

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFORM DISCRETE DIFFUSION WITH METRIC PATH FOR VIDEO GENERATION

Anonymous authors

Paper under double-blind review

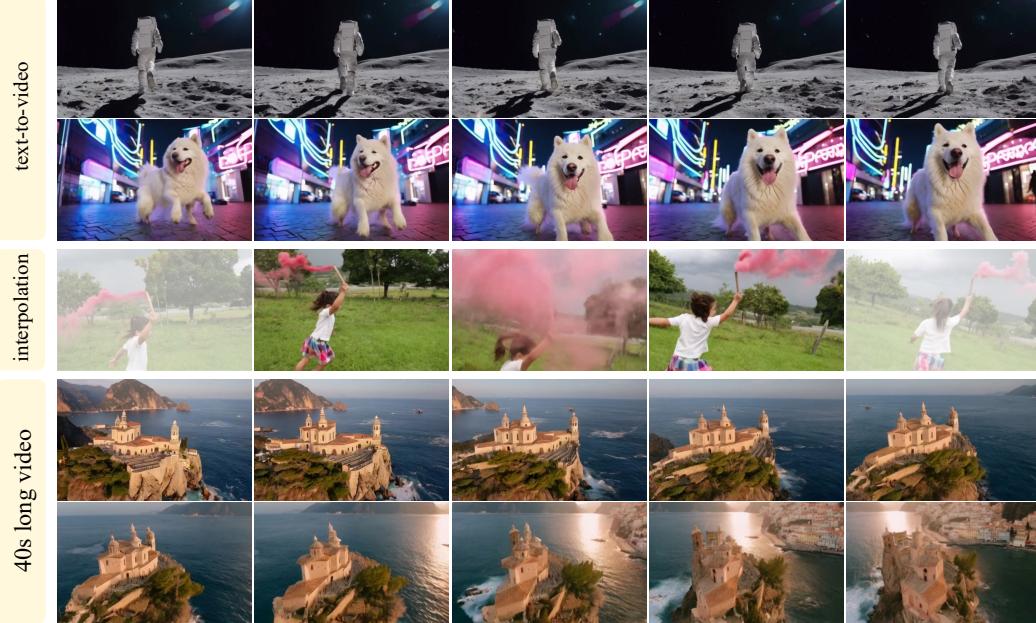


Figure 1: Visualization of **UDM** across diverse video generation tasks: text-to-video generation, video interpolation, and long video generation. These examples highlight the model’s ability to synthesize coherent content, produce smooth temporal transitions, and scale to extended sequences.

ABSTRACT

Continuous-space video generation has advanced rapidly, while discrete approaches lag behind due to error accumulation and long-context inconsistency. In this work, we revisit discrete generative modeling and present **Uniform Discrete diffusion with Metric path (UDM)**, a simple yet powerful framework that bridges the gap with continuous methods and enables scalable video generation. At its core, UDM formulates video synthesis as iterative refinement over discrete spatio-temporal tokens. It is based on two key designs: a Linearized Metric-Path and a Resolution-dependent Timestep Shifting mechanism. This design enables UDM to scale efficiently to high-resolution image synthesis and long-duration video generation (up to 32k tokens), while requiring significantly fewer inference steps. Additionally, we introduce an asynchronous temporal fine-tuning strategy that unifies multiple tasks, including video interpolation and image-to-video synthesis, within a single model. Extensive experiments on challenging video and image generation benchmarks show that UDM consistently outperforms prior discrete methods and achieves performance comparable to state-of-the-art continuous diffusion methods.

1 INTRODUCTION

Continuous-space visual generation has achieved remarkable progress in both image and video synthesis (Batifol et al., 2025; Baldridge et al., 2024; Betker et al., 2023; Brooks et al., 2024; Wang

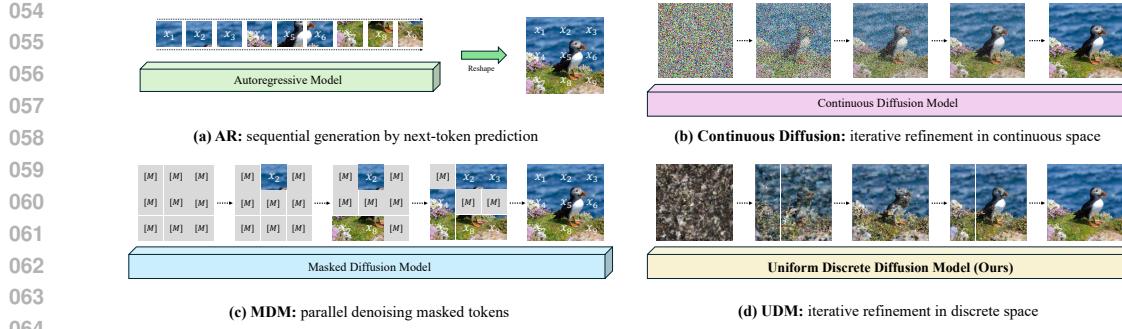


Figure 2: **Illustration of different image/video generation paradigms.** Discrete-space approaches such as AR and MDM adopt non-refinable local generation, where produced tokens are fixed once generated. In contrast, UDM introduces iterative global refinement, conceptually aligning discrete methods with continuous-space approaches, and substantially narrowing their performance gap.

et al., 2025a; Gao et al., 2025b; Yang et al., 2025b; Kong et al., 2024). Driven by advances in diffusion model algorithms (Ho et al., 2020; Song et al., 2021), these continuous-space methods have demonstrated strong capabilities in producing high-fidelity and visually coherent content, establishing themselves as the dominant paradigm for generative modeling.

In parallel, discrete-space text generation has become the *de facto* paradigm for large language models (Radford et al., 2018; 2019; Brown et al., 2020). Inspired by the success of LLMs, recent works have extended similar ideas to visual generation through discrete tokenization, using either next-token prediction (Sun et al., 2024a; Wang et al., 2024b; Kondratyuk et al., 2024) or masked token prediction (Chang et al., 2023; Xie et al., 2025c). However, discrete approaches still lag behind their continuous counterparts, facing challenges such as error accumulation and maintaining long-context consistency, especially in video generation. For instance, even though masked diffusion models employ bidirectional transformers, we still observe low visual quality and unnatural object motions.

In this work, we first revisit discrete generative modeling and introduce **UDM**, a powerful visual generation framework built upon **Uniform Discrete** diffusion models with **Metric** path. Our approach is simple: we generate videos and images by iterative refinement over discrete spatio-temporal tokens. As illustrated in Fig. 2, unlike classic autoregressive (AR) models and masked diffusion models (MDM) that adopt non-refinable local generation, where produced tokens are fixed once generated, UDM emphasizes *iterative refinement over global discrete tokens*, conceptually aligning discrete methods with continuous counterparts, and substantially narrowing their performance gap. UDM starts from categorical noise, $x_0 \sim \text{Unif}([K])^D$, where each token is independently sampled from the vocabulary, and iteratively performs global refinement along a metric-guided probability path to obtain x_1 on the data manifold, *i.e.*, the target image or video. This iterative process enables UDM to capture the hierarchical structure of video data, from global layouts to detailed dynamics, while leveraging temporal redundancy to preserve spatio-temporal coherence.

We propose a novel metric probability path tailored for long sequences by incorporating two key components: a linearized metric path and a resolution-dependent timestep shifting mechanism. Collectively, these designs provide precise control over data perturbations, a property that is essential for maintaining stability and achieving effective training. This construction allows UDM to scale efficiently to long-sequence tasks, such as high-resolution image synthesis and long video generation, while requiring substantially fewer inference steps. Furthermore, we introduce an asynchronous timestep scheduling strategy, where timesteps are independently sampled for each frame. This asynchronous design empowers UDM to generate videos of minute-level duration and to support diverse tasks within a unified framework, including image-to-video generation and video extrapolation.

UDM attains a text-to-video score of 82.4 on VBench (Huang et al., 2024a), outperforming both discrete and continuous baselines. In image-to-video generation tasks, UDM reaches a VBench score of 86.2, on par with state-of-the-art open-source models. For text-to-image generation, UDM attains a GenEval (Ghosh et al., 2024) score of 0.8, surpassing previous discrete approaches. Furthermore, UDM exhibits strong zero-shot generalization across diverse contexts, highlighting its versatility.

Our contributions can be summarized as follows: 1) We propose Uniform Discrete diffusion with Metric path (UDM), a simple yet powerful framework that bridges the gap with continuous methods

108 and enables scalable video generation. 2) We highlight two key designs, linearized metric path
 109 and resolution-dependent timestep shifting, for stabilizing long-sequence training, and propose an
 110 asynchronous scheduling strategy that enables scalable video generation and unified multi-task
 111 adaptation. 3) UDM substantially pushes the envelope of discrete generation, attaining state-of-the-art
 112 results on VBench, GenEval and DPG-Bench (Hu et al., 2024).

2 RELATED WORKS

2.1 CONTINUOUS-SPACE VISUAL GENERATION

118 Continuous methods for visual generation have achieved significant progress in recent years. Early
 119 endeavors such as variational autoencoders (VAEs) (Kingma & Welling, 2013) and flow-based
 120 models (Dinh et al., 2014; 2016) exploit continuous latent spaces to model complex images, while
 121 GANs(Goodfellow et al., 2020) generate high-resolution images with strong perceptual quality via
 122 adversarial training (Brock et al., 2018; Karras et al., 2020). Diffusion models (Ho et al., 2020; Song
 123 et al., 2021), which learn to recover data by progressively denoising Gaussian noise in a continuous
 124 space, demonstrated remarkable performance in both image and video generation (Gao et al., 2025a;
 125 Batifol et al., 2025; Baldridge et al., 2024; Betker et al., 2023; Wu et al., 2025a; Brooks et al., 2024;
 126 Kong et al., 2024; Gao et al., 2025b; Wang et al., 2025a; Kuaishou, 2024; Ma et al., 2025). MAR (Li
 127 et al., 2024) employs an autoregressive framework with a diffusion head to produce continuous-
 128 valued outputs, and NOVA (Deng et al., 2025b) further extends this idea to video generation, applying
 129 autoregressive modeling to spatio-temporal sequences. UDM shares the same spirit as continuous
 130 diffusion models, performing global iterative refinement, but operates over discrete tokens.

2.2 DISCRETE-SPACE VISUAL GENERATION

131 Discrete visual generation can be broadly categorized into autoregressive and masked diffusion
 132 models, both operating on discrete visual tokens such as pixels (Kalchbrenner et al., 2017; Reed et al.,
 133 2017) or latent codes (Oord et al., 2017; Esser et al., 2021). Autoregressive models generate discrete
 134 visual tokens sequentially, with each prediction conditioned on previously generated context. This
 135 approach has been applied to both image (Sun et al., 2024a; Ramesh et al., 2021; Ding et al., 2021;
 136 Yu et al., 2022) and video synthesis (Wang et al., 2024b; Yan et al., 2021; Kondratyuk et al., 2024;
 137 Wang et al., 2024c). Although conceptually simple, this design often suffers from slow inference and
 138 pronounced error accumulation. In contrast to autoregressive methods, masked diffusion models (Gat
 139 et al., 2024; Chang et al., 2022; 2023; Yu et al., 2023) introduces the prediction of masked tokens,
 140 enabling parallel generation and improved modeling of global context. Despite these advantages, it
 141 remains challenging to apply these methods to long sequences, *e.g.* high-fidelity long-form video.
 142 FUDOKI (Wang et al., 2025b) investigates the integration of discrete flow matching (Gat et al., 2024)
 143 within native multimodal models. In this work, we adopt a uniform discrete diffusion approach,
 144 which performs iterative global refinement from categorical noise. By addressing key challenges,
 145 UDM enables both efficient inference and high-quality long-sequence generation.

3 METHODOLOGY

146 We first review the concepts of uniform discrete diffusion / discrete flow matching in Sec. 3.1, which
 147 provide the theoretical foundation for our framework. In Sec. 3.2.1-3.2.2, we introduce UDM, a
 148 simple yet powerful framework that bridges the gap between discrete and continuous approaches,
 149 enabling scalable and effective video generation.

3.1 PRELIMINARY: DISCRETE FLOW MATCHING

150 Discrete Flow Matching (DFM) (Gat et al., 2024) introduces a family of generative models designed
 151 to map data from an initial distribution, $p_0(x)$, to a final distribution, $p_1(x)$, within a discrete state
 152 space. The model utilizes a time-dependent probability path, $p_t(x)$, which interpolates between these
 153 two distributions over the interval $t \in [0, 1]$. The key idea behind DFM is to define a velocity field,
 154 u_t , which drives the evolution of this probability path, enabling the model to simulate a Markov
 155 process and generate new data samples.

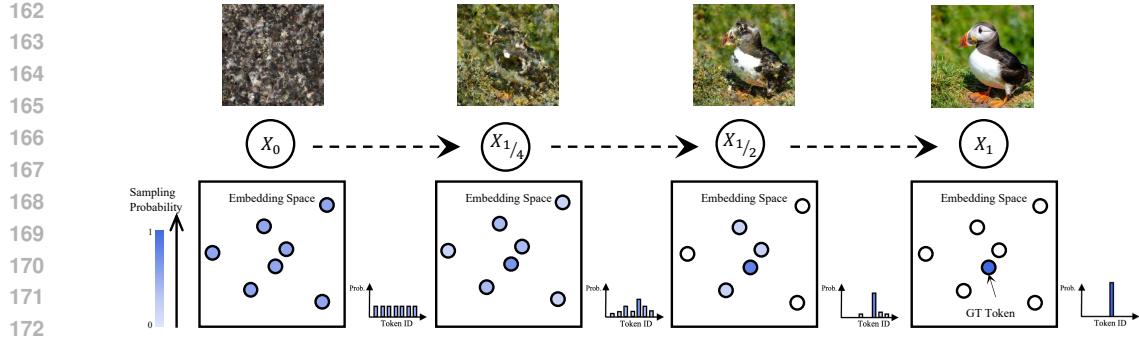


Figure 3: **A global refinement process used in UDM.** Leveraging visual token similarity, our framework captures hierarchical structures—spatial for images and spatio-temporal for videos—enabling coherent, hierarchical structure generation from global semantics to fine details.

Probability paths. We consider the probability path $p_t(x)$, where $t \in [0, 1]$ indexes a time-dependent probability distribution between a source distribution $p_0(x)$ and a target distribution $p_1(x)$ over t . Given a data distribution $q(x)$ over $x = (x^1, \dots, x^D) \in \mathcal{S} = \mathcal{T}^D$, the probability path is defined as:

$$p_t(x) \triangleq \sum_{x_1 \in \mathcal{S}} p_t(x|x_1)q(x_1), \text{ where } p_t(x|x_1) \triangleq \prod_{i=1}^D p_t(x^i|x_1^i), \quad (1)$$

$p_t(x^i | x_1^i)$ denotes a *conditional* probability path, characterizing the evolution of the state x^i given the initial state x_1^i .

Probability velocities. To generate the predefined probability path $p_t(x)$, we consider a Continuous-Time Markov Chain (CTMC), modeled as a stochastic process X_t . The dynamics of this CTMC are governed by a probability velocity u_t^i , also known as the *transition rate*. The transition rate models how the current state x_t^i evolves toward the target state x_1^i over time. Within this framework, each token is updated independently according to the following transition rule:

$$x_{t+h}^i \sim \delta_{x_t^i}(\cdot) + h u_t^i(\cdot | x_t^i, x_1^i), \quad (2)$$

where $u_t^i(\cdot | x_t^i, x_1^i)$ represents *velocity field*, a conditional rate function that governs the flow of probability from the current state x_t^i to the target state x_1^i over time. Equation (2) can be interpreted as a small perturbation of the point mass $\delta_{x_t^i}$, scaled by the step size h , effectively modeling discrete state transitions as a continuous-time stochastic process. This velocity field is central to DFM, as it characterizes the dynamics of the probability path and is the primary quantity learned during training.

3.2 UNIFORM DISCRETE DIFFUSION WITH METRIC PATH

We present UDM, a novel framework built upon uniform discrete diffusion with metric path for image and video generation. In this section, we first introduce three key innovations: (1) a Linearized Metric-Path for structured and tractable trajectory design, (2) a Resolution-dependent Timestep Shifting mechanism to improve training stability and representation learning for long video sequences, and (3) a Frame-wise Independent Perturbation Scheduling strategy for unified long-video generation and multitask learning. After introducing these core components, we further provide the training procedure and sampling process.

3.2.1 METRIC PROBABILITY PATH FOR LONG SEQUENCE DATA

For data with varying sequence lengths, the degree of perturbation should be adapted during training. This requires a probability path to effectively handle sequences of different lengths, such as high-resolution images or videos. In this section, we introduce two key techniques, linearized metric path and resolution-dependent timestep shifting, to address this challenge, ensuring that the perturbation process is appropriately adjusted based on the sequence length.

Linearized metric path. We introduce the linearized metric path, a novel probability path derived from token embedding distances. Formally, we define the distance function $d : \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R}_{\geq 0}$,

which measures the discrepancy between the codebook embeddings of generated token x and the target tokens x_1 . The distance satisfies the property $d(x, x_1) = 0 \Leftrightarrow x = x_1$, ensuring a well-defined metric structure. Based on this, the probability path is defined as

$$p_t(x|x_1) = \text{softmax}(-\beta_t d(x, x_1)), \quad (3)$$

where $\beta_t : [0, 1] \rightarrow \mathbb{R}_{\geq 0}$ is a monotonic scheduler function with boundary conditions $\beta_0 = 0$, $\beta_1 = \infty$. The core of linearized path lies in the functional form of β_t , which is parameterized as

$$\beta_t = c \times \left(\frac{t}{1-t}\right)^\alpha, t \in [0, 1), \quad (4)$$

where $c > 0$ and $\alpha > 0$ are hyperparameters that control the relationship between the sampling distance $d(x_t, x_1)$ and time t . Specifically, the forward process samples $x_t \sim p_{t|1}(\cdot | x_1)$, with boundary conditions yielding a uniform distribution over codebook embeddings at $t = 0$ and a deterministic sample at x_1 when $t = 1$, illustrated in Figure 3.

When t is between 0 and 1, our objective is to find an appropriate set of values for c and α that preserve the linear relationship between t and $d(x_t, x_1)$. This linearity provides a finer control of perturbations over the probability path, as described next. Additional experiments and discussions on the impact of linearized metric path on model convergence and performance are provided in Appendix G.

Resolution-dependent timestep shifting. Intuitively, since higher resolutions contain more pixels, more perturbation is needed to alter the signal. To address this, we introduce a time shift parameter λ , which adjusts the timestep based on the resolution. For any given t , we define the shifted timestep \tilde{t}

$$\tilde{t} = \frac{t}{t + \lambda(1 - t)}, \quad (5)$$

Because our proposed linearized metric path enforces a linear relationship between t and $d(x_t, x_1)$, we modulate this path using λ to accommodate varying data resolutions. For higher resolutions, we set $\lambda > 1$ to create a convex relationship between \tilde{t} and $d(x_t, x_1)$ that introduces stronger perturbations. For lower resolutions, we set $\lambda < 1$, yielding a concave relationship with more gradual perturbations.

3.2.2 ASYNCHRONOUS Timestep SCHEDULING

Videos exhibit complex spatiotemporal dynamics and diverse downstream tasks, making task-specific modeling inefficient and resource-intensive. Motivated by diffusion forcing (Chen et al., 2024a), we propose a asynchronous timestep scheduling strategy for multi-task learning. Instead of applying the sample noise level across all frames in a video sequence, we assign perturbation levels **independently** on a per-frame basis. Formally, given a video sequence $\mathbf{F} = \{f^1, f^2, \dots, f^n\}$ with n frames, we sample a perturbation schedule $\mathbf{T} = \{t^1, t^2, \dots, t^n\}$, where $t^i \sim \mathcal{U}(0, 1)$. The noisy sequence is then constructed as $\mathbf{F} = \{f_{t^1}^1, f_{t^2}^2, \dots, f_{t^n}^n\}$, with the diffusion process in Eq. 3 applied frame-wise according to the corresponding t^i . This strategy enables fine-grained temporal control over the noise schedule and decouples perturbation levels across frames. As a result, the model can adaptively balance local frame reconstruction with global temporal coherence, facilitating diverse generation objectives, such as text-to-video, image-to-video, video extrapolation and start-end frame control within a unified architecture. More visualizations are provided in Appendix E & F.

3.2.3 TRAINING AND SAMPLING

Training. We first encode video clips into discrete token sequences using a pretrained tokenizer, yielding $x_1 = (x_1^1, x_1^2 \dots x_1^i \dots x_1^F)$, where F denotes the number of video frames and x_1^i denotes the i -th frame tokens. At each training step, we uniformly sample timesteps $t^i \in [0, 1]$ independently for each frame x_1^i in the video sequence and obtain a perturbed sequence $x_t \sim p_{t|1}(\cdot | x_1)$ via the proposed metric probability path. The model then takes as input the concatenation of text tokens e and x_t , and predicts the original visual token sequence x_1 by outputting logits over the token vocabulary at each position. The training objective is formulated as the expected cross-entropy between the ground-truth visual tokens and the model’s predicted distribution:

$$\mathcal{L} = \mathbb{E}_{t \sim \mathcal{U}[0,1], x_1, x_t} \left[-\log p_{1|t}(x_1 | x_t, e) \right]. \quad (6)$$

Sampling. During sampling, we follow Gat et al. (2024); Shaul et al. (2025) and employ an Euler solver for efficient and high-quality generation. Specifically, we first uniformly sample x_0 from

270 the full vision vocabulary and feed it into the model to obtain the prediction \hat{x}_1 . Using Eq. 3 and
 271 Eq. 2, we compute the velocity field $u_t(\cdot | x_t, \hat{x}_1)$. The estimate of x_1 is then iteratively refined as
 272 $x_1 \leftarrow x_1 + dt \cdot u_t$, where each step updates the sample along the estimated denoising trajectory.
 273 After T such steps, the process yields a clean image or video sequence. Further details on training
 274 and sampling are provided in Appendix C.

276 4 EXPERIMENT

278 4.1 EXPERIMENT SETUP

280 **Datasets.** We leverage a curated selection of high-quality datasets to effectively train UDM models.
 281 For text-to-image training, we collect 16M image-text pairs sourced from Unsplash (Unsplash, 2020),
 282 DataComp (Gadre et al., 2024), COYO (Byeon et al., 2022), and JourneyDB (Sun et al., 2023).
 283 These pairs are filtered by image resolution and aesthetic score, and further supplemented with 14M
 284 AI-generated image samples using the FLUX.1 model (Batifol et al., 2025). For text-to-video training,
 285 we select 12M video-text pairs from the highest scoring subset of Koala-36M (Wang et al., 2025c)
 286 and complement them with 12M internal video-text pairs. The internal videos are captioned using the
 287 Emu2-17B model (Sun et al., 2024b) in conjunction with the captioning engine (Diao et al., 2024).
 288 We uniformly sample short and long captions during training, with a maximum length of 320 tokens.

289 **Architectures.** We initialize our visual generation model with weights from a pre-trained LLM.
 290 Specifically, we adopt the Qwen3 LLM architecture (Yang et al., 2025a), which natively incorporates
 291 QK-Norm (Dehghani et al., 2023) layer to stabilize the multimodal training. To better capture the
 292 spatiotemporal structure inherent in videos, we introduce an enhanced M-RoPE (Wang et al., 2024a)
 293 that allocates interleaved frequency components across temporal, height, and width dimensions,
 294 following the approach of Mogao (Liao et al., 2025). Crucially, unlike Liao et al. (2025), our 3D-
 295 RoPE assigns identical positions for texts, ensuring equivalence with the 1D-RoPE (Su et al., 2024).
 296 We use the Cosmos (Agarwal et al., 2025) tokenizer to extract image and video tokens, achieving
 297 4 \times temporal and 8 \times 8 spatial compression through a 64K FSQ (Mentzer et al., 2024) codebook.
 298 Furthermore, we train an IBQ (Shi et al., 2025) tokenizer for high-resolution image generation,
 299 facilitating efficient 16 \times 16 spatial compression via a 256-dimensional codebook with 131K entries.

300 **Diffusion schedulers.** We adopt the Kinetic Optimal Scheduler (Shaul et al., 2025), equipped with a
 301 metric-induced probability path specifically designed for the embedding space of vision tokenizers.
 302 Following Shaul et al. (2025), we perform a grid search over the path hyperparameters α and c ,
 303 visually inspecting the reconstructed samples for each (α, c) that fully exploit the time interval $[0, 1]$.
 304 Eventually, we select (α, c) to $(1.0, 5)$ for the Cosmos tokenizer and $(0.5, 6)$ for our IBQ tokenizer.
 305 For conventional uniform diffusion, we use the mixture probability path proposed by Gat et al. (2024).
 306 In contrast, for masked diffusion, we adopt the MaskGIT (Chang et al., 2022) scheduler, which has
 307 been empirically shown to achieve state-of-the-art performance in both image and video generation
 308 models (Kondratyuk et al., 2024; Bai et al., 2025). Following established practice in continuous
 309 diffusion models, we default to 25 inference steps for image generation and 50 for video generation.

310 More implementation details, including Training Details and Evaluation, are provided in Appendix C.

311 4.2 MAIN RESULTS

313 **UDM rivals Sora-like text-to-video generation models despite using a discrete tokenizer.** Current
 314 discrete video tokenizers offer limited spatiotemporal compression and reconstruction quality, posing
 315 significant challenges to bidirectional diffusion transformers. However, UDM excels in generating
 316 video clips from text, achieving strong performance on the VBench, as shown in Table 1. Com-
 317 pared to Sora-like diffusion models: Vchitect (Fan et al., 2025), Pyramid Flow (Jin et al., 2025),
 318 LuminaVideo (Liu et al., 2025a), OpenSora (Peng et al., 2025) and OpenSoraPlan (Lin et al., 2024),
 319 UDM matches or exceeds their performance, particularly in the semantic field. These results further
 320 underscore the need for a tokenizer that satisfies the imaging quality of state-of-the-art continuous
 321 models (Kong et al., 2024; Teng et al., 2025; Ma et al., 2025; Yang et al., 2025b; Wang et al., 2025a).

322 **UDM emerges frame-conditioned video generation by accurately modeling the future motion.**
 323 Prior methods typically adapt text-to-image (Ren et al., 2024; Chen et al., 2024b; Xing et al., 2024)
 or text-to-video models with a clean first frame for image-to-video generation. In contrast, UDM

324 **Table 1: Text-to-video evaluation on VBench.** For clarity and to better highlight distinctions
 325 between models, we report only the most relevant metrics across the quality and semantic dimensions.
 326

Model	#params	#videos	Total Score	Quality Score	Semantic Score	Dynamic Degree	Aesthetic Quality	Imaging Quality	Object Class	Multiple Objects	Spatial Relationship	Color	Scene
<i>Continuous models</i>													
LaVie	3B	25M	77.1	78.8	70.3	49.7	54.9	61.9	91.8	33.3	34.1	86.4	52.7
Show-1	4B	10M	78.9	80.4	73.0	44.4	57.4	58.7	93.1	45.5	53.5	86.4	47.0
VideoCrafter2	2B	10M	80.4	82.2	73.4	42.5	63.1	67.2	92.6	40.7	35.9	92.9	55.3
Latte-1	1B	25M	77.3	79.2	67.6	68.9	61.6	61.9	86.5	34.5	41.5	85.3	36.3
NOVA	0.6B	20M	80.1	80.4	79.1	-	59.4	-	92.0	77.5	77.5	-	54.1
Vchitect-2.0	2B	134M	81.6	82.5	77.8	58.3	61.5	65.6	87.8	69.4	54.6	86.9	57.5
Pyramid Flow	2B	10M	81.7	84.7	69.6	64.6	63.3	65.0	86.7	50.7	59.5	82.9	43.2
LuminaVideo	2B	12M	83.0	83.9	79.3	67.1	62.3	64.6	91.0	68.3	67.3	90.2	56.1
OpenSoraPlan v1.5	8B	40M	83.0	84.2	78.2	64.4	66.9	68.5	91.9	70.7	80.1	81.8	52.1
OpenSora 2.0	11B	85M	83.6	84.4	80.3	56.4	65.3	65.7	94.6	78.0	76.8	86.3	53.4
MAGI-1	24B	-	81.8	84.7	70.4	72.5	59.3	65.3	84.1	50.6	73.0	87.5	28.9
Step-Video	30B	-	81.8	84.5	71.3	53.1	61.2	70.6	80.6	50.6	71.5	88.3	24.4
CogVideoX1.5	5B	-	82.0	82.7	79.2	56.2	62.1	65.3	83.4	65.3	79.4	88.4	53.3
HunyuanVideo	13B	-	83.2	85.1	75.8	70.8	60.4	67.6	86.1	68.6	68.7	91.6	53.9
Wan2.1	14B	-	83.7	85.6	76.1	65.5	66.1	69.4	86.3	69.6	75.4	88.6	45.8
<i>Discrete models</i>													
Lumos-1	3.6B	10M	78.3	79.5	73.5	-	-	58.0	90.1	-	-	82.0	-
Emu3	8B	-	81.0	84.1	68.4	79.3	59.6	62.6	86.2	44.6	68.7	88.3	37.1
UDM	1.7B	24M	82.4	83.4	78.5	81.4	63.1	62.2	93.4	70.6	62.1	90.7	52.3

341
 342 seamlessly integrates asynchronous frame conditions, enabling zero-shot generalization for this task.
 343 As depicted in Table 2, UDM excels in camera control and subject movement versus specialized
 344 frame-conditioned models (Agarwal et al., 2025; Yu et al., 2025; Wang et al., 2025a; Liu et al., 2025b).
 345 Our results demonstrate that diffusion forcing effectively generalizes to image-to-video generation,
 346 pushing the boundaries of autoregressive discrete video generation models without causal attention.
 347

348 **Table 2: Image-to-video evaluation on VBench++.** To evaluate temporal consistency, we focus on
 349 image-to-video (I2V) metrics of visual similarity between each generated frame and reference image.

Model	#params	#videos	Total Score	Quality Score	I2V Score	Dynamic Degree	Aesthetic Quality	Imaging Quality	Camera Motion	I2V Subject Consistency	I2V Background Consistency
<i>Continuous models</i>											
Consist2V	2B	10M	84.1	76.2	91.9	18.6	59.0	66.9	33.9	95.8	96.0
I2VGen-XL	2B	35M	85.3	78.4	92.1	26.1	64.8	69.1	18.5	96.5	96.8
SEINE	3B	25M	85.5	78.4	92.7	27.1	64.6	71.4	21.0	97.2	97.0
DynamicalCrafter	2B	10M	86.9	80.5	93.5	69.7	60.9	68.6	31.2	97.2	97.4
Cosmos	13B	100M	84.2	75.8	92.6	18.7	55.8	59.9	25.4	96.0	97.4
VideoMAR	1.4B	0.5M	84.8	75.6	94.0	11.0	55.8	62.3	21.6	97.9	98.4
CogVideoX	5B	-	86.7	78.6	94.8	33.2	61.9	70.0	67.7	97.2	96.7
HunyuanVideo	13B	-	86.8	78.5	95.1	22.2	62.6	70.1	49.9	98.5	97.4
Wan2.1	14B	-	86.9	80.8	92.9	51.4	64.8	70.4	34.8	97.0	96.4
Pusa	14B	-	87.3	79.8	94.8	52.6	63.2	68.3	29.5	97.6	99.2
Step-Video	30B	-	88.4	81.2	95.5	48.8	62.3	70.4	49.2	97.9	98.5
MAGI-1	24B	-	89.3	82.4	96.1	68.2	64.7	69.7	50.9	98.4	99.0
<i>Discrete models</i>											
Lumos-1	3.6B	10M	84.7	76.1	93.3	-	-	69.2	-	97.4	97.4
UDM	1.7B	24M	86.2	79.8	92.6	65.3	57.4	64.2	37.6	96.1	96.5

363 **UDM performs on par with the state-of-the-art models in generating high-resolution images.**
 364 We compare UDM against continuous models in Table 3, encompassing specialist architectures:
 365 SDXL (Podell et al., 2024), SD3 (Esser et al., 2024), FLUX (Batifol et al., 2025), SANA (Xie et al.,
 366 2025a) and NOVA (Deng et al., 2025b), as well as unified architectures: Mogao (Liao et al., 2025),
 367 Bagel (Deng et al., 2025a), OmniGen2 (Wu et al., 2025b) and Show-o2 (Xie et al., 2025d). Through
 368 joint modeling of discrete text and visual tokens, UDM demonstrates strong text-image alignment.
 369 For example, on the DPG-Bench, UDM reaches a leading overall score with dense text prompts. This
 370 strong performance is consistently sustained on the GenEval when using the rewritten prompts. At
 371 high resolutions, UDM surpasses the autoregressive (Wang et al., 2024b; Han et al., 2025; Chen et al.,
 372 2025b) and masked diffusion (Bai et al., 2025; Yuan et al., 2025) approaches in efficiency, effectively
 373 reducing inference steps through iterative refinement while preserving fine-grained detail.
 374

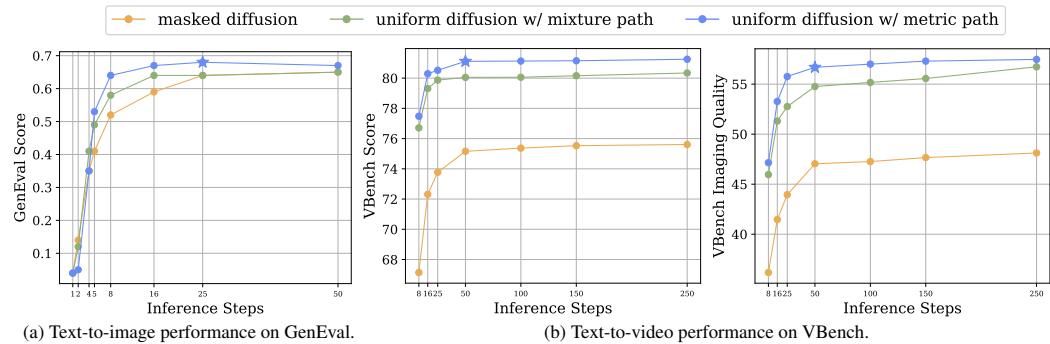
375 4.3 ABLATION STUDY

376 **Effectiveness of iterative refinement for visual generation.** Discrete diffusion models inherently
 377 incur elevated sampling errors, as exhibited in prior studies (Tang et al., 2022; Feng et al., 2025).

378
379 Table 3: **Text-to-image evaluation on DPG-Bench and GenEval.** We prefer the DPG-Bench metrics
380 to mitigate potential prompt template leakage concerns (Xie et al., 2025b) associated with GenEval.
381 \dagger refers to the methods using rewritten GenEval prompts for clearer position and attribute guidance.
382

Model	ModelSpec		DPG-Bench				GenEval						
	#params	#images	Overall	Entity	Attribute	Relation	Overall	Single	Two	Counting	Colors	Position	ColorAttr
<i>Continuous models</i>													
SDXL	2.6B	-	74.7	82.4	80.9	86.8	0.55	0.98	0.44	0.39	0.85	0.15	0.23
SD3	2B	-	84.1	91.0	88.8	80.7	0.62	0.98	0.74	0.63	0.67	0.34	0.36
FLUX.1-dev	12B	-	84.9	-	-	-	0.68	0.99	0.85	0.74	0.79	0.21	0.48
NOVA	1.4B	600M	83.0	88.7	86.4	91.9	0.71	0.99	0.91	0.62	0.85	0.33	0.56
SANA-1.5 \dagger	4.8B	50M	84.7	-	-	-	0.81	0.99	0.93	0.86	0.84	0.59	0.65
OmniGen2	7B	-	83.6	88.8	90.2	89.4	0.80	1.00	0.95	0.64	0.88	0.55	0.76
Mogao \dagger	7B	-	84.3	90.0	88.3	93.2	0.89	1.00	0.97	0.83	0.93	0.84	0.80
Bagel	14B	-	85.1	90.4	91.3	90.8	0.82	0.99	0.94	0.81	0.88	0.64	0.63
Show-o2 \dagger	7B	66M	86.1	91.8	90.0	91.8	0.76	1.00	0.87	0.58	0.92	0.52	0.62
<i>Discrete models</i>													
Show-o	1.3B	2B	67.3	75.4	78.0	84.5	0.68	0.98	0.80	0.66	0.84	0.31	0.50
Emu3 \dagger	8B	-	81.6	87.2	86.3	90.6	0.66	0.99	0.81	0.42	0.80	0.49	0.45
FUDOKI	1.5B	13M	83.6	89.7	88.1	93.7	0.77	0.96	0.85	0.56	0.88	0.68	0.67
Janus-Pro	7B	72M	84.2	88.9	89.4	89.3	0.80	0.99	0.89	0.59	0.90	0.79	0.66
Meisnicon	1B	210M	-	-	-	-	0.54	0.99	0.66	0.42	0.86	0.10	0.22
Lumos-1 \dagger	3.6B	60M	-	-	-	-	0.66	0.95	0.80	0.46	0.81	0.48	0.48
Infinity \dagger	2B	-	83.5	-	-	90.8	0.73	0.99	0.85	0.64	0.84	0.49	0.57
UDM (512 \times 320)	1.7B	30M	82.5	88.3	86.4	92.9	0.64	0.99	0.83	0.47	0.83	0.30	0.41
UDM (1024 \times 1024)	1.7B	30M	86.0	91.5	89.6	94.7	0.68	0.99	0.92	0.63	0.86	0.25	0.40
UDM \dagger (1024 \times 1024)	1.7B	30M	-	-	-	-	0.80	1.00	0.92	0.64	0.89	0.67	0.69

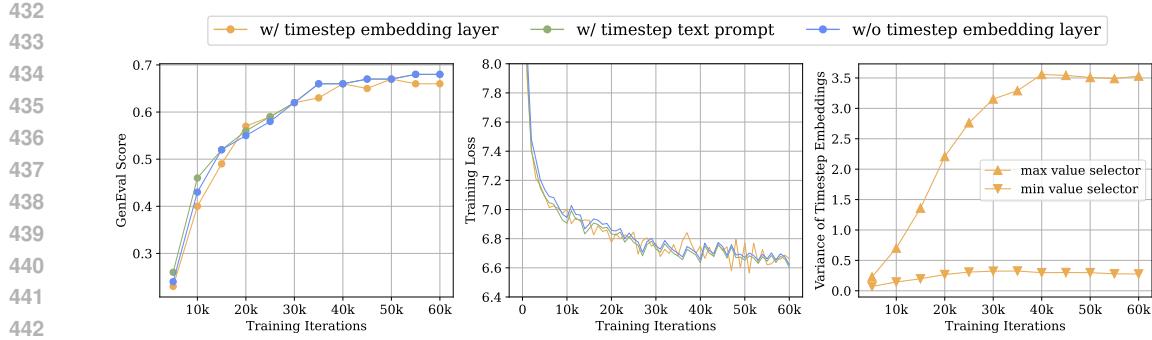
398 To systematically investigate this issue in image and video generation, we train three variants of the
399 discrete diffusion model, assessing performance across insufficient and excessive sampling regimes.
400 Figure 4 compares key performance metrics of text-to-image models on GenEval and text-to-video
401 models on VBench, with all models evaluated after being trained for an identical number of iterations.
402 In the image generation task, which is characterized by low structural redundancy, all three models
403 can generate feasible images within the conventional 25 inference steps. Without iterative refinement,
404 reducing the number of steps substantially decreases the GenEval score in masked diffusion sampling.
405 As we progress into video generation, a task rich in contextual redundancy, it becomes essential to
406 correct sampling errors at each step, ensuring temporal coherence and visual fidelity across frames.
407



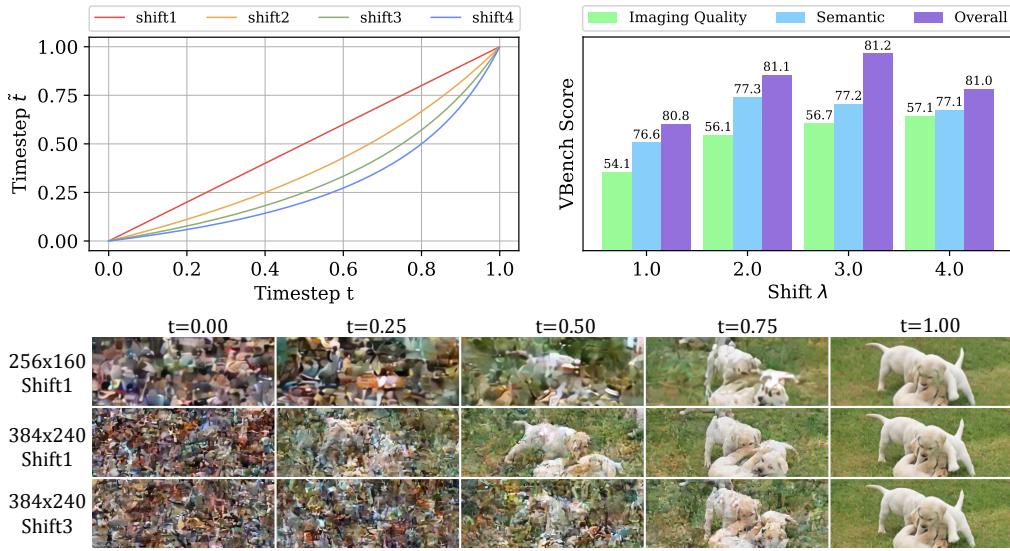
419 Figure 4: **Sampling performance across inference steps.** Using the Cosmos tokenizer, we evaluate
420 the image samples at 256 \times 256 (\sim 1K tokens) and the video samples at 25 \times 384 \times 240 (\sim 10K tokens).
421

422 **Effectiveness of timestep conditioning for uniform diffusion.** Recent work explores time-agnostic
423 (i.e., noise-unconditional) methods for both continuous diffusion (Sun et al., 2025; Tang et al., 2025)
424 and masked diffusion (Zheng et al., 2025; Ou et al., 2025), effectively narrowing the architectural
425 gap between diffusion transformers (DiTs) and LLMs. In this context, we analyze whether timestep
426 conditioning remains indispensable for uniform diffusion. The results are illustrated in Figure 5.
427 Specifically, we train three model variants with distinct conditioning strategies and evaluate GenEval
428 across training iterations. After one epoch (\sim 30K iterations), embedding or prompting with the
429 timestep provides no measurable benefit. Notably, timestep embedding can degrade performance as
430 their variance increases, potentially disrupting token embedding and compromising training stability.
431

432 **Effectiveness of timestep shifting for video generation.** As outlined in Section 4.1, our probability
433 path is designed to maximize the time interval. In line with continuous models (Kong et al., 2024;

Figure 5: **Model metrics across training iterations.** We sample 256×256 images for evaluation.

[Wang et al., 2025a](#); [Liu et al., 2025a](#)), the optimal SNR schedule should be tailored with video size. To study the impact of the SNR schedule on video generation, we train four text-to-video models with divergent timestep shifting and evaluate their performance using the respective value on VBench. Figure 6 presents our shifting schedules, accompanied by their evaluation metrics and visualizations. Surprisingly, the shifting strategy proposed by [Esser et al. \(2024\)](#) demonstrates strong effectiveness for uniform diffusion, empowering UDM to match the performance of its continuous counterparts.

Figure 6: **Timestep shifting across SNR schedules.** We sample $25 \times 384 \times 240$ videos for evaluation.

5 CONCLUSION

In this work, we revisited discrete generative modeling for video synthesis and introduced **UDM**, a uniform discrete diffusion framework with a metric path that bridges discrete and continuous paradigms. UDM employs two key innovations, Linearized Metric-Path and Resolution-dependent Timestep Shifting, to provide fine-grained control over perturbations, enabling stable and scalable training for both high-resolution and long-duration video generation. On top of this, our asynchronous temporal scheduling strategy unifies multiple tasks, such as video interpolation and image-to-video synthesis, within a single model. Extensive experiments show that UDM not only consistently surpasses prior discrete approaches but also achieves results comparable to state-of-the-art continuous diffusion models. We believe this work marks a step toward unifying discrete and continuous paradigms and offers a promising direction for scalable, versatile, and efficient visual generation.

486
487

ETHICS AND REPRODUCIBILITY STATEMENT

488
489

This work aims to advance discrete generative modeling for video generation through Uniform Discrete diffusion with Metric path. No personal, private, or sensitive information is included in the datasets or experiments, and no ethical risks are associated with this study. With respect to reproducibility, we affirm our commitment to ensuring that all reported results can be faithfully reproduced, and we will provide the necessary resources and documentation to facilitate replication.

490
491492
493494
495496
497498
499500
501502
503504
505506
507508
509510
511512
513514
515516
517518
519520
521522
523524
525526
527528
529530
531532
533534
535536
537538
539

540 REFERENCES
541

542 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
543 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
544 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

545 Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Xiangtai Li, Zhen Dong, Lei Zhu, and Shuicheng Yan.
546 Meissonoic: Revitalizing masked generative transformers for efficient high-resolution text-to-image
547 synthesis. In *ICLR*, 2025.

548 Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Kelvin Chan,
549 Yichang Chen, Sander Dieleman, Yuqing Du, Zach Eaton-Rosen, et al. Imagen 3. *arXiv preprint
550 arXiv:2408.07009*, 2024.

551 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn,
552 Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext: Flow matching for in-context
553 image generation and editing in latent space. *arXiv preprint arXiv:2506.15742*, 2025.

554 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
555 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions, 2023.

556 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
557 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.

558 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
559 Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators, 2024.

560 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
561 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
562 few-shot learners. In *NeurIPS*, 2020.

563 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
564 Coyo-700m: Image-text pair dataset, 2022.

565 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
566 image transformer. In *CVPR*, 2022.

567 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
568 Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
569 via masked generative transformers. In *ICML*, 2023.

570 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
571 Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances in Neural
572 Information Processing Systems*, 2024a.

573 Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang,
574 Sheng Chen, Zheng Chen, Chengcheng Ma, et al. Skyreels-v2: Infinite-length film generative
575 model. *arXiv preprint arXiv:2504.13074*, 2025a.

576 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
577 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
578 scaling. *arXiv preprint arXiv:2501.17811*, 2025b.

579 Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang,
580 Dahua Lin, Yu Qiao, and Ziwei Liu. Seine: Short-to-long video diffusion model for generative
581 transition and prediction. In *ICLR*, 2024b.

582 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
583 Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
584 vision transformers to 22 billion parameters. In *ICML*, 2023.

585 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
586 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv
587 preprint arXiv:2505.14683*, 2025a.

594 Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
 595 Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization. In
 596 *ICLR*, 2025b.

597

598 Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
 599 encoder-free vision-language models. In *NeurIPS*, 2024.

600 Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
 601 Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers.
 602 In *NeurIPS*, 2021.

603 Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
 604 estimation. *arXiv preprint arXiv:1410.8516*, 2014.

605

606 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv
 607 preprint arXiv:1605.08803*, 2016.

608 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 609 synthesis. In *CVPR*, 2021.

610

611 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 612 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 613 high-resolution image synthesis. In *ICML*, 2024.

614 Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue
 615 Dong, Jingwen He, Dongwei Pan, et al. Vchitect-2.0: Parallel transformer for scaling up video
 616 diffusion models. *arXiv preprint arXiv:2501.08453*, 2025.

617

618 Guhao Feng, Yihan Geng, Jian Guan, Wei Wu, Liwei Wang, and Di He. Theoretical benefit and
 619 limitation of diffusion language model. In *NeurIPS*, 2025.

620 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
 621 Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
 622 next generation of multimodal datasets. In *NeurIPS*, 2024.

623 Yu Gao, Lixue Gong, Qiushan Guo, Xiaoxia Hou, Zhichao Lai, Fanshi Li, Liang Li, Xiaochen Lian,
 624 Chao Liao, Liyang Liu, et al. Seedream 3.0 technical report. *arXiv preprint arXiv:2504.11346*,
 625 2025a.

626

627 Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li,
 628 Liang Li, Xiaojie Li, et al. Seedance 1.0: Exploring the boundaries of video generation models.
 629 *arXiv preprint arXiv:2506.09113*, 2025b.

630 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 631 Yaron Lipman. Discrete flow matching. In *NeurIPS*, 2024.

632

633 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 634 for evaluating text-to-image alignment. In *NeurIPS*, 2024.

635 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 636 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
 637 ACM*, 63(11):139–144, 2020.

638

639 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu.
 640 Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. In *CVPR*,
 641 2025.

642 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 643 2022.

644 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 645 2020.

646

647 Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
 648 high resolution images. In *ICML*, 2023.

648 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 649 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.
 650

651 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 652 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
 653 generative models. In *CVPR*, 2024a.

654 Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol
 655 Chanpaisit, Chenyang Si, Yuming Jiang, et al. Vbench++: Comprehensive and versatile benchmark
 656 suite for video generative models. *arXiv preprint arXiv:2411.13503*, 2024b.
 657

658 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang,
 659 Yang Song, Yadong MU, and Zhouchen Lin. Pyramidal flow matching for efficient video generative
 660 modeling. In *ICLR*, 2025.

661 Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves, and
 662 Koray Kavukcuoglu. Video pixel networks. In *ICML*, 2017.
 663

664 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 665 and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
 666 *computer vision and pattern recognition*, pp. 8110–8119, 2020.

667 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 668 *arXiv:1312.6114*, 2013.
 669

670 Dan Kondratyuk, Lijun Yu, Xiuye Gu, Jose Lezama, Jonathan Huang, Grant Schindler, Rachel
 671 Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language
 672 model for zero-shot video generation. In *ICML*, 2024.

673 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 674 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 675 models. *arXiv preprint arXiv:2412.03603*, 2024.
 676

677 Kuaishou. Kling ai, 2024. URL <https://klingai.com/>.
 678

679 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 680 generation without vector quantization. In *NeurIPS*, 2024.

681 Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
 682 Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
 683 generation. *arXiv preprint arXiv:2505.05472*, 2025.
 684

685 Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
 686 Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
 687 *arXiv preprint arXiv:2412.00131*, 2024.

688 Dongyang Liu, Shicheng Li, Yutong Liu, Zhen Li, Kai Wang, Xinyue Li, Qi Qin, Yufei Liu, Yi Xin,
 689 Zhongyu Li, et al. Lumina-video: Efficient and flexible video generation with multi-scale next-dit.
 690 *arXiv preprint arXiv:2502.06782*, 2025a.
 691

692 Yaofang Liu, Yumeng Ren, Xiaodong Cun, Aitor Artola, Yang Liu, Tieyong Zeng, Raymond H Chan,
 693 and Jean-michel Morel. Redefining temporal modeling in video diffusion: The vectorized timestep
 694 approach. *arXiv preprint arXiv:2410.03160*, 2024.

695 Yaofang Liu, Yumeng Ren, Aitor Artola, Yuxuan Hu, Xiaodong Cun, Xiaotong Zhao, Alan Zhao,
 696 Raymond H Chan, Suiyun Zhang, Rui Liu, et al. Pusa v1.0: Surpassing wan-i2v with \$500 training
 697 cost by vectorized timestep adaptation. *arXiv preprint arXiv:2507.16116*, 2025b.
 698

699 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In *ICLR*,
 700 2017.

701 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019.

702 Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan,
 703 Ranchen Ming, Xiaoniu Song, Xing Chen, et al. Step-video-t2v technical report: The practice,
 704 challenges, and future of video foundation model. *arXiv preprint arXiv:2502.10248*, 2025.

705 Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
 706 VQ-VAE made simple. In *ICLR*, 2024.

708 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
 709 In *NeurIPS*, 2017.

710 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 711 Your absorbing discrete diffusion secretly models the conditional distributions of clean data. In
 712 *ICLR*, 2025.

713 Xiangyu Peng, Zangwei Zheng, Chenhui Shen, Tom Young, Xinying Guo, Binluo Wang, Hang Xu,
 714 Hongxin Liu, Mingyan Jiang, Wenjun Li, et al. Opensora 2.0: Training a commercial-level video
 715 generation model in \$200k. *arXiv preprint arXiv:2503.09642*, 2025.

716 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 717 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 718 synthesis. In *ICLR*, 2024.

719 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 720 understanding by generative pre-training. *OpenAI Blog*, 2018.

721 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 722 models are unsupervised multitask learners. *OpenAI Blog*, 2019.

723 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 724 and Ilya Sutskever. Zero-shot text-to-image generation. In *ICML*, 2021.

725 Scott Reed, Aäron Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu Wang, Yutian Chen,
 726 Dan Belov, and Nando Freitas. Parallel multiscale autoregressive density estimation. In *International
 727 conference on machine learning*, pp. 2912–2921. PMLR, 2017.

728 Weiming Ren, Huan Yang, Ge Zhang, Cong Wei, Xinrun Du, Wenhao Huang, and Wenhui Chen.
 729 Consisti2v: Enhancing visual consistency for image-to-video generation. *TMLR*, 2024.

730 Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderith, Brian
 731 Karrer, Yaron Lipman, and Ricky T. Q. Chen. Flow matching with general discrete paths: A
 732 kinetic-optimal perspective. In *ICLR*, 2025.

733 Fengyuan Shi, Zhuoyan Luo, Yixiao Ge, Yujiu Yang, Ying Shan, and Limin Wang. Scalable image
 734 tokenization with index backpropagation quantization. In *ICCV*, 2025.

735 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 736 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.

737 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 738 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

739 Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojuan
 740 Zhou, Zipeng Qin, Yi Wang, Jifeng Dai, Yu Qiao, Limin Wang, and Hongsheng Li. JourneyDB: A
 741 benchmark for generative image understanding. In *NeurIPS*, 2023.

742 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 743 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 744 arXiv:2406.06525*, 2024a.

745 Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
 746 denoising generative models? In *ICML*, 2025.

747 Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao,
 748 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
 749 learners. In *CVPR*, 2024b.

756 Bingda Tang, Boyang Zheng, Sayak Paul, and Saining Xie. Exploring the deep fusion of large
 757 language models and diffusion transformers for text-to-image synthesis. In *CVPR*, 2025.

758

759 Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized
 760 diffusion models. *arXiv preprint arXiv:2205.16007*, 2022.

761 Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning Zhang,
 762 WQ Zhang, Weifeng Luo, et al. Magi-1: Autoregressive video generation at scale. *arXiv preprint*
 763 *arXiv:2505.13211*, 2025.

764

765 Unsplash. Unsplash dataset, 2020.

766

767 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 768 Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint*
 769 *arXiv:2503.20314*, 2025a.

770

771 Jin Wang, Yao Lai, Aoxue Li, Shifeng Zhang, Jiacheng Sun, Ning Kang, Chengyue Wu, Zhenguo
 772 Li, and Ping Luo. Fudoki: Discrete flow-based unified understanding and generation via kinetic-
 773 optimal velocities. In *NeurIPS*, 2025b.

774

775 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 776 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 777 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

778

779 Qiuheng Wang, Yukai Shi, Jiarong Ou, Rui Chen, Ke Lin, Jiahao Wang, Boyuan Jiang, Haotian Yang,
 780 Mingwu Zheng, Xin Tao, et al. Koala-36m: A large-scale video dataset improving consistency
 781 between fine-grained conditions and video content. In *CVPR*, 2025c.

782

783 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 784 Zhang, Yueze Wang, Zhen Li, Qiyi Yu, et al. Emu3: Next-token prediction is all you need.
 785 *arXiv preprint arXiv:2409.18869*, 2024b.

786

787 Yuqing Wang, Tianwei Xiong, Daquan Zhou, Zhijie Lin, Yang Zhao, Bingyi Kang, Jiashi Feng, and
 788 Xihui Liu. Loong: Generating minute-level long videos with autoregressive language models.
 789 *arXiv preprint arXiv:2410.02757*, 2024c.

790

791 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 792 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 793 2025a.

794

795 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 796 Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
 797 *arXiv preprint arXiv:2506.18871*, 2025b.

798

799 Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng YU, Ligeng Zhu, Yujun Lin, Zhekai Zhang, Muyang
 800 Li, Junyu Chen, Han Cai, Bingchen Liu, Daquan Zhou, and Song Han. Sana 1.5: Efficient scaling
 801 of training-time and inference-time compute in linear diffusion transformer. In *ICML*, 2025a.

802

803 Ji Xie, Trevor Darrell, Luke Zettlemoyer, and XuDong Wang. Reconstruction alignment improves
 804 unified multimodal models. *arXiv preprint arXiv:2509.07295*, 2025b.

805

806 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 807 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 808 to unify multimodal understanding and generation. In *ICLR*, 2025c.

809

810 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved native unified multimodal
 811 models. In *NeurIPS*, 2025d.

812

813 Jinbo Xing, Menghan Xia, Yong Zhang, Hao Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu, Xintao
 814 Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrafter: Animating open-domain images with
 815 video diffusion priors. In *ECCV*, 2024.

816

817 Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
 818 vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021.

810 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 811 Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 812 2025a.

813 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 814 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 815 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
 816 an expert transformer. In *ICLR*, 2025b.

817 Hu Yu, Biao Gong, Hangjie Yuan, DanDan Zheng, Weilong Chai, Jingdong Chen, Kecheng Zheng,
 818 and Feng Zhao. Videomar: Autoregressive video generatio with continuous tokens. In *NeurIPS*,
 819 2025.

820 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
 821 Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
 822 Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
 823 text-to-image generation. *TMLR*, 2022.

824 Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
 825 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
 826 transformer. In *CVPR*, 2023.

827 Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng,
 828 Pengwei Liu, Jiazheng Xing, et al. Lumos-1: On autoregressive video generation from a unified
 829 model perspective. *arXiv preprint arXiv:2507.08801*, 2025.

830 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
 831 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
 832 sampling. In *ICLR*, 2025.

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 APPENDIX
865866 We will publish our code and pre-trained models to improve interpretability and assure reproducibility.
867 Here, more implementation details, experiments and qualitative results are organized as follows:
868

- 869 • Usage of Large Language Models (Sec. A)
- 870 • Discussion (Sec. B)
- 871 • Training and Sampling Details (Sec. C)
- 872 • Implementation Details (Sec. D)
- 873 • Video extrapolation experiments (Sec. E)
- 874 • Start-End frame control experiments (Sec. F)
- 875 • Experiments on the effect of metric path linearity (Sec. G)
- 876 • Experiments of model size for uniform diffusion (Sec. H)
- 877 • Ablations on the impact of different LLM backbones (Sec. I)
- 878 • Inference speed comparison (Sec. J)
- 879 • Formal definition and optimization of linearized metric path (Sec. K)

883 A USAGE OF LARGE LANGUAGE MODELS
884885 We hereby declare that LLMs were used solely for the purpose of polishing this manuscript. There are
886 no content generation, data interpretation, or intellectual contributions were derived from the LLMs.
887 All ideas, analyses, and conclusions presented in this paper are the original work of the authors.
888889 B DISCUSSION
890891 **Linearized metric path.** Shaul et al. (2025) introduces a general metric probability path and
892 demonstrate their effectiveness on small-scale image/text data. FUDOKI (Wang et al., 2025b) further
893 integrates this probability path into multimodal models, showing benefits for unified understanding
894 and generation. However, these works do not address fundamental challenges arising in long-sequence
895 visual generation, *e.g.*, the tailored design of metric path and spatiotemporal consistency. In this work,
896 we introduce UDM, the first discrete framework that formulates video synthesis as iterative refinement
897 over discrete spatiotemporal tokens. Specifically, Linearized Metric Path simplifies the design space
898 of metric path, and Resolution-dependent Timestep Shifting enables stable long-sequence training,
899 together addressing above two fundamental challenges that prior discrete methods could not handle.
900901 **Resolution-dependent Timestep Shifting in the Discrete Space.** In continuous diffusion models,
902 resolution-dependent timestep shifting is motivated by an explicit SNR analysis (Esser et al., 2024;
903 Hoogeboom et al., 2023). Higher resolutions correspond to higher signal energy and requires stronger
904 perturbations (lower SNR) at earlier timesteps to stabilize training and fully exploit the noise schedule.
905 In contrast, prior discrete methods lack an analogous, well-defined SNR metric and thus can only
906 import such schedules *heuristically* from continuous models. In this work, we approximate the
907 SNR-like embedding distance along the proposed *Linearized Metric Path*. Under this interpretation,
908 the resolution-dependent timestep shifting strategy arises naturally, rather than being post hoc tuned.
909 To our knowledge, UDM is the first discrete framework that both *derives* and *systematically validates*
910 a resolution-aware schedule, giving a conceptual basis to heuristics taken from continuous diffusion.911 **Asynchronous Timestep Scheduling.** SkyReels-V2 (Chen et al., 2025a), Pusa (Liu et al., 2025b),
912 FVDM (Liu et al., 2024) and UDM all relate to diffusion-forcing style schedulers that perform
913 frame-wise perturbation and can support multitask generation. While prior works have extensively
914 explored continuous timestep objectives, schedules, and conditioning, the corresponding design space
915 in discrete methods remains unexplored. As summarized in Table 4, UDM differs from continuous
916 models in several fundamental aspects. These differences prevent the direct reuse of continuous-
917 space timestep designs. Our analysis (Fig.5 in Main text) shows that UDM needs remove timestep
918 conditioning to achieve stable training and strong performance, revealing a fundamental difference
919 from continuous diffusion methods. We believe that identifying this distinction provides useful

Method	Noise	Loss	Scheduler	Timestep Conditioning
Continuous	Gaussian noise	MSE	Flow Matching	Yes
Discrete	Categorical noise	CE	Discrete Flow Matching	No

Table 4: Comparison between continuous models and UDM in latent space, noise type, objective, and scheduling design.

insight for the community and may help accelerate progress on discrete video generation approaches.

C TRAINING AND SAMPLING DETAILS

Algorithm 1 UDM Training

Require: Predictor p_θ , Steps T , Schedule β_t , Shift λ , Embedding $\mathbf{E} \in \mathbb{R}^{V \times d}$

```

1: repeat
2:    $x_1 \sim p_{\text{data}}$ 
3:    $t \sim \mathcal{U}(0, 1)$ 
4:    $\tilde{t} \leftarrow t/(t + \lambda(1 - t))$ 
5:    $x_{\tilde{t}} \sim p_{\tilde{t}|1}(\cdot | x_1)$ 
6:    $\mathcal{L} \leftarrow -\sum_{i=1}^D \log p_\theta(x_1^i | x_{\tilde{t}})$ 
7:    $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}$ 
8: until converged
9: return Trained predictor  $p_\theta$ 

```

Algorithm 2 UDM Sampling

Require: Predictor p_θ , Steps T , Schedule β_t , Shift λ , Embedding $\mathbf{E} \in \mathbb{R}^{V \times d}$

```

1: Sample  $x_1 \sim \mathcal{U}(0, V)$ , get  $\mathbf{e}_1 = \mathbf{E}_{x_1}$ 
2: for  $k = 1$  to  $T$  do
3:    $t \leftarrow (k - 1)/T$ 
4:    $\tilde{t} \leftarrow t/(t + \lambda(1 - t))$ 
5:    $x_{\tilde{t}} \sim p_\theta(\cdot | \mathbf{x}_{\tilde{t}})$ 
6:    $u_{\tilde{t}} \leftarrow u_t^*(x, z | x_1)$ 
7:    $x_1 \leftarrow x_1 + dt \cdot u_{\tilde{t}}$ 
8: end for
9: return  $x_1$   $\triangleright$  Generated discrete sample

```

Training. We encode images and videos into discrete latent tokens using the pre-trained tokenizer. For visual tokens, we adopt a DFM training objective based on the probability path. At each iteration, we randomly sample a timestep $t \in [0, 1]$ and use the metric path to obtain the noised tokens x_t . Text prompts are tokenized using the Qwen3 tokenizer and embedded into the same semantic space. We concatenate text embeddings and noised visual tokens into a unified sequence. The training objective is defined as the expected cross-entropy between the ground-truth visual token sequence and the model’s predicted distribution. For the complete algorithmic workflow, please refer to Algorithm 1.

Sampling. This velocity field ensures that transitions occur only from state z to state x when x is closer to x_1 than z , *i.e.*, $d(x, x_1) < d(z, x_1)$. Using the distance metric and the time-dependent factor β_t , the velocity guides the flow of particles in a manner that is both kinetic-optimal and aligned with the underlying geometry of the state space. We list the complete sampling process in Algorithm 2.

D IMPLEMENTATION DETAILS

Training details. UDM is trained on 128 A100 (40GB) GPUs. In all experiments, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with $\beta_1 = 0.9$, $\beta_2 = 0.95$, weight decay of 0.05, and an initial learning rate of 1e-4. The learning rate employs cosine decay (Loshchilov & Hutter, 2017). We first pre-train text-to-image models and leverage their weights to initialize text-to-video models. Subsequently, following Chen et al. (2025a), we adapt full-sequence video diffusion models to diffusion forcing architectures by applying frame-wise noise schedules for autoregressive generation.

Evaluation. We evaluate text-to-image alignment using benchmarks DPG-Bench (Hu et al., 2024) and GenEval (Ghosh et al., 2024). Each image is generated from original or rewritten text prompts, with resolution determined by model type: 1024×1024 for image generation models to support high fidelity, and 512×320 for video generation models to effectively measure cross-modal generalization. We access text-to-video generation using VBench (Huang et al., 2024a) and image-to-video generation with VBench++ (Huang et al., 2024b), its comprehensive successor tailored for real-world scenarios. The videos, sized $49 \times 512 \times 320$, are generated from rewritten prompts for text-to-video evaluation,

972 and from original text prompts with official cropped first-frame images for image-to-video evaluation.
 973 We apply classifier-free guidance (Ho & Salimans, 2022) with a scale value of 7.0 in all evaluations.
 974

975 E VIDEO EXTRAPOLATION EXPERIMENTS

978 As UDM is trained by applying independent noise levels to each frame, it naturally lends itself
 979 to video extrapolation via a sliding window. Specifically, new frames are generated sequentially,
 980 conditioned on the most recent 13 frames, thereby extending future predictions beyond the initial
 981 49-frame context window. To effectively mitigate sampling errors in autoregressive video generation,
 982 we introduce a small amount of noise into historical frames by resampling them at timestep $t = 0.9$.
 983 Figure 7 presents the qualitative results for a video of 481 frames, where the initial text-to-video
 984 segment is extended through 12 extrapolation steps, producing videos up to $10 \times$ the original length.
 985

1003 Prompt: A woman walks down a Tokyo street filled with warm glowing neon and animated city signage.
 1004
 1005 Prompt: An extreme close-up of an gray-haired man with a beard in his 60s.
 1006

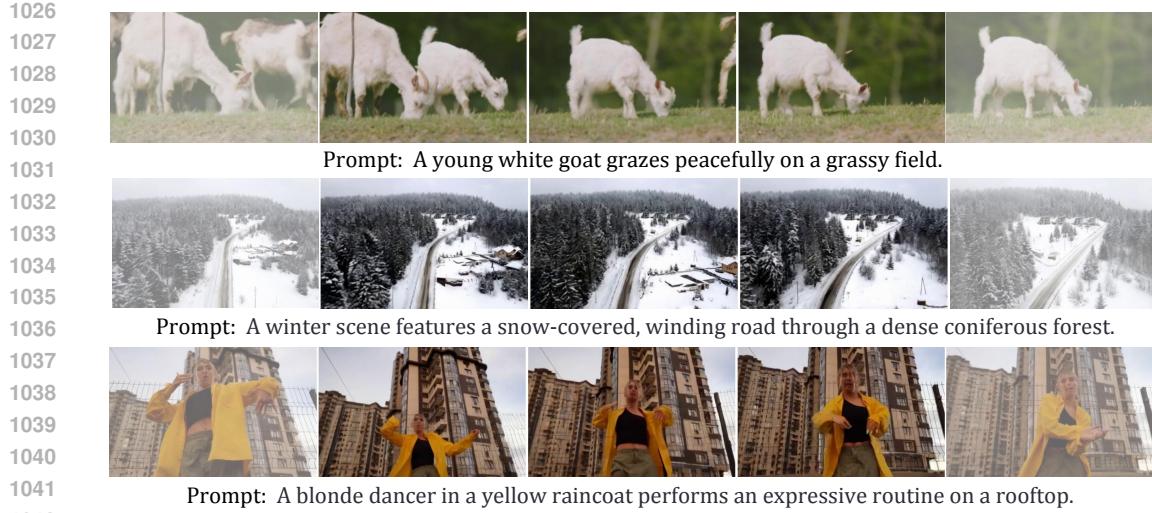
1005 **Figure 7: Zero-shot video extrapolation.** We extend the 4-second text-to-video result to 40 seconds.

1008 F START-END FRAME CONTROL EXPERIMENTS

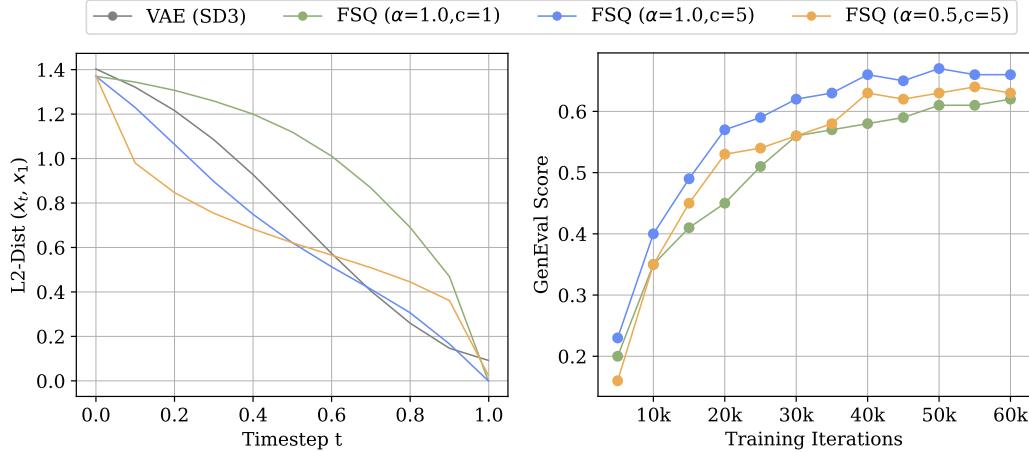
1010 We evaluate UDM on the start-end frame control task, a specialized form of video generation to
 1011 prevent future predictions from drifting. Concretely, we extract a sequence of frames from the video
 1012 at 4-second intervals and place them sequentially at the beginning and the end of the context window.
 1013 This setup enables the generation of a video featuring coherent motion of both objects and cameras,
 1014 preserving spatial relationships throughout the scene. We present the qualitative results in Figure 8.
 1015

1016 G EXPERIMENTS ON THE EFFECT OF METRIC PATH LINEARITY

1018 For the experiment setting, the left plot shows the L2 distance between the embeddings of noisy
 1019 images (obtained by adding noise at different time steps t) and the embedding of the clean image,
 1020 computed using 10k randomly selected images from the training set. The right plot follows the
 1021 same experimental setting as the ablation study presented in the main text. We compute the Pearson
 1022 correlation coefficients between the Euclidean distance and the timestep, which are **-0.995**, **-0.921**,
 1023 **-0.997**, and **-0.949**. We found the choice of the probability path is significantly influenced by the
 1024 values of c and α , and this in turn has a substantial impact on the model’s performance. To determine
 1025 optimal values for c and α , we draw inspiration from continuous diffusion model **SD3** (Esser et al.,
 2024), where the relationship between t and $d(x_t, x_1)$ demonstrates a strong linear correlation. **This**

Figure 8: **Zero-shot start-end frame control.** The start-end frames are rendered with transparency.

insight guides our approach to calibrating c and α to effectively reach the limits of model performance for different vision tokenizers.



(a) Linearized and non-linearized metric paths. (b) Text-to-image performance on GenEval.

Figure 9: **Sampling performance of different paths.** We evaluate the image samples at 256×256 .

H EXPERIMENTS OF MODEL SIZE FOR UNIFORM DIFFUSION

To study the scaling properties of UDM models, we train three variants that are initialized from Qwen3 models with 0.6B, 1.7B, and 4B parameters. Figure 10 compares the performance of different model sizes on DPG-Bench, GenEval, and VBench, with all models trained for the same epoch count as in Sec. 4.2. We find that increasing model size considerably enhances semantic performance across both text-to-image and text-to-video evaluations but does not significantly improve generation quality. This suggests that while larger models better capture high-level semantics and align more accurately with text prompts, the fidelity of the generated outputs may ultimately be constrained by the representation capacity of the discrete vision tokenizer.

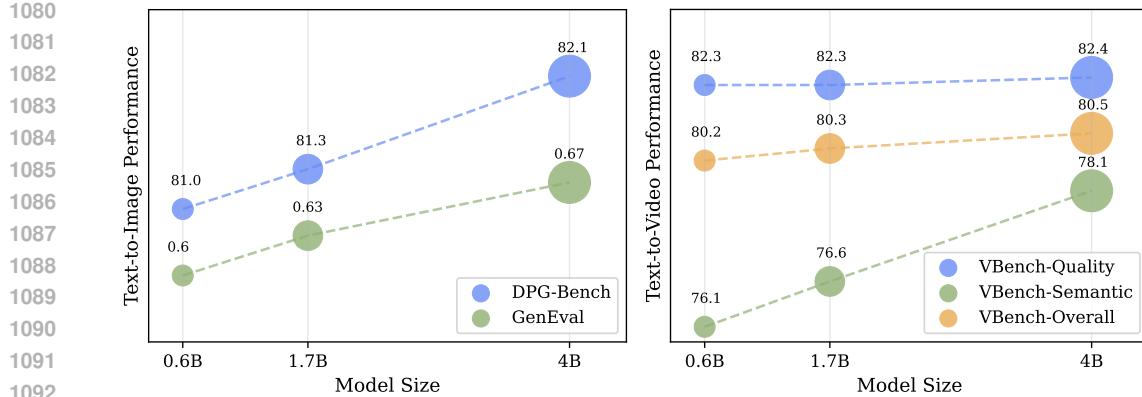


Figure 10: **Sampling performance of different model sizes.** All models are trained for the same epoch count as in the main experiments and evaluated on 256×256 images and $25 \times 384 \times 240$ videos.

Table 5: **Comparison of different LLM backbones.**

Model	#images	VisionTokenizer	Resolution	GenEval
Qwen3-0.6B	24M	FSQ	256×256	0.60
Qwen3-1.7B	24M	FSQ	256×256	0.63
Llama3.2-1B	24M	FSQ	256×256	0.61

I ABLATIONS ON THE IMPACT OF DIFFERENT LLM BACKBONES

To assess sensitivity to the LLM backbones, we conduct an ablation in Table 5 comparing Qwen3-0.6B, Llama3.2-1B, and Qwen3-1.7B. All models share the same FSQ tokenizer, are trained on the same data for the same epoch count as in Sec. 4.2, and are evaluated on 256×256 images. GenEval improves monotonically from Qwen3-0.6B \rightarrow Llama3.2-1B \rightarrow Qwen3-1.7B, closely tracking model size. These results suggest that performance is primarily governed by model capacity rather than the specific LLM architecture, and our method is largely insensitive to the choice of Qwen versus other open-source backbones.

J INFERENCE SPEED COMPARISON

To quantify the efficiency of our model, we report the average inference latency and compare UDM with representative continuous and discrete video generation baselines in Table 6. For a standard 49-frame setting, UDM-1.7B requires only 70s on 19K tokens, yielding a VBench-T2V score of 81.9, while a higher-resolution configuration reaches 82.4 with 180s latency. This places UDM on a more favorable speed-quality frontier than previous discrete models (e.g., Lumos1-3.6B and Emu3-8B) and comparable continuous diffusion models (e.g., CogVideoX-5B and StepVideo-30B).

Table 6: **Inference latency of UDM and prior video generation models.** UDM attains competitive VBench-T2V scores with lower or comparable latency than both discrete and continuous baselines. *Since the video version of Emu3-8B is not open-sourced, we estimate its latency by proportionally scaling from the officially released image model.

Model	Latent	Video Size	#Tokens	Latency (s)	VBench-T2V
CogVideoX-5B	Continuous	$49 \times 720 \times 480$	18K	180s	81.9
StepVideo-30B	Continuous	$136 \times 992 \times 544$	36K	900s	81.8
Lumos1-3.6B	Discrete	$25 \times 448 \times 256$	13K	180s	78.3
Emu3-8B*	Discrete	$49 \times 512 \times 512$	53K	1700s	81.0
UDM-1.7B	Discrete	$49 \times 240 \times 384$	19K	70s	81.9
UDM-1.7B	Discrete	$49 \times 512 \times 320$	34K	180s	82.4

1134 **K FORMAL DEFINITION AND OPTIMIZATION OF LINEARIZED METRIC PATH**
1135

1136 **Motivation.** In the uniform discrete diffusion framework, the probability path $p_t(x | x_1)$ governs
1137 how the model observes visual tokens at different levels of corruption. A desirable property of this
1138 path is that the expected corruption strength increases *uniformly* over time. Intuitively, maintaining
1139 such linearity ensures uniform coverage across $t \in [0, 1]$, providing unbiased supervision across
1140 noise levels, stabilizing training from scratch, and yielding smoother refinement trajectories.

1141
1142 **Definition of Metric-Linearity.** Let x_1 denote a clean token sequence, $x_t \sim p_t(\cdot | x_1; \theta)$ the
1143 corrupted sample at time t , and $E(\cdot)$ the tokenizer embedding. The metric-induced probability path
1144 used in UDM is parameterized by $\theta = (c, \alpha)$:

$$1145 \quad \beta_t(\theta) = c \left(\frac{t}{1-t} \right)^\alpha, \quad (7)$$

$$1146 \quad p_t(x|x_1; \theta) = \text{softmax}(-\beta_t(\theta) d(x, x_1)), \quad (8)$$

1147 where $d(\cdot, \cdot)$ denotes the embedding-space distance induced by the tokenizer codebook. We define
1148 the expected corruption trajectory:

$$1149 \quad f(t) = \mathbb{E}_{x_1 \sim q, x_t \sim p_t(\cdot | x_1)} \left[\|E(x_t) - E(x_1)\|_2^2 \right]. \quad (9)$$

1150 which measures the expected deviation from clean samples at time t . We call the path *metric-linear*
1151 if $f_\theta(t)$ admits a close linear approximation in t ; i.e., if the corruption level progresses at an
1152 approximately constant rate.

1153
1154 **Formulating Metric-Path Design as an Optimization Problem.** Prior approaches (Shaul et al.,
1155 2025) often rely on costly trial-and-error—training full models under different schedules and selecting
1156 the best performing one. Under the metric-linear hypothesis, UDM instead formulates the schedule
1157 selection as a bi-level optimization problem. For a discrete grid $\{t_k\}_{k=1}^K \subset [0, 1]$, let (a_θ, b_θ) denote
1158 the best affine approximation to $f_\theta(t)$:

$$1159 \quad (a_\theta, b_\theta) = \arg \min_{a, b} \sum_{k=1}^K (f_\theta(t_k) - (at_k + b))^2. \quad (10)$$

1160 The optimal schedule parameters are then obtained by minimizing the deviation from linearity:

$$1161 \quad \theta^* = \arg \min_{\theta=(c,\alpha)} \sum_{k=1}^K (f_\theta(t_k) - (a_\theta t_k + b_\theta))^2. \quad (11)$$

1162 Equivalently, equation 11 can be expressed as maximizing the Pearson correlation between $f_\theta(t)$ and
1163 time t , providing a principled criterion for selecting metric paths without training generative models.

1164
1165 **Practical Solution.** Because $\theta = (c, \alpha)$ is two-dimensional and the inner regression admits a
1166 closed-form solution, equation 11 can be solved efficiently. We approximate $f_\theta(t)$ using a set of
1167 10k randomly selected clean images from the training distribution and a finite grid of timesteps.
1168 A deterministic coarse-to-fine search over θ yields schedules whose corruption trajectories exhibit
1169 near-perfect linearity (Pearson correlation ≈ 0.99). This procedure produces stable, well-behaved
1170 probability paths that significantly reduce path-design overhead compared with previous methods.

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187