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Figure 1: Visualization of UDM across diverse video generation tasks: text-to-video generation,
video interpolation, and long video generation. These examples highlight the model’s ability to
synthesize coherent content, produce smooth temporal transitions, and scale to extended sequences.

ABSTRACT

Continuous-space video generation has advanced rapidly, while discrete approaches
lag behind due to error accumulation and long-context inconsistency. In this work,
we revisit discrete generative modeling and present Uniform Discrete diffusion
with Metric path (UDM), a simple yet powerful framework that bridges the gap
with continuous methods and enables scalable video generation. At its core, UDM
formulates video synthesis as iterative refinement over discrete spatio-temporal
tokens. It is based on two key designs: a Linearized Metric-Path and a Resolution-
dependent Timestep Shifting mechanism. This design enables UDM to scale
efficiently to high-resolution image synthesis and long-duration video generation
(up to 32k tokens), while requiring significantly fewer inference steps. Additionally,
we introduce an asynchronous temporal fine-tuning strategy that unifies multiple
tasks, including video interpolation and image-to-video synthesis, within a sin-
gle model. Extensive experiments on challenging video and image generation
benchmarks show that UDM consistently outperforms prior discrete methods and
achieves performance comparable to state-of-the-art continuous diffusion methods.

1 INTRODUCTION

Continuous-space visual generation has achieved remarkable progress in both image and video
synthesis (Batifol et al., 2025; Baldridge et al., 2024; Betker et al., 2023; Brooks et al., 2024; Wang
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Figure 2: Illustration of different image/video generation paradigms. Discrete-space approaches
such as AR and MDM adopt non-refinable local generation, where produced tokens are fixed once
generated. In contrast, UDM introduces iterative global refinement, conceptually aligning discrete
methods with continuous-space approaches, and substantially narrowing their performance gap.

et al., 2025a; Gao et al., 2025b; Yang et al., 2025b; Kong et al., 2024). Driven by advances in
diffusion model algorithms (Ho et al., 2020; Song et al., 2021), these continuous-space methods have
demonstrated strong capabilities in producing high-fidelity and visually coherent content, establishing
themselves as the dominant paradigm for generative modeling.

In parallel, discrete-space text generation has become the de facto paradigm for large language
models (Radford et al., 2018; 2019; Brown et al., 2020). Inspired by the success of LLMs, recent
works have extended similar ideas to visual generation through discrete tokenization, using either
next-token prediction (Sun et al., 2024a; Wang et al., 2024b; Kondratyuk et al., 2024) or masked token
prediction (Chang et al., 2023; Xie et al., 2025¢). However, discrete approaches still lag behind their
continuous counterparts, facing challenges such as error accumulation and maintaining long-context
consistency, especially in video generation. For instance, even though masked diffusion models
employ bidirectional transformers, we still observe low visual quality and unnatural object motions.

In this work, we first revisit discrete generative modeling and introduce UDM, a powerful visual
generation framework built upon Uniform Discrete diffusion models with Metric path. Our approach
is simple: we generate videos and images by iterative refinement over discrete spatio-temporal tokens.
As illustrated in Fig. 2, unlike classic autoregressive (AR) models and masked diffusion models
(MDM) that adopt non-refinable local generation, where produced tokens are fixed once generated,
UDM emphasizes iterative refinement over global discrete tokens, conceptually aligning discrete
methods with continuous counterparts, and substantially narrowing their performance gap. UDM
starts from categorical noise, zo ~ Unif([K])?, where each token is independently sampled from
the vocabulary, and iteratively performs global refinement along a metric-guided probability path to
obtain z; on the data manifold, i.e., the target image or video. This iterative process enables UDM
to capture the hierarchical structure of video data, from global layouts to detailed dynamics, while
leveraging temporal redundancy to preserve spatio-temporal coherence.

We propose a novel metric probability path tailored for long sequences by incorporating two key
components: a linearized metric path and a resolution-dependent timestep shifting mechanism. Col-
lectively, these designs provide precise control over data perturbations, a property that is essential
for maintaining stability and achieving effective training. This construction allows UDM to scale
efficiently to long-sequence tasks, such as high-resolution image synthesis and long video generation,
while requiring substantially fewer inference steps. Furthermore, we introduce an asynchronous
timestep scheduling strategy, where timesteps are independently sampled for each frame. This asyn-
chronous design empowers UDM to generate videos of minute-level duration and to support diverse
tasks within a unified framework, including image-to-video generation and video extrapolation.

UDM attains a text-to-video score of 82.4 on VBench (Huang et al., 2024a), outperforming both
discrete and continuous baselines. In image-to-video generation tasks, UDM reaches a VBench score
of 86.2, on par with state-of-the-art open-source models. For text-to-image generation, UDM attains
a GenEval (Ghosh et al., 2024) score of 0.8, surpassing previous discrete approaches. Furthermore,
UDM exhibits strong zero-shot generalization across diverse contexts, highlighting its versatility.

Our contributions can be summarized as follows: 1) We propose Uniform Discrete diffusion with
Metric path (UDM), a simple yet powerful framework that bridges the gap with continuous methods
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and enables scalable video generation. 2) We highlight two key designs, linearized metric path
and resolution-dependent timestep shifting, for stabilizing long-sequence training, and propose an
asynchronous scheduling strategy that enables scalable video generation and unified multi-task
adaptation. 3) UDM substantially pushes the envelope of discrete generation, attaining state-of-the-art
results on VBench, GenEval and DPG-Bench (Hu et al., 2024).

2 RELATED WORKS

2.1 CONTINUOUS-SPACE VISUAL GENERATION

Continuous methods for visual generation have achieved significant progress in recent years. Early
endeavors such as variational autoencoders (VAEs) (Kingma & Welling, 2013) and flow-based
models (Dinh et al., 2014; 2016) exploit continuous latent spaces to model complex images, while
GANs(Goodfellow et al., 2020) generate high-resolution images with strong perceptual quality via
adversarial training (Brock et al., 2018; Karras et al., 2020). Diffusion models (Ho et al., 2020; Song
et al., 2021), which learn to recover data by progressively denoising Gaussian noise in a continuous
space, demonstrated remarkable performance in both image and video generation (Gao et al., 2025a;
Batifol et al., 2025; Baldridge et al., 2024; Betker et al., 2023; Wu et al., 2025a; Brooks et al., 2024;
Kong et al., 2024; Gao et al., 2025b; Wang et al., 2025a; Kuaishou, 2024; Ma et al., 2025). MAR (Li
et al., 2024) employs an autoregressive framework with a diffusion head to produce continuous-
valued outputs, and NOVA (Deng et al., 2025b) further extends this idea to video generation, applying
autoregressive modeling to spatio-temporal sequences. UDM shares the same spirit as continuous
diffusion models, performing global iterative refinement, but operates over discrete tokens.

2.2 DISCRETE-SPACE VISUAL GENERATION

Discrete visual generation can be broadly categorized into autoregressive and masked diffusion
models, both operating on discrete visual tokens such as pixels (Kalchbrenner et al., 2017; Reed et al.,
2017) or latent codes (Oord et al., 2017; Esser et al., 2021). Autoregressive models generate discrete
visual tokens sequentially, with each prediction conditioned on previously generated context. This
approach has been applied to both image (Sun et al., 2024a; Ramesh et al., 2021; Ding et al., 2021;
Yu et al., 2022) and video synthesis (Wang et al., 2024b; Yan et al., 2021; Kondratyuk et al., 2024;
Wang et al., 2024c). Although conceptually simple, this design often suffers from slow inference and
pronounced error accumulation. In contrast to autoregressive methods, masked diffusion models (Gat
et al., 2024; Chang et al., 2022; 2023; Yu et al., 2023) introduces the prediction of masked tokens,
enabling parallel generation and improved modeling of global context. Despite these advantages, it
remains challenging to apply these methods to long sequences, e.g. high-fidelity long-form video.
FUDOKI (Wang et al., 2025b) investigates the integration of discrete flow matching (Gat et al., 2024)
within native multimodal models. In this work, we adopt a uniform discrete diffusion approach,
which performs iterative global refinement from categorical noise. By addressing key challenges,
UDM enables both efficient inference and high-quality long-sequence generation.

3 METHODOLOGY

We first review the concepts of uniform discrete diffusion / discrete flow matching in Sec. 3.1, which
provide the theoretical foundation for our framework. In Sec. 3.2.1-3.2.2, we introduce UDM, a
simple yet powerful framework that bridges the gap between discrete and continuous approaches,
enabling scalable and effective video generation.

3.1 PRELIMINARY: DISCRETE FLOW MATCHING

Discrete Flow Matching (DFM) (Gat et al., 2024) introduces a family of generative models designed
to map data from an initial distribution, po(z), to a final distribution, p; (x), within a discrete state
space. The model utilizes a time-dependent probability path, p;(x), which interpolates between these
two distributions over the interval ¢ € [0, 1]. The key idea behind DFM is to define a velocity field,
u;, which drives the evolution of this probability path, enabling the model to simulate a Markov
process and generate new data samples.
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Figure 3: A global refinement process used in UDM. Leveraging visual token similarity, our frame-
work captures hierarchical structures—spatial for images and spatio-temporal for videos—enabling
coherent, hierarchical structure generation from global semantics to fine details.

Probability paths. We consider the probability path p;(x), where ¢ € [0, 1] indexes a time-dependent
probability distribution between a source distribution po(x) and a target distribution p; (z) over t.

Given a data distribution q(z) over z = (z?,...,2P) € S = TP, the probability path is defined as:
pe(x Z pe(x|z1)q(z1), where py(z|z1) Hpt 1), ey
T1ES

pi(z" | #%) denotes a conditional probability path, characterizing the evolution of the state * given
the initial state xj.

Probability velocities. To generate the predefined probability path p;(«), we consider a Continuous-
Time Markov Chain (CTMC), modeled as a stochastic process X;. The dynamics of this CTMC are
governed by a probability velocity u?, also known as the transition rate. The transition rate models
how the current state x} evolves toward the target state % over time. Within this framework, each
token is updated independently according to the following transition rule:

Typp, ~ 045 () + huy(- | of, 2}), 2

where ul(- | zi, z%) represents velocity filed, a conditional rate function that governs the flow of
probability from the current state 2% to the target state 2 over time. Equation (2) can be interpreted
as a small perturbation of the point mass (51,, scaled by the step size h, effectively modeling discrete
state transitions as a continuous-time stochastic process. This velocity field is central to DFM, as it
characterizes the dynamics of the probability path and is the primary quantity learned during training.

3.2  UNIFORM DISCRETE DIFFUSION WITH METRIC PATH

We present UDM, a novel framework built upon uniform discrete diffusion with metric path for image
and video generation. In this section, we first introduce three key innovations: (1) a Linearized Metric-
Path for structured and tractable trajectory design, (2) a Resolution-dependent Timestep Shifting
mechanism to improve training stability and representation learning for long video sequences, and
(3) a Frame-wise Independent Perturbation Scheduling strategy for unified long-video generation
and multitask learning. After introducing these core components, we further provide the training
procedure and sampling process.

3.2.1 METRIC PROBABILITY PATH FOR LONG SEQUENCE DATA

For data with varying sequence lengths, the degree of perturbation should be adapted during training.
This requires a probability path to effectively handle sequences of different lengths, such as high-
resolution images or videos. In this section, we introduce two key techniques, linearized metric path
and resolution-dependent timestep shifting, to address this challenge, ensuring that the perturbation
process is appropriately adjusted based on the sequence length.

Linearized metric path. We introduce the linearized metric path, a novel probability path derived
from token embedding distances. Formally, we define the distance functiond : 7 x 7 — Rx,
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which measures the discrepancy between the codebook embeddings of generated token = and the
target tokens 1. The distance satisfies the property d(x,z1) = 0 < x = x1, ensuring a well-defined
metric structure. Based on this, the probability path is defined as

pt(ﬂf|l’1) = softmax (7Btd(x7$1)) ) 3)

where 5, : [0,1] — R is a monotonic scheduler function with boundary conditions 5y = 0,
1 = oo. The core of linearized path lies in the functional form of 3;, which is parameterized as

t
=cX (—
fe=exli
where ¢ > 0 and o > 0 are hyperparameters that control the relationship between the sampling
distance d(x, 1) and time ¢. Specifically, the forward process samples x; ~ py1(- | 1), with
boundary conditions yielding a uniform distribution over codebook embeddings at £ = 0 and a
deterministic sample at x; when ¢t = 1, illustrated in Figure 3.

), t€[0,1), “)

When ¢ is between 0 and 1, our objective is to find an appropriate set of values for ¢ and « that preserve
the linear relationship between ¢ and d(z, x1). This linearity provides a finer control of perturbations
over the probability path, as described next. Additional experiments and discussions on the impact of
lineared metric path on model convergence and performance are provided in Appendix G.

Resolution-dependent timestep shifting. Intuitively, since higher resolutions contain more pixels,
more perturbation is needed to alter the signal. To address this, we introduce a time shift parameter A,
which adjusts the timestep based on the resolution. For any given ¢, we define the shifted timestep ¢

t
—_— 5
=0 )
Because our proposed linearized metric path enforces a linear relationship between ¢ and d(x¢, z1),
we modulate this path using A to accommodate varying data resolutions. For higher resolutions, we set
A > 1 to create a convex relationship between ¢ and d(x;, 1) that introduces stronger perturbations.
For lower resolutions, we set A < 1, yielding a concave relationship with more gradual perturbations.

f=

3.2.2 ASYNCHRONOUS TIMESTEP SCHEDULING

Videos exhibit complex spatiotemporal dynamics and diverse downstream tasks, making task-specific
modeling inefficient and resource-intensive. Motivated by diffusion forcing (Chen et al., 2024a), we
propose a asynchronous timestep scheduling strategy for multi-task learning. Instead of applying the
sample noise level across all frames in a video sequence, we assign perturbation levels independently

on a per-frame basis. Formally, given a video sequence F = { f L2, ..., f*} with n frames, we
sample a perturbation schedule T = {t1,#2 ... "}, where t' ~ U(0,1). The noisy sequence is
then constructed as F = { ftl1 , ft%, ..., f{n}, with the diffusion process in Eq. 3 applied frame-wise

according to the corresponding ¢*. This strategy enables fine-grained temporal control over the noise
schedule and decouples perturbation levels across frames. As a result, the model can adaptively
balance local frame reconstruction with global temporal coherence, facilitating diverse generation
objectives, such as text-to-video, image-to-video, video extrapolation and start-end frame control
within a unified architecture. More visualizations are provided in Appendix E & F.

3.2.3 TRAINING AND SAMPLING

Training. We first encode video clips into discrete token sequences using a pretrained tokenizer,
yielding #1 = (z1,2%...2% ... 21"), where F denotes the number of video frames and z denotes
the i-th frame tokens. At each training step, we uniformly sample timesteps t* € [0, 1] independently
for each frame z¢ in the video sequence and obtain a perturbed sequence z; ~ Py (- | 1) via the
proposed metric probability path. The model then takes as input the concatenation of text tokens e and
x4, and predicts the original visual token sequence =1 by outputting logits over the token vocabulary
at each position. The training objective is formulated as the expected cross-entropy between the
ground-truth visual tokens and the model’s predicted distribution:

L =Ei01], 21,0, |~ log 1 (21 | 24, €)] . (6)

Sampling. During sampling, we follow Gat et al. (2024); Shaul et al. (2025) and employ an Euler
solver for efficient and high-quality generation. Specifically, we first uniformly sample =y from
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the full vision vocabulary and feed it into the model to obtain the prediction #;. Using Eq. 3 and
Eq. 2, we compute the velocity field u;(- | a¢,#1). The estimate of x; is then iteratively refined as
1 < x1 + dt - ug, where each step updates the sample along the estimated denoising trajectory.
After T such steps, the process yields a clean image or video sequence. Further details on training
and sampling are provided in Appendix C.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets. We leverage a curated selection of high-quality datasets to effectively train UDM models.
For text-to-image training, we collect 16M image-text pairs sourced from Unsplash (Unsplash, 2020),
DataComp (Gadre et al., 2024), COYO (Byeon et al., 2022), and JourneyDB (Sun et al., 2023).
These pairs are filtered by image resolution and aesthetic score, and further supplemented with 14M
Al-generated image samples using the FLUX.1 model (Batifol et al., 2025). For text-to-video training,
we select 12M video-text pairs from the highest scoring subset of Koala-36M (Wang et al., 2025¢)
and complement them with 12M internal video-text pairs. The internal videos are captioned using the
Emu2-17B model (Sun et al., 2024b) in conjunction with the captioning engine (Diao et al., 2024).
We uniformly sample short and long captions during training, with a maximum length of 320 tokens.

Architectures. We initialize our visual generation model with weights from a pre-trained LLM.
Specifically, we adopt the Qwen3 LLM architecture (Yang et al., 2025a), which natively incorporates
QK-Norm (Dehghani et al., 2023) layer to stabilize the multimodal training. To better capture the
spatiotemporal structure inherent in videos, we introduce an enhanced M-RoPE (Wang et al., 2024a)
that allocates interleaved frequency components across temporal, height, and width dimensions,
following the approach of Mogao (Liao et al., 2025). Crucially, unlike Liao et al. (2025), our 3D-
RoPE assigns identical positions for texts, ensuring equivalence with the 1D-RoPE (Su et al., 2024).
We use the Cosmos (Agarwal et al., 2025) tokenizer to extract image and video tokens, achieving
4x temporal and 8x8 spatial compression through a 64K FSQ (Mentzer et al., 2024) codebook.
Furthermore, we train an IBQ (Shi et al., 2025) tokenizer for high-resolution image generation,
facilitating efficient 16 16 spatial compression via a 256-dimensional codebook with 131K entries.

Diffusion schedulers. We adopt the Kinetic Optimal Scheduler (Shaul et al., 2025), equipped with a
metric-induced probability path specifically designed for the embedding space of vision tokenizers.
Following Shaul et al. (2025), we perform a grid search over the path hyperparameters o and c,
visually inspecting the reconstructed samples for each (o, ¢) that fully exploit the time interval [0, 1].
Eventually, we select (o, ¢) to (1.0, 5) for the Cosmos tokenizer and (0.5, 6) for our IBQ tokenizer.
For conventional uniform diffusion, we use the mixture probability path proposed by Gat et al. (2024).
In contrast, for masked diffusion, we adopt the MaskGIT (Chang et al., 2022) scheduler, which has
been empirically shown to achieve state-of-the-art performance in both image and video generation
models (Kondratyuk et al., 2024; Bai et al., 2025). Following established practice in continuous
diffusion models, we default to 25 inference steps for image generation and 50 for video generation.

More implementation details, including Training Details and Evaluation, are provided in Appendix C.

4.2 MAIN RESULTS

UDM rivals Sora-like text-to-video generation models despite using a discrete tokenizer. Current
discrete video tokenizers offer limited spatiotemporal compression and reconstruction quality, posing
significant challenges to bidirectional diffusion transformers. However, UDM excels in generating
video clips from text, achieving strong performance on the VBench, as shown in Table 1. Com-
pared to Sora-like diffusion models: Vchitect (Fan et al., 2025), Pyramid Flow (Jin et al., 2025),
LuminaVideo (Liu et al., 2025a), OpenSora (Peng et al., 2025) and OpenSoraPlan (Lin et al., 2024),
UDM matches or exceeds their performance, particularly in the semantic field. These results further
underscore the need for a tokenizer that satisfies the imaging quality of state-of-the-art continuous
models (Kong et al., 2024; Teng et al., 2025; Ma et al., 2025; Yang et al., 2025b; Wang et al., 2025a).

UDM emerges frame-conditioned video generation by accurately modeling the future motion.
Prior methods typically adapt text-to-image (Ren et al., 2024; Chen et al., 2024b; Xing et al., 2024)
or text-to-video models with a clean first frame for image-to-video generation. In contrast, UDM
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Table 1: Text-to-video evaluation on VBench. For clarity and to better highlight distinctions
between models, we report only the most relevant metrics across the quality and semantic dimensions.

Total Quality Semantic Dynamic Aesthetic Imaging Object Multiple Spatial

Model #params  #videos Score  Score Score Degree Quality ~ Quality  Class  Objects  Relationship Color  Scene
Continuous models

LaVie 3B 25M 77.1 78.8 70.3 49.7 54.9 61.9 91.8 333 34.1 86.4 52.7
Show-1 4B 10M 789 80.4 73.0 44.4 57.4 58.7 93.1 455 53.5 864 470
VideoCrafter2 2B 10M 80.4 82.2 734 425 63.1 672 92.6 40.7 359 929 553
Latte-1 1B 25M 71.3 792 67.6 68.9 61.6 61.9 86.5 34.5 41.5 853 363
NOVA 0.6B 20M 80.1 80.4 79.1 - 59.4 - 92.0 715 715 - 54.1
Vchitect-2.0 2B 134M  81.6 825 71.8 58.3 61.5 65.6 87.8 69.4 54.6 869 575
Pyramid Flow 2B 10M 81.7 84.7 69.6 64.6 63.3 65.0 86.7 50.7 59.5 829 432
LuminaVideo 2B 12M 83.0 83.9 79.3 67.1 62.3 64.6 91.0 68.3 67.3 902 56.1
OpenSoraPlan v1.5 8B 40M 83.0 84.2 782 64.4 66.9 68.5 91.9 70.7 80.1 81.8 52.1
OpenSora 2.0 11B 85M 83.6 84.4 80.3 56.4 65.3 65.7 94.6 78.0 76.8 863 534
MAGI-1 24B - 81.8 84.7 70.4 72.5 59.3 65.3 84.1 50.6 73.0 875 289
Step-Video 30B - 81.8 84.5 71.3 53.1 61.2 70.6 80.6 50.6 71.5 883 244
CogVideoX1.5 5B - 82.0 82.7 79.2 56.2 62.1 65.3 834 65.3 79.4 884 533
HunyuanVideo 13B - 832 85.1 75.8 70.8 60.4 67.6 86.1 68.6 68.7 91.6 539
Wan2.1 14B - 83.7 85.6 76.1 65.5 66.1 69.4 86.3 69.6 75.4 88.6 458
Discrete models

Lumos-1 3.6B 10M 783 79.5 73.5 - - 58.0 90.1 - - 82.0 -
Emu3 8B - 81.0 84.1 68.4 79.3 59.6 62.6 86.2 44.6 68.7 883 371
UDM 1.7B 24M 82.4 834 78.5 81.4 63.1 622 93.4 70.6 62.1 90.7 523

seamlessly integrates asynchronous frame conditions, enabling zero-shot generalization for this task.
As depicted in Table 2, UDM excels in camera control and subject movement versus specialized
frame-conditioned models (Agarwal et al., 2025; Yu et al., 2025; Wang et al., 2025a; Liu et al., 2025b).
Our results demonstrate that diffusion forcing effectively generalizes to image-to-video generation,
pushing the boundaries of autoregressive discrete video generation models without causal attention.

Table 2: Image-to-video evaluation on VBench++. To evaluate temporal consistency, we focus on
image-to-video (I2V) metrics of visual similarity between each generated frame and reference image.

Total Quality I2V ~ Dynamic Aesthetic Imaging Camera I2V Subject 12V Background

Model #params  #videos Score  Score  Score  Degree Quality Quality Motion Consistency Consistency
Continuous models

ConsistI2V 2B 10M 84.1 76.2 91.9 18.6 59.0 66.9 339 95.8 96.0
12VGen-XL 2B 35M 85.3 78.4 92.1 26.1 64.8 69.1 18.5 96.5 96.8
SEINE 3B 25M 85.5 78.4 92.7 27.1 64.6 71.4 21.0 97.2 97.0
DynamiCrafter 2B 10M 86.9 80.5 93.5 69.7 60.9 68.6 31.2 97.2 97.4
Cosmos 13B 100M 842 75.8 92.6 18.7 55.8 59.9 254 96.0 974
VideoMAR 1.4B 0.5M 84.8 75.6 94.0 11.0 55.8 623 21.6 97.9 98.4
CogVideoX 5B - 86.7 78.6 94.8 33.2 61.9 70.0 67.7 97.2 96.7
HunyuanVideo 13B - 86.8 78.5 95.1 222 62.6 70.1 49.9 98.5 97.4
Wan?2.1 14B - 86.9 80.8 929 514 64.8 70.4 34.8 97.0 96.4
Pusa 14B - 873 79.8 94.8 52.6 63.2 68.3 29.5 97.6 99.2
Step-Video 30B - 88.4 81.2 95.5 48.8 62.3 70.4 49.2 97.9 98.5
MAGI-1 24B - 89.3 82.4 96.1 68.2 64.7 69.7 50.9 98.4 99.0
Discrete models

Lumos-1 3.6B 10M 84.7 76.1 93.3 - - 69.2 - 97.4 97.4
UDM 1.7B 24M 86.2 79.8 92.6 65.3 574 64.2 37.6 96.1 96.5

UDM performs on par with the state-of-the-art models in generating high-resolution images.
We compare UDM against continuous models in Table 3, encompassing specialist architectures:
SDXL (Podell et al., 2024), SD3 (Esser et al., 2024), FLUX (Batifol et al., 2025), SANA (Xie et al.,
2025a) and NOVA (Deng et al., 2025b), as well as unified architectures: Mogao (Liao et al., 2025),
Bagel (Deng et al., 2025a), OmniGen2 (Wu et al., 2025b) and Show-02 (Xie et al., 2025d). Through
joint modeling of discrete text and visual tokens, UDM demonstrates strong text-image alignment.
For example, on the DPG-Bench, UDM reaches a leading overall score with dense text prompts. This
strong performance is consistently sustained on the GenEval when using the rewritten prompts. At
high resolutions, UDM surpasses the autoregressive (Wang et al., 2024b; Han et al., 2025; Chen et al.,
2025b) and masked diffusion (Bai et al., 2025; Yuan et al., 2025) approaches in efficiency, effectively
reducing inference steps through iterative refinement while preserving fine-grained detail.

4.3 ABLATION STUDY

Effectiveness of iterative refinement for visual generation. Discrete diffusion models inherently
incur elevated sampling errors, as exhibited in prior studies (Tang et al., 2022; Feng et al., 2025).
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Table 3: Text-to-image evaluation on DPG-Bench and GenEval. We prefer the DPG-Bench metrics
to mitigate potential prompt template leakage concerns (Xie et al., 2025b) associated with GenEval.
t refers to the methods using rewritten GenEval prompts for clearer position and attribute guidance.

ModelSpec DPG-Bench GenEval
Model #params #images Overall Entity Attribute Relation Overall Single Two Counting Colors Position ColorAttr
Continuous models
SDXL 2.6B 74.7 82.4 80.9 86.8 0.55 098 044 0.39 0.85 0.15 0.23
SD3 2B 84.1 91.0 88.8 80.7 0.62 098 0.74 0.63 0.67 0.34 0.36
FLUX.1-dev 12B - 849 - - - 0.68 099 0.85 0.74 0.79 0.21 0.48
NOVA 1.4B 600M 83.0 88.7 86.4 91.9 0.71 099 091 0.62 0.85 0.33 0.56
SANA-1.57 4.8B 50M 84.7 - - - 0.81 099 093 0.86 0.84 0.59 0.65
OmniGen2 7B 83.6 88.8 90.2 89.4 0.80 1.00 095 0.64 0.88 0.55 0.76
Mogao® 7B 84.3 90.0 88.3 932 0.89 1.00 097 0.83 0.93 0.84 0.80
Bagel 14B - 85.1 90.4 91.3 90.8 0.82 099 0.94 0.81 0.88 0.64 0.63
Show-02° 7B 66M 86.1 91.8 90.0 91.8 0.76 1.00  0.87 0.58 0.92 0.52 0.62
Discrete models
Show-o 1.3B 2B 673 75.4 78.0 845 0.68 098  0.80 0.66 0.84 0.31 0.50
Emu3’ 8B - 81.6 872 86.3 90.6 0.66 099 0.81 0.42 0.80 0.49 0.45
FUDOKI 1.5B 13M 83.6 89.7 88.1 93.7 0.77 096 085 0.56 0.88 0.68 0.67
Janus-Pro 7B 2M 842 88.9 89.4 89.3 0.80 099  0.89 0.59 0.90 0.79 0.66
Meissonic 1B 210M 0.54 099  0.66 0.42 0.86 0.10 0.22
Lumos-17 3.6B 60M - - 0.66 095 0.80 0.46 0.81 0.48 0.48
Infinity" 2B - 835 90.8 0.73 099 0.85 0.64 0.84 0.49 0.57
UDM  (512x320) 1.7B 30M 825 88.3 86.4 929 0.64 099 0.83 0.47 0.83 0.30 0.41
UDM (1024 x1024) 1.7B 30M 86.0 91.5 89.6 94.7 0.68 099 092 0.63 0.86 0.25 0.40
UDM' (1024 x1024) 1.7B 30M - - - - 0.80 .00 0.92 0.64 0.89 0.67 0.69

To systematically investigate this issue in image and video generation, we train three variants of the
discrete diffusion model, assessing performance across insufficient and excessive sampling regimes.
Figure 4 compares key performance metrics of text-to-image models on GenEval and text-to-video
models on VBench, with all models evaluated after being trained for an identical number of iterations.
In the image generation task, which is characterized by low structural redundancy, all three models
can generate feasible images within the conventional 25 inference steps. Without iterative refinement,
reducing the number of steps substantially decreases the GenEval score in masked diffusion sampling.
As we progress into video generation, a task rich in contextual redundancy, it becomes essential to
correct sampling errors at each step, ensuring temporal coherence and visual fidelity across frames.
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(b) Text-to-video performance on VBench.

Figure 4: Sampling performance across inference steps. Using the Cosmos tokenizer, we evaluate
the image samples at 256256 (~ 1K tokens) and the video samples at 25x384 x240 (~10K tokens).

Effectiveness of timestep conditioning for uniform diffusion. Recent work explores time-agnostic
(i.e., noise-unconditional) methods for both continuous diffusion (Sun et al., 2025; Tang et al., 2025)
and masked diffusion (Zheng et al., 2025; Ou et al., 2025), effectively narrowing the architectural
gap between diffusion transformers (DiTs) and LLMs. In this context, we analyze whether timestep
conditioning remains indispensable for uniform diffusion. The results are illustrated in Figure 5.
Specifically, we train three model variants with distinct conditioning strategies and evaluate GenEval
across training iterations. After one epoch (~30K iterations), embedding or prompting with the
timestep provides no measurable benefit. Notably, timestep embedding can degrade performance as
their variance increases, potentially disrupting token embedding and compromising training stability.

Effectiveness of timestep shifting for video generation. As outlined in Section 4.1, our probability
path is designed to maximize the time interval. In line with continuous models (Kong et al., 2024;
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Figure 5: Model metrics across training iterations. We sample 256 x256 images for evaluation.

Wang et al., 2025a; Liu et al., 2025a), the optimal SNR schedule should be tailored with video size.
To study the impact of the SNR schedule on video generation, we train four text-to-video models
with divergent timestep shifting and evaluate their performance using the respective value on VBench.
Figure 6 presents our shifting schedules, accompanied by their evaluation metrics and visualizations.
Surprisingly, the shifting strategy proposed by Esser et al. (2024) demonstrates strong effectiveness
for uniform diffusion, empowering UDM to match the performance of its continuous counterparts.
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Figure 6: Timestep shifting across SNR schedules. We sample 25x384 %240 videos for evaluation.

5 CONCLUSION

In this work, we revisited discrete generative modeling for video synthesis and introduced UDM,
a uniform discrete diffusion framework with a metric path that bridges discrete and continuous
paradigms. UDM employs two key innovations, Linearized Metric-Path and Resolution-dependent
Timestep Shifting, to provide fine-grained control over perturbations, enabling stable and scalable
training for both high-resolution and long-duration video generation. On top of this, our asynchronous
temporal scheduling strategy unifies multiple tasks, such as video interpolation and image-to-video
synthesis, within a single model. Extensive experiments show that UDM not only consistently
surpasses prior discrete approaches but also achieves results comparable to state-of-the-art continuous
diffusion models. We believe this work marks a step toward unifying discrete and continuous
paradigms and offers a promising direction for scalable, versatile, and efficient visual generation.
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ETHICS AND REPRODUCIBILITY STATEMENT

This work aims to advance discrete generative modeling for video generation through Uniform
Discrete diffusion with Metric path. No personal, private, or sensitive information is included in
the datasets or experiments, and no ethical risks are associated with this study. With respect to
reproducibility, we affirm our commitment to ensuring that all reported results can be faithfully
reproduced, and we will provide the necessary resources and documentation to facilitate replication.
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APPENDIX

We will publish our code and pre-trained models to improve interpretability and assure reproducibility.
Here, more implementation details, experiments and qualitative results are organized as follows:

» Usage of Large Language Models (Sec. A)

¢ Discussion (Sec. B)

* Training and Sampling Details (Sec. C)

* Implementation Details (Sec. D)

* Video extrapolation experiments (Sec. E)

* Start-End frame control experiments (Sec. F)

» Experiments on the effect of metric path linearity(Sec. G)

» Experiments of model size for uniform diffusion (Sec. H)

» Ablations on the impact of different LLM backbones (Sec. I)
* Inference speed comparison (Sec. J)

» Formal definition and optimization of linearized metric path (Sec. K)

A USAGE OF LARGE LANGUAGE MODELS

We hereby declare that LLMs were used solely for the purpose of polishing this manuscript. There are
no content generation, data interpretation, or intellectual contributions were derived from the LLMs.
All ideas, analyses, and conclusions presented in this paper are the original work of the authors.

B DISCUSSION

Linearized metric path. Shaul et al. (2025) introduces a general metric probability path and
demonstrate their effectiveness on small-scale image/text data. FUDOKI (Wang et al., 2025b) further
integrates this probability path into multimodal models, showing benefits for unified understanding
and generation. However, these works do not address fundamental challenges arising in long-sequence
visual generation, e.g., the tailored design of metric path and spatiotemporal consistency. In this work,
we introduce UDM, the first discrete framework that formulates video synthesis as iterative refinement
over discrete spatiotemporal tokens. Specifically, Linearized Metric Path simplifies the design space
of metric path, and Resolution-dependent Timestep Shifting enables stable long-sequence training,
together addressing above two fundamental challenges that prior discrete methods could not handle.

Resolution-dependent Timestep Shifting in the Discrete Space. In continuous diffusion models,
resolution-dependent timestep shifting is motivated by an explicit SNR analysis (Esser et al., 2024;
Hoogeboom et al., 2023). Higher resolutions correspond to higher signal energy and requires stronger
perturbations (lower SNR) at earlier timesteps to stabilize training and fully exploit the noise schedule.
In contrast, prior discrete methods lack an analogous, well-defined SNR metric and thus can only
import such schedules heuristically from continuous models. In this work, we approximate the
SNR-like embedding distance along the proposed Linearized Metric Path. Under this interpretation,
the resolution-dependent timestep shifting strategy arises naturally, rather than being post hoc tuned.
To our knowledge, UDM is the first discrete framework that both derives and systematically validates
a resolution-aware schedule, giving a conceptual basis to heuristics taken from continuous diffusion.

Asynchronous Timestep Scheduling. SkyReels-V2 (Chen et al., 2025a), Pusa (Liu et al., 2025b),
FVDM (Liu et al., 2024) and UDM all relate to diffusion-forcing style schedulers that perform
frame-wise perturbation and can support multitask generation. While prior works have extensively
explored continuous timestep objectives, schedules, and conditioning, the corresponding design space
in discrete methods remains unexplored. As summarized in Table 4, UDM differs from continuous
models in several fundamental aspects. These differences prevent the direct reuse of continuous-
space timestep designs. Our analysis (Fig.5 in Main text) shows that UDM needs remove timestep
conditioning to achieve stable training and strong performance, revealing a fundamental difference
from continuous diffusion methods. We believe that identifying this distinction provides useful
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Method Noise Loss Scheduler Timestep Conditioning
Continuous  Gaussian noise ~ MSE Flow Matching Yes
Discrete Categorical noise =~ CE  Discrete Flow Matching No

Table 4: Comparison between continuous models and UDM in latent space, noise type, objective,
and scheduling design.

insight for the community and may help accelerate progress on discrete video generation approaches.

C TRAINING AND SAMPLING DETAILS

Algorithm 1 UDM Training Algorithm 2 UDM Sampling
Require: Predictor py, Steps T, Schedule 5;, Require: Predictor py, Steps T, Schedule 5,
Shift \, Embedding E € R *4 Shift \, Embedding E € R *4
1: repeat 1: Sample z; ~U(0,V), gete; = E,
2: T1 ~ Pdata 2: fork =1toT1 do
3 t~U(0,1) 3: t+ (k—1)/T
4: t+t/(t+A1—1)) 4: t<t/(t+AN1—1))
5 xp~pyi () 5 Ty~ Po(élxz)l )
6 L —-5P 1o 2 | s 6: up — ui(z, 2|71
7: 9<—9—an5éllgpe( v 7w o dt ey
8: until converged 8: end for _
9: return Trained predictor py 9: return > Generated discrete sample

Training. We encode images and videos into discrete latent tokens using the pre-trained tokenizer.
For visual tokens, we adopt a DFM training objective based on the probability path. At each iteration,
we randomly sample a timestep ¢ € [0, 1] and use the metric path to obtain the noised tokens ;. Text
prompts are tokenized using the Qwen3 tokenizer and embedded into the same semantic space. We
concatenate text embeddings and noised visual tokens into a unified sequence. The training objective
is defined as the expected cross-entropy between the ground-truth visual token sequence and the
model’s predicted distribution. For the complete algorithmic workflow, please refer to Algorithm 1.

Sampling. This velocity field ensures that transitions occur only from state z to state  when z is
closer to z than z, i.e., d(x,z1) < d(z,x1). Using the distance metric and the time-dependent factor
B¢, the velocity guides the flow of particles in a manner that is both kinetic-optimal and aligned with
the underlying geometry of the state space. We list the complete sampling process in Algorithm 2.

D IMPLEMENTATION DETAILS

Training details. UDM is trained on 128 A100 (40GB) GPUs. In all experiments, we use the
AdamW optimizer (Loshchilov & Hutter, 2019) with 8; = 0.9, 82 = 0.95, weight decay of 0.05, and
an initial learning rate of le-4. The learning rate employs cosine decay (Loshchilov & Hutter, 2017).
We first pre-train text-to-image models and leverage their weights to initialize text-to-video models.
Subsequently, following Chen et al. (2025a), we adapt full-sequence video diffusion models to
diffusion forcing architectures by applying frame-wise noise schedules for autoregressive generation.

Evaluation. We evaluate text-to-image alignment using benchmarks DPG-Bench (Hu et al., 2024)
and GenEval (Ghosh et al., 2024). Each image is generated from original or rewritten text prompts,
with resolution determined by model type: 1024 x 1024 for image generation models to support high
fidelity, and 512 x320 for video generation models to effectively measure cross-modal generalization.
We access text-to-video generation using VBench (Huang et al., 2024a) and image-to-video generation
with VBench++ (Huang et al., 2024b), its comprehensive successor tailored for real-world scenarios.
The videos, sized 49x512x320, are generated from rewritten prompts for text-to-video evaluation,
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and from original text prompts with official cropped first-frame images for image-to-video evaluation.
We apply classifier-free guidance (Ho & Salimans, 2022) with a scale value of 7.0 in all evaluations.

E VIDEO EXTRAPOLATION EXPERIMENTS

As UDM is trained by applying independent noise levels to each frame, it naturally lends itself
to video extrapolation via a sliding window. Specifically, new frames are generated sequentially,
conditioned on the most recent 13 frames, thereby extending future predictions beyond the initial
49-frame context window. To effectively mitigate sampling errors in autoregressive video generation,
we introduce a small amount of noise into historical frames by resampling them at timestep ¢ = 0.9.
Figure 7 presents the qualitative results for a video of 481 frames, where the initial text-to-video
segment is extended through 12 extrapolation steps, producing videos up to 10x the original length.

T

okyo street filled with warm glowing neon and anirﬁated éity signage.

Prompt: An extreme close-up of an gray-haired man with a beard in his 60s.

Figure 7: Zero-shot video extrapolation. We extend the 4-second text-to-video result to 40 seconds.

F START-END FRAME CONTROL EXPERIMENTS

We evaluate UDM on the start-end frame control task, a specialized form of video generation to
prevent future predictions from drifting. Concretely, we extract a sequence of frames from the video
at 4-second intervals and place them sequentially at the beginning and the end of the context window.
This setup enables the generation of a video featuring coherent motion of both objects and cameras,
preserving spatial relationships throughout the scene. We present the qualitative results in Figure 8.

G EXPERIMENTS ON THE EFFECT OF METRIC PATH LINEARITY

For the experiment setting, the left plot shows the L2 distance between the embeddings of noisy
images (obtained by adding noise at different time steps t) and the embedding of the clean image,
computed using 10k randomly selected images from the training set. The right plot follows the
same experimental setting as the ablation study presented in the main text. We compute the Pearson
correlation coefficients between the Euclidean distance and the timestep, which are -0.995, -0.921,
-0.997, and . We found the choice of the probability path is significantly influenced by the
values of ¢ and «, and this in turn has a substantial impact on the model’s performance. To determine
optimal values for ¢ and o, we draw inspiration from continuous diffusion model SD3 (Esser et al.,
2024), where the relationship between ¢ and d(x¢, 1) demonstrates a strong linear correlation. This
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Prompt: A winter scene features a snow- covered winding road through a dense conlferous forest
K 8

Prompt: A blonde dancer in a yellow raincoat performs an expressive routine on a rooftop.

Figure 8: Zero-shot start-end frame control. The start-end frames are rendered with transparency.

insight guides our approach to calibrating ¢ and « to effectively reach the limits of model performance
for different vision tokenizers.
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(a) Linearized and non-linearized metric paths. (b) Text-to-image performance on GenEval.

Figure 9: Sampling performance of different paths. We evaluate the image samples at 256 x256.

H EXPERIMENTS OF MODEL SIZE FOR UNIFORM DIFFUSION

To study the scaling properties of UDM models, we train three variants that are initialized from
Qwen3 models with 0.6B, 1.7B, and 4B parameters. Figure 10 compares the performance of different
model sizes on DPG-Bench, GenEval, and VBench, with all models trained for the same epoch count
as in Sec. 4.2. We find that increasing model size considerably enhances semantic performance
across both text-to-image and text-to-video evaluations but does not significantly improve generation
quality. This suggests that while larger models better capture high-level semantics and align more
accurately with text prompts, the fidelity of the generated outputs may ultimately be constrained by
the representation capacity of the discrete vision tokenizer.
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Figure 10: Sampling performance of different model sizes. All models are trained for the same
epoch count as in the main experiments and evaluated on 256256 images and 25 x 384 x 240 videos.

Table 5: Comparison of different LLM backbones.

Model #images VisionTokenizer Resolution GenEval
Qwen3-0.6B 24M FSQ 256x256 0.60
Qwen3-1.7B 24M FSQ 256x256 0.63
Llama3.2-1B 24M FSQ 256x256 0.61

I ABLATIONS ON THE IMPACT OF DIFFERENT LLM BACKBONES

To assess sensitivity to the LLM backbones, we conduct an ablation in Table 5 comparing Qwen3-
0.6B, Llama3.2-1B, and Qwen3-1.7B. All models share the same FSQ tokenizer, are trained on the
same data for the same epoch count as in Sec. 4.2, and are evaluated on 256x256 images. GenEval
improves monotonically from Qwen3-0.6B — Llama3.2-1B — Qwen3-1.7B, closely tracking model
size. These results suggest that performance is primarily governed by model capacity rather than the
specific LLM architecture, and our method is largely insensitive to the choice of Qwen versus other
open-source backbones.

J INFERENCE SPEED COMPARISON

To quantify the efficiency of our model, we report the average inference latency and compare UDM
with representative continuous and discrete video generation baselines in Table 6. For a standard
49-frame setting, UDM-1.7B requires only 70s on 19K tokens, yielding a VBench-T2V score of §1.9,
while a higher-resolution configuration reaches 82.4 with 180s latency. This places UDM on a more
favorable speed—quality frontier than previous discrete models (e.g., Lumos1-3.6B and Emu3-8B)
and comparable continuous diffusion models (e.g., CogVideoX-5B and StepVideo-30B).

Table 6: Inference latency of UDM and prior video generation models. UDM attains competitive
VBench-T2V scores with lower or comparable latency than both discrete and continuous baselines.
*Since the video version of Emu3-8B is not open-sourced, we estimate its latency by proportionally
scaling from the officially released image model.

Model Latent Video Size #Tokens Latency (s) VBench-T2V
CogVideoX-5B  Continuous 49 x 720 x 480 18K 180s 81.9
StepVideo-30B  Continuous 136 x 992 x 544 36K 900s 81.8
Lumos1-3.6B Discrete 25 x 448 x 256 13K 180s 78.3
Emu3-8B* Discrete 49 x 512 x 512 53K 1700s 81.0
UDM-1.7B Discrete 49 x 240 x 384 19K 70s 81.9
UDM-1.7B Discrete 49 x 512 x 320 34K 180s 82.4
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K FORMAL DEFINITION AND OPTIMIZATION OF LINEARIZED METRIC PATH

Motivation. In the uniform discrete diffusion framework, the probability path p;(x | z1) governs
how the model observes visual tokens at different levels of corruption. A desirable property of this
path is that the expected corruption strength increases uniformly over time. Intuitively, maintaining
such linearity ensures uniform coverage across ¢ € [0, 1], providing unbiased supervision across
noise levels, stabilizing training from scratch, and yielding smoother refinement trajectories.

Definition of Metric-Linearity. Let x; denote a clean token sequence, x; ~ p:(- | x1;6) the
corrupted sample at time ¢, and E(-) the tokenizer embedding. The metric-induced probability path
used in UDM is parameterized by 6 = (c, «):

5u0) = ¢ <t) @

1-—t
pe(x]z1;0) = softmax(—5;(0) d(x, x1)) , ®

where d(-, -) denotes the embedding-space distance induced by the tokenizer codebook. We define
the expected corruption trajectory:

J(t) = Earmg,vompuslon | 1E@e) = B@)3 |- ©)

which measures the expected deviation from clean samples at time ¢t. We call the path metric-
linear if fy(t) admits a close linear approximation in ¢; i.e., if the corruption level progresses at an
approximately constant rate.

Formulating Metric-Path Design as an Optimization Problem. Prior approaches (Shaul et al.,
2025) often rely on costly trial-and-error—training full models under different schedules and selecting
the best performing one. Under the metric-linear hypothesis, UDM instead formulates the schedule
selection as a bi-level optimization problem. For a discrete grid {tx }2_; C [0, 1], let (ag, by) denote
the best affine approximation to fy(t):

K
(ag,bg) = argmin D (fo(te) — (ati +10))*. (10)
k=1

)

The optimal schedule parameters are then obtained by minimizing the deviation from linearity:

K
0" = arggfzi’r;) ; (foltr) — (agty + bg))”. (11)

Equivalently, equation 11 can be expressed as maximizing the Pearson correlation between fy(¢) and
time ¢, providing a principled criterion for selecting metric paths without training generative models.

Practical Solution. Because § = (c, «) is two-dimensional and the inner regression admits a
closed-form solution, equation 11 can be solved efficiently. We approximate fy(¢) using a set of
10k randomly selected clean images from the training distribution and a finite grid of timesteps.
A deterministic coarse-to-fine search over 6 yields schedules whose corruption trajectories exhibit
near-perfect linearity (Pearson correlation ~ 0.99). This procedure produces stable, well-behaved
probability paths that significantly reduce path-design overhead compared with previous methods.
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