and define LN as described in Observation 2.

l(uk) ≤ 1

k
`(u1) +

1

2k
D2
MN

+
k − 1

k
LN

i)
=

1

k
`(u1) +

1

2k
D2
MN

+
k − 1

2mk
‖f(X,Θt)−Y‖22

ii)

≤ 1

k
`(u1) +

1

2k
D2
MN

+
k − 1

2k
(1− c d

m
)2t · L0 (26)

where i) is due to Observation 2 and ii) is from Theorem 3. From this expression, one can realize
that an O( 1

k ) rate is only achieved if the factor of k − 1 within the rightmost term of equation 26 is
removed. This factor, if not counteracted, will cause the upper bound for `(uk) to remain constant, as
the right hand expression of equation 26 would be dominated by the value of L0. However, this poor
upper bound can be avoided by manipulating the (1− c dm )2t term to eliminate the factor of k − 1.
For this to happen, it must be true that (1− c dm )2t ≈ O( 1

k ), which allows the following asymptotic
expression for t to be derived. (

1− c d
m

)2t

= O(
1

k
)⇒

2t · log

(
1− c d

m

)
= O(− log(k))⇒

t =
O(− log(k))

2 · log
(
1− c dm

) ⇒
t ≈ O

(
− log k

log
(
1− c dm

)) (27)

If the amount of training in equation 27 is satisfied, it allows the factor of k − 1 in the rightmost
term of 26 to be canceled. It is trivially true that lim

t→∞
(1 − c dm )2t = 0 because (1 − c dm ) ∈ [0, 1]

if gradient descent converges; see Theorem 3. As a result, the rightmost term in equation 26 also
approaches zero as t increases, allowing the O( 1

k ) pruning rate to be achieved. This observation that
t can be increased beyond the value in equation 27 without issues leads to the final expression from
Theorem 5.

t ' O

(
− log(k)

log
(
1− c dm

))

B EMPIRICAL ANALYSIS OF y ∈MN

To achieve the faster rate provided in Lemma 5, we make the assumption that B(y, γ) ∈MN . If it is
assumed that γ > 0, this assumption is slightly stronger than y ∈MN , as it implies y cannot lie on
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m N
1000 1300
2000 6000
3000 12000
4000 21000
5000 32000

Table 4: Displays the hidden dimension of the two-layer neural network used to test the y ∈ MN

assumption for different dataset sizes. Hidden dimensions are the same between tests with MNIST
and CIFAR10.

the perimeter ofMN . However, this assumption roughly requires that y ∈MN . Although previous
work has attempted to analyze this assumption theoretically (Ye et al., 2020), it is not immediately
clear whether this assumption is reasonable in practice.

We perform experiments using two-layer neural networks trained on different image classification
datasets to determine if this assumption is satisfied in practice. Namely, we train a two-layer neural
network on uniformly downsampled (i.e., equal number of examples taken from each class) versions
of the MNIST and CIFAR10 datasets and test the y ∈MN condition following every epoch (i.e., see
Section B.2 for details). We record the first epoch of training after which y ∈MN is true and report
the results in Table 3. As can be seen, the assumption is never satisfied at initialization and tends to
require more training for larger datasets.

B.1 MODELS AND DATASETS

All tests were performed with a two-layer neural network as defined in Section 2. This model contains
a single output neuron, N hidden neurons, and uses a smooth activation function (i.e., we use the
sigmoid activation). For each test, we ensure the overparameterization requirements presented in
Theorem 2 (i.e., Nd > m2 and m > d, where N is the number of hidden neurons, d is the input
dimension, andm is the size of the dataset) are satisfied. For simplicity, the network is trained without
any data augmentation, batch normalization, or dropout.

Experiments are performed using the MNIST and CIFAR10 datasets. These datasets are reduced in
size in order to make overparameterization assumptions within the two-layer neural network easier to
satisfy. In particular, we perform tests with 1000, 2000, 3000, 4000, and 5000 dataset examples for
each of the separate datasets, where each dataset size is constructed by randomly sampling an equal
number of data examples form each of the ten possible classes. Additionally, CIFAR10 images are
downsampled from a spatial resolution of 32× 32 to a spatial resolution of 18× 18 using bilinear
interpolation to further ease overparameterization requirements. Dataset examples were flattened to
produce a single input vector for each image, which can be passed as input to the two-layer neural
network.

The number of hidden neurons utilized for tests with different dataset sizes m are shown in Table 4,
where the selected value of N is (roughly) the smallest round value to satisfy overparameterization
assumptions. The hidden dimension of the two-layer network was kept constant between datasets
because the CIFAR10 images were downsampled such that the input dimension is relatively similar
to MNIST. To improve training stability, we add a sigmoid activation function to the output neuron
of the two-layer network and train the network with binary cross entropy loss. The addition of this
output activation function slightly complicates the empirical determination of whether y ∈ MN ,
which is further described in Section B.2. Despite slightly deviating from the setup in Section 2, this
modification greatly improves training stability and is more realistic (i.e., classification datasets are
not regularly trained with `2 regression loss as described in Section 2). The network is trained using
stochastic gradient descent.10 We adopt a batch size of one to match the stochastic gradient descent
setting exactly and do not use any weight decay.

10Experiments are repeated with multiple learning rates and the best results are reported.
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B.2 DETERMINING CONVEX HULL MEMBERSHIP

As mentioned in Section 2, we define y =
[
y(1), y(2), . . . , y(m)

]
/
√
m as a vector containing

all labels in our dataset (i.e., in this case, a vector of binary labels). Furthermore, we define
φi,j = σ(x(j),θi) as the output of neuron i for example j in the dataset. These values can be
concatenated as Φi = [φi,1, φi,2, . . . , φi,m] /

√
m, forming a vector of output activations for each

neuron over the entire dataset. Then, we defineMN = Conv {Φi : i ∈ [N ]}. It should be noted that
the activation vectors Φi are obtained from the N neurons of a two-layer neural network that has
been trained for any number of iterations T . For the experiments in this section, the vectors Φi are
computed after each epoch of training to determine whether y ∈MN , and we report the number for
the first epoch in which this membership is satisfied.

The convex hull membership problem can be formulated as a linear program, and we utilize this
formulation to empirically determine when y ∈MN . In particular, we consider the following linear
program.

min c>α (28)
s.t. Aα = y

Zα = 1

α ≥ 0

where c ∈ RN is an arbitrary cost vector, A = (Φ1 . . .ΦN ) ∈ Rm×N , and Z = (1 . . . 1) ∈ R1×N ,
and α is the simplex being optimized within the linear program. If a viable solution to the linear
program in equation 28 can be found, then it is known that y ∈ MN . Therefore, we empirically
solve for the vectors y and (Φi)

N
i=1 using the two-layer neural network after each epoch and use

the linprog package in SciPy to determine whether equation 28 is solvable, thus allowing us to
determine when y ∈MN

In our actual implementation, we slightly modify the linear program in equation 28 to account for
the fact that our two-layer neural network is trained with a sigmoid activation on the output neuron.
Namely, one can observe that for targets of one, the neural network output can be considered correct
if the output value is greater than zero and vice versa. We formulate the following linear program to
better reflect this correct classification behavior:

min c>α (29)
s.t. Aα < 0

Bα > 0

Zα = 1

α ≥ 0

whereA ∈ Rm
2 ×N is a matrix of feature column vectors corresponding to a label of zero,B ∈ Rm

2 ×N

is a matrix of feature column vectors corresponding to a label of one, and other variables are defined
as in equation 28. In words, equation 29 is solvable whenever a simplex can be found to re-weight
neuron outputs such that the correct classification is produced for all examples in the dataset. The
formulation in equation 29 better determines whether y ∈ MN given the modification of our
two-layer neural network to solve a binary classification problem.

C EXPERIMENTAL DETAILS

C.1 TWO-LAYER NETWORK EXPERIMENTS

We first provide a clear algorithmic description of the pruning algorithm used within all two-layer
network experiments. This algorithm closely reflects the update rule provided in equation 7. However,
instead of measuring loss over the full dataset to perform greedy forward selection, we perform
selection with respect to the loss over a single mini-batch to improve the efficiency of the pruning
algorithm. We use f(Θ,X ′) to denote the output of a two-layer network network with parameters
Θ over the mini-batch X ′ and fS(Θ,X ′) to denote the same output only considering the neuron
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indices included within the set S . Notice that a single neuron can be selected more than once during
pruning.

Algorithm 1: Greedy Forward Selection for Two-Layer Network
N := hidden size; P := pruned size; D := training dataset
Θ := weights; Θ? = ∅
i = 0
while i < P do

j = 0
best_idx = −1
L? =∞
X ′,y′ ∼ D
while j < N do
Lj = 1

2

(
f(Θ?∪j)(X

′)− y′
)2

if Lj < L? then
L? = Lj
best_idx = j

end
j = j + 1

end
Θ? = Θ? ∪ best_idx
i = i+ 1

end
return Θ?

We now present in-depth details regarding the hyperparameters that were selected for the two-layer
network experiments in the main text. To tune hyperparameters, we perform a random 80-20 split to
generate a validation set. Experiments are repeated three times for each hyperparameter setting, and
hyperparameters that yield the best average validation performance are selected.

Models are trained using SGD with momentum of 0.9 and no weight decay. Perturbing weight decay
and momentum hyperparameters does not meaningfully impact performance, leading us to maintain
this setting in all experiments with two-layer networks. We also use a batch size of 128, which was
the largest size that could fit in the memory of our GPU. To determine the optimal learning rate and
number of pre-training iterations, we adopt the same setup as described in the Two-layer Network
Experiments section in the main text and train two-layer networks of various sizes with numerous
different learning rates. These experiments are then replicated across several different sub-dataset
sizes. The results of these experiments are shown in Fig. 3. From these results, it can be seen that the
optimal learning rate does not change with the size of the dataset, but it does depend on the size of the
network. Namely, for two-layer networks with 5K or 10K hidden neurons the optimal learning rate is
1e-5, while for two-layer networks with 20K hidden neurons the optimal learning rate is 1e-6. It can
also be seen in Fig. 3 that models converge in roughly 8000 training iterations for all experimental
settings, which leads us to adopt this amount of pre-training in the main experiments.

To determine the optimal pruned model size, we first fully pre-train two-layer networks of different
hidden sizes (i.e., N ∈ {5K, 10K, 20K}) over the full, binarized MNIST dataset. Then, these
models are pruned to different hidden neuron sizes between 1 and 500. At each possible hidden
dimension for the pruned model, we measure the performance of the pruned model over the entire
training dataset. The results of this experiment are depicted in Figure 4. As can be seen, the accuracy
of the pruned models plateaus at a hidden dimension of 200 (roughly). As a result, we adopt a size of
200 neurons as our pruned model size within all two-layer network experiments.

C.2 CNN EXPERIMENTS

We begin with an in-depth algorithmic description of the greedy forward selection algorithm that
was used for structured, channel-based pruning of multi-layer CNN architectures. This algorithm
is identical to the greedy forward selection algorithm adopted in Ye et al. (2020). In this algorithm,
we denote the weights of the deep network as as Θ, and reference the weights within layer ` of the
network as Θ`. Similarly, we use Θ`: to denote the weights of all layers following layer ` and Θ:` to
denote the weights of all layers up to and including layer `. C denotes a list of hidden sizes within
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Figure 3: Validation accuracy of two-layer networks on binarized versions of MNIST as described in
the Two-layer Network Experiments Section in the main text. Different subplots display results for
several different learning rates for models trained with different settings of m and N (i.e., dataset
size and number of hidden neurons, respectively). Shaded regions represent standard deviations of
results, recorded across three separate trials.
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Figure 4: The performance of two-layer networks with different hidden dimensions over the entire,
binarized MNIST dataset that have been pruned to various different hidden dimensions.
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the network, where C` denotes the number of channels within layer ` of the CNN. Again, we use
f(Θ,X ′) to denote the output of a two-layer network with parameters Θ over the mini-batch X ′
and fS(Θ,X ′) to denote the same output only considering the channel indices included within the
set S.

Algorithm 2: Greedy Forward Selection for Deep CNN
C := hidden sizes; ε := stopping criterion; D := training dataset
Θ := weights; L := # Layers; Θ?

` = ∅ ∀` ∈ [L]
` = 0
while ` < L do

while convergence criterion is not met do
j = 0
best_idx = −1
L? =∞
X ′,y′ ∼ D
while j < C` do

Θ′ = Θ? ∪Θ`: ∪ (Θ?
` ∪ j)

L`,j = 1
2 (fΘ′(X′)− y′)

2

if L`,j < L? then
L? = L`,j
best_idx = j

end
j = j + 1

end
Θ?
` = Θ?

` ∪ best_idx
end
` = `+ 1

end
return Θ?

Now, we present more details regarding the hyperparameters that were utilized within large-scale
experiments. For ImageNet experiments, we adopt the settings of Ye et al. (2020).11 For CIFAR10,
however, we tune both the setting of ε and the initial learning rate for fine-tuning using a grid
search for both MobileNetV2 and ResNet34 architectures. This grid search is performed using a
validation set on CIFAR10, constructed using a random 80-20 split on the training dataset. Optimal
hyperparameters are selected based on their performance on the validation set. The results of this
grid search are shown in Figure 5. As can be seen, for MobileNetV2, the best results are achieved
using a setting of ε = 0.02, which results in a subnetwork with 60% of the FLOPS of the dense
model. Furthermore, an initial learning rate of 0.01 yields consistent subnetwork performance for
MobileNetV2. For ResNet34, a setting of ε = 0.05 yields the best results and yields a subnetwork
with 60% of the FLOPS of the dense model. Again, an initial learning rate of 0.01 for fine-tuning
yields the best results for ResNet34. For the rest of the hyperparameters used within CIFAR10
experiments (i.e., those used during pre-training), we adopt the settings of a widely-used, open-source
repository that achieves good performance on CIFAR10 Liu (2017).

11We adopt all of the same experimental settings, but decrease the number of fine-tuning epochs from 150 to
80 because we find that testing accuracy reaches a plateau well-before 150 epochs.
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Figure 5: Subnetwork validation accuracy on the CIFAR10 dataset for different settings of ε and
initial learning rate for fine-tuning. All models are pre-trained identically for 200 epochs. Fine-tuning
is performed for 80 epochs, and we report validation accuracy for each subnetwork at the end of
fine-tuning.
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