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Abstract001

While long-context large language models002
(LLMs) exhibit remarkable document process-003
ing capabilities, their prohibitively high train-004
ing costs often hinder customized applica-005
tions. To mitigate this issue, we propose Se-006
quential Chunk-wise Optimization (SeCO), a007
memory-efficient training paradigm that parti-008
tions lengthy inputs into manageable chunks.009
Each chunk independently constructs its com-010
putational graph and performs localized back-011
propagation, ensuring that only one chunk’s for-012
ward activations are stored in memory. Build-013
ing on SeCO, we further introduce Sparse014
Chunk-wise Optimization (SpaCO), which re-015
duces computational overhead by selectively016
propagating gradients to specific chunks and017
incorporates a carefully designed compensa-018
tion factor to ensure unbiased gradient es-019
timation. SpaCO decouples the computa-020
tional cost of backpropagation from the con-021
text length, enabling training time to gradu-022
ally converge to inference time as sequences023
become longer. Implemented as lightweight024
training wrappers, both SeCO and SpaCO of-025
fer substantial practical benefits. For example,026
when fine-tuning an 8B model with LoRA on027
a single RTX 3090 GPU, SeCO expands maxi-028
mum sequence length from 1K to 16K tokens,029
while SpaCO demonstrates accelerated training030
speed—achieving up to 3× faster than SeCO031
under the same experimental setup. These in-032
novations provide new insights into optimizing033
long-context models, making them more ac-034
cessible for practical applications. We have035
open-sourced the code at Anonymous/SeCO.036

1 Introduction037

Recent advancements in long-context LLMs (Chen038

et al., 2024; An et al., 2024; Peng et al., 2024)039

have demonstrated unprecedented capabilities in040

processing lengthy documents, offering superior041

retrieval quality compared to retrieval-augmented042

generation (RAG) approaches (Liu, 2022), making 043

them particularly valuable for commercial applica- 044

tions requiring nuanced document understanding. 045

However, fine-tuning these models faces signifi- 046

cant resource challenges: (i) Time Overhead: The 047

quadratic scaling of attention mechanisms leads 048

to prohibitive training time (de Vries, 2023). (ii) 049

Memory Constraints: Despite optimizations like 050

FlashAttention (Dao, 2024), the storage require- 051

ments for forward activations still increases lin- 052

early with sequence length, quickly depleting GPU 053

memory. As a result, fine-tuning 8B models (Meta- 054

AI, 2024) with LoRA (Hu et al., 2022) on a single 055

RTX 3090 GPU is limited to sequences of only 1K 056

tokens. 057

Existing architectural modifications, exemplified 058

by LongLoRA’s S2-attention (Chen et al., 2024), 059

aim to alleviate these issues by reducing computa- 060

tional overhead to sub-quadratic through attention 061

approximation. However, these methods incur gra- 062

dient accuracy compromises while offering limited 063

resource savings,1 motivating our exploration of 064

alternative efficiency improvements strategies. 065

We introduce Sequential Chunk-wise Optimiza- 066

tion (SeCO), a novel training method that preserves 067

exact gradients while dramatically reducing mem- 068

ory consumption. The key innovation of SeCO is 069

the application of gradient checkpointing (Bulatov, 070

2018; Chen et al., 2016) along the sequence dimen- 071

sion using chunk-level checkpoints. This approach 072

represents a fundamental departure from traditional 073

gradient checkpointing, which typically employs a 074

fixed number of checkpoints for static layer-wise or 075

block-wise partitioning of the computational graph. 076

Unlike these conventional techniques, where mem- 077

ory requirements for forward activations scale lin- 078

early with sequence length, SeCO maintains a con- 079

1As shown in Figure 1 (Mid) of the LongLoRA paper, the
proposed method exhibits memory scaling patterns similar
to those of full fine-tuning baseline, achieving only about a
2-fold extension in sequence length.
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Figure 1: (Left) Computational graph for chunk-wise optimization with k = 4 chunks. The dense connections among
KV caches (green arrows) complicate memory management, leading popular training frameworks (MicroSoft, 2021;
Gugger et al., 2022) to rely on end-to-end parallel training. (Right) By analyzing the topology of this graph, we
propose SeCO, a bootstrapping method leveraging gradient checkpointing along the sequence dimension. SeCO
ensures that only the computational graph of a single chunk is stored at any time.

stant overhead for forward activations, regardless080

of sequence length. This innovation achieves order-081

of-magnitude memory reduction while maintaining082

manageable training time overhead, establishing it083

as an efficient solution for fine-tuning long-context084

LLMs under resource-constrained conditions.085

While SeCO successfully mitigates memory con-086

straints in long-context LLM fine-tuning, it main-087

tains computational overhead comparable to naive088

parallel training. This computational burden sig-089

nificantly undermines its applicability for process-090

ing extended sequences, thereby limiting its practi-091

cal utility. To address this limitation, we propose092

Sparse Chunk-wise Optimization (SpaCO), an en-093

hanced variant of SeCO that achieves substantial094

computational savings. SpaCO preserves the in-095

tegrity of forward propagation while implementing096

selective backpropagation through a fixed subset097

of chunks. This modification decouples computa-098

tional cost from sequence length during gradient099

computation. Our theoretical framework reveals100

a crucial architectural insight: The gradient chain101

length between key-value (KV) cache chunks ex-102

hibits inherent boundedness determined by model103

depth (as also noted in Dai et al., 2019). This funda-104

mental property enables SpaCO to employ random-105

ized chunk sampling while preserving unbiased106

gradient estimation, achieving significant computa-107

tional reduction without compromising theoretical108

guarantees (for more detailed explanation, please109

refer to Section 5).110

Empirical evaluations highlight the substantial111

practical advantages of SeCO and SpaCO:112

• Scalability: The memory overhead for SeCO 113

and SpaCO scales minimally with increasing 114

sequence length, as the only contributing fac- 115

tor is the storage of the KV cache. Moreover, 116

SpaCO’s training time converges to inference 117

time as the sequence length expands, demon- 118

strating efficient computational scaling. 119

• Performance: Although SpaCO does not 120

compute exact gradients like SeCO, it incurs 121

only a small performance gap. Specifically, at 122

a sparsity ratio of 1/8, the language modeling 123

error increases by less than 0.1 compared to 124

exact gradient training. 125

Our contributions are threefold: 126

• A memory efficient training paradigm (SeCO) 127

that enables long-context fine-tuning through 128

sequence dimensional gradient checkpointing. 129

• A computation-efficient extension (SpaCO) 130

leveraging sparsification, with theoretical 131

guarantees of unbiased gradient estimation. 132

• Open-source implementations that achieve up 133

to an order of magnitude training sequence 134

length improvements on consumer hardware. 135

2 Related Works 136

Long-Context LLMs. Efforts to extend the con- 137

text window of LLMs primarily rely on augmenting 138

positional embeddings and applying limited post- 139

training to adapt models pre-trained on shorter con- 140

texts (Chen et al., 2024; Peng et al., 2024). While 141
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Figure 2: Qualitative comparison of different meth-
ods. (i) SeCO achieves significant memory reduction
while maintaining time efficiency comparable to layer-
level gradient checkpointing. (ii) Building upon SeCO,
SpaCO significantly reduces computational overhead,
making the training time converges to inference time as
the sequence length expands.

these methods are effective, the inherent quadratic142

computational complexity of attention mechanisms143

renders long-context training prohibitively expen-144

sive (de Vries, 2023). Recent works, such as Lon-145

gLoRA (Chen et al., 2024), address this issue using146

S2-attention, which achieves linear computation147

scalability. However, its architectural modification148

introduces biased gradient computation.149

Gradient Checkpointing. Gradient checkpoint-150

ing techniques (Chen et al., 2016; Bulatov, 2018)151

optimize memory consumption by recomputing ac-152

tivations during backpropagation rather of storing153

them. In Transformer (Vaswani et al., 2017) ar-154

chitectures, conventional layer-level checkpointing155

offers limited benefits for long sequences due to156

the static partitioning of the computational graph.157

Gradient checkpointing applied along the sequence158

dimension enables maintaining a constant memory159

footprint for storing forward activations, presenting160

substantial advantages. Nevertheless, current im-161

plementations in mainstream deep learning frame-162

works (Chintala et al., 2016; Google, 2015) are163

primarily designed for checkpointing within indi-164

vidual forward pass, lacking the capability to han-165

dle concatenated computational graphs that emerge166

across multiple iterative processes.167

Gradient Estimation. The concept of approxi-168

mate gradient predates modern deep learning, ex-169

emplified by stochastic gradient descent’s use of170

mini-batch (Bottou and Bousquet, 2007). SpaCO171

introduces a novel paradigm that aligns with the172

philosophy of SGD: by utilizing a limited number173

of gradient propagation pathways to estimate the174

underlying true gradient, it significantly reduces 175

computational overhead while maintaining accept- 176

able performance. 177

3 Preliminary 178

When processing large amounts of data all at once, 179

GPU threads can become saturated, causing par- 180

allel processing time to scale linearly with data 181

size, offering no advantage over sequential process- 182

ing while increasing memory usage. To address 183

this, efficient LLM serving frameworks such as 184

vLLM (Kwon et al., 2023) and FlashInfer (Ye et al., 185

2025) adopt a chunk pre-filling strategy, splitting 186

long contexts into smaller chunks and processing 187

them sequentially. We extend this idea from LLM 188

inference to LLM training. 189

Computational Graph. For an input sequence X 190

partitioned into k chunks {xj}kj=1, let mj denote 191

the KV cache and Jj the error component for chunk 192

j. The model f with parameter Θ processes chunks 193

sequentially: 194

(Jj ,mj) = f(xj ;m1,m2, ...,mj−1; Θ). (1) 195

The parameter gradient combines direct and indi- 196

rect contributions through KV cache: 197

∇ΘJj =
∂Jj
∂Θ︸︷︷︸

Direct term

+

j∑
i=1

dJj
dmi

∂mi

∂Θ︸ ︷︷ ︸
Indirect contributions

. (2) 198

Due to the iterative nature of f(·), the computation 199

of dJj/dmi involves nested dependencies: 200

dJj
dmi

∂mi

∂Θ
=

∂Jj
∂mi

∂mi

∂Θ

+
∑

i<t1≤j

∂Jj
∂mt1

∂mt1

∂mi

∂mi

∂Θ

+
∑

i<t1<t2≤j

∂Jj
∂mt2

∂mt2

∂mt1

∂mt1

∂mi

∂mi

∂Θ

+ . . . .
(3) 201

Although Eq. (3) appears complex, it fundamen- 202

tally demonstrates that gradients propagate through 203

all possible multi-hop paths among {mt}jt=i. To 204

visualize this process, we present partial derivatives 205

∂△/∂⃝ as directed edges from△ to⃝, forming 206

the complete computational graph of gradient prop- 207

agation from {Jj}kj=1 to Θ as illustrated in Figure 1. 208

This graph explicitly captures the computational 209

dependencies for chunk-wise optimization. 210
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Figure 3: A visualized illustration of Algorithm 1. Stage
1 corresponds to the first for-loop, generating KV caches
for all data chunks through inference-mode, serving as
checkpoints. Stage 2 corresponds to the second for-
loop, where the computational graph is constructed and
localized backpropagation is performed.

Gradient Checkpointing. Gradient checkpointing211

trades computational time for reduced memory us-212

age. The fundamental principle guiding checkpoint213

placement requires that the complete subsequent214

computational graph must be reconstructible us-215

ing only these designed checkpoints and existing216

leaf nodes. As formalized in Eq. (1), the output217

of chunk-j is uniquely determined by two com-218

ponents: (i) the preceding KV cache sequence219

{mi}j−1
i=1 and (ii) the model parameters Θ (leaf220

nodes). By storing these KV caches, we enable the221

complete reconstruction of any subsequent chunk’s222

output during backpropagation, making them ideal223

checkpoint candidates. During the forward propa-224

gation, only the checkpointed KV caches need to225

be computed and stored, eliminating the need to226

retain intermediate activations.227

4 Sequential Chunk-wise Optimization228

SeCO is a plain version of this chunk-wise opti-229

mization that does not save any computation and230

obtains exact gradients (verified in Appendix D).231

4.1 Methodology232

During forward propagation, we compute all233

chunks sequentially in inference mode to gener-234

ate corresponding KV caches {m′
1,m

′
2, . . . ,m

′
k},235

where prime notation distinguishes inference-236

generated caches from training-phase counterparts.237

For backpropagation, the computational graph238

topology in Figure 1 dictates a sequential reverse-239

order reconstruction strategy. For chunk j:240

1. Reconstruct computational graph using Eq. (1)241

to compute error Jj and KV cache mj .242

2. Transfer gradients from m′
j to mj .243

3. Backpropagate Jj and mj to accumulate gra-244

dients for model parameters and preceding245

checkpoints m′
1, . . . ,m

′
j−1.246

After processing all chunks, accumulated param- 247

eter gradients match those from naive parallel train- 248

ing modulo numerical precision. Implementation 249

details follow Algorithm 1, and the corresponding 250

visualization is presented in Figure 3. 251

4.2 Efficiency 252

We analyze the theoretical efficiency of SeCO, in 253

terms of computation and storage. 254

Memory Savings. By reconstructing at most one 255

chunk’s computational graph at any given time, 256

SeCO effectively prevents forward activations from 257

scaling linearly with sequence length. This design 258

reduces the memory requirements for storing for- 259

ward activations by a factor of k. However, it is im- 260

portant to note that SeCO does not optimize fixed 261

memory components such as optimizer states and 262

model parameters, nor does it alleviate the memory 263

overhead of the KV cache. 264

Computational Overhead. SeCO introduces two 265

primary sources of computational overhead: (i) 266

additional recomputation during backpropagation, 267

and (ii) frequent kernel launches for small-scale 268

tensor operations. 269

For the first component, since backpropagation 270

typically requires approximately twice the FLOPs 271

of forward propagation (DeepSpeed, 2021; Kaplan, 272

2019), the subgraph reconstruction introduces an 273

estimated 33% computational overhead. 274

Regarding the second component, modern GPUs 275

like the RTX 3090 contain fixed computational re- 276

sources (82 streaming multiprocessors with 128 277

cores each). When using sufficiently large chunk 278

sizes, these resources can achieve near-saturation 279

utilization. Experimental results demonstrate that 280

increasing chunk sizes beyond 128 yields dimin- 281

ishing returns, with only marginal reductions in 282

computational time observed.

Algorithm 1 Sequential Chunk-wise Optimization

Require: Model f , data X = {x1, x2, . . . , xk},
parameters Θ

Ensure: ∇Θ

1: for i = 1 to k do
2: m′

i ← f(xi; {m′
j}

i−1
j=1; Θ)

3: end for
4: for i = k to 1 do
5: Ji,mi ← f(xi; {m′

j}
i−1
j=1; Θ)

6: mi.grad← m′
i.grad

7: backprop(Ji)
8: end for
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Figure 4: In the Transformer architecture, the gradient
flow traverses through at most a number of KV caches
equal to the layer depth. This observation was also
highlighted in Transformer-XL (Dai et al., 2019).

5 Sparse Chunk-wise Optimization283

While SeCO reduces memory consumption, it intro-284

duces additional computational overhead, further285

prolonging the already time-consuming training286

process. This limitation hinders its ability to handle287

ultra-long sequences efficiently. To alleviate this288

issue, we propose SpaCO, an improvement over289

SeCO. By introducing sparsification in backprop-290

agation, SpaCO significantly accelerates training291

while maintaining memory efficiency.292

The key insight stems from the observation that293

the checkpoints {m′
1, . . . ,m

′
k} enable independent294

computational graph construction for individual295

chunk through Eq. (1). Capitalizing on this, SpaCO296

implements a stochastic backpropagation scheme297

that randomly selects a subset of chunks for gradi-298

ent computation during each training iteration.299

This sparsification, however, poses the risk of300

biased gradient estimation. In extreme cases301

where only one chunk is selected, the gradient302

flow between chunks is disrupted—akin to non-303

overlapping chunked attention mechanisms, which304

constrain the model to local dependencies.305

One might hypothesize that dense gradient prop-306

agation is essential for learning global patterns,307

given that the longest gradient chain spans all KV308

cache chunks. However, our theoretical analysis309

reveals that this is not necessary.310

The Longest Gradient Chain. In the computa-311

tional graph shown in Figure 1, the longest gradient312

chain is:313

∂J4
∂m4

· ∂m4

∂m3
· ∂m3

∂m2
· ∂m2

∂m1
· ∂m1

∂Θ
, (4)314

which spans all chunks. Omitting any chunk would 315

break this chain, leading to biased gradient estima- 316

tion. However, in the Transformer (Vaswani et al., 317

2017) architecture, KV cache chunks within the 318

same layer are independent and computed in par- 319

allel. As a result, errors propagate from one KV 320

cache chunk to another only between adjacent lay- 321

ers (Dai et al., 2019), as shown in Figure 4. Thus, 322

the maximum gradient chain length is bounded by 323

the number of layers. Theoretically, unbiased gra- 324

dient estimation is achievable if the number of se- 325

lected chunks meets the number of layers, ensuring 326

sufficient coverage. 327

Challenges in Unbiased Estimation. While 328

bounded gradient chain length suggests theoretical 329

feasibility, practical implementation faces signifi- 330

cant hurdles. Consider a DAG with n nodes and 331

n(n− 1)/2 edges, as shown in Figure 5 (Left). The 332

number of p-length paths follows combinatorial 333

principles: 334

dp =

(
n

p+ 1

)
=

n!

(p+ 1)!(n− p− 1)!
. (5) 335

Let superscripts d and s denote dense (k chunks) 336

versus sparse (t chunks) configurations respectively. 337

The path count ratio between these two configura- 338

tions exhibits: 339

ddp
dsp

=
k(k − 1)(k − 2) · · · (k − p)

t(t− 1)(t− 2) · · · (t− p)
, (6) 340

for t≫ p, this simplifies to: 341

ddp
dsp
≈

(
k

t

)p+1

. (7) 342

This exponentially decaying pattern highlights a 343

crucial insight: graph sparsification disproportion- 344

ately weakens longer gradient chains. Since remov- 345

ing a node multiplicatively affects all paths passing 346

through it, longer chains suffer a greater cumu- 347

lative impact. Consequently, naive sparsification 348

introduces systematic bias. 349

To ensure unbiased estimation, we must incor- 350

porate compensation mechanisms that counteracts 351

this attenuation. A viable solution is to strategically 352

apply scaling factors to the preserved paths, ef- 353

fectively rebalancing gradient contributions across 354

different chain lengths. 355

Compensation Factor. To analyze gradient propa- 356

gation under sparsification, we consider all gradient 357
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(a) Dense graph (k chunks). (b) Sparse graph (t chunks).

Figure 5: SpaCO sparsifies the gradient flow among KV
caches. (Left) The original graph. k = 6. (Right) Only
the gradient flow between t = 4 chunks is retained. By
adding a factor k/t to each path, the gradient computed
from this sparse graph remains an unbiased estimate.

chains of length p in Eq. (3), denoted by zp:358

zp =
∑

i<t1<...<tp−1≤j

∂Jj
∂mtp−1

·
∂mtp−1

∂mtp−2

· ... · ∂mi

∂Θ
.

(8)359

A crucial observation is that any gradient chain in360

zp necessitates the sampling of all its constituent361

chunks. The survival probability of such a chain362

under t-out-of-k sparse sampling can be derived as363

(t/k)p based on the following reasoning:364

• The initial term ∂Jj/∂mtp−1 survives with365

probability t/k.366

• Given that the previous term survives, each367

subsequent term (except the last) also survives368

with probability t/k.369

Using this survival probability, we can express the370

expected value of zp after sparsification, denoted371

as z̄p:372

z̄p =

(
t

k

)p

zp +

(
1− tp

kp

)
0 =

(
t

k

)p

zp. (9)373

Given the complete gradient Z =
∑∞

p=1 zp from374

Eq. (3), its expectation after sparsification becomes:375

Z̄ =
t

k
z1 +

(
t

k

)2

z2 +

(
t

k

)3

z3 + ... (10)376

To achieve unbiased gradient estimation (Z̄ = Z),377

each gradient chain zp requires compensation by378

factor (k/t)p. This multiplicative scaling counter-379

acts the exponential decay induced by sparsity.380

Implementation. The compensation factor is im-381

plemented through modifying backpropagation,382

which occurs during gradient computation: When383

Algorithm 2 Sparse Chunk-wise Optimization

Require: Model f , data X = {x1, x2, . . . , xk},
parameters Θ, fixed budget t

Ensure: ∇Θ

1: for i = 1 to k do
2: m′

i ← f(xi; {m′
j}

i−1
j=1; Θ)

3: end for
4: Randomly select t distinct indices from
{1, ..., k}, denoted as I.

5: for i in I do
6: Ji,mi ← f(xi; {m′

j}
i−1
j=1; Θ)

7: mi.grad←
(
k
t

)
·m′

i.grad·
8: backprop(Ji)
9: end for

calculating ∂mi/∂{m′
j}

i−1
j=1, we scale the gradi- 384

ent by k/t. Through the nested structure of f(·), 385

this creates compound compensation where each 386

p-length chain automatically accumulates (k/t)p 387

scaling through successive operations. 388

Figure 5 (Right) illustrates this dynamic scaling 389

mechanism, with full implementation details pro- 390

vided in Algorithm 2. This approach enhances com- 391

putational efficiency while maintaining the statisti- 392

cal accuracy of full backpropagation. 393

6 Experiment 394

We designed experiments to address two key ques- 395

tions: 396

• How do SeCO and SpaCO compare to main- 397

stream training methods in time and memory 398

efficiency? 399

• Can SpaCO provide reliable gradient estima- 400

tion and maintain competitive performance 401

compared to exact gradient training? 402

The following sections present our comprehensive 403

analysis. Additional experiments, including the 404

verification of gradient computation accuracy for 405

SeCO, are presented in Appendix D. 406

6.1 Experimental Setup 407

Our experiments utilize the LLaMA3-8B (Meta-AI, 408

2024) as the base model, implementing LoRA (Hu 409

et al., 2022) fine-tuning with hyperparameters r = 410

8 and α = 16. The training datasets comprises 411

1,000 instances sampled from the PG19 training 412

split (Rae et al., 2018), with sequence lengths trun- 413

cated to 16K tokens. 414
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Figure 6: (Left) Compared to SeCO, SpaCO achieves lower training time with more favorable linear-like scaling as
the sequence length increases. (Middle) A zoomed-in view of the left panel shows that SeCO only incurs ∼30%
additional time overhead compared to naive parallel training, significantly outperforming ZeRO3 offload which
suffers from GPU-CPU communication bottlenecks and demonstrates approximately 10× slower training speed.
(Right) SeCO and SpaCO exhibit superior memory efficiency, achieving more than 4× memory reduction compared
to standard gradient checkpointing and an order-of-magnitude improvement over naive parallel training.

6.2 Baseline Methods415

We compare our methods against three mainstream416

training paradigms: DeepSpeed (MicroSoft, 2021),417

conventional layer-level gradient checkpointing,418

and naive parallel training, all of which leverag-419

ing FlashAttention (Dao, 2024).420

DeepSpeed. DeepSpeed (MicroSoft, 2021) is a421

high-performance distributed training framework422

based on Fully Sharded Data Parallel (FSDP).423

It provides three optimization levels, ZeRO1/2/3,424

which progressively reduce memory consumption425

by distributing optimizer states, gradients, and pa-426

rameter across multiple GPUs. ZeRO3 offload fur-427

ther extends ZeRO3 by offloading these compo-428

nents to CPU for additional memory savings. We429

evaluate DeepSpeed on 8 RTX 3090 GPUs with de-430

fault ZeRO1/2 configurations and a custom ZeRO3431

setup (Appendix C.2). Notably, FSDP offers lim-432

ited benefits in parameter-efficient scenarios, where433

its advantages may not fully emerge.434

Gradient Checkpointing. A standard gradient435

checkpointing implementation on a single RTX436

3090 GPU, placing checkpoints at each LLM437

layer’s input hidden states to reduce memory usage.438

Naive Parallel Training. A baseline implemen-439

tation on a single RTX 3090 GPU, utilizing no440

memory-efficient techniques except for FlashAtten-441

tion. This serves as a reference for time efficiency.442

6.3 Efficiency Analysis 443

We evaluate time and memory efficiency of SeCO 444

and SpaCO implemented on a single RTX 3090 445

GPU with varying sequence lengths. 446

• Configuration: For SeCO, we evaluate chunk 447

sizes {64, 128, 256, 512}. For SpaCO, we use 448

a chunk budget of t = 8 and test with chunk 449

sizes {32, 64, 128, 256}.2 450

• Measurement Protocol: Peak memory usage 451

recorded via PyTorch’s memory profiler, and 452

the minimum end-to-end iteration time among 453

the first 10 iterations is reported. 454

Our findings are concluded in Figure 6. 455

Practical Guidance. Based on our findings, we 456

recommend maximizing the chunk size within the 457

available memory limits. This accelerates training 458

while maintains the same memory scalability. 459

6.4 Effectiveness Analysis 460

While SpaCO theoretically ensures unbiased gra- 461

dient estimation through compensation factors, its 462

increased gradient estimation variance raises prac- 463

tical effectiveness concerns. To investigate this, we 464

evaluate its performance using a common training 465

recipe for context window extension: As outlined 466

2We observe that t = 8 already achieves satisfactory per-
formance in practice.
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Figure 7: (Left) Performance comparison of SpaCO across t = {8, 16, 32} under varying learning rates, using
the same training setup and random seed. (Right) EMA-smoothed learning curves (α=0.95) for SpaCO and exact
gradient method, both trained with the optimal learning rate of 1e-3.

in the experimental setup, we extend LLaMA3-467

8B’s original 8K window to 16K via LoRA.468

For SpaCO, we fix the chunk size to 128 and con-469

duct experiments with budgets of t = {8, 16, 32},470

corresponding to sparsity ratios of 1/16, 1/8 and471

1/4 respectively. The training results using model472

parallelism combined with gradient checkpointing473

serves as the baseline reference. All training runs474

use a batch size of 4, allowing for a total of 250 pa-475

rameter updates. To mitigate numerical instability476

and gradient vanishing or explosion, we limit the477

compensation factor to a maximum value of 2.3478

Performance Under Varying Learning Rates.479

SpaCO introduces additional noises to the train-480

ing process, necessitating independent tuning of481

the learning rate. To this end, we perform grid482

search over seven learning rates {1e-4,3e-4,1e-483

3,1.6e-3,2.3e-3,3e-3,1e-2} to identify the optimal484

values. Results are shown in Figure 7 (Left).485

Learning Curves. We further record the learning486

curves for each configuration using the optimal LR487

of 1e-3, as determined from Figure 7 (Left). Train-488

ing is conducted across four random seeds (con-489

trolling dataset shuffling), and we record the mean490

trajectories along with ±1 standard deviation bands.491

Results are presented in Figure 7 (Right). The re-492

sults demonstrate that with proper hyperparameter493

tuning, SpaCO achieves comparable performance494

to exact gradient training.495

3Even in the absence of the compensation factor, exces-
sively long gradient chains often result in vanishing or explod-
ing gradients, diminishing their overall impact.

Practical Guidance. We recommend setting an up- 496

per bound (e.g., 2) on the compensation factor to re- 497

duce gradient estimation variance. While omitting 498

this constraint does not compromise training stabil- 499

ity, it may lead to sub-optimal results. Furthermore, 500

although our experiments used fixed batch size and 501

training iterations for fair comparisons, we suggest 502

using larger batch size and more training epochs 503

than exact gradient training. This adjustment can 504

promote better results in practical applications. 505

7 Conclusion 506

To address the critical challenge of efficiency in 507

long-context LLM training, we introduce two train- 508

ing paradigms: SeCO and its enhanced variant 509

SpaCO. By partitioning the input sequence into 510

smaller, manageable chunks and performing lo- 511

calized backpropagation for each chunk, SeCO 512

achieves substantial memory savings. Building 513

upon this foundation, SpaCO introduces a care- 514

fully designed sparsification mechanism that ran- 515

domly selects few chunks for backpropagation, re- 516

ducing computational overhead. The integration 517

of a mathematically-grounded compensation factor 518

ensures unbiased gradient estimation. Our methods 519

achieve impressive memory efficiency, enabling 520

the fine-tuning of 8B models with 16K tokens on a 521

single RTX 3090 GPU. This represents a 16× mem- 522

ory reduction compared to naive parallel training. 523

SeCO and SpaCO significantly lower the barrier 524

for practitioners working with long-context LLMs. 525
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Limitations526

SeCO and SpaCO each present unique advantages527

but also have exhibit distinct limitations. SeCO528

achieves accurate gradient computation and effi-529

cient memory usage but suffers from a quadratic530

increase in computation with sequence length,531

making it impractical for training on ultra-long532

sequences. In contrast, SpaCO significantly re-533

duces computational cost and maintains compara-534

ble memory efficiency but sacrifices gradient accu-535

racy, introducing substantial randomness that com-536

plicates convergence. Ultimately, no single train-537

ing strategy perfectly balances the trade-offs in all538

training scenarios. A practical approach requires539

identifying an optimal balance among the “impos-540

sible triangle” of computation, memory efficiency,541

and gradient accuracy.542

Ethics Statement543

By optimizing memory consumption and computa-544

tional efficiency, our approach not only lowers the545

financial barriers to training such models but also546

reduces energy consumption, contributing to more547

sustainable AI practices.548

However, as with any significant technological549

advancement, ethical concerns must be considered.550

Lowering the cost and resource requirements for551

training long-context models may inadvertently en-552

able the misuse of these models, including the cre-553

ation of harmful or malicious language systems. It554

is essential to address these risks through respon-555

sible research practices and the development of556

robust safeguards.557
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Table 1: Arguments for DeepSpeed ZeRO3 offload

Argument Value

overlap_comm true
contiguous_gradients true
reduce_bucket_size 5e8
stage3_max_live_parameters 1e9
stage3_max_reuse_distance 1e9
stage3_prefetch_bucket_size 5e8

A Experimental Datasets623

PG19 Dataset. The PG19 corpus, an open-source624

long-text dataset released by DeepMind, is derived625

from books in the Project Gutenberg repository626

published prior to 1919. This collection is supple-627

mented with metadata containing book titles and628

publication dates. For model training, we randomly629

selected 1,000 samples from the PG19 training par-630

tition. To ensure consistent sequence lengths, text631

samples exceeding 16K tokens were truncated to632

this threshold. The PG19 dataset is publicly avail-633

able under the Apache License 2.0.634

B Language Models635

LLaMA3-8B. The LLaMA3-8B model, an open-636

source large language model developed by Meta637

AI, serves as the foundational model in our ex-638

periments. This selection is motivated by its639

widespread adoption within the research commu-640

nity. The licensing terms for the LLaMA3 series641

models are governed by the Meta Llama 3 Com-642

munity License Agreement, which notably permits643

academic and commercial use with specific attribu-644

tion requirements.645

C Implementation Details646

C.1 Pseudocode647

The workflows of SeCO and SpaCO primarily man-648

age the KV cache, focusing on its updates and the649

relay of gradients during backpropagation. These650

operations require overriding the default backprop-651

agation mechanism in deep learning frameworks,652

which poses implementation challenges. To clarify653

this process, we provide pseudocode below.654

C.2 ZeRO3 Offload655

Detailed configurations are provided in Table 1.656

Table 2: Training results of SeCO vs. Model Parallelism
(Baseline) across different learning rates.

Method LR

1e-4 3e-4 1e-3

Baseline 2.52 2.16 2.13
SeCO 2.53 2.18 2.15

D Additional Results 657

Direct Validation of Gradient Accuracy. To as- 658

sess the accuracy of the computed gradients, we 659

conducted experiments using Qwen2.5-0.5B with 660

float64 precision. Gradients were obtained for 661

sequences of 512 tokens using both naive paral- 662

lel training and SeCO (with a chunk size of 64) 663

and then compared element-wise. The results show 664

that the gradients computed with SeCO achieve a 665

precision exceeding 12 decimal places. The test 666

code for this experiment is publicly available in our 667

repository under the test_estimate directory. 668

Indirect Validation of Gradient Accuracy. To 669

evaluate SeCO’s performance in real training sce- 670

narios, we follow the experimental setup described 671

in the main text. We compare SeCO’s training re- 672

sults with those obtained using model parallelism 673

and gradient checkpointing. The results are sum- 674

marized in Table 2. 675

The minor performance gap may be attributed to 676

numerical issues arising from the increased number 677

of operations in SeCO. For example, FlashAtten- 678

tion introduces randomness during backpropaga- 679

tion due to the use of atomic additions (see Github 680

issue). Since SeCO involves tens of times more 681

such operations than parallel training, it exhibits 682

greater numerical instability. 683
684

1 def update_kv_cache(kv_cache, keys, vals): 685
2 try: 686
3 return concat(kv_cache.keys, keys), concat(kv_cache.vals, 687

vals) 688
4 finally: 689
5 if is_gradient_enabled(): 690
6 kv_cache.keys.append(keys) 691
7 kv_cache.vals.append(vals) 692
8 else: 693
9 k_detach, v_detach = keys.detach(), vals.detach() 694

10 k_detach.requires_grad_(), v_detach.requires_grad_() 695
11 kv_cache.keys.append(k_detach) 696
12 kv_cache.vals.append(v_detach) 697
13 698
14 699
15 def grad_hook(grad, base, scaler=1): 700
16 return grad + base * scaler 701
17 702
18 703
19 def copy_grad(a, b): 704
20 for ak, av, bk, bv in zip(a.keys, a.vals, b.keys, b.vals): 705
21 bk.register_hook(partial(grad_hook, base=ak.grad)) 706
22 bv.register_hook(partial(grad_hook, base=av.grad)) 707708
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