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Towards Stricter Black-box Integrity Verification of Deep Neural
Network Models

Anonymous Authors

ABSTRACT
Cloud-based machine learning services are attractive but expose
a cloud-deployed DNN model to the risk of tampering. Black-box
integrity veri�cation (BIV) enables the owner or end-users to as-
certain whether a cloud-deployed DNN model has been tampered
with via returned responses of only top-1 labels. Fingerprinting
generates �ngerprint samples to query the model to achieve BIV
of the model with no impact on the model’s accuracy. In this pa-
per, we introduce BIVBench, the �rst benchmark for BIV of DNN
models, encompassing 16 types of practical modi�cations covering
typical tampering scenarios. We reveal that existing �ngerprinting
methods, which focus on a limited range of tampering types, lack
sensitivity in detecting subtle, yet common and potentially severe,
tampering e�ectively. To �ll this gap, we propose MiSentry (Model
integrity Sentry), a novel �ngerprinting method that strategically
incorporates only a few crucial subtly tamperedmodels into amodel
zoo, leverages meta-learning, and maximizes the divergence of the
output predictions between the untampered targeted model and
those models in the model zoo to generate highly sensitive, gener-
alizable, and e�ective �ngerprint samples. Extensive evaluations
using BIVBench demonstrate that MiSentry substantially outper-
forms existing state-of-the-art �ngerprinting methods, particularly
in detecting subtle tampering.

KEYWORDS
integrity veri�cation, deep neural networks, meta-learning

1 INTRODUCTION
Deep neural networks (DNNs) have signi�cantly advanced the state
of the art for many computer vision tasks [18, 37, 47]. To facilitate
wide use of DNN models, major cloud operators provide machine-
learning platforms, such as Microsoft Azure ML [40], Google Au-
toML [15], and Amazon SageMaker [2], to allow customers to de-
ploy their DNN models in the cloud. However, deploying DNN
models in the cloud brings several risks. An adversary may tamper
with a deployed DNN model via Trojan [36] or backdoor [17] at-
tacks to insert harmful behavior. An unethical model provider might
sabotage a competitor’s model, such as through a bit-�ipping [61]
attack, to degrade its performance to gain a competitive advan-
tage. A dishonest cloud service provider may stealthily replace a
model with a simpler one, such as a compressed model, to reduce
operational costs.

To mitigate these threats, both �ngerprinting [22, 58] and water-
marking [64] are proposed for black-box integrity veri�cation (BIV)
of DNN classi�cation models. BIV aims to detect model tampering
with only black-box access to the deployed model, i.e., by querying
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a deployed model which returns only top-1 category labels as re-
sponses. The model is detected as being modi�ed if any response
to the querying samples disagrees with its ground truth, which is
the label returned by the target model (i.e., the unmodi�ed model
to protect).

Watermarking embedswatermark samples into themodel through
training or �ne-tuning before deployment. Thus it can potentially
reduce the model’s performance. Moreover, the �nite number of
pre-embedded watermark samples exposes its vulnerability to wa-
termarking removal where adversaries could remove watermarking
by exploiting leaked samples.

In contrast, �ngerprinting does not alter the model and enables
the unlimited generation of �ngerprint samples at any time, allow-
ing for its resilience to leakage. Therefore, �ngerprinting o�ers a
more robust and �exible solution for black-box tampering detection
of DNN models compared to watermarking, making it generally
the superior choice for ensuring the integrity of deployed models.

However, existing �ngerprinting methods are evaluated on lim-
ited types of model tampering, including model pruning, Trojan,
and backdoor attacks, which are all obvious malicious modi�ca-
tions. But model tampering could occur in countless ways, subtle
or obvious, benign or malicious. Subtle model modi�cations are
also common. For example, an adversary can launch subpopula-
tion data-poisoning attacks [27] to compromise the performance
of a DNN model on a particular small subset of samples of interest.
Furthermore, a DNN model can also be evolving or adapting over
time in benign ways [14, 50], which are benign modi�cations. When
dealing with multiple versions of a model that has been updated or
tuned for di�erent purposes, the service provider may unintention-
ally operate with a mismatched version of the DNN model. Thus it
is practically necessary to verify if a cloud-serviced model is the
correct version.

In traditional integrity veri�cation of emails and �les, it assures
that data is unaltered from its original form. Similarly, integrity
veri�cation of a DNN model should detect any modi�cations to the
model, malicious or benign, signi�cant or subtle. However, existing
works only focus on detecting malicious signi�cant modi�cations
and ignore others. Stricter integrity veri�cation of DNN models is
left to be explored. We take the �rst step towards such an ultimate
goal with the following research question: black-box integrity veri-
�cation of DNN models for harder-to-observe model modi�cations.

A model is said to be observably modi�ed if its decision bound-
ary is observably altered, i.e., there exists an example such that
its prediction result received by an end user, e.g., top-1 label for a
classi�cation model, is observably di�erent from that of the target
model. Intuitively, subtler model modi�cations are harder to ob-
serve. Stricter integrity veri�cation for detecting harder-to-observe
modi�cations is useful, since an end user may need to check if the
model he/she is using is really the model he/she wants to use.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To �ll this gap, we introduce BIVBench, the �rst benchmark
for black-box integrity veri�cation of DNN models. BIVBench com-
prises 16 types of practically observablemodel modi�cations, captur-
ing common tampering scenarios and including 10 new tampering
types previously unexplored. Our empirical evaluations conducted
using BIVBench reveal that existing SOTA �ngerprinting methods
are less e�ective, or even ine�ective, in detecting harder-to-observe
subtle tampering (see Section 3.2 for details). Detecting harder-to-
observe model modi�cations such as subtle model modi�cations
requires �ngerprint samples with higher sensitivity.

We then propose MiSentry (Model integrity Sentry), an innova-
tive DNN �ngerprinting method with higher sensitivity empow-
ering stricter black-box integrity veri�cation. By maximizing the
divergence of the output predictions between the target model
and potential tampered models (called model zoo), MiSentry gener-
ates �ngerprint samples capable of e�ectively distinguishing seen
model tampers. Inspired by our novel empirical observations that
�ngerprint samples generated with subtler modi�cations can detect
more obvious modi�cations and exhibit higher detection sensitiv-
ity, MiSentry meticulously selects representative models of only
minor modi�cation types hard to distinguish from the target DNN
model for constructing the model zoo to maximize the sensitivity
of generated �ngerprint samples. In addition, MiSentry leverages
meta-learning [62] with the model zoo to generate �ngerprint sam-
ples that can generalize well to unseen tampering types. Extensive
experiments on BIVBench validate the high sensitivity and gen-
eralizability of �ngerprint samples generated by our MiSentry. It
outperforms existing �ngerprinting methods for DNN models, esp.
for subtler malicious tampering and benign modi�cations.

Our major contributions can be summarized as follows:

• We are the �rst to explore black-box integrity veri�cation of DNN
models in a stricter form by de�ning observable modi�cation
and considering subtle tampering.

• We introduce BIVBench, the �rst benchmark speci�cally designed
for black-box integrity veri�cation of DNN models. This bench-
mark encompasses 16 types of practically observable modi�ca-
tions capturing all prevalent scenarios of potential DNN model
tampering. This is a notable broadening in scope compared to
existing works, which focus on no more than 6 types of model
tampering. Our empirical analyses with BIVBench reveal that
existing SOTA �ngerprinting methods are insu�ciently sensitive
in detecting such subtle tampering.

• To e�ectively distinguish all practically observable model modi-
�cations, we propose MiSentry, a novel �ngerprinting method
that strategically incorporates only a few crucial subtly tampered
models into a model zoo, leverages meta-learning, and maximizes
the divergence of the output predictions between the untampered
targeted model and models in the model zoo to generate highly
sensitive, generalizable, and e�ective �ngerprint samples.

• Extensive experimental evaluation using BIVBench con�rms that
MiSentry can e�ectively detect observable modi�cations, includ-
ing those unseen during sample generation. MiSentry consis-
tently outperforms all existing methods, particularly in detecting
subtle tampering where existing SOTA �ngerprint methods are
less e�ective or even ine�ective.

2 BLACK-BOX INTEGRITY VERIFICATION
Both watermarking [64] and �ngerprinting [22] are proposed for
black-box integrity veri�cation of a DNN model through querying
it with responses of only top-1 category labels.

Sensitive-Sample Fingerprinting (SSF) [22] is the �rst �ngerprint-
ing method to detect tampering with DNN models. It generates
sensitive and natural-looking samples by approximating and max-
imizing their sensitivity to the model’s tampering, and selects a
subset of sensitive samples with the maximal coverage rate of acti-
vated neurons as �ngerprint samples. Symbolic constraint solvers
are used in [12] and Bayesian optimization (BO) is used in [34] to
solve SSF’s optimization problem in generating sensitive samples.
PublicCheck [58] generates �ngerprint samples located near the de-
cision boundary with the generative models in a black-box manner,
since a model’s decision boundary can be sensitive to tampering.

All the existing �ngerprinting methods focus on detecting back-
door attacks and model compression but ignore subtler model tam-
pering. Model tampering could happen more covertly and subtly.
We refer to model tampering with subtler modi�cations to the deci-
sion boundary of the target model than the model tampering types
discussed in existing literature, such as SSF and PublicCheck, as
subtle model tampering. In this paper, we incorporate several types
of subtle modi�cations that may occur in practice into BIVBench.
These include malicious ones, such as sample-level attacks (Tar-
geted Attack, Degradation-S), and benign ones, like online learning,
unlearning, and �ne-tuning of the last layer or all layers (see Sec. 3.1
and Appendix C.2 for more details). As to be presented in Section 5,
existing �ngerprinting methods lack sensitivity or are ine�ective
in detecting such subtler model tampering, while our MiSentry
demonstrates its e�ectiveness in detecting such subtle tampering.

Furthermore, unlike SSF-like methods which estimate the �nger-
print’s sensitivity to tampering through a series of relaxations, our
MiSentry directly assesses sensitivity with prediction changes fol-
lowing potential subtle tampering, without any relaxation, thereby
allowing for higher sensitivity. Also, in contrast to PublicCheck-like
methods where �ngerprint samples are located near the decision
boundary and could exhibit unusual prediction vectors which can be
easily �gured out when querying, our MiSentry maximizes output
covertness by ensuring prediction vectors of generated �ngerprint
sample similar to those of normal samples while simultaneously
maximizing sensitivity.

Model hashing [4, 28, 48] and watermarking techniques [3] also
aim for integrity veri�cation, but they operate di�erently and cater
to distinct threat models from ours. Speci�cally, model hashing
requires white-box access to the protected model, which contrasts
with our methodology which assumes black-box query access dur-
ing integrity veri�cation. The black-box approach is more chal-
lenging but practical in real-world scenarios. In addition, model
watermarking involves tampering with the target model, which
could result in performance degradation. MiSentry, however, does
not tamper with the target model.

The primary advantage of black-box integrity veri�cation over
white-box integrity veri�cation is its ability to conduct live and
stealthy integrity veri�cation while the model is in service, without
being detected by the cloud service provider. This makes it di�-
cult for a dishonest service provider to evade black-box integrity
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veri�cation. In contrast, white-box integrity veri�cation requires
white-box access to the model for integrity veri�cation, rather than
during the model’s service. This allows a dishonest service provider
to provide the authentic model for white-box integrity veri�cation
while using a compressed model for servicing users. Black-box
integrity veri�cation makes integrity veri�cation more feasible,
stealthy, practical, and harder to evade.

Black-box integrity veri�cation is more challenging to design
than white-box integrity veri�cation since only the top-1 label is
available for integrity veri�cation, making the detection of subtle
changes signi�cantly more di�cult.

Fingerprinting is also used for intellectual property (IP) protec-
tion of DNN models [5, 44, 59, 60]. IP protection aims to verify
the ownership of a stolen DNN model. Fingerprint samples for IP
protection should be robust to model modi�cations that can be
employed to obfuscate the model’s ownership. In contrast, integrity
veri�cation ensures that a model operates as intended and has not
been altered. IP protection and integrity veri�cation pursue distinct
objectives and possess di�erent characteristics.

3 BIVBENCH: BENCHMARK FOR BLACK-BOX
INTEGRITY VERIFICATION OF DNNS

Existing works only evaluate the performance of black-box in-
tegrity veri�cation on limited types of model tampering, including
model pruning, Trojan, and backdoor attacks. However, model tam-
pering could occur in countless ways. Subtle and benign model
modi�cations are common and their detection is also crucial. To
cover common tampering scenarios and �ll the gap of detection
for unexplored tampering types, we introduce BIVBench, the �rst
benchmark for black-box integrity veri�cation of DNN models.

3.1 Practical Model Modi�cations to DNNs
Traditional integrity veri�cation of emails and �les requires that
any modi�cations to the data, malicious or benign, should be de-
tected. Far from such much stricter integrity veri�cation, existing
�ngerprinting methods mainly consider limited types of obvious
malicious model which are relatively easier to detect. We aim to
enable integrity veri�cation of a DNN model to detect any observ-
able model tampering, where the decision boundary of the model
is altered such that there exists an example whose prediction is
observably di�erent from that of the original model. Such integrity
veri�cation should be able to detect any practical modi�cations, be-
nign or malicious, to a DNN model. We come up with the following
practical modi�cations that a �ngerprinting method should be able
to detect.
Benign Modi�cations. DNN models may be modi�ed for legiti-
mate reasons. These benign modi�cations include:
• Unlearning [14] is to force a model to forget a selected subset
of data used to train the model. This is increasingly important
with the enactment of privacy protection laws such as GDPR.

• Online learning [50] is used to adapt a model to �t newly-
collected incremental data.

• Model compression [7] compresses a DNN model to save com-
puting resources, typically in the following ways:
(i) Pruning [41] prunes components with the least contribution

to the performance of the model and then retains the lost
performance by �ne-tuning the rest.

(ii) Quantization quantizes a model, i.e., reducing the precision
of the model’s representation.

• Knowledge distillation [23] transfers the knowledge from a
teacher model to a student model. By transferring to a smaller
model, it also reduces computing resources.

• Transfer learning [43] adapts a pre-trained model to a new
downstream task.

• Fine-tuning adjust the weights of speci�c layers (called tunable
layers) while freezing the weights of other layers.

• Retraining di�ers from �ne-tuning by re-initializing the weights
of tunable layers before relearning them.

MaliciousModi�cations. Amodel can bemaliciouslymodi�ed via
poisoning training data or directly modifying the model to degrade
its performance or misbehave only on speci�c inputs. Malicious
modi�cations include:
• Poisoning degradation attack [27] degrades the accuracy of a
model by tampering with its training data.

• Bit-�ipping attack [46] degrades the accuracy of a model by
�ipping the most vulnerable bits of the model.

• Targeted attack [30, 51, 54] makes a model mispredict to a
speci�c label on speci�c input samples but predict normally on
other input samples.

• Backdoor attack [16, 29] makes a model mispredict to a speci�c
label when a speci�c trigger is applied to an arbitrary sample but
behaves normally otherwise. A backdoor can be inserted into a
model by poisoning its training data.

• Trojan attack [36] injects a backdoor into a model by �rst op-
timizing the values of a backdoor trigger at a given location
without touching the model and then applying the trigger to
�ne-tune ending layers.

• Clean-label attack [63] inserts a backdoor using poisoning data
that visually appears consistent with the clean labels.
We construct BIVBench, the �rst benchmark for DNN black-box

integrity veri�cation, with all the benign and malicious modi�ca-
tions listed in the above practical model modi�cations.

3.2 Fingerprinting Evaluation Using BIVBench
We next comprehensively evaluate black-box integrity veri�cation
performance of existing SOTA �ngerprinting methods using our
BIVBench. The performance is metricized by the tampering detec-
tion rate using NS �ngerprint samples for each tampering type.
Three frequently-used datasets, CIFAR-10 [31], GTSRB [53], and
ImageNet [49], and models with various architectures are used.
Speci�cally, we use ResNet20 [19], CNN [35] with 6 convolution
layers and 1 full-connected layer, and DenseNet121 [26] as the
architectures of the target model for CIFAR-10, GTSRB and Im-
ageNet, respectively. Test instances for each tampering type are
constructed following the principle of subtlest tampering that tam-
pering action is stopped as soon as the tampering objective is met
since subtler modi�cations are harder to detect. We use the exist-
ing state-of-the-art (SOTA) �ngerprinting methods, SSF [22] and
PublicCheck [58], as the baseline methods. Implementation details
about �ngerprint generation, tampering test instances, models, and
tampering detection are described in Appendix C.

The tamper detection rates of SSF, PublicCheck, and MiSentry
(which we will propose in the next section) for di�erent tampering
types using 1 (#( = 1) and 5 (#( = 5) �ngerprint samples for
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Table 1: Tamper detection rate (%). #( is the number of �ngerprint samples used for integrity veri�cation. N/A means not
available. For �ne-tuning and retraining, the subtext indicates if the last layer (Last) or all layers (All) are �ne-tuned, and
the number after dash (e.g., 3) means the negative power of the learning rate (e.g., 10�3) used in �ne-tuning. For degradation
(poisoning degradation attack), the letter after the dash indicates if a single sample (S) or all the samples in a randomly
selected category (C) are mislabeled. For the latter, the subtext indicates if these samples are randomly mislabeled (Random) or
mislabeled to a speci�c label selected (Speci�c).

Dataset CIFAR-10 GTSRB ImageNet
Method SSF PubCheck MiSentry SSF PubCheck MiSentry SSF PubCheck MiSentry

Tampering Type \ NS 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
Unlearning 3.2 20.9 28.3 86.6 68.4 99.8 1.9 16.4 19.9 73.5 59.4 97.8 39.6 94.1 56.3 97.8 87.7 100.0

Online Learning 6.7 36.8 25.4 82.3 74.1 100.0 4.2 35.7 21.8 69.7 63.7 99.5 46.1 96.3 48.2 96.9 89.8 100.0
Pruning 66.3 99.7 69.5 100.0 89.5 100.0 57.1 97.5 74.6 100.0 84.5 100.0 64.8 98.3 74.3 100.0 92.4 100.0

Quantization 66.7 99.8 60.8 99.4 90.7 100.0 78.5 100.0 71.5 100.0 91.2 100.0 84.5 100.0 81.9 100.0 95.3 100.0
Knowledge Distillation 78.4 100.0 69.2 100.0 92.8 100.0 76.2 99.9 68.3 100.0 88.4 100.0 82.7 100.0 88.7 100.0 94.9 100.0

Transfer Learning 85.9 100.0 74.3 100.0 92.3 100.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Fine-tuningLast-3 4.6 36.1 27.9 89.4 73.7 100.0 2.2 18.3 18.6 71.4 61.1 99.2 44.9 95.2 47.1 96.3 88.1 100.0
Fine-tuningLast-4 1.8 15.3 24.8 83.2 58.1 98.8 0.5 9.1 16.8 66.9 42.5 97.1 35.5 92.7 41.3 91.8 83.4 100.0
Fine-tuningLast-5 0.0 0.0 21.6 79.9 45.9 96.2 0.0 0.0 16.1 67.2 36.8 90.3 31.1 89.5 39.9 92.4 82.3 99.8
Fine-tuningAll-3 7.3 38.2 29.5 88.5 76.5 100.0 5.4 37.5 21.2 78.5 64.9 99.5 47.2 97.1 54.4 98.9 90.7 100.0
Fine-tuningAll-4 2.4 19.6 27.1 86.8 64.1 99.4 1.7 14.6 17.4 69.3 58.2 96.4 37.4 93.5 45.8 96.1 87.5 100.0
Fine-tuningAll-5 0.0 0.0 26.2 85.3 59.2 97.6 0.0 0.0 17.2 65.8 44.5 94.8 35.8 90.6 40.5 92.7 83.2 100.0
RetrainingLast 66.5 99.7 39.1 91.7 84.5 100.0 59.3 95.8 58.5 98.4 78.1 99.9 67.4 99.8 78.1 100.0 93.6 100.0
RetrainingAll 76.1 100.0 65.4 99.3 92.6 100.0 64.5 97.3 64.8 99.1 79.6 100.0 68.0 100.0 82.0 100.0 94.0 100.0

Di�erent Architectures 79.7 100.0 65.1 99.2 93.5 100.0 67.4 99.2 68.7 100.0 81.9 100.0 78.3 100.0 84.5 100.0 95.1 100.0
DegradationRandom-C 43.9 92.5 48.4 94.7 91.3 100.0 49.6 96.5 53.5 95.8 85.3 100.0 61.3 97.4 73.4 99.9 91.5 100.0
DegradationSpeci�c-C 46.2 95.2 47.9 94.5 93.1 100.0 55.3 97.4 59.2 97.9 92.7 100.0 64.5 98.9 72.9 100.0 91.6 100.0

Degradation-S 19.8 72.4 38.7 91.1 88.2 100.0 26.1 85.7 38.9 92.2 83.4 100.0 56.9 96.8 67.3 99.8 92.3 100.0
Targeted Attack 11.4 63.5 36.9 90.2 83.8 100.0 12.4 67.1 42.1 94.4 79.4 100.0 48.1 94.9 63.8 99.8 90.9 100.0
Bit-�ipping 84.0 100.0 91.0 100.0 91.0 100.0 89.0 100.0 88.0 100.0 92.0 100.0 96.0 100.0 96.0 100.0 98.0 100.0
Backdoor 64.9 98.8 73.6 99.6 86.4 100.0 63.2 98.6 69.3 99.7 85.8 100.0 65.6 99.8 81.4 100.0 92.1 100.0
Trojan 74.3 100.0 78.8 100.0 91.9 100.0 71.6 99.8 71.1 99.5 87.1 100.0 77.5 100.0 79.6 100.0 93.4 100.0

Clean label 72.4 100.0 79.8 100.0 92.1 100.0 69.8 100.0 81.5 100.0 89.4 100.0 78.4 100.0 84.2 100.0 92.9 100.0

integrity veri�cation are shown in Table 1. We can see that some
tampering types are harder to detect than others. The detection
rate is signi�cantly lower when model tampering is subtler. On both
CIFAR-10 and GTSRB, SSF and PulicCheck both have a signi�cantly
lower tamper detection rate for unlearning, online learning, �ne-
tuning, targeted attacks, and single-sample poisoning degradation
attacks than that for model compression (pruning and quantiza-
tion), backdoor attacks, Trojan attacks, etc. For example, SSF fails in
detecting �ne-tuning with a learning rate of 10�5 on these datasets.
We conclude that existing SOTA �ngerprinting methods are insuf-
�ciently sensitive in detecting harder-to-observe subtle tampering,
calling for �ngerprint samples with higher sensitivity.

entropy 
loss

!! yp

!r

representative model selection

fingerprint sample
x

model to protect

models to reject

yr

Lp bound distinguishability
loss

meta learning

source sample
x0

Figure 1: Overview of MiSentry’s �ngerprint generation.

4 MISENTRY: FINGERPRINTING DNNS WITH
HIGHER SENSITIVITY

In this section, we �rst describe the threat model and present desir-
able properties of �ngerprint samples. To achieve desirable prop-
erties, we formalize the generation of �ngerprint samples as an
optimization problem to distinguish two models, select represen-
tative models to construct a model zoo to maximize detection sen-
sitivity and leverage meta-learning to make �ngerprint samples
generated on a small number of models e�ective on unseen models.
MiSentry’s �ngerprint generation is outlined in Fig. 1.

4.1 Threat Model
Like SSF [22], we assume white-box �ngerprint generation and
black-box integrity veri�cation. Speci�cally, a model is under white-
box access when its �ngerprint samples are generated. When a
model’s integrity is veri�ed, we assume the model cannot be ac-
cessed directly. Integrity veri�cation can be conducted only by
querying the model with samples. When queried, a DNN model
returns only the top-1 label, without returning its con�dence level
or the prediction vector.

MiSentry can be utilized for both private and public integrity
veri�cation. The detection performance remains consistent between
public and private integrity veri�cation. The primary di�erence
between the two types of integrity veri�cation lies in the �ngerprint
samples’ usage: In public veri�cation as shown in Fig. 2, model
owners generate �ngerprint samples and send them to a trusted
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Figure 2: Public integrity veri�cation [58].

third party, from which interested parties can request samples to
verify a cloud model’s integrity.

In contrast, in a private setting, only the model owner or autho-
rized entities can use the generated �ngerprint samples provided
by the model owner for veri�cation. It is important to note that
public veri�cation makes integrity veri�cation more practical but
signi�cantly increases the risk of �ngerprint sample leakage due to
the involvement of untrusted users.

In addition, we assume that the DNN service provider is not
trustworthy: it may detect probing �ngerprint samples and evade
tampering detection.We also assume that adversaries can get access
to �ngerprint samples already used for verifying integrity and
exploit them to evade tampering detection.

4.2 Desirable Properties
With the above threat model, �ngerprinting samples should have
the following desirable properties:
• Sensitivity. Fingerprint samples should be sensitive to any prac-
tically observable modi�cations (see Section 3.1 for details) to
the target model.

• Uniqueness. Fingerprint samples should be able to distinguish
the target model from other models of the same or di�erent
architectures, trained with the same or di�erent datasets, that
perform the same task as the target model. This property ensures
the uniqueness of the target model, i.e., it cannot be replaced by
a similarly trained model. It is unexplored by existing methods.

• Covertness. To ensure that �ngerprint queries can’t be dis-
tinguished from normal queries and prevent malicious cloud
providers from identifying �ngerprint queries to evade integrity
veri�cation, a �ngerprint sample should not be abnormal. As pro-
posed by SSF [22], a �ngerprint sample should look natural. We
call this property input covertness. We extend the covertness of
input images to output prediction vectors: the prediction vector
of a �ngerprint sample should also be similar to that of normal
samples, denoted as output covertness. Both SSF [22] and Pub-
licCheck [58] require the input covertness but do not require
output covertness.

• Robustness to Partial Leakage. Fingerprint samples already
used in verifying integrity may be accessible to adversaries, who
can use them to adjust the model to evade tampering detection.
The remaining �ngerprint samples should be e�ective in detect-
ing such adaptively modi�ed models.

• Generalizability. A �ngerprinting method should be general-
izable to di�erent models and datasets. In addition, �ngerprint

samples should be e�ective in detecting all potential practical
modi�cations to DNN models. For MiSentry, the latter means
that �ngerprint samples should be e�ective in distinguishing the
target model from not only the tampered models in the model
zoo but also tampered models with unseen tampering types.

4.3 Formalizing as an Optimization Problem
Natural looking. Covertness requires a �ngerprint sample to look
natural. To ful�ll this requirement, we generate a �ngerprint sample
G from a normal sample G0 with a distortion bound: | |G � G0 | |?  n
for some norm ? .

Distinguishablity loss. Suppose we have two models, F? and
FA , where F? is the target model (i.e., to protect) and FA is a model
to reject (i.e., to distinguish from the target model). To generate
a �ngerprint sample G to distinguish them, we maximize the di-
vergence of the output predictions of the two models over input
G : ⇡8E4A64=24 (F? (G), FA (G)), which can be measured by Kullback-
Leibler (KL) divergence. The distinguishability loss corresponding
to this inter-model divergence is thus:

✓⇡ (G, F? , FA ) = �⇡ ! (F? (G) | |FA (G))

=
’
9

F? (G) 9 ln
FA (G) 9
F? (G) 9

(1)

where F? (G) 9 is the 9-th element in the prediction vector of model
F? on input G . Note that we have taken a negative sign before the
KL divergence in Eq. 1 since we minimize this loss term.

Entropy loss. The entropy loss is designed to ensure output
covertness, which makes MiSentry the only one among the three
methods considered that meets the output covertness criterion, as
demonstrated in Fig. 5 in Section 5.3. Output covertness ensures that
the prediction vectors of �ngerprint samples are similar to those
of normal samples, making �ngerprinting queries indistinguish-
able from normal queries based on model outputs. This prevents a
malicious cloud service provider from identifying �ngerprinting
queries to evade integrity veri�cation. On F? , a normal sample has
likely a high probability on its true label and low probabilities on
others. We also expect that FA behaves similarly to F? , otherwise
it can be easily di�erentiated from F? without relying on a �nger-
printing method. Covertness requires that the prediction vector of
a �ngerprint sample G is indistinguishable from that of a normal
sample on both F? and FA . To ful�ll this requirement, we minimize
the information entropy H of the prediction of G on both F? and
FA :

✓⇢W (G, FW ) = H(FW (G)) = �
’
9

FW (G) 9 logFW (G) 9 (2)

where W 2 {?, A } for models F? and FA , respectively. In addition, we
calculate the entropy loss of the normal samples with the same label
as G on each model and determine a distribution range [UW , VW ], e.g.,
10C⌘ percentile to 90C⌘ percentile. We require that the entropy loss
of G is within the range on both models: UW  ✓⇢W  VW , W 2 {?, A }.

Optimization problem. A �ngerprint sample G is generated
by meeting the above requirements simultaneously, i.e., by solving
the following optimization problem:

min
G

✓C>C0; (G, F? , FA )
s.t. | |G � G0 | |?  n,U?  ✓⇢?  V? ,UA  ✓⇢A  VA

(3)



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

with
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(4)

where _1 and _2 are two weighting hyperparameters of di�erent
loss terms. Eq. 3 can be solved iteratively with the projected gradient
descent like in PGD [32, 33]:

G:+1 = ⇠;8?n (G: � [ · rG: ✓C>C0; (G: , F? , FA )) (5)

Generation diversity. We generate our �ngerprint samples
starting from di�erent source samples. It can generate diverse �n-
gerprint samples widely spread all over the decision boundary of
the original model. Each �ngerprint sample is located in a distinct
local region, which is independent and unpredictable. Thus leaked
�ngerprint samples can hardly in�uence the e�ectiveness of un-
leaked ones.

4.4 Representative Model Selection
We next describe the representative model selection in MiSentry
to maximize the detection sensitivity of the generated �ngerprint
samples while minimizing the number of models selected for �n-
gerprint generation. To make MiSentry more practical, we require
the models in the model zoo of meta-learning to be of the same
architecture and trained with the same dataset as the target model.

In support vector machines (SVMs) [56], support vectors are the
instances that result in the maximal margin and are closest and
crucial to the decision boundary of the hyperplane. A model could
be tampered with in countless ways, but limited (and preferably
as few as possible) tampering instances can be used to generate
�ngerprint samples. Similar to the support vectors, crucial tamper-
ing instances should be identi�ed to generate �ngerprint samples
capable of distinguishing all practically observable modi�cations.

Intuitively, �ngerprint samples generated using subtler modi�-
cations should likely be capable of distinguishing more signi�cant
modi�cations and exhibit higher detection sensitivity. The rationale
behind this intuition is that a model modi�ed more subtly has a
decision boundary closer to that of the target model. Among mod-
els subjected to the same type of modi�cation, the subtlest one
typically exhibits the smallest deviation, such as the least samples’
prediction variation or the fewest required training epochs, since
tampering typically demands a certain number of training samples
and steps.

To validate the intuition, we conduct the following study: we
generate �ngerprint samples using models �ne-tuned over vary-
ing numbers of epochs (1 and 10) and use these samples to detect
modi�cations across a range from 1 to 15 epochs. Additionally,
we generate �ngerprint samples using models updated via online
learning with 1 and 10 updated samples and used these to detect
updates in models with up to 10 samples. Our �ndings from exper-
iments on the CIFAR10 dataset, illustrated in Fig. 3, demonstrate
that �ngerprint samples from the subtlest modi�cations are more
e�ective in detecting larger modi�cations and possess the highest
detection sensitivity.

These results suggest that subtler model modi�cations are more
crucial for the generation of e�ective �ngerprint samples, being
closer to the detection hyperplane. Consequently, we incorporate

(a) Fine-tuning Las Layer 10!" (b) Online Learning

Figure 3: Tamper detection rate w.r.t. the number of training
epoch/samples on CIFAR10.

these subtlest model modi�cations into our model zoo as "support
vectors" for generating �ngerprint samples.

For models with di�erent types of modi�cations, empirical judg-
ment is used to determine which type likely produces fewer pertur-
bations to the decision boundary. It is generally harder to distin-
guish models of the same architecture and trained with the same
dataset than models of di�erent architectures or trained with dif-
ferent datasets. That intuition leads to selecting small variations
of models of the same architecture and training with the same
dataset as the target model into the model zoo for meta-learning
(see Appendix C.3 for details).

This representative model selection of MiSentry makes �nger-
print sample generation more practical since it does not require
any model trained with extra data, which may be inaccessible to
the model owner due to privacy protection.

In addition, by leveraging meta-learning to enhance generaliz-
ability [62](see Appendix A for more details), this limited selection
of models does not compromise the e�ectiveness of generated �n-
gerprint samples in detecting unseen tampering types. As shown
in Tab. 1, �ngerprint samples generated by MiSentry are highly
generalizable: they are e�ective in distinguishing from the target
model not only the models in the model zoo but also models unseen
in their generation.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate our MiSentry’s performance using
BIVBench following the same settings as Section 3.2 and conduct
additional evaluations on leakage robustness, output covertness,
detection sensitivity, each component’s e�ect, and time cost.

5.1 Tampering Detection Performance
MiSentry’s detection performance is also presented in Tab. 1. We
can make the following observations.

MiSentry’s �ngerprint samples are generalizable. Even
though MiSentry uses a few types of model modi�cations in the
model zoo of meta-learning to generate �ngerprint samples, gen-
erated �ngerprint samples are e�ective in distinguishing unseen
tampering types and independently trained models from the target
model. The tampering detection rates of MiSentry are all above 36%
using a single �ngerprint sample and above 90% using 5 �ngerprint
samples for the three datasets.

MiSentry outperforms existing methods. MiSentry has a
reasonable tampering detection rate even for the hardest-to-detect
tampering types. It outperforms both SSF and PulicCheck in general
and by a large margin for subtler tampering types.

Detection rate of a larger-scale dataset and model is gen-
erally higher. The detection rates of subtler tampering types,
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Figure 4: Detection rate when di�erent numbers of �nger-
print samples are leaked and exploited for adaptive backdoor
attacks on CIFAR10. The three rows from top to bottom show
the results of MiSentry, SSF, and PublicCheck, respectively.

unlearning, online learning, �ne-tuning, poisoning degradation
attacks, and targeted attacks, are generally higher on ImageNet
than on CIFAR-10 and GTSRB for both SSF and MiSentry. It can be
explained as follows. For �ne-tuning, a model is �ne-tuned with 1
epoch. Since ImageNet has many more training samples than the
other two datasets, �ne-tuning an ImageNet model incurs more
severe modi�cations than �ne-tuning CIFAR-10 and GTSRB mod-
els, making it easier to be detected. For other tampering types, the
modi�cation adjusts more model parameters on an ImageNet model
than on a model of CIFAR10 or GTSRB since the ImageNet model
is much larger, which makes tampering detection easier.

SSF-BO [34], a variant of SSF, uses Bayesian optimization to
generate �ngerprint samples. SSF-BO is infeasible for large-scale
datasets like ImageNet. We use the code of SSF-BO from [42] to
detect model tampering onMNIST [35], a handwritten digits dataset.
The results can be found in Appendix. F. MiSentry surpasses SSF-BO
in detecting all the tested model tampering.

5.2 Adaptive Attacks with Leaked Samples
In public integrity veri�cation, an adversary can collect already
used �ngerprint samples and use them for an adversarial tampering
attack by pursuing a model manipulation goal while preserving
the top-1 labels on collected �ngerprint samples simultaneously.
To evaluate existing SOTA �ngerprint methods and MiSentry’s
robustness to such adaptive attacks, we assume that #;40:43 al-
ready used �ngerprint samples are collected and exploited by the
attacker, where#;40:43 represents the number of leaked �ngerprint
samples, and evaluate the detection performance of the three meth-
ods on newly-generated unused �ngerprint samples. The leaked
�ngerprint samples comprise tampering set which is used in the
adversarial tampering attacks to evade MiSentry detection, while
the unleaked �ngerprint samples comprise validation set which is
used for integrity veri�cation.

To investigate the e�ectiveness of existing �ngerprint methods
and MiSentry in such increasingly threatening scenarios, we in-
crease the number of leaked �ngerprinting samples, #;40:43 , from
1,000 to 3,000. Here, we conduct adaptive tampering attacks with
backdoor attacks and last-layer �ne-tuning respectively since they
are the most common malicious and benign model modi�cations.

Experimental results of adaptive backdoor attacks are shown in
Fig. 4 and those of adaptive last-layer �ne-tuning are presented in
Appendix E. The black dot line shows the detection rate when no
leaked �ngerprint samples are exploited, while the blue square line
shows the detection rate when #;40:43 leaked �ngerprint samples
are exploited for an adaptive tampering attack. The red triangle
line shows the detection rate of the leaked �ngerprint samples (i.e.,
on the tampering set). We can conclude that:

• For all three methods, more leaked �ngerprinting samples
could lead to a reduced detection rate. For the adaptive backdoor
attacks, when #;40:43 is 1000, the detection rates of MiSentry, SSF,
and PublicCheck can drop to as low as 58.9%, 45.4%, and 44.9%,
respectively. When #;40:43 increases to 3000, the lowest detection
rates of MiSentry, SSF, and PublicCheck can further decline to
52.8%, 38.9%, and 39.6%, respectively. A similar tendency can be
observed for the adaptive last-layer �ne-tuning. However, further
increases in the number of leaked �ngerprinting samples can no
longer signi�cantly degrade the detection performance.

• The detection rate of MiSenrty consistently remains higher
than that of SSF and PublicCheck in all cases. When #;40:43 is
1000, the lowest detection rate of MiSentry is 1.28⇥ that of SSF
and 1.31⇥ that of PublicCheck under such an adaptive backdoor
attack, respectively. A similar advantage still persists when #;40:43
is 3000. For the adaptive �ne-tuning attack, we �nd this advantage
of the detection rate of MiSenrty to that of PublickCheck enlarges
to 2.25⇥.

• While more leaked �ngerprinting samples could lead to a
reduced detection rate, the detection performance of our MiSentry
remained reasonably robust. The detection rate ofMiSentry remains
consistently higher than 50% and 29% under the backdoor and �ne-
tuning attack respectively. It is worth noting that SSF is almost
incapable of detecting whether the model has been tampered with
in the early stages of the adaptive �ne-tuning attack. Only with
the increase of �ne-tuning training epochs does SSF gradually gain
the ability to detect potential tampering, albeit the detection rate
remains very low, indicating inherently low sensitivity of SSF.

The robustness of detection performance to leakage can be at-
tributed to generation diversity. Starting from di�erent source sam-
ples, our MiSentry can generate diverse �ngerprint samples widely
spread all over the decision boundary of the original model. Each
generated �ngerprint sample is independent and unpredictable
since it is located in a distinct local region. Thus leaked �ngerprint
samples can hardly in�uence the e�ectiveness of unleaked ones.

5.3 Perceptual Quality and Output Covertness
Appendix D shows some �ngerprint samples generated by MiSen-
try, SSF, and PublicCheck on the three datasets. These �ngerprint
samples exhibit a natural appearance, and the perturbations they
introduce to the source samples are almost indiscernible. MiSentry
and SSF show similar perceptual quality to the original samples,
with noise-like artifacts, while PublicCheck’s artifacts involve al-
tered texture and color temperature. Their perceptual quality is
comparable overall.

To avoid being singled out, the output of a �ngerprint sample
should be indistinguishable from that of a normal sample. Fig. 5
shows the distribution of prediction probabilities of top-1 labels for
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Figure 5: Distributions of prediction probabilities of top-1
labels for normal samples and �ngerprint samples.
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Figure 6: Detection rates vs the number of training steps on
CIFAR10.

�ngerprint samples generated by MiSentry, SSF, and PublicCheck
and normal samples in the test set. We can see that the prediction
probabilities of MiSentry are within those of normal samples, while
some prediction probabilities of SSF and PublicCheck fall into a re-
gion below the bottom 5% low con�dence of normal samples (shown
by the dashed lines), especially for GTSRB, which makes integrity
probing using �ngerprint samples generated by SSF and Public-
Check potentially singled out. Only MiSentry meets the output
covertness requirement among the three �ngerprinting methods.

5.4 Detection Sensitivity
During the manipulation of the target model, we would like to know
how quickly a �ngerprinting method can detect the manipulation.
We explore this detection sensitivity, i.e., the relationship between
tampering detection rate and magnitude of modi�cation starting
from the initial untampered model. Fig. 6 shows the tampering
detection rates of di�erent �ngerprint methods at di�erent training
steps on CIFAR10 for �ne-tuning the last layer with a learning
rate of 10�5, targeted attacks, and backdoor attacks. We can make
the following observations. First, the detection rate of MiSentry
increases more rapidly than that of SSF and PublicCheck, indicating
that MiSentry has higher detection sensitivity than SSF. Second,
when using 5 �ngerprint samples for tampering detection, the
detection performance of MiSentry saturates around 100 training
steps. Third, SSF fails to detect the �ne-tuning, which agrees with
that reported in Section 3.2.

5.5 Ablation Study
We conduct an ablation study for each component of our MiSentry
to analyze their respective e�ects on CIFAR10. Tab. 2 presents the
tampering detection rates using a single �ngerprint sample for
di�erent model zoo constructions. Additional results are shown in
Appendix G. We can make the following important observations.

• Subtly modi�ed models (i.e., last-layer �ne-tuning) are crucial
for detecting all modi�cation types, while other modi�cation types
in the model zoo mainly enhance detection performance for the
same type.

• The generalization ability of �ngerprint samples improves
with an increasing number of representative models per tampering
type but saturates when the number is larger than 6.

Table 2: Ablation study on modi�cation types for construct-
ing model zoo. FT stands for �ne-tuning.

Tampering\Model zoo �) + '4CA08= �) �)Last �)All
Degradation-C 91.3 91.1 88.9 79.4
Targeted Attack 83.8 84.2 79.3 77.2
Backdoor 86.4 85.9 81.5 78.1
Quantization 90.7 91.2 89.4 80.1
Pruning 89.5 87.4 78.3 72.4
Fine-tuningLast 73.7 73.8 75.8 48.9
Fine-tuningAll 59.2 59.4 49.2 48.1

Table 3: Average time cost per model construction or �nger-
print sample generation (in seconds).

CIFAR10 GTSRB ImageNet

Tampered model
Fine-tuningLast 9.5 10.4 4980.3
Fine-tuningAll 11.2 12.8 6361.5
RetrainingAll 1473.6 1519.8 N/A

Fingerprint sample generation 95.7 86.1 925.2

• Without the !? norm bound, the generated �ngerprints are
noise-like images, which can be easily distinguished from normal
samples. However, these noise-like �ngerprints have higher detec-
tion sensitivity (tampering detection increases up to 0.359⇥).

• Without entropy loss, the generated �ngerprint samples are
more likely to have abnormal prediction vectors, with AUC scores
decreasing from 0.651 to 0.397 when detecting �ngerprint samples
by their con�dence scores.

• MiSentry exhibits similar defection performance across di�er-
ent model architectures of the target model, con�rming its general-
izability.

5.6 Time Cost
We use a single Nvidia RTX3090 GPU in our experiments. The
average time cost of constructing a model for each tampering type
and �ngerprint sample generation of our MiSentry is shown in
Tab. 3. Overall, the time cost of MiSentry increases with the increase
in model parameter size. These time costs are acceptable compared
to the bene�ts brought by integrity veri�cation.

6 CONCLUSION
In this paper, we have introduced signi�cant advancements in the
�eld of black-box integrity veri�cation (BIV) for DNN models. We
pioneer a stricter form of BIV by focusing on subtle tampering and
de�ning observable modi�cations, setting new standards for BIV.
We develop BIVBench, the �rst benchmark tailored for stricter BIV.
It includes 16 types of tampering scenarios, signi�cantly more than
previous studies, revealing the limitations of existing �ngerprint-
ing methods. We also introduce MiSentry, a novel �ngerprinting
method using a re�ned set of subtly tampered models to produce
highly sensitive and e�ective �ngerprint samples. MiSentry has
proven superior in detecting tampering, even those unseen dur-
ing its generation. To conclude, we establish new benchmarks and
methodology for the BIV of DNNmodels, paving the way for further
studies in this crucial �eld.
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