
Deep Marching Tetrahedra: a Hybrid Representation
for High-Resolution 3D Shape Synthesis

Tianchang Shen 1,2,3 Jun Gao1,2,3 Kangxue Yin 1

Ming-Yu Liu 1 Sanja Fidler1,2,3

NVIDIA1 University of Toronto2 Vector Institute3

{frshen, jung, kangxuey, mingyul, sfidler}@nvidia.com

Abstract

We introduce DMTET, a deep 3D conditional generative model that can synthesize
high-resolution 3D shapes using simple user guides such as coarse voxels. It
marries the merits of implicit and explicit 3D representations by leveraging a novel
hybrid 3D representation. Compared to the current implicit approaches, which are
trained to regress the signed distance values, DMTET directly optimizes for the
reconstructed surface, which enables us to synthesize finer geometric details with
fewer artifacts. Unlike deep 3D generative models that directly generate explicit
representations such as meshes, our model can synthesize shapes with arbitrary
topology. The core of DMTET includes a deformable tetrahedral grid that encodes
a discretized signed distance function and a differentiable marching tetrahedra
layer that converts the implicit signed distance representation to the explicit surface
mesh representation. This combination allows joint optimization of the surface
geometry and topology as well as generation of the hierarchy of subdivisions using
reconstruction and adversarial losses defined explicitly on the surface mesh. Our
approach significantly outperforms existing work on conditional shape synthesis
from coarse voxel inputs, trained on a dataset of complex 3D animal shapes. Project
page: https://nv-tlabs.github.io/DMTet/.

1 Introduction

Fields such as simulation, architecture, gaming, and film rely on high-quality 3D content with rich
geometric details and complex topology. However, creating such content requires tremendous expert
human effort. It takes a significant amount of development time to create each individual 3D asset. In
contrast, creating rough 3D shapes with simple building blocks like voxels has been widely adopted.
For example, Minecraft has been used by hundreds of millions of users for creating 3D content. Most
of them are non-experts. Developing A.I. tools that enable regular people to upscale coarse, voxelized
objects into high resolution, beautiful 3D shapes would bring us one step closer to democratizing
high-quality 3D content creation. Similar tools can be envisioned for turning 3D scans of objects
recorded by modern phones into high-quality forms. Our work aspires to create such capabilities.

A powerful 3D representation is a critical component of a learning-based 3D content creation
framework. A good 3D representation for high-quality reconstruction and synthesis should capture
local geometric details and represent objects with arbitrary topology while also being memory and
computationally efficient for fast inference in interactive applications.

Recently, neural implicit representations [8, 39, 42, 51], which use a neural network to implicitly
represent a shape via a signed distance field (SDF) or an occupancy field (OF), have emerged as
an effective 3D representation. Neural implicits have the benefit of representing complex geometry

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://nv-tlabs.github.io/DMTet/

and topology, not limited to a predefined resolution. The success of these methods has been shown
in shape compression [49, 13, 51], single-image shape generation [47, 60, 48], and point cloud
reconstruction [57]. However, most of the current implicit approaches are trained by regressing to
SDF or OF values and cannot utilize an explicit supervision on the target surface, which imposes
useful constraints for training. To mitigate this issue, several works [45, 31] proposed to utilize
iso-surfacing techniques such as the Marching Cubes (MC) algorithm to extract a surface mesh from
the implicit representation, which, however, is computationally expensive.

In this work, we introduce DMTET, a deep 3D conditional generative model for high-resolution
3D shape synthesis from user guides in the form of coarse voxels. In the heart of DMTET is a new
differentiable shape representation that marries implicit and explicit 3D representations. In contrast
to deep implicit approaches optimized for predicting sign distance (or occupancy) values, our model
employs additional supervision on the surface, which empirically renders higher quality shapes with
finer geometric details. Compared to methods that learn to directly generate explicit representations,
such as meshes [54], by committing to a preset topology, our DMTET can produce shapes with
arbitrary topology. Specifically, DMTET predicts the underlying surface parameterized by an implicit
function encoded via a deformable tetrahedral grid. The underlying surface is converted into an
explicit mesh with a Marching Tetrahedra (MT) algorithm, which we show is differentiable and
more performant than the Marching Cubes. DMTET maintains efficiency by learning to adapt the
grid resolution by deforming and selectively subdividing tetrahedra. This has the effect of spending
computation only on the relevant regions in space. We achieve further gains in the overall quality of
the output shape with learned surface subdivision. Our DMTET is end-to-end differentiable, allowing
the network to jointly optimize the geometry and topology of the surface, as well as the hierarchy of
subdivisions using a loss function defined explicitly on the surface mesh.

We demonstrate our DMTET on two challenging tasks: 3D shape synthesis from coarse voxel inputs
and point cloud 3D reconstruction. We outperform existing state-of-the-art methods by a significant
margin while being 10 times faster than alternative implicit representation-based methods at inference
time. In summary, we make the following technical contributions:

1. We show that using Marching Tetrahedra (MT) as a differentiable iso-surfacing layer allows
topological change for the underlying shape represented by a implicit field, in contrast to
the analysis in prior works [31, 45].

2. We incorporate MT in a DL framework and introduce DMTET, a hybrid representation that
combines implicit and explicit surface representations. We demonstrate that the additional
supervision (e.g. chamfer distance, adversarial loss) defined directly on the extracted surface
from implicit field improves the shape synthesis quality.

3. We introduce a coarse-to-fine optimization strategy that scales DMTET to high resolution
during training. We thus achieves better reconstruction quality than state-of-the-art methods
on challenging 3D shape synthesis tasks, while requiring a lower computation cost.

2 Related Work
We review the related work on learning-based 3D synthesis methods based on their 3D representations.

Voxel-based Methods Early work [59, 10, 38] represented 3D shapes as voxels, which store the
coarse occupancy (inside/outside) values on a regular grid, which makes powerful convolutional neural
networks native and renders impressive results on 3D reconstruction and synthesis [12, 11, 58, 2]. For
high-resolution shape synthesis, DECOR-GAN [6] transfers geometric details from a high-resolution
shape represented in voxel to a low-resolution shape by utilizing a discriminator defined on 3D patches
of the voxel grid. However, the computational and memory costs grow cubically as the resolution
increases, prohibiting the reconstruction of fine geometric details and smooth curves. One common
way to address this limitation is building hierarchical structures such as octrees [46, 52, 55, 56, 24, 52],
which adapt the grid resolution locally based on the underlying shape. In this paper, we adopt a
hierarchical deformable tetrahedral grid to utilize the resolution better. Unlike octree-based shape
synthesis, our network learns grid deformation and subdivision jointly to better represent the surface
without relying on explicit supervision from a pre-computed hierarchy.

Deep Implicit Fields (DIFs) represent a 3D shape as a zero level set of a continuous function
parameterized by a neural network [39, 44, 17, 40]. This formulation can represent arbitrary typol-
ogy and has infinite resolution. DIF-based shape synthesis approaches have demonstrated strong

2

(a) Predicting SDF at Initial

Grid Resolution
(b) Selectively Subdiv ide

Tetrahedrons, and interpolate SDF

(e) Surface Subdivision

Point Cloud

Low-Res Voxel Parametric Surface

GT Shape Unoccupied Grid Point Occupied Grid Point Surface Mesh

(c) Refine Boundary SDF,

Deform and Trim Graph (d
) M

a
rc

h
in

g

Te
tra

h
e

d
ra

Implicit Function (SDF)

Explicit Surface

(Interpolated

SDF) (Tri. Mesh)

input output

Figure 1: DMTET reconstructs the shape implicitly in a coarse-to-fine manner by predicting the SDF defined
on a deformable tetrahedral grid. It then converts the SDF to a surface mesh by a differentiable Marching
Tetrahedra layer. DMTET is trained by optimizing the objective function defined on the final surface.

performance in many applications, including single view 3D reconstruction [60, 30, 47, 48], shape
manipulation, and synthesis [26, 21, 28, 14, 1, 9]. However, as these approaches are trained by
minimizing the reconstruction loss of function values at a set of sampled 3D locations (a rough
proxy of the surface), they tend to render artifacts when synthesizing fine details. Furthermore, if
one desires a mesh to be extracted from a DIF, an expensive iso-surfacing step based on Marching
Cubes [36] or Marching Tetrahedra [15] is required. Due to the computational burden, iso-surfacing
is often done on a smaller resolution, hence prone to quantization errors. Lei et al. [29] proposes an
analytic meshing solution to reduce the error, but is only applicable to DIFs parametrized by MLPs
with ReLU activation. Our representation scales to high resolution and does not require additional
modification to the backward pass for training end-to-end. DMTET can represent arbitrary typology,
and is trained via direct supervision on the generated surface. Recent works [1, 9] learn to regress
unsigned distance to triangle soup or point cloud. However, their iso-surfacing formulation is not
differentiable in contrast to DMTET.

Surface-based Methods directly predict triangular meshes and have achieved impressive results
for reconstructing and synthesizing simpler shapes [54, 23, 5, 41, 7]. Typically, they predefined the
topology of the shape, e.g. equivalent to a sphere [54, 5, 25], or a union of primitives [43, 53, 19]
or a set of segmented parts [61, 62, 50]. As a result, they can not model a distribution of shapes
with complex topology variations. Recently, DefTet [18] represents a mesh with a deformable
tetrahedral grid where the grid vertex coordinates and the occupancy values are learned. However,
similar to voxel-based methods, the computational costf increases cubically with the grid resolution.
Furthermore, as the occupancy loss for supervising topology learning and the surface loss for
supervising geometry learning do not support joint training, it tends to generate suboptimal results.
In contrast, our method is able to synthesize high-resolution 3D shapes, not shown in previous work.

3 Deep Marching Tetrahedra
We now introduce our DMTET for synthesizing high-quality 3D objects. The schematic illustration
is provided in Fig. 1. Our model relies on a new, hybrid 3D representation specifically designed for
high-resolution reconstruction and synthesis, which we describe in Sec. 3.1. In Sec. 3.2, we describe
the neural network architecture of DMTET that predicts the shape representation from inputs such as
coarse voxels. We provide the training objectives in Sec. 3.3.

3.1 3D Representation

We represent a shape using a sign distance field (SDF) encoded with a deformable tetrahedral grid,
adopted from DefTet [18, 20]. The grid fully tetrahedralizes a unit cube, where each cell in the
volume is a tetahedron with 4 vertices and faces. The key aspect of this representation is that the grid
vertices can deform to represent the geometry of the shape more efficiently. While the original DefTet
encoded occupancy defined on each tetrahedron, we here encode signed distance values defined on
the vertices of the grid and represent the underlying surface implicitly (Sec. 3.1.1). The use of signed
distance values, instead of occupancy values, provides more flexibility in representing the underlying
surface. For greater representation power while keeping memory and computation manageable, we
further selectively subdivide the tetrahedra around the predicted surface (Sec. 3.1.2). We convert
the signed distance-based implicit representation into a triangular mesh using a marching tetrahedra
layer, which we discuss in Sec. 3.1.3. The final mesh is further converted into a parameterized surface
with a differentiable surface subdivision module, described in Sec. 3.1.4.

3

3.1.1 Deformable Tetrahedral Mesh as an Approximation of an Implicit Function
We adopt and extend the deformable tetrahedral grid introduced in Gao et al. [18], which we denote
with (VT , T), where VT are the vertices in the tetrahedral grid T . Following the notation in [18],
each tetrahedron Tk ∈ T is represented with four vertices {vak

, vbk , vck , vdk
}, with k ∈ {1,,K},

where K is the total number of tetrahedra and vik ∈ VT .

We represent the sign distance field by interpolating SDF values defined on the vertices of the grid.
Specifically, we denote the SDF value in vertex vi ∈ VT as s(vi). SDF values for the points that lie
inside the tetrahedron follow a barycentric interpolation of the SDF values of the four vertices that
encapsulates the point.

3.1.2 Volume Subdivision

va
<latexit sha1_base64="WHMNaswz9kjuvKn7ODHe2JZTbwo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoQ5lst+3SzSbsbgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJU8eposynsYhVO0TNBJfMN9wI1k4UwygUrBWO7+d+a8KU5rF8MtOEBREOJR9wisZK/qSX4axXrrhVdwGyTrycVCBHo1f+6vZjmkZMGipQ647nJibIUBlOBZuVuqlmCdIxDlnHUokR00G2OHZGLqzSJ4NY2ZKGLNTfExlGWk+j0HZGaEZ61ZuL/3md1Axug4zLJDVM0uWiQSqIicn8c9LnilEjppYgVdzeSugIFVJj8ynZELzVl9dJs1b1rqq1x+tK/S6PowhncA6X4MEN1OEBGuADBQ7P8ApvjnRenHfnY9lacPKZU/gD5/MHF4OO3g==</latexit>

vb
<latexit sha1_base64="gKJ0v/cEq8VyNyJPg1qleAI7Om0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoQ9lsp+3SzSbsbgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJU8epYuizWMSqHVKNgkv0DTcC24lCGoUCW+H4fu63Jqg0j+WTmSYYRHQo+YAzaqzkT3pZOOuVK27VXYCsEy8nFcjR6JW/uv2YpRFKwwTVuuO5iQkyqgxnAmelbqoxoWxMh9ixVNIIdZAtjp2RC6v0ySBWtqQhC/X3REYjradRaDsjakZ61ZuL/3md1Axug4zLJDUo2XLRIBXExGT+OelzhcyIqSWUKW5vJWxEFWXG5lOyIXirL6+TZq3qXVVrj9eV+l0eRxHO4BwuwYMbqMMDNMAHBhye4RXeHOm8OO/Ox7K14OQzp/AHzucPGQiO3w==</latexit> vc

<latexit sha1_base64="UFYpcofBcCxqSthGSyPgtsz6mvU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoQ9lsp+3SzSbsbgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJU8epYuizWMSqHVKNgkv0DTcC24lCGoUCW+H4fu63Jqg0j+WTmSYYRHQo+YAzaqzkT3oZm/XKFbfqLkDWiZeTCuRo9Mpf3X7M0gilYYJq3fHcxAQZVYYzgbNSN9WYUDamQ+xYKmmEOsgWx87IhVX6ZBArW9KQhfp7IqOR1tMotJ0RNSO96s3F/7xOaga3QcZlkhqUbLlokApiYjL/nPS5QmbE1BLKFLe3EjaiijJj8ynZELzVl9dJs1b1rqq1x+tK/S6PowhncA6X4MEN1OEBGuADAw7P8ApvjnRenHfnY9lacPKZU/gD5/MHGo2O4A==</latexit>

vd
<latexit sha1_base64="tUejN45eEhT5QsgQVwsQKhyCKeA=">AAAB7HicbVBNS8NAEJ2tX7V+VT16WSyCp5JUQY9FLx4rmLbQhrLZbNqlm03Y3RRK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzglRwbRznG5U2Nre2d8q7lb39g8Oj6vFJWyeZosyjiUhUNyCaCS6ZZ7gRrJsqRuJAsE4wvp/7nQlTmifyyUxT5sdkKHnEKTFW8iaDPJwNqjWn7iyA14lbkBoUaA2qX/0woVnMpKGCaN1zndT4OVGGU8FmlX6mWUromAxZz1JJYqb9fHHsDF9YJcRRomxJgxfq74mcxFpP48B2xsSM9Ko3F//zepmJbv2cyzQzTNLloigT2CR4/jkOuWLUiKklhCpub8V0RBShxuZTsSG4qy+vk3aj7l7VG4/XteZdEUcZzuAcLsGFG2jCA7TAAwocnuEV3pBEL+gdfSxbS6iYOYU/QJ8/HBKO4Q==</latexit>

v0ac = 1
2 (va + vc)

<latexit sha1_base64="unkXgzasvzoz62NVkJI0wx/YtLY=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotYEUpSBd0IRTcuK9gHtCFMppN26GQSZiaBErJy46+4caGIW7/BnX/jtM1CWw9cOJxzL/fe40WMSmVZ30ZhaXllda24XtrY3NreMXf3WjKMBSZNHLJQdDwkCaOcNBVVjHQiQVDgMdL2RrcTv50QIWnIH9Q4Ik6ABpz6FCOlJdc8TE7cFOHsuqd8gXBqZ2ktqyQuOktcfOqaZatqTQEXiZ2TMsjRcM2vXj/EcUC4wgxJ2bWtSDkpEopiRrJSL5YkQniEBqSrKUcBkU46fSODx1rpQz8UuriCU/X3RIoCKceBpzsDpIZy3puI/3ndWPlXTkp5FCvC8WyRHzOoQjjJBPapIFixsSYIC6pvhXiIdBxKJ1fSIdjzLy+SVq1qn1dr9xfl+k0eRxEcgCNQATa4BHVwBxqgCTB4BM/gFbwZT8aL8W58zFoLRj6zD/7A+PwBaPOYbw==</latexit>

s0ac = 1
2

�
s(va) + s(vc)

�
<latexit sha1_base64="6BBTryL3Z6N2Jy2RF/EACTAh4Jw=">AAACFHicbVDLSsNAFJ34rPUVdelmsIgthZJUQTdC0Y3LCvYBTQiT6aQdOpmEmUmhhHyEG3/FjQtF3Lpw5984abvQ1gOXezjnXmbu8WNGpbKsb2NldW19Y7OwVdze2d3bNw8O2zJKBCYtHLFIdH0kCaOctBRVjHRjQVDoM9LxR7e53xkTIWnEH9QkJm6IBpwGFCOlJc+syjMvRTi7dlQgEE7tLK1njk8HZVkee6hSzRuu5ErFM0tWzZoCLhN7TkpgjqZnfjn9CCch4QozJGXPtmLlpkgoihnJik4iSYzwCA1IT1OOQiLddHpUBk+10odBJHRxBafq740UhVJOQl9PhkgN5aKXi/95vUQFV25KeZwowvHsoSBhUEUwTwj2qSBYsYkmCAuq/wrxEOlwlM6xqEOwF09eJu16zT6v1e8vSo2beRwFcAxOQBnY4BI0wB1oghbA4BE8g1fwZjwZL8a78TEbXTHmO0fgD4zPHyu4nZw=</latexit>

Figure 2: Volume Subdivision:
Each surface tet.(blue) is divided
into 8 tet.(red) by adding midpoints.

We represent shape in a coarse to fine manner for efficiency. We
determine the surface tetrahedra Tsurf by checking whether a
tetrahedron has vertices with different SDF signs – indicating that
it intersects the surface encoded by the SDF. We subdivide Tsurf
as well as their immediate neighbors and increase resolution by
adding the mid point to each edge. We compute SDF values of the
new vertices by averaging the SDF values on the edge (Fig. 2).

3.1.3 Marching Tetrahedra for converting between an
Implicit and Explicit Representation

positive SDF

negative SDF
𝑣′𝑎𝑏 =

𝑣𝑎 ∙ 𝑠 𝑣𝑏 − 𝑣𝑏 ∙ 𝑠 𝑣𝑎
𝑠 𝑣𝑏 − 𝑠(𝑣𝑎)

Figure 3: Three unique surface configurations in
MT. Vertex color indicates the sign of signed dis-
tance value. Notice that flipping the signs of all
vertices will result in the same surface configura-
tion. Position of the vertex is linearly interpolated
along the edges with sign change.

We use the Marching Tetrahedra [15] algo-
rithm to convert the encoded SDF into an ex-
plicit triangular mesh. Given the SDF values
{s(va), s(vb), s(vc), s(vd)} of the vertices of a tetra-
hedron, MT determines the surface typology inside
the tetrahedron based on the signs of s(v), which is
illustrated in Fig. 3. The total number of configu-
rations is 24 = 16, which falls into 3 unique cases
after considering rotation symmetry. Once the sur-
face typology inside the tetrahedron is identified, the
vertex location of the iso-surface is computed at the
zero crossings of the linear interpolation along the
tetrahedron’s edges, as shown in Fig. 3.

Prior works [45, 31] argue that the singularity in this formulation, i.e. when s(va) = s(vb), prevents
the change of surface typology (sign change of s(va)) during training. However, we find that, in
practise, the equation is only evaluated when sign(s(va)) 6= sign(s(vb)). Thus, during training, the
singularity never happens and the gradient from a loss defined on the extracted iso-surface (Sec. 3.3),
can be back-propagated to both vertex positions and SDF values via the chain rule. A more detailed
analysis is in the Appendix.

3.1.4 Surface Subdivision
Having a surface mesh as output allows us to further increase the representation power and the visual
quality of the shapes with a differentiable surface subdivision module. We follow the scheme of the
Loop Subdivision method [35], but instead of using a fixed set of parameters for subdivision, we make
these parameters learnable in DMTET. Specifically, learnable parameters include the positions of
each mesh vertex v′i, as well as αi which controls the generated surface via weighting the smoothness
of neighbouring vertices. Note that different from Liu et al. [33], we only predict the per-vertex
parameter at the beginning and carry it over to subsequent subdivision iterations to attain a lower
computational cost. We provide more details in Appendix.

3.2 DMTET: 3D Deep Conditional Generative Model
Our DMTET is a neural network that utilizes our proposed 3D representation and aims to output a
high resolution 3D mesh M from input x (a point cloud or a coarse voxelized shape). We describe
the architecture (Fig. 4) of the generator for each module of our 3D representation in Sec. 3.2.1, with
the architecture of the discriminator presented in Sec. 3.2.2. Further details are in Appendix.

4

PCD
Encoder

Trilinear
Interp. (𝒗, 𝑭𝒗𝒐𝒍 𝒗, 𝒙)𝒗

𝒔 𝒗 , 𝒇(𝒗)

MLPs
GCN

𝒗𝒊, 𝒔 𝒗𝒊 , 𝒇 𝒗𝒊 , 𝑭𝒗𝒐𝒍 𝒗𝒊, 𝒙

𝑩𝒖𝒊𝒍𝒅 𝑮𝒓𝒂𝒑𝒉 𝑮 𝒇𝒓𝒐𝒎 𝑺𝒖𝒓𝒇𝒂𝒄𝒆
𝑻𝒆𝒕𝒓𝒂𝒉𝒆𝒅𝒓𝒐𝒏𝒔(𝑶𝒓𝒂𝒏𝒈𝒆)

∆𝒗𝒊, ∆𝒔 𝒗𝒊 , 𝒇 𝒗𝒊

Initial SDF Prediction Surface Refinement Discriminator

No Gradient

3D
CNN

MLP

Tri. Interp.

Sample high-curvature
𝒗 from GT

+

𝒗
𝑺𝑫𝑭(𝒗,𝑴/𝑮𝑻)

𝑭𝒗𝒐𝒍(𝒗, 𝒙)

Real/Fake

𝒙 ∈ 𝑹𝑵𝒙𝟑

Pred or GT Mesh

Regular
Tet. Grid

Figure 4: Our generator and discriminator architectures. The generator is composed of two parts—one utilizes
MLP to generate the initial predictions for all grid vertices and the other uses GCN to refine the surface.

3.2.1 3D Generator
Input Encoder We use PVCNN [34] as an input encoder to extract a 3D feature volume Fvol(x)
from a point cloud. When the input is a coarse voxelized shape, we sample points on its surface. We
compute a feature vector Fvol(v, x) for a grid vertex v ∈ R3 via trilinear interpolation.

Initial Prediction of SDF We predict the SDF value for each vertex in the initial deformable
tetrahedral grid using a fully-connected network s(v) = MLP(Fvol(v, x), v). The fully-connected
network additionally outputs a feature vector f(v), which is used for the surface refinement in the
volume subdivision stage.

Surface Refinement with Volume Subdivision After obtaining the initial SDF, we iteratively
refine the surface and subdivide the tetrahedral grid. We first identify surface tetrahedra Tsurf
based on the current s(v) value. We then build a graph G = (Vsurf , Esurf), where Vsurf , Esurf

correspond to the vertices and edges in Tsurf . We then predict the position offsets ∆vi and SDF
residual values ∆s(vi) for each vertex i in Vsurf using a Graph Convolutional Network [32] (GCN):

f ′vi = concat(vi, s(vi), Fvol(vi, x), f(vi)), (1)

(∆vi,∆s(vi), f(vi))i=1,···Nsurf
= GCN

(
(f ′vi)i=1,···Nsurf

, G
)
, (2)

where Nsurf is the total number of vertices in Vsurf and f(vi) is the updated per-vertex feature.
The vertex position and the SDF value for vertex vi are updated as v′i = vi + ∆vi and s(v′i) =
s(vi) + ∆s(vi). This refinement step can potentially flip the sign of the SDF values to refine the local
typology, and also move the vertices thus improving the local geometry.

After surface refinement, we perform the volume subdivision step followed by an additional surface
refinement step. In particular, we re-identify Tsurf and subdivide Tsurf and their immediate neigh-
bors. We drop the unsubdivided tetrahedra from the full tetrahedral grid in both steps, which saves
memory and computation, as the size of the Tsurf is proportional to the surface area of the object,
and scales up quadratically rather than cubically as the grid resolution increases.

Note that the SDF values and positions of the vertices are inherited from the level before subdivision,
thus, the loss computed at the final surface can back-propagate to all vertices from all levels. Therefore,
our DMTET automatically learns to subdivide the tetrahedra and does not need an additional loss term
in the intermediate steps to supervise the learning of the octree hierarchy as in the prior work [52].

Learnable Surface Subdivision After extracting the surface mesh using MT, we can further apply
learnable surface subdivision. Specifically, we build a new graph on the extracted mesh, and use GCN
to predict the updated position of each vertex v′i, and αi for Loop Subvidision. This step removes
the quantization errors and mitigates the approximation errors from the classic Loop Subdivision by
adjusting αi, which are fixed in the classic method.

3.2.2 3D Discriminator
We apply a 3D discriminator D on the final surface predicted from the generator. We empirically find
that using a 3D CNN from DECOR-GAN [6] as the discriminator on the signed distance field that
is computed from the predicted mesh is effective to capture the local details. Specifically, we first
randomly select a high-curvature vertex v from the target mesh and compute the ground truth signed
distance field Sreal ∈ RN×N×N at a voxelized region around v. Similarly, we compute the signed
distance field of the predicted surface mesh M at the same location to obtain Spred ∈ RN×N×N .
Note that Spred is an analytical function of the mesh M , and thus the gradient to Spred can back-
propagate to the vertex positions in M . We feed Sreal or Spred into the discriminator, along with
the feature vector Fvol(v, x) in position v. The discriminator then predicts the probability indicating
whether the input comes from the real or generated shapes.

5

3.3 Loss Function
DMTET is end-to-end trainable. We supervise all modules to minimize the error defined on the
final predicted mesh M . Our loss function contains three different terms: a surface alignment loss
to encourage the alignment with ground truth surface, an adversarial loss to improve realism of the
generated shape, and regularizations to regularize the behavior of SDF and vertex deformations.

Surface Alignment loss We sample a set of points Pgt from the surface of the ground truth mesh
Mgt. Similarly, we also sample a set of points from Mpred to obtain Ppred, and minimize the L2
Chamfer Distance and the normal consistency loss between Pgt and Ppred :

Lcd =
∑

p∈Ppred

min
q∈Pgt

||p− q||2 +
∑

q∈Pgt

min
p∈Ppred

||q − p||2, Lnormal =
∑

p∈Ppred

(1− |~np · ~nq̂|), (3)

where q̂ is the point that corresponds to p when computing the Chamfer Distance, and ~np, ~nq̂ denotes
the normal direction at point p, q̂.

Adversarial Loss We use the adversarial loss proposed in LSGAN [37]:

LD =
1

2
[(D(Mgt)− 1)2 +D(Mpred)2], LG =

1

2
[(D(Mpred)− 1)2]. (4)

Regularizations The above loss functions operate on the extracted surface, thus, only the vertices
that are close to the iso-surface in the tetrahedral grid receive gradients, while the other vertices do
not. Moreover, the surface losses do not provide information about what is inside/outside, since
flipping the SDF sign of all vertices in a tetrahedron would result in the same surface being extracted
by MT. This may lead to disconnected components during training. To alleviate this issue, we add a
SDF loss to regularize SDF values:

LSDF =
∑

vi∈VT

|s(vi)− SDF (vi,Mgt)|2, (5)

where SDF (vi,Mgt) denotes the SDF value of point vi to the meshMgt. In addition, we apply theL2

regularization loss on the predicted vertex deformations to avoid artifacts: Ldef =
∑

vi∈VT
||∆vi||2.

The final loss is a weighted sum of all five loss terms:

L = λcdLcd + λnormalLnormal + λGLG + λSDFLSDF + λdefLdef, (6)

where λcd, λnormal, λG, λSDF, λdef are hyperparameters (provided in the Supplement).

4 Experiments
We first evaluate DMTET in the challenging application of generating high-quality animal shapes
from coarse voxels. We further evaluate DMTET in reconstructing 3D shapes from noisy point clouds
on ShapeNet by comparing to existing state-of-the-art methods.

4.1 3D Shape Synthesis from Coarse Voxels
Experimental Settings We collected 1562 animal models from the TurboSquid website1. These
models have a wide range of diversity, ranging from cats, dogs, bears, giraffes, to rhinoceros, goats,
etc. We provide visualizations in Supplement. Among 1562 shapes, we randomly select 1120 shapes
for training, and the remaining 442 shapes for testing. We follow the pipeline in Kaolin [27] to
convert shapes to watertight meshes. To prepare the input to the network, we first voxelize the mesh
into the resolution of 163, and then sample 3000 points from the surface after applying marching
cubes to the 163 voxel grid. Note that this preprocessing is agnostic to the representation of the input
coarse shape, allowing us to evaluate on different resolution voxels, or even meshes.

We compare our model with the official implementation of ConvOnet [44], which achieved SOTA
performance on voxel upsampling. We also compare to DECOR-GAN [6], which obtained impressive
results on transferring styles from a high-resolution voxel shape to a low-resolution voxel. Note that
the original setting of DECOR-GAN is different from ours. For a fair comparison, we use all 1120
training shapes as the high-resolution style shapes during training, and retrieve the closet training
shape to the test shape as the style shape during inference, which we refer as DECOR-Retv. We also
compare against a randomly selected style shape as reference, denoted as DECOR-Rand.

1https://www.turbosquid.com, we obtain consent via an agreement with TurboSquid, and following license at
https://blog.turbosquid.com/turbosquid-3d-model-license/

6

Input ConvOnet DECOR-Rand. DECOR-Retv. Ours wo Adv. Ours GTRetv.

Figure 5: Qualitative results on 3D shapes Synthesis from Coarse Voxels. Comparing with all baselines,
our method reconstructs shapes with much higher quality. Adding GAN further improves the realism of the
generated shape. We also show the retrieved shapes from the training set in the second last column.

Metrics We evaluate L2 and L1 Chamfer Distance, as well as normal consistency score to assess
how well the methods reconstruct the corresponding high-resolution shape following [44]. We also
report Light Field Distance [4] (LFD) which measures the visual similarity in 2D rendered views. In
addition, we evaluate Cls score following [6]. Specifically, we render the predicted 3D shapes and
train a patch-based image classifier to distinguish whether images are from the renderings of real or
generated shapes. The mean classification accuracy of the trained classifier is reported as Cls (lower
is better). More details are in the Supplement.

Figure 6: Qualitative Results of synthesizing high-
resolution shapes from coarse voxels collected online.

Experimental Results We provide quantitative
results in Table 1 with qualitative examples in
Fig. 5. Our DMTET achieves significant improve-
ments over all baselines in terms of all metrics.
Compared to both ConvOnet [44] and DECOR-
GAN [6], our DMTET reconstructs shapes with
better quality when training without adversarial
loss (5th column in Fig. 5). Further geometric de-
tails, including nails, ears, eyes, mouths, etc, are
captured when trained with the adversarial loss
(6th column in Fig. 5), significantly improving the
realism and visual quality of the generated shape.
To demonstrate the generalization ability of our
DMTET, we collect human-created low-resolution voxels from Turbosquid (shapes unseen in train-
ing). We provide qualitative results in Fig. 6. Despite the fact that these human-created shapes have
noticeable differences with our coarse voxels used in training, e.g., different ratios of body parts
compared with our training shapes (larger head, thinner legs, longer necks), our model faithfully
generates high-quality 3D details conditioned on each coarse voxel – an exciting result.

7

L2 Chamfer ↓ L1 Chamfer ↓ Norm. Cons. ↑ LFD ↓ Cls ↓
ConvOnet [44] 0.83 2.41 0.901 3220 0.63
DECOR [6]-Retv. 1.32 3.81 0.876 3689 0.66
DECOR [6]-Rand. 2.38 6.85 0.797 5338 0.67
DMTET wo Adv. 0.76 2.20 0.916 2846 0.58
DMTET 0.75 2.19 0.918 2823 0.54

Table 1: Super Resolution of Animal Shapes: DMTET significantly outperforms all baselines in all metrics.

User Studies We conduct user studies via Amazon Machanical Turk (AMT) to further evaluate
the performance of all methods. In particular, we present two shapes that are predicted from two
different models to the AMT workers and ask them to evaluate which one is a better looking shape
and which one features more realistic details. Detailed experimental settings are provided in the
Supplement. We compare DMTET against ConvONet [44], DECOR [6]-Retv, as well as DMTET
without adversarial loss (w.o. Adv.). Quantitative results are reported in Table 2. Human judges agree
that the shapes generated from our model have better details, compared to all baselines, in a vast
majority of the cases. Ablations on using adversarial loss demonstrate the effectiveness of generating
higher quality geometry using a discriminator during training.

ConvONet [44] DECOR [6]-Retv. DMTET wo Adv.
Baseline wins 5% / 5% 26% / 17% 29% / 25%
DMTET wins 95% / 95% 74% / 83% 71% / 75%

Table 2: User Study on 3D Shape Synthesis from
Coarse voxels. In each cell, we report percentages of
shapes for which the users agree are better looking (left)
or have better details (right).

Ablation Studies To evaluate the effective-
ness of our volume subdivision and surface sub-
division modules, we ablate by sequentially in-
troducing them to the base model (we refer as
DMTETB) which we train on 100-resolution
uniform tetrahedral grid without both volume
and surface subdivision modules and adversarial
loss. We conduct user studies to evaluate the improvement after each step using the protocol described
in the above paragraph. We first reduce the initial resolution to 70 and employ volume subdivision to
support higher output resolution (we refer this model as DMTETV) and compare with DMTETB .
Predictions by DMTETV wins 78% of cases over DMTETB for better looking, and 61% of cases
for realistic details, showing that the volume subdivision module is effective in synthesizing shape
details. We then add surface subdivision on top of the DMTETV and compare with it. The new
model wins 62% of cases over DMTETV for better looking, and 62% of cases for realistic details as
well, demonstrating the effect of surface subdivision module in enhancing the shape details.

4.2 Point Cloud 3D Reconstruction
Experimental Settings We follow the setting from DefTet [18], and use all 13 categories in
ShapeNet [3] core data2, which we pre-process using Kaolin [27] to watertight meshes. We sample
5000 points for each shape and add Gaussian noise with zero mean of standard deviation 0.005. For
quantitative evaluation, we report the L1 Chamfer Distance in the main paper, and refer readers to the
Supplement for results in other metrics (3D IoU, L2 Chamfer Distance and F1 score). We additionally
report average inference time on the same Nvidia V100 GPU.

We compare DMTET against state-of-the-art 3D reconstruction approaches using different represen-
tations: voxels [10], deforming a mesh with a fixed template [54], deforming a mesh generated from
a volumetric representation [22], DefTet [18], and implicit functions [44]. For a fair comparison, we
use the same point cloud encoder for all the methods, and adopt the decoders in the original papers to
generate shapes in different representations. We also remove the adversarial loss in this application,
since baselines also do not have it. We further compare with oracle performance of MC/MT where
the ground truth SDF is utilized to extract iso-surface using MC/MT.

Experimental Results Quantitative results are summarized in Table 3, with a few qualitative
examples shown in Fig. 7. Compared to DMC [31], which also predicts the SDF values and
supervises with a surface loss, DMTET achieves much better reconstruction quality since training
using the marching tetrahedra layer is more efficient than calculating an expectation over all possible
configurations within one grid cell as done in DMC [31]. Compared to a method that deforms a fixed
template (sphere) [54], we reconstruct shapes with different topologies, achieving more faithful results
compared to the ground truth shape. When compared with other explicit surface representations
that also support different topology [18, 22], our method achieves higher quality results for local

2The ShapeNet license is explained at https://shapenet.org/terms

8

Input PC 3DR2N2 Pix2MeshDMC ConvOnet MeshRCNN DEFTET Ours GT

Figure 7: Qualitative results on 3D Reconstruction from Point Clouds: Our model reconstructs shapes with
more geometric details compared to baselines.
Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean↓ Time(ms)↓
3D-R2N2 [10] 1.48 1.59 1.64 1.62 1.70 1.66 1.74 1.74 1.37 1.60 1.78 1.55 1.51 1.61 174
DMC [31] 1.57 1.47 1.29 1.67 1.44 1.25 2.15 1.49 1.45 1.19 1.33 0.88 1.70 1.45 349
Pixel2mesh [54] 0.98 1.28 1.44 1.19 1.91 1.25 2.07 1.61 0.91 1.15 1.82 0.83 1.12 1.35 30
ConvOnet [44] 0.82 0.95 0.96 1.12 1.03 0.93 1.22 1.12 0.79 0.91 0.94 0.67 0.99 0.95 866
MeshRCNN [22] 0.88 1.01 1.05 1.14 1.10 0.99 1.20 1.21 0.83 0.96 1.00 0.71 1.03 1.01 228
DEFTET [18] 0.85 0.94 0.97 1.13 1.04 0.92 1.28 1.17 0.85 0.90 0.93 0.65 0.99 0.97 61
DMTET wo (Def, Vol., Surf.) 0.82 0.96 0.94 0.98 0.99 0.90 1.04 1.03 0.80 0.86 0.93 0.65 0.89 0.91 52
DMTET wo (Vol., Surf.) 0.69 0.82 0.88 0.92 0.92 0.82 0.89 0.97 0.65 0.81 0.84 0.61 0.80 0.81 52
DMTET wo Vol. 0.65 0.78 0.84 0.89 0.89 0.79 0.86 0.95 0.61 0.78 0.79 0.60 0.78 0.79 67
DMTET wo Surf. 0.63 0.77 0.84 0.88 0.88 0.79 0.84 0.94 0.60 0.78 0.79 0.59 0.76 0.78 108
DMTET 0.62 0.76 0.83 0.87 0.88 0.78 0.84 0.94 0.59 0.77 0.78 0.57 0.76 0.77 129

Table 3: Quantitative Results on Point Cloud Reconstruction (Chamfer L1). Note that all the networks in
the baselines are not designed for this task, and thus we use the same encoder and their decoder for a fair
comparison. We also ablate ourselves by operating on fixed grid (DMTET wo (Def, Vol., Surf.)), removing
volume subdivision (DMTET wo Vol.), or surface subdivision (DMTET wo Surf.), or the both (DMTET wo
(Vol., Surf.)).

geometry, benefiting from the fact that the typology is jointly optimized with the geometry, whereas it
is separately supervised by an occupancy loss in [18, 22]. Compared to a neural implicit method [44],
we generate higher quality shapes with less artifacts, while running significantly faster at inference.
Finally, compared to a voxel-based method [10] at the same resolution, our method recovers more
geometric details, benefiting from the predicted vertex deformations as well as the surface loss.

4.2.1 Analysis

L1
 C

h
a

m
fe

r

Num. of Queried SDF points (𝟏𝟎𝟒)

MC

MT

DMTet wo (Vol.,Surf.)

DMTet wo (Def.,Vol.,Surf.).

0 5 10 15 20 25 30 35

6

5

4

3

2

1

0.8

Figure 8: Comparing our DMTET with
oracle performance of MC and MT.

We investigate how each component in our representation
affects the performance and reconstruction quality.

Comparisons with Oracle Performance of MC/MT We
first demonstrate the effect of learning on explicit surface via
MT. We compare with the oracle performance of extracting
the iso-surface with MT/MC from the ground truth signed dis-
tance fields on the Chair test set in ShapeNet, which contains
diverse high-quality details. Specifically, for MC/MT, we first
compute the discretized SDF at different grid resolutions, and
compare the extracted surface to the ground truth surface.

As shown in Fig. 8, MT consistently outperforms MC when querying the same number of points. We
found the staggered grids pattern in tetrahedral grid [16, 18] better captures thin structures at a limited

9

resolution (Fig. 9). This makes MT a better choice for efficiency reasons. The usage of tetrahedral
mesh in DMTET follows this motivation. Without deforming the grid, DMTET outperforms the
oracle performance of MT by a large margin when querying the same number of points, although
DMTET predicts the surface from noisy point cloud. This demonstrates that directly optimizing the
reconstructed surface can mitigate the discretization errors imposed by MT to a large extent.

MC(𝟓𝒙𝟏𝟎𝟒)

MT (𝟓𝒙𝟏𝟎𝟒)

DMTet wo (Def.,Vol.,

Surf.) (𝟓𝒙𝟏𝟎𝟒)

GT

DMTet

(𝟔𝒙𝟏𝟎𝟒)

MC(𝟑𝟔𝒙𝟏𝟎𝟒)

MT (𝟑𝟔𝒙𝟏𝟎𝟒) DMTet wo (Vol.,Surf.)

(𝟓𝒙𝟏𝟎𝟒)

Figure 9: We compare trained DMTET to oracle per-
formance of MT and MC. Number in bracket indicates
number of SDF points queried.

Ablation Studies We further provide ablation
studies on the entire ShapeNet test set, which is
summarized in Tab. 3. We first compare the ver-
sion where we only predict SDF values without
learning to deform the vertices and volume/surface
subdivision with the version that predicts both
SDF and the deformation. Predicting deformation
along with SDF is significantly more performant,
since vertex movements allow for a better recon-
struction of the underlying surface. This is espe-
cially true for categories with thin structures (e.g.
lamp) where the grid vertices are desired to align
with them. We further ablate the use of volume
subdivision and surface subdivision. We show
that each component provides an improvement. In
particular, volume subdivision has a significant

improvement for object categories with fine-grained structural details, such as airplane and lamp,
which require higher grid resolutions to model the occupancy change. Surface subdivision generates
shapes with a parametric surface, avoiding the quantization errors in the planar faces and produces
more visually pleasing results.

5 Conclusion
In this paper, we introduced a deep 3D conditional generative model that can synthesize high-
resolution 3D shapes using simple user guides such as coarse voxels. Our DMTET features a novel
3D representation that marries implicit and explicit representations by leveraging the advantages of
both. We experimentally show that our approach synthesizes significantly higher quality shapes with
better geometric details than existing methods, confirmed by quantitative metrics and an extensive
user study. By showcasing the ability to upscale coarse voxels such as Minecraft shapes, we hope
that we take one step closer to democratizing 3D content creation.

6 Broad Impact
Many fields such as AR/VR, robotics, architecture, gaming and film rely on high-quality 3D content.
Creating such content, however, requires human experts, i.e., experienced artists, and a significant
amount of development time. In contrast, platforms like Minecraft enable millions of users around the
world to carve out coarse shapes with simple blocks. Our work aims at creating A.I. tools that would
enable even novice users to upscale simple, low-resolution shapes into high resolution, beautiful 3D
content. Our method currently focuses on 3D animal shapes. We are not currently aware of and do
not foresee nefarious use cases of our method.

7 Disclosure of Funding

This work was funded by NVIDIA. Tianchang Shen and Jun Gao acknowledge additional revenue in
the form of student scholarships from University of Toronto and the Vector Institute, which are not in
direct support of this work.

References
[1] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of shapes from raw data. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2565–2574, 2020.

[2] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Generative and discriminative voxel
modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236, 2016.

10

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[4] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based 3d model
retrieval. In Computer graphics forum, volume 22, pages 223–232. Wiley Online Library, 2003.

[5] Wenzheng Chen, Jun Gao, Huan Ling, Edward Smith, Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler.
Learning to predict 3d objects with an interpolation-based differentiable renderer. In Advances In Neural
Information Processing Systems, 2019.

[6] Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, and Siddhartha Chaudhuri.
Decor-gan: 3d shape detailization by conditional refinement. Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[7] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary space
partitioning. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[8] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[9] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural unsigned distance fields for implicit function
learning. In Advances in Neural Information Processing Systems (NeurIPS), December 2020.

[10] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified
approach for single and multi-view 3d object reconstruction. In European conference on computer vision,
pages 628–644. Springer, 2016.

[11] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jürgen Sturm, and Matthias Nießner. Scancom-
plete: Large-scale scene completion and semantic segmentation for 3d scans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4578–4587, 2018.

[12] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion using 3d-encoder-predictor
cnns and shape synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5868–5877, 2017.

[13] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. Overfit neural networks as a compact shape
representation. arXiv preprint arXiv:2009.09808, 2020.

[14] Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit field: Modeling 3d shapes with learned dense
correspondence. In IEEE Computer Vision and Pattern Recognition, 2021.

[15] Akio Doi and Akio Koide. An efficient method of triangulating equi-valued surfaces by using tetrahedral
cells. IEICE TRANSACTIONS on Information and Systems, 74(1):214–224, 1991.

[16] Crawford Doran, Athena Chang, and Robert Bridson. Isosurface stuffing improved: acute lattices and
feature matching. In ACM SIGGRAPH 2013 Talks, pages 1–1, 2013.

[17] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia, and Leonidas J Guibas. Curriculum deepsdf. In
European Conference on Computer Vision, pages 51–67. Springer, 2020.

[18] Jun Gao, Wenzheng Chen, Tommy Xiang, Clement Fuji Tsang, Alec Jacobson, Morgan McGuire, and
Sanja Fidler. Learning deformable tetrahedral meshes for 3d reconstruction. In Advances In Neural
Information Processing Systems, 2020.

[19] Jun Gao, Chengcheng Tang, Vignesh Ganapathi-Subramanian, Jiahui Huang, Hao Su, and Leonidas J
Guibas. Deepspline: Data-driven reconstruction of parametric curves and surfaces. arXiv preprint
arXiv:1901.03781, 2019.

[20] Jun Gao, Zian Wang, Jinchen Xuan, and Sanja Fidler. Beyond fixed grid: Learning geometric image
representation with a deformable grid. In ECCV, 2020.

[21] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang. Sdm-net: Deep
generative network for structured deformable mesh. ACM Transactions on Graphics (TOG), 38(6):1–15,
2019.

[22] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision, pages 9785–9795, 2019.

11

[23] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-mâché
approach to learning 3d surface generation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 216–224, 2018.

[24] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface prediction for 3d object
reconstruction. In 2017 International Conference on 3D Vision (3DV), pages 412–420. IEEE, 2017.

[25] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh: A self-prior for deformable
meshes. ACM Trans. Graph., 39(4), 2020.

[26] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. Dualsdf: Semantic shape manipula-
tion using a two-level representation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7631–7641, 2020.

[27] Krishna Murthy J., Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang, Artem Rozantsev, Wen-
zheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja Fidler. Kaolin: A pytorch library for accelerating
3d deep learning research. arXiv:1911.05063, 2019.

[28] Marian Kleineberg, Matthias Fey, and Frank Weichert. Adversarial generation of continuous implicit shape
representations. arXiv preprint arXiv:2002.00349, 2020.

[29] Jiabao Lei and Kui Jia. Analytic marching: An analytic meshing solution from deep implicit surface
networks. In International Conference on Machine Learning, pages 5789–5798. PMLR, 2020.

[30] Manyi Li and Hao Zhang. D2im-net: Learning detail disentangled implicit fields from single images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10246–
10255, 2021.

[31] Yiyi Liao, Simon Donné, and Andreas Geiger. Deep marching cubes: Learning explicit surface representa-
tions. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[32] Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, and Sanja Fidler. Fast interactive object annotation
with curve-gcn. In CVPR, 2019.

[33] Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson.
Neural subdivision. ACM Trans. Graph., 39(4), 2020.

[34] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel cnn for efficient 3d deep learning. In
Advances in Neural Information Processing Systems, 2019.

[35] Charles Loop. Smooth subdivision surfaces based on triangles. January 1987.

[36] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

[37] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pages 2794–2802, 2017.

[38] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
922–928. IEEE, 2015.

[39] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4460–4470, 2019.

[40] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[41] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. Polygen: An autoregressive
generative model of 3d meshes. ICML, 2020.

[42] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 165–174, 2019.

[43] Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, and Sanja Fidler. Neural parts: Learning
expressive 3d shape abstractions with invertible neural networks. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021.

12

[44] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional
occupancy networks. In European Conference on Computer Vision (ECCV), 2020.

[45] Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit Guillard, Timur Bagautdinov, Pierre Baque,
and Pascal Fua. Meshsdf: Differentiable iso-surface extraction. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
22468–22478. Curran Associates, Inc., 2020.

[46] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d representations at high
resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3577–3586, 2017.

[47] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li. Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[48] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-level pixel-aligned implicit
function for high-resolution 3d human digitization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2020.

[49] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. In Proc. NeurIPS, 2020.

[50] Minhyuk Sung, Hao Su, Vladimir G Kim, Siddhartha Chaudhuri, and Leonidas Guibas. Complementme:
Weakly-supervised component suggestions for 3d modeling. ACM Transactions on Graphics (TOG),
36(6):1–12, 2017.

[51] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai,
Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of detail: Real-time rendering
with implicit 3D shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[52] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating networks: Efficient convolutional
architectures for high-resolution 3d outputs. In IEEE International Conference on Computer Vision (ICCV),
2017.

[53] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. Learning shape
abstractions by assembling volumetric primitives. In Computer Vision and Pattern Regognition (CVPR),
2017.

[54] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 52–67, 2018.

[55] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN: Octree-based Convo-
lutional Neural Networks for 3D Shape Analysis. ACM Transactions on Graphics (SIGGRAPH), 36(4),
2017.

[56] Peng-Shuai Wang, Yang Liu, and Xin Tong. Deep octree-based cnns with output-guided skip connections
for 3d shape and scene completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 266–267, 2020.

[57] Francis Williams, Matthew Trager, Joan Bruna, and Denis Zorin. Neural splines: Fitting 3d surfaces with
infinitely-wide neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9949–9958, 2021.

[58] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B Tenenbaum. Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances in Neural
Information Processing Systems, pages 82–90, 2016.

[59] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1912–1920, 2015.

[60] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep implicit
surface network for high-quality single-view 3d reconstruction. In Advances in Neural Information
Processing Systems, pages 490–500, 2019.

13

[61] Kangxue Yin, Zhiqin Chen, Siddhartha Chaudhuri, Matthew Fisher, Vladimir Kim, and Hao Zhang.
Coalesce: Component assembly by learning to synthesize connections. In Proc. of 3DV, 2020.

[62] Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. SCORES: Shape composition
with recursive substructure priors. ACM Transactions on Graphics, 37(6):Article 211, 2018.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We provide extensive experiments in Sec. 4.
(b) Did you describe the limitations of your work? [Yes] We provide the discussion on

limitations an failure cases in Supplement.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We provide

the discussion in the Board Impact section with further discussions in Supplement.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] The code is
currently quite uncleaned and requires many dependencies. We are planning to release
the code after cleaning.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide training details in both Sec. 4 in the main paper and
Supplement.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [No] Training existing 3D models, including ours, on
large-scale 3D datasets is too computation costly to repeat multiple times.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We provide in the Supplement.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used ShapeNet [3]

core dataset in Sec. 4.2. We also used official code to reproduce baselines with citations.
In particular, ConvONet [44] and DECOR-GAN [6].

(b) Did you mention the license of the assets? [Yes] We provided the license of ShapeNet
and Turbosquid.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
The Turbosquid data we are using contains proprietary information.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We discussed in the Sec. 4 and provide further details in the
Supplementary Materials.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We provide discussion on this in Supplement.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] We provide details in the paper, with full text and screenshot in
Supplement.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [No] We did not anticipate the potential participant
risks, as we only conduct human studies on generated animals.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] We provide details in Supplement

15

	Introduction
	Related Work
	Deep Marching Tetrahedra
	3D Representation
	Deformable Tetrahedral Mesh as an Approximation of an Implicit Function
	Volume Subdivision
	Marching Tetrahedra for converting between an Implicit and Explicit Representation
	Surface Subdivision

	DMTet: 3D Deep Conditional Generative Model
	3D Generator
	3D Discriminator

	Loss Function

	Experiments
	3D Shape Synthesis from Coarse Voxels
	Point Cloud 3D Reconstruction
	Analysis

	Conclusion
	Broad Impact
	Disclosure of Funding

