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ABSTRACT

The design of controllers with correctness guarantees is a primary concern for
safety-critical control systems. A Control Barrier Certificate (CBC) is a real-
valued function over the state space of the system that provides an inductive proof
of the existence of a safe controller. Recently, neural networks have been suc-
cessfully deployed for data-driven learning of control barrier certificates. These
approaches encode the conditions for the existence of a CBC using a rectified
linear unit (ReLU) loss function. The resulting encoding, while sound, tends to
be conservative, which results in slower training and limits scalability to large,
complex systems. Can altering the loss function alleviate some of the problems
associated with ReLU loss and lead to faster learning?
This paper proposes a novel encoding with a Mean Squared Error (MSE) loss
function, which allows for more scalable and efficient training, while addressing
some of the theoretical limitations of previous methods. The proposed approach
derives a validity condition based on Lipschitz continuity to formally characterize
safety guarantees, eliminating the need for a post-hoc verification. The effective-
ness of the proposed loss functions is demonstrated through six case studies cu-
rated from the existing state of the art. Our results provide a compelling argument
for exploring alternative loss function choices as a novel approach to optimizing
the design of control barrier certificates.

1 INTRODUCTION

Recent advances in deep learning have accelerated the integration of autonomous systems into var-
ious safety-critical areas of everyday life, including self-driving cars, robotic manipulators, and
personalized implantable medical devices. Consequently, even a minor fault in the control logic of
these systems can lead to catastrophic consequences, such as loss of human life, severe financial
losses, legal liabilities, and damage to infrastructure. In response to this grand challenge, the devel-
opment of formally certified control methods for autonomous systems has received a considerable
research interest in recent years (Xu et al., 2017; Salamati et al., 2024; Zhong et al., 2023; Zhang
et al., 2024). Control Barrier Certificates (CBCs) (Ames et al., 2019; Prajna et al., 2007)—and
their neural network representations (Dawson et al., 2022; 2023; Liu et al., 2023; Anand & Zamani,
2023; Zhang et al., 2024; Zhao et al., 2021a; Edwards et al., 2024; Qin et al., 2021)—have emerged
as leading approach to design a safety controller along with an inductive proof of correctness. This
paper focuses on the crucial role that the choice of loss functions plays in the scalable design of
safety controllers.

Neural Control Barrier Certificates. The key idea behind control barrier certificates (CBCs)
is that: if one can learn a real-valued function of the state space of a dynamical system such that
this function is negative in the initial states, positive in the unsafe states, and, for every state with a
non-positive value, there is a control signal choice that allows a transition to another state with a non-
positive value, then a feedback control exists that keeps the system safe indefinitely. Traditionally,
Sum-of-Squares (SOS) optimization has been used to synthesize such certificates and corresponding
controllers (Zhao et al., 2023; Schneeberger et al., 2023; Prajna et al., 2007); however, their appli-
cation requires human ingenuity in identifying an appropriate template and tends to scale poorly.
CBCs parameterized by neural networks—often referred to as Neural Control Barrier Certificates
(NCBCs)—have recently gained traction, owing to their universal approximation capabilities, ease

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of automation, and the increasing availability of robust tool support (Dawson et al., 2022; Zhang
et al., 2024; Liu et al., 2023; Anand & Zamani, 2023). Due to their data-centric approach, NCBCs
only provide guarantees over the finite set of data points used during training. Consequently, the
resulting controller requires formal verification to provide rigorous guarantees about safety over the
entire continuous state space. This verification is typically achieved by framing the problem as a
constraint satisfaction task and solving it using Satisfiability Modulo Theories (SMT) solvers, such
as Z3 (De Moura & Bjørner, 2008; 2011). The need for such post-hoc verification introduces another
weak link in terms of scalability.

Choice of Loss functions. The success of deep-learning based approximation depends on a well-
designed loss function to ensure that the model learns the correct objective, converges efficiently,
and generalizes well to unseen data (Ma et al., 2021; Li et al., 2018). Following Zhao et al. (2020),
the majority of work on NCBC (Anand & Zamani, 2023; Abate et al., 2020; Edwards et al., 2024;
Zhao et al., 2021a; Žikelić et al., 2024) encodes the control barrier conditions using a ReLU function
(x ∈ R 7→ max(x, 0)). The ReLU loss function is straightforward to encode and provides a natural
termination condition for training, as training stops when the loss reaches zero. However, ReLU has
some fundamental disadvantages (Goodfellow et al., 2016), such as having a zero Hessian every-
where (which hampers interpretability (Torop et al., 2024)) and the instability of its derivative around
the global minimum (which affects convergence and robustness). Moreover, prior work (Anand &
Zamani, 2023) have demonstrated that using this loss function results in large Lipschitz constants
of the trained networks (and consequently the resulting controllers). In practice, small Lipschitz
constants for controllers are desirable to ensure more robust control (Chen, 2013). Moreover, bar-
rier certificates with small Lipschitz constants are preferable due to their robustness with respect to
small perturbations in the model of a dynamical system (resulting from mechanical wear and tear
or changes in operating conditions), thereby improving the applicability and transferability of the
resulting guarantees. Can altering the loss function alleviate some of the problems associated with
ReLU loss and lead to faster learning?

Mean Squared Error (MSE) loss. Mean Squared Error (MSE) is a popular choice (Goodfel-
low et al., 2016) for loss functions in regression problems due to its strong convergence guaran-
tees (Allen-Zhu et al., 2019; Cheridito et al., 2022). We investigate the suitability of MSE loss
functions for NCBCs by posing the following research questions:

RQ1 Can MSE effectively encode the conditions of neural control barrier certificates?

RQ2 Can an MSE-based loss function support intuitive termination checks?

RQ3 Current methods typically fail to scale to more parameterized neural networks and high-
dimensional systems. To what extent do MSE loss functions alleviate this drawback?

RQ4 Small Lipschitz constants are desirable for 1) interpretability, 2) robustness of training, 3)
robustness of the resulting controller, and 4) transferability of the resulting guarantees. How
do MSE-based NCBCs compare to ReLU-based NCBCs in this regard?

Contributions. Our contributions in addressing these research questions are summarized below.

RQ1 We reformulate, in Section 3, the traditional CBC conditions using MSE loss functions. By
leveraging MSE loss, we enable smoother gradients, thereby improving the stability and
convergence of neural network training.

RQ2 In Section 4, we leverage mild Lipschitz continuity assumptions on the system to establish
certain validity conditions (Theorem 8) for the resulting network, which, when satisfied,
allow us to terminate training and provide safety guarantees over the entire state space. This
approach eliminates the need for post-hoc verification, thereby improving the scalability of
the overall method.

RQ3-4 In Section 5, we experimentally address these questions by deploying our approach on six
case studies from state-of-the-art literature (Anand & Zamani, 2023; Edwards et al., 2024;
Zhang et al., 2024; Zhao et al., 2023). Our results show that, compared to existing work,
our approach offers greater scalability in terms of system dimensions and neural network
architecture, and is able to find formally correct NCBCs faster than current methods. Fur-
thermore, our experiments demonstrate that our approach produces barrier certificates and
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controllers with smaller Lipschitz constants, which significantly facilitates the verification
process, compared to the state of the art using ReLU loss.

2 PROBLEM FORMULATION

As usual, we denote the set of reals, non-negative reals, and positive reals by R, R≥0, and R>0,
respectively. For sets A and B, we write A \ B and A × B for their difference and Cartesian
product, respetively. We write |A| for the cardinality of the set A. We consider n-dimensional
Euclidean space Rn equipped with infinity norm ∥ ·∥, defined as ∥x−y∥ := max1≤i≤n |xi−yi| and
Euclidean norm as ∥x− y∥2 :=

√∑n
i=1(xi − yi)2, where x=(x1, x2, . . . , xn), y=(y1, y2, . . . , yn)

belong to Rn. We denote the rectified linear unit function by ReLU(x) := max(x, 0), and mean
squared error function by MSE(x, y) = 1

n

∑n
i (xi − yi)2.

2.1 CONTROL BARRIER CERTIFICATES

Systems studied in this paper are modeled as a discrete-time control system (dtCS), defined as fol-
lows.

Definition 1 (Discrete-Time Control System). A discrete-time control system (dtCS) is a tuple S :=
(X ,X0, U, f), where X ⊆ Rn represents the continuous state set, X0 ⊆ X is the initial state set,
and U ⊆ Rm is the set of inputs. Furthermore, f : X ×U → X is the state transition function. The
evolution of the system under an input sequence u = ⟨u(1), u(2), . . .⟩ is given by

S : x(t+ 1) = f(x(t), u(t)). (1)

We assume that sets X , and U are bounded, and the map f is unknown but can be simulated via a
black-box model, and f is Lipschitz continuous, as stated in the following assumption.

Assumption 2 (Lipschitz Continuity). For a given dtCS S=(X ,X0, U, f), we assume that f is
Lipschitz continuous, i.e., there exists (Lipschitz) constants Lu,Lx ∈R≥0 such that for all x,x′∈X ,
and u, u′∈U , we have

∥f(x, u)− f(x′, u′)∥ ≤ Lx∥x− x′∥+ Lu∥u− u′∥. (2)

A dtCS S = (X ,X0, U, f) with a feedback controller k(x) : X → U is safe against a set of unsafe
states Xu ⊆ X if, for every trace of the system starting from X0 under inputs provided by controller
k, it never reaches Xu. The main safe control problem studied here is formalized below.

Problem 3 (Safe Controller Synthesis). Given a dtCS S = (X ,X0, U, f), find a feedback controller
k : X → U such that S is safe with respect to initial set of states X0 ⊆ X and unsafe set Xu ⊆ X ,
i.e., for every trace ⟨x(0), x(1), . . .⟩, where x(t + 1) = f(x(t), k(x(t))), and x(0) ∈ X0, we have
that x(t) ̸∈ Xu for all t ∈ N.

We employ the following notion of control barrier certificates (CBCs) (Anand et al., 2022) which
provides sufficient conditions for ensuring safety.

Definition 4 (Control Barrier Certificates). A function B : X → R is called a control barrier
certificate (CBC) for S = (X ,X0, U, f) with respect to initial set of states X0 ⊆ X and unsafe set
Xu ⊆ X if there exists a controller k : X→U such that, for some η ∈ R≥0, we have:

B(x) ≤ −η, for all x ∈ X0, (3)
B(x) > η, for all x ∈ Xu, and (4)

(B(x) ≤ 0) =⇒ (B(f(x, k(x))) ≤ 0), for all x ∈ X . (5)

We borrow the next theoretical result from Anand et al. (2022), which outlines the efficacy of CBCs.

Theorem 5 (Control Barrier Functions Imply Safety). Consider a dtCS S = (X ,X0, U, f), and
unsafe set of statesXu ⊆ X . A control barrier certificate that satisfies conditions (3)-(5), guarantees
that the system S, equipped with CBC’s controller, starting from any x ∈ X0, will never reach
Xu (Anand et al., 2022).
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2.2 NEURAL CONTROL BARRIER CERTIFICATES

Neural networks, being universal approximators (Hornik et al., 1989), are able to represent any
Borel-measurable function based on input-output data. Consider a neural network F with k fully-
connected layers where each layer i is characterized with a weight matrix Wi and a bias vector bi
of appropriate size and is followed by an activation function. Such a network can be viewed as a
function F : Rni → Rno . Given y0 ∈ Rni , a network will computes its output yk ∈ Rno as:

y1 = σ(W1y0 + b1), y2 = σ(W2y1 + b2), , · · · , yk = σ(Wkyk−1 + bk).

We call yi−1 and yi, for i∈{1, . . ., k}, the input and output of the i-th layer, respectively, and σ is the
activation function. One observes that neural networks with ReLU (σ(x)=max(0, x)) activations
describe local Lipschitz continuous functions, with Lipschitz constant LF ∈ R≥0, in the sense that
for all x′1, x

′
2 ∈ Rni , the following condition holds:

∥F (x′1)− F (x′2)∥ ≤ LF ∥x′1 − x′2∥. (6)

Moreover, an upper bound on the Lipschitz constant of a neural network with ReLU activations can
be obtained using the spectral norm (Combettes & Pesquet, 2020). While tighter Lipschitz upper
bounds for neural networks have been extensively studied (Fazlyab et al., 2019; Pauli et al., 2021;
Prach & Lampert, 2022; Meunier et al., 2022; Wang et al., 2024; Araujo et al., 2023), we observed
that these methods are either too restrictive or introduce significant computational complexity dur-
ing the training process, as demonstrated in our experiments. The spectral norm approach strikes
a good balance: it provides a much tighter bound than the trivial upper bound while remaining
computationally efficient.

We focus on how to train neural networks to act as control barrier certificates. To this end, we first
introduce the construction of the training set. To do so, we cover the setX with finitely many disjoint
hypercubes X1, X2, . . . , XM , by picking a discretization parameter ϵ > 0 such that:

∥x− xi∥ ≤
ϵ

2
, for all x ∈ Xi, (7)

where xi is the center of hypercube Xi, i ∈ {1, . . . ,M}. Accordingly, we pick the centers of these
hypercubes as sample points, and denote the set of all sample points by Xd := {x1, . . . , xM}.
We are ready to propose our notion of neural control barrier certificates.
Definition 6 (Neural Control Barrier Certificates). Consider a dtCS S = (X ,X0, U, f), constants
ϵ, η, γ ∈ R>0 such that γ ≤ η, the unsafe set Xu ⊆ X , and neural networks B : X → R and
k : X → U . We proclaim that B along with k is a neural control barrier certificate, if the following
conditions hold:

B(x) ≤ −η, for all x ∈ X0 ∩ Xd, (8)
B(x) > η, for all x ∈ Xu ∩ Xd, and (9)

(B(x) ≤ γ) =⇒ (B(f(x, k(x))) ≤ −η), for all x ∈ X ∩ Xd, (10)

where Xd is constructed according to (7), with discretization parameter ϵ.

In previous works, condition (5) is often replaced with B(f(x, k(x))) − B(x) ≤ −η, which re-
quires the barrier certificate to decrease as the system evolves. Although this is a more conservative
condition, it simplifies the verification process (Nejati & Zamani, 2023; Nejati et al., 2023; Anand
& Zamani, 2023). Additionally, it is typically assumed that this decreasing condition must hold
over the entire state space, a restrictive assumption since some states may not be reachable, yet are
still required to satisfy this condition. We tackle this by employing an implication-based approach.
We also set γ = LB

ϵ
2 , where ϵ is the discretization parameter, to address this limitation while still

ensuring safety guarantees.

Current methods for training neural networks, to act as control barrier certificates for a dtCS S =
(X ,X0, U, f), utilize LReLU := L1 + L2 + L3 as loss function, where

L1 := ReLU(B(x),−η), for all x ∈ Xd ∩ X0,

L2 := ReLU(B(x), η), for all x ∈ Xd ∩ Xu,

L3 := ReLU(B(f(x, k(x)))−B(x),−η), for all x ∈ Xd \ Xu,
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which L1, L2 and L3 correspond to conditions (3) to (5), respectively. The advantage of using ReLU
is that one can stop the training when loss reaches zero, however, from both theoretical and imple-
mentation standpoint, this loss leads to unstable training. Thus, algorithms that use ReLU do not
scale well with regards to the dimension of a system and number of parameters of neural networks.
To alleviate this drawback, we utilize mean squared error (MSE) loss, which offers guarantees of
convergence for over-parameterized neural networks (Allen-Zhu et al., 2019; Cheridito et al., 2022).

3 NEURAL CONTROL BARRIER CERTIFICATES WITH MSE LOSS

We propose an alternative approach by replacing the ReLU activation function with a MSE-based
formulation for constructing Neural Control Barrier Certificates. The motivation behind this substi-
tution is to exploit the smooth and continuous nature of MSE, which can lead to more efficient
gradient-based optimization and improve the overall performance and robustness of the system
equipped with the designed controller.

We train B(x) and k(x) with the following loss function LMSE = L1 + L2 + L3, where

L1 := MSE(B(x),−η), for all x ∈ Xd ∩ X0, (11)
L2 := MSE(B(x), η), for all x ∈ Xd ∩ Xu, (12)

L3 := MSE(B(f(x, k(x))),−η), for all x ∈ Xd \ Xu, such that B(x) ≤ γ, (13)

for an η ∈ R>0, which is a design parameter. Specifically,L1, L2 andL3 encode conditions (3) to (5)
of control barrier certificate, respectively. Additionally, we train the network k(x) with L3. Note
that this loss depends on both networks, hence, training both B(x) and k(x) requires dealing with
the moving target problem (Mnih et al., 2015). To remedy this problem, we fix B for a predefined
number of iterations for loss L3.

To motivate the use of MSE theoretically, we present the following simple example. Consider the
scalar system S = (X ,X0, U, f), where the dynamics are given by f(x) = x

2 , with X = [−10, 10],
the initial set X0 = [3, 4], and the unsafe set Xu = [−10, 0). Since this system is positive, we have
x(t) ≥ 0 and thus the system is safe, for every t ∈ N. Consider a barrier certificate given by a linear
neural network B(x) = Mx with the Lipschitz constant LB = |M |. When using ReLU loss, any
non-positive value of M leads to a loss of 0. However, with MSE loss, non-positive M with large
absolute value—which corresponds to a larger Lipschitz constant for the barrier certificate—results
in a larger loss. In this sense, MSE promotes barrier certificates with smaller Lipschitz constants,
leading to effectively smoother barrier functions.

Algorithm 1 summarizes our training framework. First, we construct the training data set Xd, and
networks are initialized. Then training begins with LMSE. During training, we check for the smallest
value of η that satisfies conditions (8)-(10), and conditions (14)-(15), if an admissible η is found,
then training concludes, otherwise training continues. We have also added small regularizers to both
networksB and k, to encourage both networks to have a small Lipschitz constant (Goodfellow et al.,
2016).

Note that a neural control barrier certificate is not necessarily a valid control barrier certificate as in
Definition (4), since the training is performed only over a finite set of data. To address this issue,
we propose the following validity conditions, which will be utilized to prove that a neural control
barrier certificate satisfies conditions of Definition (4), i.e., extend guarantees for training samples
to unseen samples.

Assumption 7 (Validity Conditions). Consider a dtCS S = (X ,X0, U, f), and two neural networks
B(x) : X → R and k(x)X → U , with ReLU activations that satisfy (8) to (10) for Xd constructed
according to (7). We assume the following validity conditions:

LB(Lx + LuLk)
ϵ

2
− η ≤ 0, (14)

LB
ϵ

2
− η ≤ 0, (15)

where LB and Lk are Lipschitz constants of networks B and k, respectively, and Lx and Lu are
Lipschitz constants of S as defined in (2), and ϵ is the discretization parameter, and η ∈ R>0 is a
user-defined robustness parameter.

5
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Algorithm 1 Algorithm for Training a Neural Control Barrier Certificate with Formal Guarantee
Input: Sets X0,X , U for a dtCS S, respectively, as in Definition (1); discretization parameters ϵ
for the set X as in (7); robustness parameters η ∈ R>0 as in Definition (6); Lx, Lu as introduced
in Assumption (2); the number of iterations N for fixing network B; the architecture of the neural
networks B and k; and maximum number of iterations Nmax.
Output: Neural networks B and k.

Construct the training data set Xd according to 7.
Initialize networks B and k (Goodfellow et al., 2016).
LB ← Upper bound of Lipschitz constant of B (Combettes & Pesquet, 2020).
Lk ← Upper bound of Lipschitz constant of k (Combettes & Pesquet, 2020).
i← 0
while Conditions (8)-(10) and conditions (14)-(15) are not satisfied and i ≤ Nmax do

if i=nN then
B3 = B.

end if
Train B with loss LMSE = L1 + L2 + L3, with L1, L2, and L3 as in 11-13, respectively.
Train k via loss L3 generated from B3.
i← i+ 1
LB ← Upper bound of Lipschitz constant of B (Combettes & Pesquet, 2020).
Lk ← Upper bound of Lipschitz constant of k (Combettes & Pesquet, 2020).

end while
Return B, k

Lipschitz continuity enables us to extend guarantees from a finite set of training data to the entire
state set. Assumption 7 serves as a condition that facilitates this extension. Specifically, it ensures
that if a sample point (used during training) satisfies the control barrier certificate conditions, then all
points within a neighborhood centered at the sample point with radius ϵ

2 also satisfy those conditions.
This approach forms the theoretical foundation needed to bridge the gap between finite data and
overall correctness across the entire state set.

Although η is user-defined, a CBC does not need to satisfy conditions (8)-(10), and conditions (14)-
(15) with that given value. Any positive value that satisfies those conditions (8)-(15) provides formal
guarantee of safety.

4 PROOF OF CORRECTNESS

In this section, we propose the main theoretical result of our paper, and formally prove that a neural
control barrier certificate, synthesized according to Algorithm 1, conditioned on its termination, is
in fact a control barrier certificate, i.e., it satisfies conditions (3)-(5), and can be deployed to solve
Problem (3).

Theorem 8 (Validity Condition Imply Formal Correctness). Consider a dtCS S = (X ,X0, U, f)
with Lipschitz constants Lx and Lu as in Assumption (2), and a constant ϵ ∈ R>0 to form Xd as
defined in (7). Neural networks B : X → R and k : X → U with Lipschitz constants LB and Lk,
respectively, are trained according to Algorithm 1 and represent a neural control barrier certificate.
Then S is safe with respect to the unsafe set Xu ⊆ X under controller k.

Proof. We first prove that condition (5) is satisfied. Consider any x ∈ X . If B(x) > 0, then
implication in (5) is trivially satisfied. From now on, we just consider the case that B(x) ≤ 0. By
construction of Xd as in (7), there exists xi ∈ Xd such that ∥x−xi∥ ≤ ϵ

2 . To obtain an upper bound
for B(xi), we employ Lipschitz continuity:

B(xi) = B(xi)−B(x) +B(x) ≤ LB∥x− xi∥+B(x) ≤ LB
ϵ

2
≤ γ.

Based on (10), for any xi ∈ Xd such that B(xi) ≤ γ, one has:

B(f(xi, k(xi))) ≤ −η.

6
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For all x ∈ X such that ∥x− xi∥ ≤ ϵ
2 , and B(xi) ≤ γ, we have

B(f(x, k(x))) = B(f(x, k(x)))−B(f(xi, k(xi))) +B(f(xi, k(xi)))

≤ B(f(x, k(x)))−B(f(xi, k(xi)))− η
≤ LB∥f(x, k(x))− f(xi, k(xi))∥ − η,

where the last inequality follows from Lipschitz continuity of B. Moreover:

LB∥f(x, k(x))− f(xi, k(xi))∥ − η ≤ LB(Lx∥x− xi∥+ Lu∥k(x)− k(xi)∥)− η
≤ LB(Lx + LuLk)∥x− xi∥ − η,

which is followed by Assumption 2 and Lipschitz continuity of k. According to Algorithm 1, validity
condition (14) holds, thus:

B(f(x, k(x))) ≤ LB(Lx + LuLk)
ϵ

2
− η ≤ 0.

Therefore, it follows that condition (10) with validity condition (14) implies condition (5). One
could use similar arguments to prove that conditions (3) and (4) hold, however it is omitted here
for the sake of brevity. Consequently, a neural control barrier certificate synthesized according to
Algorithm 1, is a control barrier certificate as in Definition 4, which guarantees safety of S under
controller k, according to Theorem 5.

5 EXPERIMENTAL EVALUATION

Thus far, we have answered RQ1 and RQ2 in previous sections, and here, we aim to address RQ3
and RQ4. We demonstrate the efficacy of our Algorithm with six case studies, two of which are
highlighted here. Information regarding the other 4 case studies is found in the Appendix. Table 1
shows a detailed comparison between our method and other state-of-the-art algorithms. We con-
sidered methods that 1) provide formal guarantee and 2) train a feedback controller. Among these
methods, Anand & Zamani (2023) is model-free, rest require closed-form mathematical expression
of map f . Moreover, some methods such as Zhang et al. (2024) are for continuous time systems
only, however, we discretize systems with forward Euler method (Gottlieb et al., 2001) to compare.

Table 1: Comparison of our proposed method and state-of-the-art. Results showcase our algorithm’s
independence from the architecture of control barrier certificate, since we do not utilize SMT solvers.
We denote the runtime by “NA” when an algorithm fails to converge. Each number, in the archi-
tecture column (same architecture for both B and k), represents number of neurons for each hidden
layer (i.e.,10-10-10 refers to a neural network with 3 hidden layers, each consist of 10 neurons), and
all networks have ReLU activations.

Benchmark Architecture Edwards et al. (2024) Anand & Zamani (2023) Zhao et al. (2021a) Zhang et al. (2024) Ours

Spacecraft(6d) 10-10-10-10 130s NA 6000s 300s 110s
Spacecraft(6d) 200-200-200-200 NA NA NA NA 92s
Obstacle Avoidance(3d) 10 130s 3600s 4000s 7s 120s
Obstacle Avoidance(3d) 200-200-200-200 NA NA NA NA 70s
Inverted Pendulum(2d) 10-10-10 250s 2700s 2200s 450s 130s
Inverted Pendulum(2d) 200-200-200-200 NA NA NA NA 120s
Double Inverted Pendulum(4d) 200-200-200-200 NA NA NA NA 800s
Darboux(2d) 10 50s 600s 450s 8s 5.8s
Darboux(2d) 200-200-200-200 NA NA NA NA 3.5s
Bicycle Steering(3d) 10 300s 2800s 2100s 20s 45s
Bicycle Steering(3d) 200-200-200-200 NA NA NA NA 42s

5.1 DISCUSSION

Zhang et al. (2024) assume that a candidate NCBC is already given, and after verification, they
synthesize an admissible controller. Therefore, their method performs well on shallow networks.
Moreover, they assume that they have access to exact model of the system (same as Edwards et al.
(2024); Zhao et al. (2021a)). On the other hand, we train an NCBC from scratch and assume access
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to a black-box representation. The only information that we need from the system is the Lips-
chitz constants Lx and Lu, as in Assumption 2. If those constants are unknown, one can leverage
sampling based methods to estimate those constants (Wood & Zhang, 1996; Strongin et al., 2019;
Calliess, 2017). As shown previously, even with milder assumptions, our method outperforms the
existing work and is able to scale to higher dimensional and more complex systems. Furthermore,
our method can employ over-parameterized networks to benefit from their representability. Other
than scalability, our synthesized controller also has a small Lipschitz constant compared to the rest.
This benefit stems from the fact that we have encoded conditions of CBC using MSE loss, which
is differentiable in its global minimum (as opposed to ReLU), and comes with convergence guaran-
tees (Allen-Zhu et al., 2019; Cheridito et al., 2022).

We acknowledge that other approaches in the literature provide tighter bounds on the Lipschitz con-
stant of neural networks compared to Combettes & Pesquet (2020), such as Fazlyab et al. (2019);
Pauli et al. (2021); Wang et al. (2024); Araujo et al. (2023). However, these methods are compu-
tationally expensive. In fact, our numerical experiments indicate that approximately 99% of the
training time is spent calculating the Lipschitz constant, with only1% dedicated to actual training.
The spectral norm approach offers a good trade-off: it provides a much tighter bound than the trivial
upper bound while remaining efficient to compute. We performed an a posteriori comparison be-
tween the spectral norm approach and the method proposed by Fazlyab et al. (2019). Our results
show that the spectral norm approach is an order of magnitude faster than Fazlyab et al. (2019),
while the upper bound it provides is only 40% to 50% larger than the upper bound obtained by Fa-
zlyab et al. (2019), which can be offset by ϵ and η. This finding aligns with the results reported
in Fazlyab et al. (2019), particularly in Figure 2a.

5.2 EXPERIMENTS SETTING

All of the training is conducted on an Nvidia RTX 4090 GPU coupled with an Intel Core I7 13700k
CPU, with 32 GBs of RAM. We utilize Adam optimizer to train neural networks, with a learning
rate of 5×10−5. We have only highlighted pendulum case studies, as they are the most challenging,
due to the nonlinearity and dimensionality of systems.

5.3 CASE STUDY: INVERTED PENDULUM

We consider a dtCS S = (X ,X0, U, f) to be an inverted pendulum where X = [−π
4 ,

π
4 ]× [−π

4 ,
π
4 ],

X0 = [−π
12 ,

π
12 ]× [−π

12 ,
π
12 ], and Xu = X \ [−π

6 ,
π
6 ]× [−π

6 ,
π
6 ]. The transition function is given by:[

θ(t+ 1)
ω(t+ 1)

]
=

[
θ(t) + τω(t)

ω + gτ
l sin(θ(t)) + 10τ

ml2 k(x(t))

]
,

where x(t) := [θ(t), ω(t)], and θ and ω are the angular position and velocity, respectively. Moreover,
g = 9.8 is the gravitational acceleration, and l = 1 and m = 1 are the length and mass of the
pendulum, respectively. Constant τ = 0.01 is the sampling rate, and Lipschitz constants Lx =
1.098, Lu = 0.1, based on Assumption (2). The discretization parameter and input set are ϵ =
1.2∗10−3, and U = [−2.5, 2.5], respectively. Our method converged with the following parameters:
LB = 0.48,Lk = 2.3, and η = 0.0037. Anand & Zamani (2023) report a Lipschitz constant of
LB = 21 for barrier certificate and LK = 20 for its controller. Some state sequences and level sets
of CBC are depicted in Figure 1a and Figure 1b, respectively.

5.4 CASE STUDY: DOUBLE INVERTED PENDULUM

For our second case study, we consider a double inverted pendulum S = (X ,X0, U, f), where f is:θ1(t+ 1)
ω1(t+ 1)
θ2(t+ 1)
ω2(t+ 1)

=

 θ1(t) + τω1(t)
ω1(t) + τ(g sin(θ1(t))− sin(θ1(t)−θ2(t))ω2

1(t))
θ2(t) + τω2(t)

ω2(t) + τ(g sin(θ2(t))+ sin(θ1(t)−θ2(t))ω2
2(t))

+ τ

 0 0
30 0
0 0
0 39

 k(x(t)),
where x(t) := [θ1(t);ω1(t); θ2(t);ω2(t)] ∈ [−π

4 ,
π
4 ]

4, θ1 and θ2 represent the angular position of
the first and the second joint, respectively, and ω1 and ω2 are the angular velocity of the first and the
second joint,, respectively, and U = [−3.5, 3.5]2 are the inputs applied to the first and second joint,

8
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(a) (b)

Figure 1: Four state sequences of the inverted pendulum are depicted in Figure 1a, starting from
different initial conditions; Dotted blue lines indicate the initial set, and red areas depict the unsafe
set. Level set of NCBC for the inverted pendulum are depicted in Figure 1b, dotted white, blue, and
black lines show the zero-level, the initial set, and the unsafe set of states, respectively.

respectively. Constant g = 9.8 is the gravitational acceleration, and Lipschitz constantsLx = 1.098,
Lu = 0.39, based on Assumption (2). The initial and unsafe set of states are X0 = [−π

20 ,
π
20 ]

4,Xu =

X \ [−π
6 ,

π
6 ]

4, respectively, and ϵ = 10−2. Our algorithm converged with the following parameters:
LB = 0.17, LK = 1.8, and η = 0.00326. Some trajectories of the system are depicted in Figure 2a
and Figure 2b.

(a) (b)

Figure 2: Some trajectories of the double inverted pendulum, starting from different initial condi-
tions. Figure 2a and Figure 2b depict the trajectories for the first and second joint, respectively.

6 RELATED WORK

Barrier Certificates. Prajna & Jadbabaie (2004) first introduced the notion of barrier certificates,
whose level sets provide over-approximations of the reachable sets of systems. CBCs emerged as a
promising approach to synthesize safe controllers (Ames et al., 2019; Dai & Permenter, 2023; Xiao
& Belta, 2019; Clark, 2021; Jagtap et al., 2020). Traditionally, Sum-of-Squars (SOS) optimization
is deployed to synthesize such controllers (Zhao et al., 2023; Schneeberger et al., 2023; Prajna
et al., 2007). However, these methods require mathematical model of systems and are restricted to
polynomial type dynamics only.
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Neural Barrier Certificates. Zhao et al. (2020) first introduced a notion of neural barrier certifi-
cates. They consider a simple, one hidden layer neural network to represent a barrier certificate,
and employed Mixed-Integer Linear Programming (MILP) to verify its correctness. Later, Peruffo
et al. (2021) utilized SMT solvers to find counter examples to a candidate neural barrier certificate
and used those counter examples to train their neural networks. Neural barrier certificates have also
been employed for safety verification of hybrid (Zhao et al., 2021b) and stochastic (Mathiesen et al.,
2022) systems.

Neural Control Barrier Certificates. To tackle the controller synthesize problem, NCBCs have
been proposed recently (Dawson et al., 2022; 2023; Liu et al., 2023; Robey et al., 2020; Lindemann
et al., 2021; 2024). Existing work utilizes methods such as SMT solvers (Zhao et al., 2020; Ed-
wards et al., 2024; Abate et al., 2020), reachable set verification (Xiang et al., 2018), polynomial
approximation (Sha et al., 2021), Lipschitz continuity (Anand & Zamani, 2023), and ReLU networks
verification (Katz et al., 2017), to formally verify the correctness of NCBCs. More recently, Zhang
et al. (2024) proposed a novel algorithm for exact verification of NCBCs, by considering a given bar-
rier certificate, and synthesizing a controller if that barrier is correct. Almost all of aforementioned
algorithms require exact model of a system (with the exception of Anand & Zamani (2023)), and
utilize SMT solvers; These solvers cannot deal with deep neural networks efficiently, as the compu-
tational complexity grows exponentially with respect to number of parameters, which restricts the
architecture of neural networks.

7 CONCLUSION

This paper presents advancements in the synthesis and verification of NCBCs by addressing key
limitations in prior works. First, by reformulating traditional CBC conditions using MSE loss func-
tions, we introduced smoother gradients, resulting in more stable and efficient training of neural
networks. Second, leveraging Lipschitz continuity assumptions, we established training termi-
nation conditions that allow guaranteed safety across the entire state space, eliminating the need
for post-hoc verification and enhancing scalability. Finally, through experimental validation on six
state-of-the-art case studies, we demonstrated that our method improves scalability in terms of sys-
tem dimensions and network architecture. Additionally, our approach yields synthesized barrier
certificates and controllers with smaller Lipschitz constants, simplifying the verification process,
and improves robustness and transferability. Possible future direction is to encode conditions of
NCBCs using other losses, and investigate effects of MSE on other neural certificates such as Lya-
punov (Chang et al., 2019) and Closure certificates (Nadali et al., 2024), and alleviating the sample
complexity with properties of the system, such as monotonicity (Angeli & Sontag, 2003) and mixed-
monotonicity (Coogan & Arcak, 2015).

8 LIMITATIONS

Although our method is capable of utilizing over-parameterized networks, it still suffers from ex-
ponential sample complexity, which limits its applicability to higher-dimensional systems. Further-
more, we use the spectral norm method (Combettes & Pesquet, 2020) to estimate the Lipschitz
constant of neural networks. While this approach is more conservative compared to other meth-
ods such as (Fazlyab et al., 2019; Wang et al., 2024), it offers the advantage of significantly lower
computational complexity.

9 REPEATABILITY STATEMENT

We have outlined details of our proposed method, with its hyper parameters, and the hardware it
was trained on in experiments’ section. We have also included the code for inverted pendulum
and double inverted pendulum in supplementary materials, as these two case studies are the most
challenging among our experiments.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
Lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778, 2020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 18th European control
conference (ECC), pp. 3420–3431. IEEE, 2019.

Mahathi Anand and Majid Zamani. Formally verified neural network control barrier certificates for
unknown systems. IFAC-PapersOnLine, 56(2):2431–2436, 2023.

Mahathi Anand, Vishnu Murali, Ashutosh Trivedi, and Majid Zamani. K-inductive barrier certifi-
cates for stochastic systems. In Proceedings of the 25th ACM International Conference on Hybrid
Systems: Computation and Control, pp. 1–11, 2022.

David Angeli and Eduardo D Sontag. Monotone control systems. IEEE Transactions on automatic
control, 48(10):1684–1698, 2003.

Alexandre Araujo, Aaron Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A unified
algebraic perspective on lipschitz neural networks. In ICLR, 2023.

Jan-Peter Calliess. Lipschitz optimisation for lipschitz interpolation. In 2017 American Control
Conference (ACC), pp. 3141–3146. IEEE, 2017.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural infor-
mation processing systems, 32, 2019.

Ben M Chen. Robust and H∞ Control. Springer Science & Business Media, 2013.

Patrick Cheridito, Arnulf Jentzen, Adrian Riekert, and Florian Rossmannek. A proof of convergence
for gradient descent in the training of artificial neural networks for constant target functions.
Journal of Complexity, 72:101646, 2022.

Andrew Clark. Verification and synthesis of control barrier functions. In 60th IEEE Conference on
Decision and Control (CDC), pp. 6105–6112. IEEE, 2021.

Patrick L Combettes and Jean-Christophe Pesquet. Lipschitz certificates for layered network struc-
tures driven by averaged activation operators. SIAM Journal on Mathematics of Data Science, 2
(2):529–557, 2020.

Samuel Coogan and Murat Arcak. Efficient finite abstraction of mixed monotone systems. In
Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control,
pp. 58–67, 2015.

Hongkai Dai and Frank Permenter. Convex synthesis and verification of control-Lyapunov and
barrier functions with input constraints. In American Control Conference (ACC), pp. 4116–4123.
IEEE, 2023.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural Lyapunov-barrier functions. In Conference on Robot Learning, pp. 1724–1735. PMLR,
2022.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of
neural Lyapunov, barrier, and contraction methods for robotics and control. IEEE Transactions
on Robotics, 39(3):1749–1767, 2023.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction and applica-
tions. Communications of the ACM, 54(9):69–77, 2011.

Alec Edwards, Andrea Peruffo, and Alessandro Abate. Fossil 2.0: Formal certificate synthesis for
the verification and control of dynamical models. In Proceedings of the 27th ACM International
Conference on Hybrid Systems: Computation and Control, pp. 1–10, 2024.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in neural
information processing systems, 32, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning, volume 1. MIT Press, 2016.

Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving high-order time dis-
cretization methods. SIAM review, 43(1):89–112, 2001.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080.

Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Formal synthesis of stochastic systems via
control barrier certificates. IEEE Transactions on Automatic Control, 66(7):3097–3110, 2020.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I 30, pp. 97–117. Springer, 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Lars Lindemann, Haimin Hu, Alexander Robey, Hanwen Zhang, Dimos Dimarogonas, Stephen Tu,
and Nikolai Matni. Learning hybrid control barrier functions from data. In Conference on robot
learning, pp. 1351–1370. PMLR, 2021.

Lars Lindemann, Alexander Robey, Lejun Jiang, Satyajeet Das, Stephen Tu, and Nikolai Matni.
Learning robust output control barrier functions from safe expert demonstrations. IEEE Open
Journal of Control Systems, 2024.

Simin Liu, Changliu Liu, and John Dolan. Safe control under input limits with neural control barrier
functions. In Conference on Robot Learning, pp. 1970–1980. PMLR, 2023.

Jun Ma, Jianan Chen, Matthew Ng, Rui Huang, Yu Li, Chen Li, Xiaoping Yang, and Anne L Martel.
Loss odyssey in medical image segmentation. Medical Image Analysis, 71:102035, 2021.

Frederik Baymler Mathiesen, Simeon C Calvert, and Luca Laurenti. Safety certification for stochas-
tic systems via neural barrier functions. IEEE Control Systems Letters, 7:973–978, 2022.

Laurent Meunier, Blaise J Delattre, Alexandre Araujo, and Alexandre Allauzen. A dynamical system
perspective for lipschitz neural networks. In International Conference on Machine Learning, pp.
15484–15500. PMLR, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alireza Nadali, Vishnu Murali, Ashutosh Trivedi, and Majid Zamani. Neural closure certificates.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 21446–21453,
2024.

Ameneh Nejati and Majid Zamani. Data-driven synthesis of safety controllers via multiple control
barrier certificates. IEEE Control Systems Letters, 7:2497–2502, 2023.

Ameneh Nejati, Abolfazl Lavaei, Pushpak Jagtap, Sadegh Soudjani, and Majid Zamani. Formal
verification of unknown discrete-and continuous-time systems: A data-driven approach. IEEE
Transactions on Automatic Control, 68(5):3011–3024, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust
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A APPENDIX

A.1 EXPERIMENT SETTINGS: DARBOUX

This experiment is borrowed from Zhang et al. (2024), which is verification (system is autonomous,
i.e., there are no control inputs) for Darboux system, where x(t) := [x1(t);x2(t)] are the state of
the system, and its dynamic is defined as[

x1(t+ 1)
x2(t+ 1)

]
= x(t) + τ

[
x2(t) + 2x1(t)x2(t)

−x1(t) + 2x21(t)− x22(t)

]
.

We define state space, initial state, and unsafe state as X :
{
x ∈ R2 : x ∈ [0, 2]× [−2, 2]

}
, X0 :{

x ∈ R2 : 0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2
}

and Xu :
{
x ∈ R2 : x ∈ [−2,−1]× [−2, 2]

}
, respectively.

A.2 EXPERIMENT SETTINGS: OBSTACLE AVOIDANCE

This experiment is borrowed from Zhang et al. (2024). The system state consists of 2-D position
and aircraft yaw rate x(t) := [x1(t);x2(t);ψ(t)]. We let u denote the control input to manipulate
yaw rate and define the dynamics as[

x1(t+ 1)
x2(t+ 1)
ψ(t+ 1)

]
= x(t) + τ

[
v sin(ψ(t))
v cos(ψ(t))

0

]
+ τ

[
0
0
u

]
.

We define the state space, initial state space and unsafe state space as X , X0 and Xu, respectively as

X :
{
x ∈ R3 : x1, x2, ψ ∈ [−2, 2]× [−2, 2]× [−2, 2]

}
;

X0 :
{
x ∈ R3 : −0.1 ≤ x1 ≤ 0.1,−2 ≤ x2 ≤ −1.8, −π/6 < ψ < π/6

}
;

Xu :
{
x ∈ R3 : x1 < −0.5 or x1 > 1.5

}
.

A.3 EXPERIMENT SETTINGS: SPACECRAFT RENDEZVOUS

This experiment is borrowed from Zhang et al. (2024). The state of the chaser is expressed
relative to the target using linearized Clohessy–Wiltshire–Hill equations, with state x(t) :=
[px(t); py(t); pz(t); vx(t); vy(t); vz(t)], control input u(t) = [ux(t);uy(t);uz(t)] and dynamics de-
fined as follows.

px(t+ 1)
py(t+ 1)
pz(t+ 1)
vx(t+ 1)
vy(t+ 1)
vz(t+ 1)

 = x(t) + τ


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0




px(t)
py(t)
pz(t)
vx(t)
vy(t)
vz(t)



+τ


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


[
ux(t)
uy(t)
uz(t)

]
.

We define the state space and unsafe region as X and Xu, respectively as

X :
{
x ∈ R6 : p, v,∈ [−1.5, 1.5]× [−1.5, 1.5]

}
;

Xu :
{
r > 1.5, where r =

√
p2x + p2y + p2z

}
.

Task here is to go to the origin without crossing the boundaries.
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810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 EXPERIMENT SETTINGS: BICYCLE STEERING

This experiment is borrowed from Zhao et al. (2021a). The control objective is to balance a bicycle.
The states of the bicycle are x(t) := [x1(t);x2(t);x3(t)] which denote the tilt angle, the angular
velocity of tilt, and the handle bar angle with body respectively, and dynamics defined as[
x1(t+ 1)
x1(t+ 1)
x1(t+ 1)

]
= x(t)+τ

 x2(t)

c1(g sinx1(t) +
v2

b cosx1(t) tanx3(t))
0

+τ
 0

c2 · cos x1(t)
cos2x3(t)

1

u(t) ,
where u is the scalar control input, m = 20 is the mass, l = 1 is the height, b = 1 is the wheel base,
J = mb2

3 is the moment of inertia, v = 10 is the velocity, g = 9.8 is the acceleration of gravity,
a = 0.5, c1 = ml

J , c2 = amlv
Jb , and

X : {x ∈ R3| − 2.2 ≤ x1 ≤ 2.2,−2.2 ≤ x2 ≤ 2.2,−2.2 ≤ x3 ≤ 2.2};
X0 : {x ∈ R3| − 0.2 ≤ x1 ≤ 0.2,−0.2 ≤ x2 ≤ 0.2,−0.2 ≤ x3 ≤ 0.2};
Xu : X \ {x ∈ R3| − 2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2,−2 ≤ x3 ≤ 2}.
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