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Abstract

Spoken Language Understanding (SLU), a cru-
cial component of task-oriented dialogue sys-
tems, has consistently garnered attention from
both academic and industrial communities. Al-
though incorporating syntactic information into
models has the potential to enhance the compre-
hension of user utterances and yield impressive
results, its application in SLU systems remains
largely unexplored. In this paper, we propose a
carefully designed model termed Syntax-aware
attention (SAT) to enhance SLU, where atten-
tion scopes are constrained based on relation-
ships within the syntactic structure. Experi-
mental results on three datasets show that our
model achieves substantial improvements and
excellent performance. Moreover, SAT can
be integrated into other BERT-based language
models to further boost their performance.

1 Introduction

In recent years, there has been a surge of research
interest in dialogue systems from academia and in-
dustry, where SLU (Chen et al., 2017; Huang et al.,
2020; Chen et al., 2022b) is a crucial component, re-
sponsible for identifying user intents based on their
natural language utterances (Huang et al., 2021c,
2022; Chen et al., 2022a; Zhu et al., 2023c,b).
Many works have been proposed to enhance the
understanding of utterance semantics, leading to
remarkable successes.

While language models (LMs) have the ability to
capture contextual semantics to some extent, their
performance can be further improved by integrat-
ing external knowledge (Cheng et al., 2023c). The
inclusion of additional knowledge in LMs has be-
come a growing trend, and researchers have exten-
sively explored the integration of syntax informa-
tion into pre-trained LMs (Bai et al., 2021; Zhang
et al., 2020, 2022; Gong et al., 2022). Incorporat-
ing syntax information through parser dependen-
cies into PLMs improves performance compared to

Intent Utterance

NUM How many watts make a kilowatt ?
ABBR What is the abbreviation for micro ?
DESC What caused the death of Bob Marley ?
ENTY What kind of creature is a coot ?
LOC Where is the Valley of the Kings ?
HUM Who was the second man to walk on the moon ?
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Figure 1: Intent classification examples on TREC6
dataset (Top) and syntax parsing process (Bottom).

training with utterances alone. However, relevant
research on SLU is lacking.

To address the deficiency, we propose Syntax-
aware attention (SAT) for SLU. Specifically, we
first utilize a pre-trained dependency parse tree
structure to generate the related nodes for each
word in a sentence. These related nodes, known as
syntax-aware attention mask, consist of all ances-
tor nodes and the word itself in the dependency
parsing tree, treating the word as a child node.
Examples of intent detection and syntax parsing
are shown in Figure 1. To effectively incorporate
Syntax-aware Attention Module (SATM), we also
design the Dual Context Fusion Module (DCFM)
to merge the original Transformer (Vaswani et al.,
2017) with the syntax-aware Transformer. This en-
ables SAT to provide more linguistically inspired
representations for SLU.

To summarize, our contributions are three-fold:
(1) SAT can capture the syntactic structure informa-
tion from utterances for enhancing SLU. It can be
straightforward integrated into BERT-based mod-
els. (2) In order to effectively merge syntactic in-
formation, various feature fusion methods were
explored with the aim of enhancing linguistic rep-
resentation. (3) Experiments demonstrate the effec-
tiveness on three SLU benchmarks.
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Figure 2: The architecture of SAT. The utterance is first passed to the utterance encoder (§2.1) and SATM (§2.2) to
obtain feature representations, which are then fused in DCFM (§2.3) to obtain the final representation (§2.4).

2 Methodology

The main architecture mainly consisting of SATM
and DCFM is illustrated in Figure 2. We elaborate
on each component below.

2.1 Backbone Model

Following previous works, we select two back-
bone models, i.e., BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019b). Specifically,
for a given utterance x = {x1, x2, ..., xn}, we
prepend [CLS] to represent the entire sequence
and append [SEP ] to separate non-consecutive
token sequences (Devlin et al., 2019). Subse-
quently, we obtain the encoded feature representa-
tion H = {HCLS ,H1,H2, ...,Hn,HSEP } and
feed HCLS ∈ R1×d into the backbone model,
where L represents the length of the utterance and
d is the hidden dimension. Finally, HCLS is passed
through a simple multilayer perceptron (MLP) neu-
ral network to predict the intent.

2.2 Syntax-Aware Attention Module (SATM)

Unlike previous approaches that treat addi-
tional syntactic features as a separate part of
PLMs (Strubell et al., 2018; Kasai et al., 2019;
Duan et al., 2019), we implement SATM by apply-
ing an attention mask on self-attention to enforce
syntactic constraints. Specifically, we begin by
deriving the syntactic structure from dependency
parsing, treating it as a directed tree. Each token
hi is then mapped to a corresponding tree node qi.
For a given node qi, we define the set of its syntac-
tic ancestors as Pi. To focus attention on the node
and its syntactic ancestors, we obtain a sequence

of SAT mask M ∈ Rn∗n from the parser:

M[i, j] =

{
1, qj ∈ Pi or i = j

0, otherwise
(1)

From the formulation, if M[i, j] = 1, it means that
the node qj is the ancestor of qi or qi itself.

Afterward, we project the outputs of the back-
bone model HCLS into separate query Q, key K,
and value V representations. The syntax-aware
attention scores can be calculated as follows:

WSATM = softmax(
M · (QK⊤)√

dk
)V (2)

where dk is the dimension of key K. Concatenating
all heads WSATM and passing them through a feed-
forward layer, we obtain the syntax-aware attention
output HSATM.

2.3 Dual Context Fusion Module (DCFM)
We obtain original and syntax-aware feature rep-
resentations HCLS and HSATM to enhance the
model’s performance. Different fusion methods
have varying impacts on the representations, mo-
tivating us to explore diverse techniques to im-
prove effectiveness. We then explore several rep-
resentative fusion methods, including concatena-
tion and more complex mechanisms that consider
the correlation between the two outputs. The fu-
sion process of two embeddings is defined as:
Y = HCLS ⊕ HSATM where ⊕ represents fu-
sion method, H is the final representation for in-
tent detection. Specially, We choose three typical
works (Wang et al., 2018; Liu et al., 2020; Li et al.,
2019) to compare their effectiveness: (1) LEAM is
a way that extracts the weights of features to assign



as a coefficient, (2) aimNet is a symmetrical multi-
modal attention module, (3) SKnet is a gate-based
fusion method applied to images.

We further propose a Dual Context Fusion
Module (DCFM). Firstly, we introduce gatebase
that involves extracting useful features from both
the original embedding and the syntax embedding.
The data is then mapped to a range of 0 to 1, serv-
ing as a filter gate. This gate selectively filters the
information from the syntax embedding, mitigat-
ing the errors caused by ASR and parser to some
extent. Subsequently, the filtered data undergoes
additional processing using an activation function
and a fully connected layer to retain only the rele-
vant and useful features:

gatebase = σ(W1[HCLS ,HSATM] + b1) (3)

Ha = W3(Tanh(W2(gatebase·
HSATM) + b2)) + b3 (4)

where [·, ·] denotes concatenation operation, W∗
and b∗ are trainable weights, σ is sigmoid activa-
tion (Han and Moraga, 1995) and Tanh is Tanh
activation (Kalman and Kwasny, 1992). To ensure
the robustness of the model’s performance, it is nec-
essary to combine it with the original embedding.
Inspired by Self-Adaptive Scaling Approach (Liu
et al., 2019a), we utilize a control gate that automat-
ically learns the most relevant and useful features
to obtain the final embedding in a robust manner.

Hb = LN(HCLS +Ha) (5)

Y = α ·HCLS + β ·Ha

+ (1− α)(1− β) ·Hb (6)

1 = α+ β (7)

where α and β are hyperparameters and learn by
training, and LN stands for layer normalization. Y
remains the ultimate outcome.

2.4 Training Objective
Following Cheng et al. (2023a,b), we employ a
fully connected network as a task classifier, and
optimize SAT using Cross-Entropy.

3 Experiment

3.1 Datasets and Experimental Settings
We conduct experiments on three widely used
benchmark datasets, namely TREC6, TREC50 and
ATIS (Hovy et al., 2001; Li and Roth, 2002; Shiv-
akumar et al., 2019). Detail analysis and experi-
mental settings can be seen in Appendix A.

3.2 Main Results

Table 1 presents the main results on three bench-
mark datasets. SAT has shown significant improve-
ments across various performance metrics. For ex-
ample, on the TREC6 dataset, SAT demonstrates a
notable enhancement of 0.6% in accuracy and 0.8%
in F1-score compared to the gate unit based on
RoBERTa. Thus, we analyze the factors contribut-
ing to the success of SAT, which are elaborated as
follows:
(1) Incorporating syntactic information improved
results by capturing keywords with dependency re-
lationships. The utilization of syntactic information
proves to be beneficial, particularly in cases where
such information is lacking. These findings align
with previous studies (Sachan et al., 2021).
(2) Considering the non-robust nature of syntax
embedding, we explore various fusion methods,
finding that the gated unit or gate-based fusion
method outperforms other fusion methods. We
attribute this effectiveness to SAT’s ability to ef-
fectively leverage two distinct features, leading to
enhanced information utilization, more reasonable
weight allocation, and improved modeling of syn-
tactic relations.
(3) Errors in ASR and parsing can distort or ren-
der token relationships irrelevant. For instance,
when the verb "is" is the keyword in an utterance,
its relationship may not be the most crucial one.
One of the notable advantages of SAT is its ability
to mitigate such errors to a certain extent.

3.3 Integration with Other Models

We compare SAT with previous works (Sundarara-
man et al., 2021; Chang and Chen, 2022) on the
same benchmark datasets. In Table 2, we find that
our proposal SAT outperforms the other models.
Moreover, one of the key advantages of SAT is
its seamless integration with BERT-based models.
This integration has significantly enhanced the over-
all performance, highlighting the versatility and
potential impact of our proposed model in driving
major advancements in the field.

3.4 Ablation Study on Parser

We also extract syntax information in the form
of dependency trees using a high-precision parser,
such as the HPSG parser (Zhou and Zhao, 2019),
coupled with two different pre-trained backbone
models: XL-Net (Yang et al., 2019) and BERT (De-
vlin et al., 2019). Notably, the HPSG parser with



Pre-trained
Model

Syntax
Information

Fusion
Module

Fusion
Method

Dataset: TREC6 Dataset: TREC50 Dataset: ATIS

Acc F1 P R Acc F1 P R Acc F1 P R

✗ ✗ - 83.9 81.1 79.9 82.6 75.8 57.8 62.5 58.9 94.4 77.6 75.2 86.8
✓ ✗ - 82.8 80.1 78.4 82.7 76.2 58.3 61.2 58.6 94.6 79.4 77.2 85.9
✓ ✓ add 84.4 82.3 82.3 83.4 75.2 59.1 60.9 58.3 94.6 77.8 76.4 86.3

BERT ✓ ✓ LEAM 84.2 82.4 81.5 83.7 75.9 57.5 59.7 60.1 94.9 80.1 81.2 86.8
✓ ✓ aimNet 84.8 82.3 81.2 83.8 77.0 58.5 58.0 58.7 94.8 79.6 76.5 87.2
✓ ✓ SKnet 85.2 82.5 81.4 83.9 78.0 60.8 62.1 63.4 95.1 79.8 76.3 87.4
✓ ✓ gate unit 85.6 83.8 83.8 84.8 78.2 61.8 64.2 64.6 95.2 80.8 77.8 88.5
✓ ✓ SAT 86.2 85.6 86.5 85.0 78.9 62.6 65.0 64.6 95.3 82.7 81.5 88.8

✗ ✗ - 84.1 82.1 82.5 83.4 76.0 59.9 60.1 61.5 94.5 79.8 77.8 86.3
✓ ✗ - 83.2 81.5 79.1 82.7 76.4 60.1 62.2 64.0 94.8 81.5 79.2 87.0
✓ ✓ add 84.6 84.3 84.9 83.9 75.4 61.1 62.9 63.7 94.9 81.5 78.8 87.9

RoBERTa ✓ ✓ LEAM 84.6 83.5 83.1 84.1 76.6 57.8 62.4 60.0 95.1 81.2 78.5 87.8
✓ ✓ aimNet 85.2 83.9 83.7 84.4 77.2 59.8 61.1 63.7 95.0 80.7 78.0 87.2
✓ ✓ SKnet 85.4 84.0 84.2 83.9 78.6 60.6 64.1 61.6 95.2 80.1 76.3 88.0
✓ ✓ gate unit 85.8 85.0 86.3 84.5 78.2 62.1 64.7 64.5 95.3 81.8 81.0 88.4
✓ ✓ SAT 86.4 85.8 87.0 85.0 79.0 62.8 65.2 64.6 95.4 83.0 81.2 89.5

Table 1: Results on three datasets. "Syntax Information" refers to the inclusion of SAT mask in the backbone model.

Method
Dataset

TREC6 TREC50 ATIS

RoBERTa (Liu et al., 2019b) 84.1 76.6 94.4
Phoneme-BERT (Sundararaman et al., 2021) 85.9 77.8 94.8
SpokenCSE (Chang and Chen, 2022) 86.4 76.2 95.1

Proposed (SAT) 86.4 79.0 95.4
Phoneme-BERT ( + SAT) 86.6 79.4 95.6
SpokenCSE (finetune + SAT) 87.2 76.6 95.8

Table 2: Comparing results of accuracy on benchmarks.

Fusion
Method

Metric: Accuracy
∆

HPSG-Parser-BERT HPSG-Parser-XL-Net

addition 84.4 84.6 0.2
LEAM (Wang et al., 2018) 84.5 84.6 0.1
aimNet (Liu et al., 2020) 85.0 85.2 0.2
SKnet (Li et al., 2019) 84.8 85.2 0.4
gate unit (Li et al., 2018) 85.2 85.6 0.4

DCFM 86.3 86.4 0.1

Table 3: Accuracy on TREC6 about using different
parser based on RoBERTa.

XL-Net outperforms the HPSG parser with BERT
in terms of performance. The results presented
in Table 3 clearly demonstrate that a highly ac-
curate parser yields superior outcomes. In other
words, there is a direct correlation between the ac-
curacy of the parser and the performance achieved.
Furthermore, these findings further emphasize the
importance of incorporating syntax dependency in-
formation to enhance the intent detection task.

3.5 Visualization

In Figure 3, we compare the syntax attention and
the ordinary attention using a heat-map of attention
scores. The heat-map excludes [CLS] and [SEP]
tokens to establish a clearer correlation among the
other tokens. We observe that the SAT exhibits

the capacity to recognize crucial information. For
example, the keyword “describe” shows high at-
tention scores with the tokens “term” and “word”,
highlighting SAT’s ability to identify relevant fea-
tures that might be overlooked by the original at-
tention. This finding provides a compelling expla-
nation for the effectiveness of SAT.

Figure 3: Visualization of attention score selected from
last layer and averaged over all heads. Left is the origi-
nal attention, while right is the syntax attention.

4 Conclusion

In this paper, we propose a novel Syntax-aware
attention (SAT) to improve SLU by incorporat-
ing syntactic information, specifically dependency
structures, into PLM. Experimental results demon-
strate the superiority of our method over the back-
bone BERT/RoBERTa models on three benchmark
datasets. Moreover, we experiment with multiple
parsers and find that parsers with stronger syntactic
parsing abilities lead to more substantial improve-
ments in SLU systems. Detailed analysis confirms
the effectiveness and power of SAT in enhancing
SLU systems.



Limitations

While the Syntax-aware attention (SAT) exhibits
significant improvements by incorporating syn-
tactic information, it still possesses certain draw-
backs. Firstly, our method can only be applied in
Transformer architectures that rely on self-attention
mechanisms. Without the attention mechanism as a
foundation, the utilization of our method would be
infeasible. Secondly, SATM hinges on the gram-
matical relation of "all ancestor nodes". We be-
lieve that exploring the relationships among "all
ancestor nodes + limited child nodes" could yield
valuable insights that deserve further investigation.
Thirdly, as a gated mechanism, the introduction of
additional parameters by DCFM may potentially
increase the risk of overfitting and further compli-
cate the clear explication of its function within the
framework.
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A Experiments

A.1 Datasets

We conduct experiments on three widely used
benchmark datasets, namely TREC6, TREC50 and
ATIS (Hovy et al., 2001; Li and Roth, 2002; Shiv-
akumar et al., 2019; Hemphill et al., 1990). The
statistics of these datasets are shown in Table 4.
Noted that we employ the original text to generate
SAT mask. For training, we utilize the ASR tran-
script of the speech version of the original texts,
following the format and partitioning scheme de-
scribed in (Sundararaman et al., 2021).

Dataset #Class Avg. Length Train Test

TREC6 6 8.89 5,452 500
TREC50 50 8.89 5,452 500
ATIS 22 11.14 4,978 893

Table 4: Data statistics on TREC6, TREC50 and ATIS.

A.2 Experimental Settings

Considering the inference speed, the following
work utilizes the BERTbase (Devlin et al., 2019)
and RoBERTabase (Liu et al., 2019b) as the back-
bone models. As for the parser, we employ Head-
Driven Phrase Structure Grammar (HPSG) (Zhou
and Zhao, 2019) for the syntax analysis of the input
utterances. During training, we explore different
batch sizes from a range of 32, 64 and 128, and con-
duct a total of 10 epochs to ensure the convergence.
Furthermore, we tune the hyperparameter α and
β of the gated unit, which are initially set to 0.5,
and dynamically adjust them during the training
process to achieve optimal performance.

To evaluate the model’s effectiveness, we em-
ploy accuracy, F1-score, precision, and recall as
evaluation metrics.

B Ablation Study on Different
Components

To further verify effectiveness of each component
in SAT, we conduct a set of ablation experiments
on the TREC6 dataset. As demonstrated in the Ta-
ble 5, the proposed module presents considerable
efficiency. It is important to highlight that, instead
of leaning on the syntactic information, we con-
ducted experiments with a standard attention layer
to verify the efficacy of the syntax-aware attention.
Consequently, we can observe that an improvement

in each metric and believe that module’s effect re-
mains substantial and meaningful.

Model
Dataset: TREC6

Acc F1 P R

Backbone (BERT) 83.9 81.1 79.9 82.6
+ Attenion 84.2 (↑0.3) 81.3 (↑0.2) 81.2 (↑1.3) 82.8 (↑0.2)
+ SATM (Instead of Attention) 84.6 (↑0.4) 83.2 (↑1.9) 83.6 (↑2.4) 83.8 (↑1.0)
+ SATM + DCFM 86.2 (↑1.6) 85.6 (↑2.4) 86.5 (↑2.9) 85.0 (↑1.2)

Table 5: Results of ablation test on the TREC6 dataset.

C Performance Comparison

To clarify the novelty, our work represents one of
the first attempts at incorporating a syntax-aware
attention method into spoken language understand-
ing research. Furthermore, we introduce a novel
integration technique, DCFM (Dual Context Fu-
sion Module). This is a unique contribution of
our work which differentiates our approach from
existing ones. In Table 6, we compare SAT with
approaches such as other methods that incorporate
knowledge attention or syntactic information. The
results provide evidence that our proposed SATM
(Syntax-Aware Attention Module) and DCFM tech-
nique successfully improve the task’s performance.

Model TREC6 TREC50 ATIS

K-SAN (Chen et al., 2016) 84.6 76.4 94.2
BERT-SIM (Xia et al., 2021) 85.1 76.9 94.6
CapuBERT (Nguyen, 2022) 85.3 77.8 94.9
SG-Net (Zhang et al., 2020) 85.2 77.6 94.7
Syntax-BERT (Bai et al., 2021) 85.5 78.2 95.0
SAT 86.4 79.0 95.4

Table 6: Results of comparison on three datasets.


