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ABSTRACT

Supervised Causal Learning (SCL) has shown promise in causal discovery by
framing it as a supervised learning problem. However, it suffers from significant
out-of-distribution generalization challenges. We reveals three fundamental lim-
itations of previous SCL practices: fragility to distribution shifts, failure in com-
positional generalization, and a significant performance gap between synthetic
benchmarks and real-world data, collectively questioning its real-world applica-
bility. To address this, we propose Test-Time Training for Supervised Causal
Learning (TTT-SCL), a novel framework that dynamically generates training data
explicitly aligned with any specific test instance. We find that the similarity be-
tween training and test data can be implicitly captured through distributional align-
ment, which we operationalize via a proposed Alignment of Distribution (AD)
metric. To prevent degenerate solutions and enforce causal minimality, we incor-
porate sparsity constraints into the optimization. Building on this foundation, we
introduce Test-time Aligned Causal Training with Informed Construction (TAC-
TIC), the first instantiation of TTT-SCL, which jointly optimizes AD and sparsity
via stochastic graph refinement to dynamically generate aligned training data. Ex-
tensive experiments on synthetic benchmarks, pseudo-real and real-world dataset
demonstrate that TACTIC significantly outperforms existing SCL and traditional
causal discovery methods.

1 INTRODUCTION

Causal discovery aims to infer causal relationships from observational data (Pearl, |2009; |Spirtes
et al.| [2000). Supervised Causal Learning (SCL) has recently emerged as a promising paradigm that
approaches causal discovery as a supervised learning problem (Dai et al., 2023; |Lorch et al.|, 2022}
Ke et al., 2022; |[Zhang et al.l 2025). During training, a causal instance comprising causal graph
G win E] and associated dataset D} . is either collected or synthetically generated. Specifically,
a graph GF .. is sampled from the DAG space and parameterized by assigning specific causal
mechanisms and noise distributions. The corresponding dataset D¥ . is then generated through
forward sampling from this parameterized graph. The SCL model learns to map input data D¥. . to
output graph GF. . . At test time, given a test data Dy, the trained model predicts the underlying

causal graph Giet.

A key factor influencing the success of SCL is the design of the training data: what properties should
training instances { (D}, ..., GF..in) 1| possess to ensure strong performance on an unknown test
instance D;.;? Two complementary principles emerge: diversity and concentration. Diversity
seeks broad coverage of generative factors, including variations in graph structures, causal mecha-
nisms, and noise distributions, to enhance generalization. Concentration, in contrast, aims to align

training data with the specific characteristics of the test domain.

Current SCL approaches largely prioritize diversity, pre-training on synthetic data generated from
varied categories of graph, mechanism and noise (Lorch et al., [2022; |Ke et al., 2022). However,
achieving true diversity is inherently intractable due to the super-exponential size of the DAG space
and the uncountable set of mechanism spaces. As a result, it performs well in-distribution but suffers

!'The superscript indicates that the instance comes from the training set, and the subscript indicates the k-th
instance in the training set.
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severe performance degradation under distribution shifts. Further, we design a series of experiment
to illustrate the three fundamental limitations of previous SCL practices: fragility to distribution
shifts, failure in compositional generalization, and a significant performance gap between synthetic
benchmarks and real-world data, collectively questioning its real-world applicability.

These findings motivate a shift from diversity to concentration, i.e., constructing training data
aligned with the specific properties of the test instance. In particular, we operationalize this idea
through Test-Time Training for Supervised Causal Learning (TTT-SCL), which replaces static
pre-training with dynamic adaptation. Under TTT-SCL, given a test instance Dy.s;, We generate
targeted training instances on-the-fly, train a specialized SCL model, and apply it to infer Gyes;. In
this sense, concentration is realized through instance-specific, distributionally aligned training data
generation. Therefore, the central question becomes: how can we ensure alignment between the
generated training data and the test instance?

Our key insight is to leverage the similarity of data distribution through what we term Structure-
Induced Mechanism (SIM). Suppose a generated graph GF matches Gyes; (ie., GF = Giest),

train train
then, mechanisms can be regressed from D;.s; using Gk and synthetic data Dk can be

train> train
forward-sampled to closely approximate D,.,;. While exact graph matches are rare, structurally
similar graphs can still yield distributionally similar data under SIM. Thus, data distributional simi-

larity emerges as a proxy for causal alignment.

To quantify the data distributional similarity between DY . and D;., we propose Alignment

of Distribution (AD), a metric that implicitly captures both structural and mechanistic similarity.
However, relying solely on distributional similarity can lead to degenerate solutions, such as overly
dense graphs that match the data distribution but violate causal minimality. To address this, we
incorporate a sparsity constraint on G¥. . ensuring sparse structures and preventing overfitting to
spurious edges. Together, AD and sparsity provide a tractable measure of training instance quality.

Building on this foundation, we introduce Test-time Aligned Causal Training with Informed Con-
struction (TACTIC), the first instantiation of TTT-SCL. TACTIC jointly optimizes AD and sparsity
via stochastic graph refinement, dynamically generating training data aligned with D;.s:. Experi-
ments on synthetic benchmarks, pseudo-real and real-world dataset demonstrate that TACTIC con-
sistently outperforms existing methods.

Our main contributions are as follows:

1. We reveals three fundamental limitations of static SCL pre-training: fragility to distribution
shifts, failure in compositional generalization, and a significant performance gap between
synthetic benchmarks and real-world data, collectively questioning its real-world applica-
bility.

2. We introduce the TTT-SCL framework, enabling dynamic generation of aligned training
data at test time. This includes the formulation of AD as a tractable metric for causal simi-
larity via distributional alignment, and a sparsity constraint that ensures causal minimality
and avoids degenerate graphs.

3. We propose TACTIC, the first concrete method under TTT-SCL. TACTIC dynamically
constructs effective training datasets tailored to each test instance, achieving excellent per-
formance across both synthetic, pseudo-real and real-world datasets.

2 BACKGROUND

We begin by formalizing the core components of causal learning. A Structural Causal Model (SCM)
consists of three key elements: causal graph, causal mechanisms, and noise distributions (Pearl,
2009; |Peters et al., [2017). Specifically:

* Causal Graph: Let G = (V,E) be a Directed Acyclic Graph (DAG) with vertex set V =
{X1,..., X4} and edge set E C V x V, where d is the number of variables. The adjacency
matrix A € {0,1}%*¢ encodes edge relationships where 4;; = 1iff X; — X, € E.

* Causal mechanisms and noise: Each variable X; is generated by a causal mechanism and exoge-
nous noise. In this work, we focus on the Additive Noise Model (ANM) (Hoyer et al., 2008), a
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Figure 1: TTT-SCL compare with SCL and CD.

common assumption that ensures the causal structure is identifiable from observational data. This
is formalized as:

Xi = fi(Pag(Xy)) + &, (D

where Pag(X;) denotes parents of X; in G, f; : RIPac(Xi)l _ R is the causal mechanism, and
£, is exogenous noise. The full SCM is thus characterized by the tuple (G, {fi}&_,, {e:},).

In supervised causal learning, we work with causal instances. A causal instance is defined
by a graph G and a dataset D containing n observations {x() ... x(™} € R"*? generated
from the SCM (G, { fitL,,{e:}L ;). The training set comprises K such instances, denoted as
{(DEF pins GE ) YE_ |, where each DY . is generated from its corresponding G ... Similarly,
at test time, we are given a single test instance (D;s;, Giest), Where Dy is observed but Gyegs is
unknown. To avoid notation clutter, we adopt the following conventions: indices i, j refer to vari-
able/node indices within a graph, and subscripts “train” and “test” distinguish between training and
test entities.

Causal discovery aims to estimate the causal graph Gi.s; from Dy.s; using a model or algorithm
M. Supervised causal learning (SCL) frames this as a supervised learning problem, where a model
(typically a neural network) is trained on synthetic causal instances to learn a mapping from obser-
vational data to graph structures. Formally, the SCL objective is to learn:

M R4 5 {0, 1}4%d )

which maps an input data matrix (e. 2es Dtest) to an output adjacency matrix (representing G'est).
The model is trained on synthetic pairs {(DF. ..., G . )} .

Previous SCL methods rely on training with synthetic data, where the generative distribution is
explicitly controlled along three dimensions consistent with the SCM framework: graph structure,
causal mechanisms, and noise distributions (Lorch et al.| [2022; |Ke et al.| [2022; |[Froehlich & Koeppl,
2024). Typically, graphs are sampled from random graph models (e.g., Erd6s—Rényi (Gilbert,|1959),
Scale-Free (Barabasi, 2009); mechanisms are chosen from a limited set of function classes (e.g.,
Linear, Random Fourier features (Rahimi & Recht, 2007))); and noise is drawn from parametric
families (e.g., Gaussian, Uniform).

3  OUT-OF-DISTRIBUTION CHALLENGES FOR SCL

Out-of-distribution generalization has long been a challenge in machine learning, and we will show
that it poses particularly severe implications for SCL. Unlike conventional ML domains where real-
world training data is often available, SCL faces a fundamental constraint: causal graphs are rarely
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available for real-world datasets. This forces SCL methods to rely largely on synthetic training data,
making the bridge between synthetic simulation and real-world application the primary bottleneck
for SCL.

Current SCL models are typically evaluated under constrained synthetic shifts, for instance, train-
ing and testing on the same mechanism type with slightly different parameter ranges. While such
evaluations demonstrate robustness to mild parametric variations, they represent a weak form of
generalization that remains within synthetic data distributions. These approaches cover only narrow
mechanism families, while real-world causal relationships may involve complex, unmodeled func-
tional forms. When test mechanisms fall outside the convex hull of training mechanisms, structural
diversity alone cannot guarantee accurate estimation.

We point out three issues in previous SCL practices that collectively undermine their real-world
applicability. First, these models are vulnerable to distribution shifts, exhibiting performance degra-
dation when test distributions differ categorically from training in graph structure, mechanisms, or
noise (Issue 1) . Second, they fail in compositional generalization, as models trained on diverse
components cannot handle novel combinations of them, suggesting mere memorization of train-
ing configurations rather than learning modular causal representations (Issue 2). Third, and most
critically, they show divergent generalization patterns where strong performance on synthetic bench-
marks fails to translate to real-world data, revealing a fundamental overfitting to the synthetic domain
(Issue 3). We use a series of experiments to illustrate these issues.

3.1 EXPERIMENT SETUP

To comprehensively evaluate generalization, we use both synthetic benchmarks, pseudo-real and
real-world dataset.

Synthetic data: We generate test instances from a factorial combination of distributions. A test
instance is defined by the tuple (Gtest, frest, Etest)-

* Graph (G): We use two random graph models: Erdos-Renyi (ER) and Scale-Free (SF) (Gilbert,
1959; |Barabasi, 2009)).

* Mechanism (f): We use three function classes: Linear, Random Fourier Features (RFF) (Rahimi
& Recht, 2007), and Chebyshev polynomials (Froehlich & Koeppl, [2024).

* Noise (¢): Gaussian noise is used for RFF and Chebyshev mechanisms, while Uniform noise is
used for Linear mechanisms to ensure identifiability.

This yields six primary test settings: RFF_ER_G, RFF_SF_G, Linear ER_U, Linear_SF_U, Cheby-
shev_ER_G, and Chebyshev_SF_G.

Real-world data: We use the Sachs dataset (Sachs et al.| [2005)), a well-established benchmark in
causal discovery. It contains 853 measurements of 11 proteins and a consensus causal graph derived
from biological knowledge.

Pseudo-real data: We also incorporate pseudo-real datasets generated by the SynTReN generator
(Van den Bulcke et al., |2006). This generator is specifically designed to simulate synthetic tran-
scriptional regulatory networks with biologically plausible structures and parameters, producing
gene expression data that closely resembles experimental microarray data.

Model architecture: We mainly use the AVICI as the model backbone (Lorch et al.,2022), a DNN-
based architecture which is currently widely followed by the community and open source. Results
with other backbones are consistent and shown in Appendix

The training data is set up as follows:

* i.i.d: The training data and test data are exactly the same distribution.

* Graph/Noise/Mechanism shift: The mechanism/graph/noise of the training data is different from
that of the test data, but the other two distributions are the same. Specifically, each specific training
data setting is indicated above the results.

* AVICI (mixed): The training data is a mixture of RFF_U_ER, RFF_U_SF, Linear_G_ER, Lin-
ear_G_SF, Chebysev_U_ER, and Chebysev_U_SF. This is to demonstrate the distributional combi-
nation problem of SCL training data.This makes the model see all components, mechanism (RFF,



Under review as a conference paper at ICLR 2026

Linear), graph (ER, SF), noise (G, U), but not see the specific combination in the test instance,
such as RFF_G_ER.

* AVICI (secm-v0): This model was trained on SCM data simulated from a large variety of
graph models with up to 100 nodes, both linear and nonlinear causal mechanisms, and ho-
mogeneous and heterogeneous additive noise from Gaussian, Laplace, and Cauchy distribu-
tions. It can be considered the strongest model of open source under the SCL paradigm.
(https://github.com/larslorch/avici)

3.2 LIMITATIONS OF CURRENT SCL PARADIGMS

Our experimental results validate the three issues outlined above, collectively exposing the limita-
tions of static pre-training in SCL.

Issue 1. The results in Table[T|demonstrate that distribution shifts across all three dimensions (graph
structure, causal mechanism, and noise distribution) significantly degrade SCL performance. Mod-
els struggle when the test-time graph structure (“Graph shift” compared to “iid”), causal mechanism
(“Mechanism shift” compared to “iid”), or noise distribution (“Noise shift” compared to “iid”) dif-
fers categorically from those seen during training. While performance drops are observed in all
cases, “Mechanism shifts” emerge as particularly damaging, underscoring the profound impact of
the underlying mechanism functional form on model generalization.

Issue 2. Even when trained on data containing all individual components, the model still exhibits
performance drop on unseen combinations of these components, as seen when comparing “AVICI
(mixed)” to “iid” in Table[I] This compositional failure indicates that SCL models memorize specific
(G, f,e) configurations rather than learning a modular understanding of causal factors.

Table 1: Fragility to categorical and compositional shifts. Each column represents a different test
setting. AUROC performance reveals SCL’s sensitivity to unseen graph, mechanism, and noise
configurations. Results are presented as AUROC (standard deviation).

RFF_G_ER RFF_G_SF Linear U.LER  Linear USF  Chebysev.G_LER  Chebysev_G_SF
iid 90.0 (2.7) 100.0 (0.0) 91.7 (4.3) 100.0 (0.0) 93.0 2.9) 100.0 (0.0)
Graoh shift RFF_G_SF RFF_G_ER Linear_U_SF Linear_U_ER Chebysev_G_SF Chebysev_G_ER
Taph shi 81.0 (5.5) 92528 788 (6.1) 962 (1.9) 63.4(97) 91.9 (5.9)
Noise shift RFF_U_ER RFF_U_SF Linear_L_ER Linear_ L_SF Chebysev_U_ER Chebysev_U_SF
015€ 8 85.0 (3.7 94.1 (1.4) 80.7 (10.0) 783 (11.2) 85.8 (5.0 79.0 (13.2)
Mechani hift Chebysev_G_ER Chebysev_G_SF RFF_U_ER RFF_U_SF RFF_G_ER RFF_G_SF
cehamism sht 73.7 (8.4) 42.4 (14.0) 78.4 (8.7) 87.5 (5.0) 723 (9.3) 55.9 (9.4)
AVICI (mixed) 84.8 (4.7 89.0 (2.0) 88.0 (3.8) 87.9 (5.9 82.6 (6.5) 89.0 (9.5)

Issue 3. The results in Table |2 question the value of synthetic benchmarks by demonstrating that
strong synthetic performance fails to guarantee effectiveness on real-world data. Here, we merge
the dimensions of the graph and analyze more from the perspective of the mechanism. While AVICI
(scm-v0) excels on synthetic data similar to its training distribution (e.g., RFF-G, 97.8), its perfor-
mance collapses on the real-world Sachs dataset (62.3). In contrast, traditional methods like PC
maintain consistent, albeit lower, performance across domains. This divergence reveals that SCL
models overfit to the artifacts of their synthetic training environment, lacking the cross-domain con-
sistency required for real-world applicability.

Table 2: Divergent generalization patterns. Strong synthetic performance does not guarantee effec-
tiveness on real-world data. Results are presented as AUROC (standard deviation).

RFF_G Linear U  Chebyshev.G Sachs Syntren

PC 61.1 (49) 60.9@4.7)  59.8 6.6 67.1 58.1
AVICI (scm-v0) 97.8 (1.3) 75.6(13.8) 81.7(10.5) 62.3 65.4

In summary, the dual failure of fragility under distribution shifts and inconsistency across do-
mains fundamentally undermines the static pre-training paradigm. These limitations are not arti-
facts of a specific architecture, as validated by consistent failure patterns using the SiCL backbone
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(Appendix [B](Table[3)). The results compellingly argue that robust causal discovery requires a shift
from static, diversity-seeking pre-training to dynamic, test-time adaptation.

4 TEST-TIME TRAINING FOR SUPERVISED CAUSAL LEARNING

From the perspective of concentration, there remains an opportunity for SCL to overcome the lim-
itations of static pretraining. We introduce the Test-Time Training for Supervised Causal Learning
(TTT-SCL) framework, representing a paradigm shift from seeking universal diversity to generating
targeted concentration, as shown in Fig|[T]

Under standard conditions for ANM (Peters et al.| |2014), the true graph Gl is identifiable from
distribution of D;..;. This implies that if the distribution of generated data D* is closely aligned
with Dyeg (i.e., D¥ & D,.4), then the candidate graph G* is likely a close approximation of G/t
(i.e., G* ~ Gies:). This observation reframes the challenge as a search problem: among candidate
graphs, find those that yield data distributions aligned with the test data. This search formulation
naturally leads to two key sub-problems:

* Quantifying similarity. Since exactly identical graphs yield exactly identical distributions, what
metric can we use to quantify “similarity” between a candidate graph and the test graph?

* Searching effectively. Given the intractability of brute-force search over the DAG space, how can
we design a practical search procedure to identify promising candidates?

4.1 QUANTIFYING SIMILARITY: THE ALIGNMENT OF DISTRIBUTION

A natural way to connect candidate graphs with the test data is through Structure-Induced Mech-
anism (SIM). SIM directly operationalizes how a graph explains data: given a candidate graph
G*, we regress the corresponding mechanisms from the observed D;.;, and then forward-sample
synthetic data DF¥. If the generated distribution is close to Dy, this indicates that G is a good
approximation of the true graph G;. In this sense, SIM provides a practical bridge from structural
hypotheses to observable distributional alignment, making it possible to evaluate candidate graphs
by how well they reproduce the test distribution.

This motivates the need for a metric of alignment between a candidate training graph and the test
data. Such a metric, which we denote as Alignment of Distribution (AD), should satisfy structure
and mechanism similarity. While there are many ways to implement AD as discussed in Appendix
in the main text we use the implementation based on likelihood:

d
1
AD(GfrainthESt) = a Z [1ng (Xl | ka)} ’ 3)
=1

where fF is the fitting function of X; according Pafmm(Xi) based on G¥ . and D;.s; by SIM.

train

This formulation is attractive because likelihood inherently combines both structure and mechanism
aspects. Changing the graph structure alters the conditioning set Pafmm(X i), directly modifying
the conditional distributions being estimated. Changing the mechanisms alters the functional map-
ping fF, thereby changing the probability assigned to the observed data. As a result, the likelihood
score simultaneously reflects structural correctness and mechanistic fidelity, and thus serves as a
principled measure of distributional alignment between candidate training graphs and the test data.

Enforcing Causal Minimality with Sparsity Constraints. However, optimizing AD alone can
lead to degenerate dense solutions that fit distributions without respecting causal minimality. To
counteract this, we incorporate the principle of causal minimality by adding a sparsity penalty term
based on the Ly norm of the adjacency matrix Ag:

Sparsity (G) = || Ac|lo- 4)

The Joint Optimization Score. By combining these two components, we form a unified score
function to evaluate any candidate training graph:

score(G) = AD(G, Diest) — A - Sparsity(G). 3)
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where A is a hyperparameter balancing the trade-off. This score serves as the central optimization
target for generating high-quality training data within the TTT-SCL framework.

4.2 TACTIC: EFFICIENT SEARCH IN THE GRAPH SPACE

Exhaustively searching the entire DAG space is intractable, and theoretical results confirm that find-
ing the exact G4 is essentially impossible. Nevertheless, this does not imply that the problem is
hopeless. In practice, good initializations combined with guided refinement can yield graphs that are
close enough to G4 to support effective training. We instantiate this idea with TACTIC (Test-time
Aligned Causal Training with Informed Construction), a concrete implementation of our TTT-SCL
framework. TACTIC proceeds in three stages:

1. Seed Initialization. We start from an initial graph G4, Obtained either by (i) applying a
traditional causal discovery method (e.g., PC, NOTEARS) on Dy, or (ii) sampling a random
DAG. This provides a useful prior rather than searching from scratch.

2. Stochastic Graph Refinement. From the seed, we iteratively propose local modifications to
the graph (edge additions, deletions, or reversals) while maintaining the DAG constraint. Each
candidate G 1 is evaluated using the joint score function score(G) as Formula (5) and accepted
with probability proportional to its score. This stochastic refinement process ensures that search
is efficient and directed, guided by AD and sparsity rather than random exploration.

3. Training Data Generation. For the final refined graph set {G¥. .. 1 || we regress mechanisms
via SIM, forward-sample synthetic datasets { DX . 1  and assemble them into a customized
training set. An SCL model is then trained on this set and applied to infer G-

By combining AD, sparsity, and practical heuristics (initialization + stochastic refinement), TACTIC
realizes an efficient and directed approach to searching the graph space at test time, as shown in

Fig[2}

[x [v [z [w]
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Figure 2: Workflow of TACTIC

4.3 THE PERFORMANCE OF TACTIC

In this subsection, we compare the performance of TACTIC with multiple baseline methods on
various synthetic data, pseudo-real data and real data. These datasets are consistent with the content
of Section 3.1.

Baselines: We compare against traditional causal discovery methods PC (Spirtes et al.,|2000), GES
(Chickering, 2002), NOTEARS (Zheng et al., 2018) and AVICI (Lorch et al.,2022), a DNN-based
SCL method which is currently widely followed by the community and open source. We use the
open-source pre-trained AVICI (scm-v0) model, which is trained on a vast mixture of synthetic data
and represents the strongest publicly available SCL baseline.
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Our Method (TACTIC): For our TTT-SCL approach, we set the number of dynamically generated
training graphs to K = 200. The number of variables d is 10 for synthetic data, 11 for Sachs and 20
for Syntren. The observation n for each generated dataset matches that of the test data. We evaluate
two variants of our method: TACTIC (random) which initializes the seed graph with a random DAG,
and TACTIC (Notears) which uses a graph estimated from D;.,; by the NOTEARS algorithm as a
smarter starting point.

Evaluation metrics: We use multiple metrics to evaluate the predicted graphs, including Area
Under the Receiver Operating Curve (AUROC), Area Under the Precision-Recall Curve (AUPRC),
F1 score and Accuracy (ACC). In the main text, we primarily report AUROC for edge prediction to
succinctly explore the impact of training data quality on model performance. Results based on other
metrics are provided in Appendix

Table 3: TACTIC performance on synthetic, real and pseudo-real datasets. Results are presented as
AUROC (standard deviation).

RFF_G Linear. U  Chebyshev.G Sachs Syntren

PC 61.1 (4.9) 60.9 (4.7) 59.8 (6.6) 67.1 58.1
GES 66.0 (10.6) 69.0(10.8) 59.6(5.9) 61.8 36.8
Notears 80.5 (4.0) 82.0 (4.6) 52.2 (3.5) 61.8 49.8
AVICI (scm-v0) 97.8 (1.3) 75.6(13.8) 81.7(10.5) 62.3 65.4
TACTIC (random) 88.4 (7.0) 823 (7.0)  79.6 (6.7) 58.6 72.0
TACTIC (Notears) 91.8(3.1) 863 (44) 83.0 (8.7 78.9 80.1

The results are summarized in Table[3] Overall, TACTIC demonstrates robust and highly compet-
itive performance. The pre-trained AVICI (scm-v0) model achieves optimal performance on the
RFF_G datasets, as it was explicitly trained on this distribution. TACTIC’s performance on RFF_G
is slightly lower but remains strong, indicating its ability to approximate even in-distribution perfor-
mance without prior exposure. Crucially, TACTIC achieves state-of-the-art performance on all other
datasets, including Linear_U, Chebyshev_G, real-world Sachs, and pseudo-real Syntren dataset. This
confirms that TACTIC excels in the most challenging and realistic scenarios involving distribution
shifts, where static pre-training fails. Furthermore, the TACTIC (Notears) variant consistently out-
performs TACTIC (random), demonstrating that a reasonable initial graph from a traditional method
provides a valuable prior for the optimization. However, the strong performance of both variants
confirms the robustness of our core approach. These conclusions hold consistently across multiple
evaluation metrics, as demonstrated in Appendix [C| (Table [6)), where TACTIC maintains superior
performance in ACC, F1-score, and AUPRC under various distribution shifts.

We also design experiments to empirically validate how these two components contribute to the
quality of the generated training data. We first ablate the sparsity term in the optimization objective
to isolate its effect. We compare the full TACTIC (Notears) method against a variant, TACTIC
(Notears-s), where the sparsity penalty is removed (A = 0), thus optimizing for AD alone. Results
in Table [ show that removing the sparsity term leads to a consistent and significant performance
drop across all test settings. These dense graphs achieve high AD by introducing spurious edges
with negligible mechanisms, but they violate the causal minimality principle and thus constitute
poor-quality training data for teaching the SCL model the correct causal structure.

Table 4: Ablation experiment of sparsity. Results are presented as AUROC (standard deviation).
RFF_G Linear U Chebyshev.G Sachs Syntren

TACTIC (Notears) 91.8(3.1) 86.3(44) 83.0(8.7) 78.9 80.1
TACTIC (Notears-s) 86.8 (2.9) 84.3(7.9) 69.7 (12.4) 63.5 76.1

To further demonstrate the effectiveness of AD and the necessity of sparsity, the AD, sparsity, score
of the training data obtained by different methods under different test data, as well as the AUROC
on the test data were recorded in Appendix [D] The results show that both AD and sparsity are
indispensable and important elements, and they have certain indicative significance for performance.



Under review as a conference paper at ICLR 2026

5 RELATED WORKS

Causal discovery has a long history rooted in constraint-based methods (e.g., PC, FCI (Spirtes et al.,
2000)), function-based methods (e.g., LINGAM (Shimizu et al., [2006), ANM (Hoyer et al., 2008))
and score-based methods (e.g., GES (Chickering} 2002), NOTEARS (Zheng et al., [2018)), DAG-
GNN (Yu et al., 2019), GraN-DAG (Lachapelle et al., [2020)). These approaches operate unsu-
pervised and infer causal graphs directly from observational data using statistical independencies,
asymmetry assumptions or various scores. While principled, they often suffer from high sample
complexity, sensitivity to faithfulness violations, and limited scalability to high-dimensional set-
tings.

Supervised Causal Learning (SCL) has recently emerged as a promising paradigm that approaches
causal discovery as a supervised learning problem (Dai et al., [2023]; |[Lorch et al.| 2022} Ke et al.,
2022)). It trains a machine learning model to take observational data as input and output the causal
graph or relations and leverage powerful models to learn mappings from data patterns to causal struc-
tures, instead of hand-crafted heuristics. The analysis of SCL can be conducted from the following
three aspects:

Model architecture. Prior SCL methods employ diverse architectures to map datasets to graphs.
For example, Ma et al.| (2022) propose cascade classifiers that sequentially test conditional indepen-
dencies by increasing the conditioning order. Dai et al.|(2023)) design architecture featurizes variable
neighborhoods and classifies unshielded triples. [Lorch et al.[(2022), |[Ke et al.| (2022}, and [Froehlich
& Koeppl (2024)) use the attention-based transformer that treats the data as a 3D tensor (observations
x variables x features) and alternates self-attention over samples and variables. In addition, [Zhang
et al.|(2025) propose pairwise attention to capture the node features and node-pair features.

Target output representation. SCL methods target different representations of causal relationships.
Some methods learn only the undirected skeleton of the graph, e.g. [Ma et al.[(2022) aims to recover
the full skeleton. Others focus on orienting local structures: for instance, Dai et al.| (2023) takes
as input the graph skeleton and classifies each unshielded triple as a v-structure or not, then orients
edges accordingly. [Ke et al.| (2022)’s transformer outputs a full directed adjacency matrix via an
autoregressive decoder over all node pairs, and [Lorch et al.|(2022)’s network similarly predicts edge
probabilities between every ordered pair. Many methods only guarantee recovery up to Markov
equivalence: for example, |Zhang et al.| (2025) train a model to output the skeleton and v-structure
and [Froehlich & Koeppl| (2024) learns the moralized graphs.

Training data strategy and test time training. Most SCL approaches are pre-trained on large
static datasets of synthetic causal models. These methods often suffer from different degree of
generalization failures. There are very less methods try to solve this problem from the perspective
of training data. In the field of machine learning, there have been considerable studies that use
information from test data to design or generate training data (Liang et al., 2025} [Sun et al., 2020;
Wang et al.| 2020; Liu et al., 2021} Sinha et al., [2023).

6 CONCLUSION

In this work, we identified fundamental limitations of static SCL paradigms, demonstrating
their fragility under distribution shifts, failure in compositional generalization, and poor transfer
from synthetic benchmarks to real-world data. To address these out-of-distribution generaliza-
tion challenges, we introduced TTT-SCL, a paradigm-shifting framework that addresses the out-
of-distribution generalization problem in supervised causal learning through test-time training of
causally-aligned data. Our proposed AD metric, combined with sparsity constraints, provides a
tractable and effective way to ensure causal similarity between training and test data. The TACTIC
method, as an instantiation of TTT-SCL, dynamically generates high-quality training data tailored
to each test instance, achieving good performance on both synthetic, pseudo-real and real-world
datasets. Our theoretical and empirical results underscore the effectiveness of AD and necessity of
sparsity. This work not only advances the field of supervised causal learning but also opens new
avenues for robust and adaptive causal discovery in real-world settings.
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A IMPLEMENTATION OF AD

In the main text, we propose the Alignment of Distribution (AD) metric as a core measure of
causal similarity between the generated training data Dy,4;, and the test instance Dy.5;,. While
the likelihood-based implementation was used in our primary experiments, we provide alternative
formulations here to accommodate different data distributions and modeling assumptions.

A.l1 R2?-BASED AD

For continuous variables under additive noise models, the coefficient of determination (R?) provides
an intuitive measure of goodness-of-fit for each causal mechanism:

d K
ADR2 (Gtrain, Dtest) - éz [;{. ZR2 (fzk(Pak(Xl)),Xl)]
i=1

k=1

This value approaches 1 when the fitted mechanisms explain the variance in D;.s; well, indicating
strong alignment.

A.2 NORMALIZED WASSERSTEIN DISTANCE-BASED AD

For multi-modal or heavy-tailed distributions, the Wasserstein distance offers a robust metric for
comparing empirical distributions. We define a Normalized Wasserstein Distance (NWD) based AD
metric as follows:

For a given variable X; and a candidate graph G* with its fitted mechanism f¥, we compute:

Wi ({a:), {£E(Pa"(X0))})
B max () — min(U)

NWD(fF, G* Dty .= 1

where:
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* {z;} are the observed values of X; in D;eg.

{fF(Pa”*(X;))} are the values generated by applying the fitted mechanism £ to the parent
values in Dy g;.

* W is the 1-Wasserstein distance (Earth Mover’s Distance). For two equally sized, sorted
collections of values {a?)} and {b(1)}, it is defined as:

Wi({a}, {5) = = 32100 — 5]
j=1

U = {x;} U{fF(Pa¥(X;))} is the union of the observed and generated values for X;.

* The denominator, max (U ) — min(Xf), is the range of the combined set, used for normaliza-
tion.

The resulting NWD value lies between 0 and 1, where 1 indicates a perfect match between the
generated and observed distributions for that variable. The overall AD metric is then the average
NWD across all variables and generated graphs:

K

d
1 1
ADNWD(Gtrain7 Dtest) = E Z a ZNWD( ik, Gk7 DteSt)
k=1 =1

A.3 SELECTION GUIDANCE

The likelihood-based AD is most natural for probabilistic models and was used in our main exper-
iments. The R2-based AD is suitable for continuous variables under additive noise assumptions,
often leading to computationally efficient and intuitive scores. The NWD-based AD is recom-
mended for complex, non-Gaussian, or heavy-tailed distributions where likelihood or R? might be
less informative or robust. The TTT-SCL framework is agnostic to the specific choice of AD metric,
allowing users to select the most appropriate one for their domain.

B CONSISTENCY ON OTHER MODEL BACKBONES

To further validate the generality of the TTT-SCL framework and the observed o0.0.d generaliza-
tion challenges across different model architectures, we conduct experiments using the Pairwise
Attention from [Zhang et al. (2025) (SiCL) as an alternative model backbone. Unlike the AVICI
transformer used in the main experiments, which predicts a full directed adjacency matrix (DAG),
SiCL incorporates pairwise attention mechanisms and is trained to predict the undirected skeleton
and v-structures of the causal graph. This setup allows us to investigate whether the identified o.0.d
failure patterns persist when using a fundamentally different architecture (with pairwise attention)
and a different learning target (skeleton and v-structures instead of a full DAG), thereby testing the
robustness of our conclusions.

B.1 EXPERIMENTAL SETUP

Backbone Model is SiCL (Pairwise Attention Network) Zhang et al,| (2025). Learning Target
is Undirected graph skeleton. The training strategy for the static baseline models (i.i.d. and
SiCL(mixed)) follows the same data generation procedures described in Section 5.1.1 of the main
text, but the ground-truth labels are converted to the appropriate representation for SiCL (skeleton
labels). Evaluation Metric is AUROC for edge presence in the predicted skeleton. OOD Settings
is identical to those defined for Table 1 in the main text: i.i.d., Graph shift, Noise shift, Mechanism
shift. The AVICI(mixed) is replaced with SiCL(mixed), respectively.

B.2 RESULTS AND ANALYSIS
Table [5 presents the AUROC for skeleton discovery under different distribution shifts.Consistent

with the findings in Table [I] using the AVICI backbone, the SiCL backbone—which employs a
fundamentally different pairwise attention architecture and learns undirected skeletons rather than
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full DAGs—exhibits the same pattern of out-of-distribution generalization failure. Under i.i.d.
conditions, SiCL achieves perfect or near-perfect performance. However, significant performance
degradation occurs across all types of distribution shifts, with mechanism shifts proving particu-
larly damaging (e.g., dropping to 66.5 on RFF_G_SF and 58.4 on Chebyshev_G_SF). Critically,
the SiCL(mixed) variant, while trained on data containing all individual distributional components
(graph types, mechanisms, and noise distributions), still fails to generalize to novel combinations of
these factors. This demonstrates that SCL models struggle with compositional generalization—they
memorize specific configuration patterns rather than learning modular causal representations. These
results demonstrate that the OOD generalization challenge is not specific to a particular model ar-
chitecture or output representation, but represents a fundamental limitation of the static pre-training
paradigm in supervised causal learning. The consistent failure patterns across both transformer-
based (AVICI) and pairwise-attention-based (SiCL) models strongly validate the need for test-time
adaptation frameworks like TTT-SCL.

Table 5: OOD generalization performance for skeleton using the SiCL (Pairwise Attention) back-
bone.

RFF_G_ER RFF_G_SF Linear U.ER Linear U_SF Chebysev.G_.ER Chebysev_G_SF

iid 82.1(6.7) 100.0(0.0)  81.4(6.9)  100.0(0.0) 94.3(2.8) 100.0(0.0)
Graph shift 66.4(9.0) 854(4.1)  65.8(6.9) 94.0(2.5) 73.0(5.7) 92.9(4.3)
Noise shift 60.08.9) 91.7(3.8)  65.3(7.4) 84.0(7.7) 88.6(5.3) 89.3(5.4)
Mechanism shift  62.1(7.4)  66.5(6.3)  59.4(4.7) 83.8(4.8) 76.1(8.9) 58.4(9.7)
SiCL(mixed) 64.4(8.0) 74.4(10.7)  66.7(1.3) 82.7(8.2) 85.6(3.7) 91.2(4.1)

C PERFORMANCE IN OTHER METRICS

In the main text, we primarily reported the AUROC for edge prediction to succinctly demonstrate
the impact of training data quality on model performance. For a more comprehensive evaluation, we
provide results on additional standard causal discovery metrics in this appendix:

* Accuracy (ACC): The proportion of correctly predicted edge presence/absence across all
possible edges. Higher is better. This metric can be viewed as a normalized version of the
Structural Hamming Distance (SHD), where instead of counting the number of incorrect
edges, it measures the proportion of correct edge predictions relative to the total possible
edges.

* F1-Score: The harmonic mean of precision and recall for edge prediction. Higher is better.

* Area Under the Precision-Recall Curve (AUPRC): Particularly informative under class
imbalance (sparse graphs). Higher is better.

Table 6: Comprehensive evaluation across multiple datasets and metrics. Mean (standard deviation)
over multiple runs are reported for synthetic data. Best results are in bold.

RFF_G Linear U Chebyshev_G Sachs Syntren

Method ACCT FIt AUPRC ACCT  FIt AUPRCI ACCt  FIt AUPRC ACC{ FIt AUPRC{ ACCT FIf  AUPRCH
PC 75.6(4.2)  39.59.7) 37.5(6.3)  74.0(4.4) 40.4(84) 37.2(6.2) 73.7(5.1) 37.4(12.6) 36.8(7.8) 84.2 457  30.1 8475 1643 6.89
GES 76.7(7.7)  49.8(16.3) 43.5(12.3) 71.9(9.8) 55.4(12.9) 45.3(9.3) 72.1(5.1) 38.5(10.5) 35.7(6.6) 82.6 36.3 242 6550 142 479
NOTEARS 86.6(3.3) 73.2(62) 64.1(74) 89.1(29) 76.6(7.3) 69.7(8.6)  72.3(2.7) 14.5(8.7)  29.8(3.3) 82.6 363 242 9475 0.00 5.00
AVICI(scm-v0) 93.1(1.6) 87.334) 9493.1) 73.9(7.1) 41.8(18.4) 52.8(17.0) 80.6(5.4) 58.4(14.5) 69.3(142) 834 23.0 316 93.00 2222 2553
TACTIC (random) 83.2(5.3) 72.8(9.4) 68.8(10.8) 75.9(6.1) 59.8(11.8) 56.2(11.5) 75.5(7.0) 56.6(10.8) 60.0(10.0) 68.5 240 245 7250 16.66 53.91
TACTIC (Notears) 86.8(3.5) 78.4(6.1) 76.0(8.6) 78.7(3.9) 65.4(8.0) 65.009.9) 77.1(6.7) 61.9(10.2) 66.0(16.3) 85.9 56.4 53.6 90.50 32.14 51.85

Table [6] presents the performance of all compared methods across three distinct synthetic data set-
tings (RFF_G, Linear_U, and Chebyshev_G) and the real-world Sachs dataset. TACTIC (Notears)
achieves highly competitive performance across all datasets and evaluation metrics (ACC, Fl1,
AUPRC), demonstrating its robustness to distribution shifts. It consistently outperforms tradi-
tional methods (PC, GES, NOTEARS) and the strong pre-trained SCL baseline AVICI(scm-v0)
on most settings, particularly on the challenging Chebyshev_G and real-world Sachs dataset. While
AVICI(scm-v0) excels in the RFF_G setting it was trained on, its performance degrades significantly
under mechanism shifts (Linear_U) and on real data, highlighting the limitation of static pre-training.
The superior performance of TACTIC across multiple metrics confirms that its test-time training
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strategy generates high-quality, causally-aligned training data, leading to more accurate and reliable
causal discovery.

D MORE EXPERIMENTS ABOUT AD AND SPARSITY

The main text established the necessity of the sparsity constraint in the TACTIC optimization objec-
tive to prevent degenerate, overly dense solutions. This appendix provides further empirical evidence
to dissect the roles of the AD metric and the sparsity constraint.

D.1 THE ROLE OF AD AND SPARSITY

To further demonstrate the effectiveness of AD and the necessity of sparsity, the AD, sparsity, score
of the training data obtained by different methods under different test data, as well as the AUROC
on the test data were recorded in Fig[3] The combined optimization of AD and sparsity is critical for
generating high-quality training data. Without sparsity constraints (TACTIC(Notears-s)), high AD
values alone lead to overly dense graphs that overfit the test distribution, violating causal minimality
and resulting in lower AUROC. In contrast, jointly optimizing AD and sparsity (TACTIC(Notears))
yields training data that is both distributionally aligned and structurally sparse, closely matching
the true causal graph. The resulting composite score strongly correlates with final model AUROC,
confirming that both components are essential for robust generalization under distribution shifts,
especially mechanism shifts.

AD and Sparsity characterize the quality of the training data.

AD (Higher is better) Sparsity (Low is better)

—200 45

B TACTIC(random)
= TACTIC(Notears-s)
= TACTIC(Notears)

—250

=300

w
&

AD Value
Sparsity

—350

8

-400 251

—450 20-

RFF_G Linear_U Chebyshev_G RFF_G Linear_U
Score (Higher is better) AUROC (Higher is better)

Chebyshev_G

—200

—250

=300

Score

—350

—400

—-450

RFF G Linear U Chebyshev_G RFF_G Linear_U Chebyshev_G

Figure 3: Combined score indicate training data quality. Training data quality is determined not by
AD or sparsity alone, but by their combined score.
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D.2 CONTROL AD, CHANGE SPARSITY

To control sparsity independent of AD, we design a controlled experiment based on the ground-
truth test graph Gy.s;. For a given Gy, and its observational data Dy, we generate alternative
candidate training graphs Gi,q;, by gradually adding extra edges to G.s; (while ensuring the
resulting graph remains a DAG). This creates a series of graphs that are supergraphs of the true
graph.

* Setting 1 (Sparse): Add a small number of extra edges (|Eqqq| = m1).
* Setting 2 (Medium): Add a medium number of extra edges (| Eqq4| = ma, ma > my).

* Setting 3 (Dense): Add a large number of extra edges (|Eqqq| = ms3, mg > ma).

For each generated supergraph G4y, in these settings, we then: 1. Parameter Fitting: Regress the
mechanisms f; and noise distributions from Dy.g; using Gypqin (via SIM). 2. Forward Sampling:
Generate synthetic training data Dy,.q;, from the fitted SCM (Gyyqin, f,€). 3. Calculate Metrics:
Compute the AD score between Dy,.q;,, and Dyeg;, and the sparsity of Gy.qip. 4. Train & Evaluate:
For each (Grain, Dirain) pair, train an SCL model (AVICI backbone) and evaluate its AUROC on
recovering the true Gies from Dyegs.

This procedure is repeated for K graphs per setting. The key insight is that by construction, all
generated G4, graphs are capable of representing the data distribution Dy.s;. Therefore, we
expect them to achieve similar, high AD scores. However, only the sparsest graph (Ges; itself)
represents the true causal structure.

Table /| shows the results for the RFF_ER_G dataset, which are representative of the overall trend.

Table 7: Control AD, change sparsity

RFF_ER_G setting AD sparsity AUROC
1 -375 2591 1.0(0)
Control AD, change sparsity 2 -368 (+1.8%) 32.32(+24.7%) 0.972(0.017)
3 -362(+3.4%)  36.59(+41.2%) 0.908(0.023)

The results clearly demonstrate the critical, independent role of the sparsity constraint. All su-
pergraphs achieve a high and similar AD score (variation < 4%), confirming that many different
graphs can explain the observed data distribution nearly equally well. This illustrates the identi-
fiability crisis without further constraints. As expected, adding more edges increases the sparsity
metric (number of edges). Crucially, the downstream performance (AUROC) of the SCL model de-
grades significantly as the graphs become denser, even though the AD score remains high. The
model trained on the true graph (Setting 1, perfect sparsity) achieves perfect AUROC. Performance
drops to 0.972 for medium density and further to 0.908 for high density.
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