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ABSTRACT

Developing agents for complex and underspecified tasks, where no clear objective
exists, remains challenging but offers many opportunities. This is especially true in
video games, where simulated players (bots) need to play realistically, and there is
no clear reward to evaluate them. While imitation learning has shown promise in
such domains, these methods often fail when agents encounter out-of-distribution
scenarios during deployment. Expanding the training dataset is a common solution,
but it becomes impractical or costly when relying on human demonstrations. This
article addresses active imitation learning, aiming to trigger expert intervention
only when necessary, reducing the need for constant expert input along training.
We introduce Random Network Distillation DAgger (RND-DAgger), a new active
imitation learning method that limits expert querying by using a learned state-based
out-of-distribution measure to trigger interventions. This approach avoids frequent
expert-agent action comparisons, thus making the expert intervene only when it is
useful. We evaluate RND-DAgger against traditional imitation learning and other
active approaches in 3D video games (racing and third-person navigation) and in a
robotic locomotion task and show that RND-DAgger surpasses previous methods
by reducing expert queries. https://sites.google.com/view/rnd-dagger

1 INTRODUCTION

Imitation learning has increasingly become a favored approach for learning behaviors in complex
environments, offering a compelling alternative to classical scripted behaviors implemented by
domain specialists (Schaal, 1999; Hussein et al., 2017). It is particularly well suited in problems
where there is not a clear performance measure (or reward). In video games, it is becoming more
and more familiar to game developers that frequently address the problem of implementing bots in
their games which must play in realistic ways (Harmer et al., 2018; Yadgaroff et al., 2024; Mao et al.,
2024). Indeed, since the notion of realism is not well specified, it prevents the use of reinforcement
learning-based approaches where a reward signal is mandatory. By observing and replicating human
players, these bots are trained to execute complex strategies and actions that are both efficient and
human-like.

Imitation learning usually proceeds in two steps: first, a dataset of behaviors is built by leveraging
experts interacting with the dynamical system. Then, a statistical model (e.g. a neural network) is
learned to imitate actions in that dataset, thus expecting this model to generalize to unseen state
and to behave like the experts. Consider a use case where the goal is to train a driving policy in a
video game context capable of controlling a car on a track (see figure 1). In this scenario, the state
is defined by sensor values at time t, which can include information such as the position of the car,
its speed, and raycasts. In this context, Imitation Learning involves manually controlling the car for
many laps to create a learning dataset, training a policy on this dataset using traditional algorithms
like Behavioral Cloning (Bain & Sommut, 1999), and expecting that the resulting bot will control the
car correctly. However, this approach is known to be unreliable, particularly due to the risk of a shift
in the state distribution between training and testing (Ross et al., 2011), known as the problem of
covariate shift (Nair et al., 2019). When covariate shift occurs, the agent struggles to determine the
correct action, leading to compounding errors and ultimately undermining its performance.

∗Work done during an internship at Ubisoft La Forge.
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Figure 1: RND-DAgger overview. (a) The learner’s policy controls the agent until (b) our Random
Network Distillation-based out-of-distribution (OOD) measure is triggered. Then (c) the expert takes
control until the OOD measure gets lower than the threshold for at least W steps. (d) Finally, the
current policy takes control of the agent to continue the episode, and can trigger the expert again later.

Facing this issue, the effectiveness of imitation learning hinges on the availability of extensive datasets
comprised of player behaviors, often necessitating thousands of expert traces to achieve reasonable
performance and exhibit credible behaviors (Vinyals et al., 2019; Mao et al., 2024). This dependency
on large volumes of data poses a challenge, particularly in scenarios where collecting such data is
either impractical or costly.

In response to these limitations, some approaches involve human-in-the-loop training framework,
often referred to as active imitation learning (Ross et al., 2011; Judah et al., 2012; Menda et al.,
2019; Hoque et al., 2021). Instead of gathering very large amounts of demonstrations, these methods
focus on the strategic incorporation of human feedback to selectively guide the learning process,
thereby enhancing the efficiency of the training phase. By prioritizing the acquisition of relevant and
impactful expert traces, these approaches seek to expedite the agent’s learning curve without relying
on expansive datasets, and swiftly improve performance. In the aforementioned video game example,
this corresponds to collecting a first set of player traces to bootstrap the agent using classical imitation
learning, and then to gather additional traces in particular race settings during training, i.e. requiring
a player to control the car in particular and relevant situations.

To tackle these challenges, several recent models have been proposed to identify when the expert’s
intervention is necessary to correct the agent’s suboptimal behavior (Zhang & Cho, 2017; Menda
et al., 2019; Kelly et al., 2019; Hoque et al., 2021), with DAgger (Ross et al., 2011) being one of
the most well-known approaches. The primary objective of these methods is to minimize the time
required for human feedback by concentrating interventions on the most critical situations where
the agent is likely to make errors. This allows for a more efficient use of expert time, ensuring that
corrective feedback is provided only when it is essential. But, as explained in Section 2, many of
these methods are not fully satisfying.

Despite these advancements, designing algorithms that effectively incorporate human feedback while
reducing the overall expert effort remains an open research problem. Addressing this issue is the
central focus of this article, as we aim to develop methods that optimize the interaction between
the expert and the learning agent, thereby improving learning efficiency without overburdening the
human supervisor.

Our main contributions are threefold: i) We propose a new method called RND-DAgger, a novel in-
teractive imitation learning approach leveraging state-based out-of-distribution identification through
random network distillation. ii) We perform a comparative analysis of RND-DAgger and existing
methods on 3 tasks: a robotics scenario and two video-game environments. iii) Throughout these
experiments, we demonstrate that RND-DAgger either outperforms or matches existing approaches
in terms of final performance while significantly reducing expert burden.
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Algorithm 1 DAgger

Require: K, {βi}i∈[1,K], T , πexp

1: Instantiate D dataset of expert trajectories
2: Instantiate π0 BC policy trained on D
3: t← 0
4: for i = 0, . . . ,K DAgger iterations do
5: Di ← ∅
6: for T sampling steps do
7: st ∼ Env(at−1) (Get a new state)
8: at ← βiπexp(st) + (1− βi)πi(st)
9: Di ← Di ∪ {(at, πexp(st))}

10: t← t+ 1
11: Push D ← D ∪Di

12: Train πi+1 on D using BC
13: return πK

Figure 2: Above, the DAgger algorithm where the
expert action is added to the training set at each
timestep, the agent being alternatively controlled
by the current policy and the expert one. On
the right, in Lazy/Ensemble DAgger, the agent
is controlled by the expert policy only if a given
measure is higher than a threshold λ. Only actions
generated when the expert controls the agent are
added to the training set.

Algorithm 2 Lazy/Ensemble DAgger

Require: K, CONDITION, T , πexp

1: Instantiate D dataset of expert trajectories
2: Instantiate π0 BC policy trained on D
3: nswitch← 0
4: t← 0
5: Di ← ∅
6: for i = 0, . . . ,K iterations do
7: while #Di < T do
8: st ∼ Env(at−1) (Get a new state)
9: Ct ← CONDITION(πexp, πi, st)

10: if Ct then
11: at ← πexp(st)
12: Di ← Di ∪ {(at, st)}
13: t← t+ 1
14: if not Ct−1 then
15: nswitch← nswitch+ 1
16: else
17: at ← πi(st)
18: t← t+ 1
19: D ← D ∪Di

20: Train πi+1 on D using BC
21: return πK

2 PRELIMINARIES AND RELATED MODELS

Notations Let us consider a Markov Decision Process described by a state space S and an action
space A. The dynamics of the process are defined by an unknown transition function P (st+1|at, st),
where at ∈ A and st ∈ S. Note that we do not consider any reward in this setting since the task
to solve is not explicit (e.g., driving a car); our objective is instead to imitate human behaviors that
may be suboptimal and diverse (e.g., considering multiple players or experts). An episode τ consists
of a sequence of states and actions, τ = (s1, a1, . . . , sT , aT ), where T is the length of the episode.
Given a policy π(at|st), it is possible to sample an episode by sequentially executing the policy until
reaching a stop criterion.

Distributional shift: Given a dataset of expert demonstrations D = (τ1, . . . , τn), a common
approach to policy learning is Behavioral Cloning (BC) (Bain & Sammut, 1995; Ding et al., 2019a),
a straightforward imitation learning algorithm. BC enables to learn policies by maximizing the
log-likelihood of the expert actions within the dataset. However, learning a policy from a fixed dataset
can result in the policy encountering out-of-distribution (OOD) states during inference, where it
has not been trained to make accurate decisions (Ross et al., 2011). This phenomenon is referred
to as distributional shift. This shift in the distribution can cause the policy to perform poorly, as it
may not know how to handle unseen situations. For example, consider a driving policy in a racing
game. If the dataset is composed only of demonstrations from expert drivers, the learned policy might
struggle to recover from rare events such as a spin-out, since such situations are absent from the
expert demonstrations. Therefore, the policy may fail to generalize effectively to these unseen states.

This effect can be mitigated by providing more diverse and comprehensive training sets, ensuring
that the policy is exposed to a wider range of scenarios, including edge cases. However, this raises
the challenge of how to efficiently collect such datasets while minimizing the burden on experts.
Gathering enough data to cover all possible situations can be time-consuming and costly, especially
if it relies heavily on expert demonstrations. Thus, the key question becomes how to strategically
collect diverse and representative data in a way that maximizes coverage of the state space while
minimizing the amount of effort required from experts.
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Algorithm 3 Ensemble-DAgger’s CONDITION

Require: πnov a mixture of N policies,
πexp, st, χ, τ

1: σ2
nov ← doubt of the mixture πnov

2: mt ← ∥πexp(st)− πnov(st)∥
2

3: if σ2
nov > χ or mt > τ then

4: return TRUE

5: else
6: return FALSE

Algorithm 4 Lazy-DAgger’s CONDITION

Require: f , st, βH , βR

1: mt ← f(st) which estimates
∥πexp(st)− πi(st)∥

2

2: if mt > βH then
3: return TRUE

4: else
5: if mt < βR then
6: return FALSE

7: else
8: return TRUE

Figure 3: In Ensemble-DAgger, the policy is a mixture, and the measure is based on both a dis-
agreement between the models in this mixture, and a disagreement with the expert action. The
computations of these measure require the expert to provide action at each timestep of the process. In
Lazy-DAgger, the measure is based on the disagreement between the current policy and the expert
one, but to avoid the query of the expert action at each timestep, a classifier f is trained to predict if
the discrepancy measure ∥πexp(st)− πi(st)∥

2 is above a given threshold βH or not.

DAgger and variants: To address this issue, one can utilize the DAgger algorithm from Ross et al.
(2011) (Algorithm 1), which iteratively expands the training dataset through the intervention of an
expert, represented by a reference policy denoted as πexp. The reference policy serves two key roles:
first, it determines the appropriate action to execute at each timestep based on a specified decision
rule (line 7) – a mixture between the current policy and the expert one. Second, it helps augment the
training set by adding new samples of states and corresponding expert actions, which are then used to
improve the learned policy (line 11). At regular intervals, the policy is updated via imitation learning
using the expanded dataset, and this process is repeated over multiple iterations. This method helps
to mitigate the issue of distributional shift by continually refining the learned policy with fresh data
that captures a broader range of states.

To better sample relevant states, few variants of the DAgger algorithm have been proposed. One of the
most relevant is Ensemble-DAgger (Menda et al., 2019) which introduces a decision rule to decide if
the agent is controlled by the current policy, or by the expert one. Moreover, pairs of state-actions are
added to the learning dataset only when the action comes from the expert policy (see Figure 2 - right ).
The decision rule is a discrepancy measure that computes the distance between the expert action and
the policy action (combined with a disagreement measure between a mixture of experts) as shown in
Algorithm 3. This approach is not realistic when considering human experts. Indeed, let us revisit our
car driving example, where the goal is to learn an effective driving policy for a video game. Using
the DAgger and Ensemble-DAgger approaches, the expert (i.e. the player) must continuously play
the game during the active imitation learning process, while the car is only partially controlled by the
current learned policy. This setup has two significant drawbacks: i) First, the player is placed in an
unnatural setting, where they are expected to control a car that they do not fully manage. This can
create a disorienting experience, as the player must constantly adapt to actions taken by the policy,
disrupting the natural flow of gameplay. ii) Second, the player remains engaged even when the car is
exhibiting good behavior, spending time providing feedback that may not significantly contribute to
discovering a better policy. This leads to inefficiencies, as the expert’s time is not always optimally
utilized, especially in situations where the current policy already performs well.

3 RANDOM NETWORK DISTILLATION-BASED DAGGER

To address the aforementioned limitations of Menda et al. (2019), Lazy-DAgger (Hoque et al.,
2021) proposes to involve the expert only during critical moments rather than requiring continuous
control. Instead of relying on the expert to partially guide the agent throughout the learning process,
this approach alternates between periods where the agent is completely controlled by the current
policy and periods where it is fully controlled by the expert. During the phases controlled by the
current policy, the expert’s intervention is not required, thereby reducing the time the expert spends
supervising the agent and making their interventions more targeted and efficient.
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Algorithm 5 RND-DAgger

Require: K, πexp, ftarg , fpred, λ, W , T
1: Instantiate D dataset of expert trajectories
2: Instantiate π0 BC policy trained on D
3: nswitch← 0
4: t← 0
5: D0 ← ∅
6: for i = 0, . . . ,K DAgger iterations do
7: while #Di < T do
8: st ∼ Env(at−1) (Get a new state)
9: mt ← ∥ftarg(st)− fpred(st)∥

2

10: if mt > λ or w < W then
11: if mt ≤ λ then (Minimal demo time)
12: w ← w + 1
13: else
14: w ← 0
15: at ← πexp(st)
16: Di ← Di ∪ {(at, st)}
17: if mt−1 ≤ λ then
18: nswitch← nswitch+ 1
19: else
20: w ← 0
21: at ← πi(st)
22: t← t+ 1
23: Push D ← D ∪Di

24: Train πi+1 on D using BC
25: Train fpred on D to predict ftarg
26: return πK

Figure 4: The RND-DAgger algorithm
proceeds in K iterations. First a policy
is trained on a small expert dataset (line
2). Then at each iteration (line 6), it
constructs a new dataset Di with T state-
action pairs from the expert (line 7). At
each timestep, the agent is by default
controlled by the current policy (line 23).
The OOD measure is computed by us-
ing the prediction network fpred and the
target network ftarg (line 9). If this mea-
sure is greater than a threshold (line 10),
the expert takes over the policy to control
the agent (line 16) and to add samples to
the dataset (line 17). The number of con-
text switches is the number of times the
expert has taken control (line 19). At the
end of the iteration, the built dataset is
aggregated with the current learning set
(line 27) and the policy is retrained (line
28). In addition, the fpred network is
also updated (line 29) to allow the future
detection of OOD states. The w counter
is used to ensure that the algorithm waits
at least W timesteps below the threshold
before taking control back of the agent.

Lazy-DAgger replaces the traditional action-based discrepancy measure between expert and policy
actions with a classifier-based approximation — see Figure 4. This approach allows the algorithm to
predict when expert intervention is necessary without requiring an expert action at every timestep,
thereby significantly reducing the expert burden compared to methods like Ensemble-DAgger. How-
ever, this method has a notable drawback: similar to Ensemble-DAgger, it relies on comparing the
actions of the expert and the current policy for a given state. While this approach works well when
the expert is optimal and acts deterministically, it becomes problematic when dealing with humans
or imperfect experts. Human experts often exhibit variability and may choose different actions for
the same state depending on context or personal preference. This results in a noisy and unreliable
measure of discrepancy. To address this issue, one could rely on a state-based discrepancy measure
that would focus on meaningful divergences compared to an action-based one.

We propose the RND-DAgger algorithm, which builds upon Random Network Distillation (RND)
(Burda et al., 2019). The core assumption of RND-DAgger is that expert feedback is only necessary
when the agent encounters out-of-distribution (OOD) states—states that are not well represented in
the training set and where the policy is more likely to fail. This is crucial because when an agent
operates in OOD states, it faces a higher risk of taking suboptimal actions that could hinder learning
or lead to unsafe outcomes. Once the agent returns to familiar, in-distribution states, the expert’s
feedback is no longer required, and the intervention is ended. Our method differs fundamentally
from existing approaches like Ensemble-DAgger and Lazy-DAgger, which rely on action-based
discrepancy measures to determine when to intervene. As such, our approach remains robust to
variations in expert behavior, ensuring that interventions only occur when the agent genuinely faces
unfamiliar and potentially risky states.

To further improve the stability of expert interventions, we introduce a mechanism called minimal
demonstration time. This concept addresses the issue of overly frequent and brief expert interventions,
which can interrupt learning and increase the cognitive load on the expert. Minimal demonstration
time defines a lower bound on the duration for which the expert must maintain control once they start
an intervention. The key idea is that the expert should provide a sufficient number of consecutive
corrective actions to guide the agent back to a stable state, instead of immediately handing control
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back to the policy after a single correction. We describe these two components below. The detailed
algorithm is provided in Algorithm 4 with a complete explanation of the different steps.

Random Network Distillation To measure if a state is OOD, RND-DAgger relies on the Random
Network Distillation technique, which is a classical approach developed initially for the problem
of exploration in Reinforcement Learning to detect new states to explore (Burda et al., 2019). The
principle of RND is to use a randomly initialized neural network as a fixed target ftarg and train
a second neural network fpred (the predictor) to approximate the output of the target network. As
the predictor network improves over time, the error between the predictor and the target network
decreases for familiar states (in-distribution), but remains high for unseen or out-of-distribution states.
This prediction error thus serves as a measure of novelty, allowing the agent to recognize when it
has encountered a new or unfamiliar state. In RND-DAgger, the measure is used to decide when to
trigger the expert, and when to trigger back the current policy, alternating phases where the expert is
controlling the agent and when the agent is controlled by the current policy. Note that, contrary to the
described baselines, this measure does not involve the expert action, thus avoiding the need to have
an expert acting at each timestep.

Minimal demonstration time Relying exclusively on the OOD measure can lead to a behavior
where the expert is asked too often for short demonstrations (see appendix Figure C.2). To account
for this limitation, we introduce the notion of minimal expert time (MET). It is defined as W the
number of consecutive "in-distribution" frames required to switch control back from the expert to
the autonomous policy (i.e. the number of frames where mt < ∥ftarg(st) − fpred(st)∥

2). This
mechanism ensures that the expert will provide a minimal amount of information at each intervention,
resulting in fewer, but longer, demonstration sequences.

4 EXPERIMENTS

The primary objectives of our experimental evaluation are twofold: first, to assess the efficiency
of our approach in discovering an effective policy, and second, to evaluate its ability to reduce the
expert’s burden.

Environments: Our first environment is HalfCheetah which is a classical reinforcement learning
environment1 where the objective is to learn a running strategy for the agent. The goal of the agent
is to locomote as fast as possible. The HalfCheetah is controlled by applying motor torques, and
the agent manipulates a 6-degree-of-freedom (6-DOF) motor joint vector. The observation space
consists of 18 values, which include the position and velocity of the agent’s body, the angles and
angular velocities of its six joints, as well as the angle of the center of mass. We also propose and
open-source two new environments developed for video game research . RaceCar (see Figure 5)
features a physics-based car controller that must complete a single lap on a given track. After each
lap, the car is reset to a random position on the starting line. The track presents several challenges,
including speed bumps, a ramp in front of a pillar, and sharp 90-degree turns, making the optimal
driving behavior non-trivial. Additionally, crossing the ramp and red sloped walls provides a speed
boost, adding complexity to the strategy. The car is controlled using four discrete actions: forward,
backward, left, and right. The observation space consists of 22 dimensions, including the car’s 3D
position, linear velocity (3D), angular velocity (3D), rotation (encoded as the cosine and sine of the
angle), and data from seven raycasts to detect obstacles. Finally, the 3D Maze environment allows
us to study our strategy in goal-conditioned navigation scenarios. A classical human-like character
is spawned at a random location within the maze and tasked with reaching a randomly assigned
goal. The agent is controlled using four movement actions: walk forward, walk backward, strafe
left, and strafe right, as well as a one-dimensional rotation action to change its facing direction.The
observation space consists of the agent’s absolute position (3D), the goal’s position (3D), and 131
raycasts, which provide a low-resolution depth map of the surroundings. Since the objective in this
environment is to navigate to any goal location, we replace the traditional Behavioral Cloning (BC)
approach with a Goal-Conditioned Behavioral Cloning (GCBC) approach (Ding et al., 2019b) as
the base learning algorithm. This adaptation ensures that the agent learns not just to imitate expert

1https://github.com/araffin/pybullet_envs_gymnasium
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(a) RaceCar (b) RaceCar (Player view) (c) Maze (d) HalfCheetah

Figure 5: Illustration of the three different environments used in our experiments. The objective is to
learn a good driving, navigating, and walking policy while minimizing expert interventions.

trajectories, but also to generalize its navigation strategies based on varying goal positions within the
maze.

Baselines: We compare our approach RND-DAgger to multiple approaches from the active
imitation learning literature: DAgger Ross et al. (2011), a classical approach which queries the
supervisor for an action in every state that the learner visits. Ensemble-DAgger Menda et al.
(2019), which propose an automated approach to measure OOD and trigger expert demonstration.
Ensemble-DAgger relies on two metrics: A disagreement measure defined as the correlation between
an ensemble of policies, and a discrepancy measure computing the difference between the bot action
and the expert action at every step. Lazy-DAgger uses the same discrepancy measure as Ensemble-
DAgger and reduces bot-expert context switching by using an additional threshold parameter to
define a hysteresis band. Note that, we rely on a simplified version proposed in (Hoque et al., 2021)
that has been shown to be more efficient and generates less context switches than the original version.
This variant discards the classifier for the benefit of the true discrepancy measure. Human-Gated
DAgger (HG-DAgger) from Kelly et al. (2019) involves a human supervisor monitoring the agent’s
behavior in real-time and deciding when to take control. While similar in essence to our proposed
RND-DAgger, HG-DAgger relies entirely on human judgment to identify when intervention is
necessary, rather than using an automatic OOD measure. This requires the expert to continuously
observe the agent’s actions at every timestep, leading to a higher cognitive load and less efficient use
of expert time. Finally, we also consider Behavioral Cloning (BC) as the classical baseline, which
does not include any active learning mechanism.

The set of hyperparameters used for the different approaches is described in Appendix A. For each
method, a first training set is collected by the expert, without active imitation learning techniques.
Then the different algorithms are executed to collect additional examples and to update the policy.

Metrics: To assess the performance of the methods considered, we rely on several key metrics: i)
The Task Performance measures whether the learned agent is successfully solving the environment.
For the Race Car and Maze environments, we use the success rate (i.e., whether the agent completes
a lap or reaches the goal). For HalfCheetah, we track the cumulative episode reward, which reflects
the overall effectiveness of the agent’s locomotion strategy. ii) The Dataset Size indicates the number
of expert actions added to the training dataset, providing insight into how much expert information is
being utilized to train the agent. A smaller dataset size suggests the agent is learning efficiently with
fewer expert interventions, while a larger dataset implies greater reliance on expert input. iii) The
Context Switches which corresponds to the nswitch variable in Algorithms 1 and ω measures the
number of contiguous periods during which the expert is actually controlling the agent. This helps
quantify how often the expert is involved in directly providing relevant training samples. For RND-
DAgger, this measure accurately reflects the expert’s involvement, as the agent is fully controlled by
the policy between switches. The metrics are averaged over 8 seeded runs for each method.

4.1 RESULTS

Oracle-based Performance: To conduct extensive experiments, we replace the human expert
with a predefined oracle policy. This substitution allows us to run multiple trials efficiently without
depending on human participants, which would be impractical in terms of both time and resources
(experiments using human experts are reported separately later in the section). For the Race Car
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Task Performance # Context Switch

Method
Env

RC HC Maze RC HC Maze

BC 0.883 ± 0.029 2455 ± 424 0.367 ± 0.043 - - -
DAgger 0.940 ± 0.026 2343 ± 209 0.450 ± 0.074 - - -
Lazy-DAgger 0.939 ± 0.025 2314 ± 278 0.575 ± 0.101 3437 ± 89 312 ± 45 1238 ± 79
Ensemble-DAgger 0.952 ± 0.018 2489 ± 108 0.626 ± 0.045 2785 ± 41 1452 ± 134 2871 ± 94
RND-DAgger 0.944 ± 0.014 2490 ± 160 0.717 ± 0.018 368 ± 11 708 ± 130 1214 ± 25

Table 1: Overall performance: This table illustrates the performance of the different algorithms at
the end of the K iterations. It also provides the value of the nswitch variable that accounts for the
number of expert interventions. Best, Second best

environment, the oracle is learned through a separate active imitation learning process with a large
interaction budget, ensuring the agent has access to high-quality demonstrations. In the 3D Maze
environment, the oracle is a NavMesh-based agent, which programatically solves any navigation
scenario, making it easy to generate trajectory data. For HalfCheetah, we use an open-source
reinforcement learning agent (Kuznetsov et al., 2020) from the RL Zoo repository (Raffin, 2020) as
the oracle, providing an optimal policy for locomotion tasks. This approach ensures consistency and
scalability across experiments.

Table 1 and Figure 6 present the performance metrics across the evaluated environments. To ensure a
fair comparison, we report results based on the hyperparameter settings that achieve the highest final
performance for each model.
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Figure 6: Performance and context switches for the different environments. The X-axis corresponds
to the size of the training set D that increases at each iteration of the algorithms.

Our method, RND-DAgger, demonstrates competitive performance relative to Ensemble-DAgger
and Lazy-DAgger, indicating that it effectively learns robust policies across different environments.
For example, in the HalfCheetah environment, RND-DAgger achieves a cumulative reward of 2490,
compared to 2489 for Ensemble-DAgger and 2314 for Lazy-DAgger. These results highlight that
RND-DAgger is capable of discovering efficient policies, matching or surpassing the baselines in
terms of overall task success. When analyzing performance relative to the size of the training set,
RND-DAgger outperforms the other methods in the early stages of the active imitation learning
process (Fig. 6b). This suggests that RND-DAgger is more effective at focusing on critical states
where expert guidance is most needed, thereby gathering valuable feedback more efficiently. By
concentrating on key interventions, RND-DAgger accelerates policy improvement and requires fewer
training samples to achieve comparable or superior results, making it especially advantageous in
scenarios with limited expert availability. In summary, the experimental results demonstrate that
RND-DAgger not only achieves strong final performance but also exhibits a more sample-efficient
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(a) RND-DAgger (b) Lazy-DAgger (c) Ensemble-DAgger

Figure 7: Visualization of agent’s trajectories (blue) and expert intervention trajectories (red) in
RaceCar. RND-DAgger predominantly requests expert intervention in challenging sections of the
track, requiring fewer expert interventions overall compared to baseline methods.

learning curve compared to existing methods (Fig. 6a, 6b and 6c), validating its capability to optimize
expert interventions and rapidly improve policy quality.

When examining the number of context switches between the different methods, RND-DAgger
consistently results in significantly fewer context switches compared to Ensemble-DAgger across
all environments. This indicates that RND-DAgger is more stable and requires fewer handovers
between the expert and the policy, reducing the burden on the expert. When compared to Lazy-
DAgger, RND-DAgger shows mixed results. In the RaceCar environment, RND-DAgger generates
fewer context switches (Fig. 6d), highlighting its efficiency in minimizing expert interventions.
However, in the HalfCheetah and Maze environments, RND-DAgger produces a similar number
of switches (Fig. 6e and 6f). This similarity in HalfCheetah can be attributed to the use of an
oracle expert policy, which performs consistently without generating diverse actions. Under these
circumstances, the discrepancy measure used by Lazy-DAgger, which relies on comparing expert
and policy actions, remains effective for detecting when to switch. In the Maze environment, despite
having a comparable number of context switches to Lazy-DAgger (Fig. 6f), RND-DAgger achieves a
higher final performance (Fig. 6c).This suggests that RND-DAgger intervention criterion leads to
more informative expert interventions and is better able to leverage the expert. Thus, in scenarios like
Maze, where achieving high task performance is critical, RND-DAgger is the better choice due to its
ability to drive the agent towards optimal behavior.

Overall, these findings indicate that RND-DAgger strikes a favorable balance between reducing
context switches and achieving strong policy performance, making it a more efficient and reliable
choice.

Qualitative study: To gain a deeper understanding of when our algorithm requests expert supervi-
sion, Figure 7 visualizes the context switches between the current policy and the expert (additional
figures are provided in Appendix B). As seen in the figure, both Ensemble-DAgger and Lazy-DAgger
query the expert significantly more frequently, leading to a higher number of context switches com-
pared to RND-DAgger. The visualization also reveals that RND-DAgger identifies and focuses on
critical areas of the track that are challenging for the agent during early learning stages. Specifically,
it requests expert intervention primarily in the problematic zones, such as the bottom section of the
track and the obstacle immediately following the speeding ramp (top-left corner of the track). These
are regions where the bot initially struggles, making precise interventions crucial for improving
performance. This observation indicates that RND-DAgger not only minimizes the number of expert
queries but also targets the most relevant segments of the environment where guidance is essential.
By focusing on challenging states rather than spreading expert effort across all states, RND-DAgger
makes more strategic use of expert supervision, resulting in fewer yet more impactful interventions.

Human Expert-based performance: We conducted a series of experiments (Figure 8) using
a real human expert instead of an oracle policy. In this setup, collecting expert actions while the
agent was being controlled by its own policy (rather than having the expert take direct control) felt
unintuitive for the human participants, making it challenging to apply traditional baselines effectively.
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Figure 8: Task performance on RaceCar with a human expert. (a) RND-DAgger achieves similar
task performance to HG-DAgger with a comparable number of demonstrations. (b) However, by
reducing the need for constant expert monitoring, RND-DAgger significantly lowers the total expert
time required.

As such we focused our comparison on HG-DAgger, which allows the human expert to decide when
to intervene and take control from the agent.

Our results show that RND-DAgger performs comparably to HG-DAgger, but with a significant
advantage: it does not require the human expert to continuously monitor the agent’s behavior. Instead,
RND-DAgger automates the decision of when to request expert input based on state novelty, reducing
the cognitive load on the expert. Figure 8b demonstrates the relationship between policy performance
and the actual time the expert spends observing the screen. In RND-DAgger, the agent can run at
accelerated speeds without the need for constant supervision, as the expert only needs to intervene at
specific moments rather than watching the agent’s entire trajectory.

Additional experiments Appendix C presents ablation studies of RND-DAgger, including an analysis
of the impact of the Minimal Expert Time mechanism (showing how it reduces expert context
switches). Appendix D focuses on studying the impact of using Ensemble-DAgger compared to
RND-DAgger regarding expert time spent (the metric used in Figure 8b), showing how RND-DAgger
better minimizes expert burden.

5 CONCLUSION AND LIMITATIONS

In this work, we presented RND-DAgger, a novel approach to active imitation learning that efficiently
minimizes the need for expert interventions by leveraging a state-based measure derived from Random
Network Distillation (RND). Unlike traditional methods that rely on action-based discrepancies to
detect when to seek expert guidance, RND-DAgger focuses on identifying out-of-distribution states
where the agent is most at risk of making errors. This allows our method to selectively request
expert feedback only when it is truly necessary, thereby reducing the number of context switches and
optimizing the allocation of expert time. Overall, our method provides a step forward in developing
more practical and human-efficient imitation learning algorithms, making it a valuable tool for
training autonomous agents in complex environments.

Limitations RND-DAgger requires the expert to immediately take control of the agent, which may
be impossible or dangerous in complex real-time environments. Predictive approaches to alert the
expert before intervention is an interesting area of improvement. Studying how to scale RND-DAgger
to more complex environments such as Partially observable MDPs – e.g. pixel-based environments –
would be a natural extension of our work. In such scenarios, noisy-TV problems i.e. environments
featuring distracting random or diverse observations, bring important new challenges, which may be
addressed through representation learning or explicit high-entropy filtering. Lastly, incorporating
richer forms of expert feedback is another valuable future line of work.
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A EXPERIMENTAL DETAILS

Dataset Figure 9a and 9b showcase examples of generated trajectories for the RaceCar and Maze
environments.

Episode traces

(a) RaceCar dataset examples

Episode traces

(b) Navigation dataset examples

Figure 9: Dataset examples: the trajectories of the expert from which we bootstrapped to train our
initial BC policies and out BC baselines.

Hyperparameters For each decision rule, several key hyperparameters had to be tuned:

• DAgger

– The probability β of a frame to be controlled by the bot. The probability is decreased
at each DAgger epoch by βi ← βi−1

0

• RND-DAgger

– Threshold λ of OOD detection
– The historic context length, that is the number of frames in the past we take along with

the current state to detect its OOD nature
– The Minimal Expert Time W

– The size of the random network, represented by the number of layers and neurons per
layer the predictor and target networks have.

• Ensemble-DAgger

– Threshold τ for discrepancy measure
– Threshold χ for doubt measure
– The number of models N

• Lazy-DAgger

– Threshold βH for discrepancy measure
– Threshold βR for the backward controlled loop (i.e. the criterion to switch back from

expert to autonomous)

Computing thresholds For all the methods that necessitate at least one threshold (RND-DAgger,
Lazy-DAgger, Ensemble-DAgger), we computed them following the following methodology: the
threshold was set to be a positive factor of the mean measure on the training set. In other words,
before each new sessions, the measure was ran over the training dataset, and the threshold (χ and τ
for Ensemble-DAgger, βH for Lazy-DAgger and λ for RND-DAgger) were calculated as :

λ← MEASURE({(at, st) ∈ Dtrain})× L (1)

13



Published as a conference paper at ICLR 2025

Table 2: Hyperparameter search

(a) Ensemble-DAgger

Hyperparameter Values RaceCar HalfCheetah Maze

χ factor [0, 1, 1.5, 2, 3, 4] 1.5 0 0.5
τ factor [0, 1, 1.5, 2, 3, 4] 1.5 1.5 3
N [2, 3, 5] 5 5 3

(b) RND-DAgger

Hyperparameter Values RaceCar HalfCheetah Maze

λ factor [1, 2, 3, 4] 2 2 2
Hidden size [32, 128] 32 128 32
Number of layers [0, 1, 2] 0 2 0
Historic context length [0, 2, 5, 10, 15] 10 0 2
W [1, 2, 5, 10, 15, 30, 50] 30 5 5

(c) Lazy-DAgger

Hyperparameter Values RaceCar HalfCheetah Maze

βH factor [0, 1, 2, 3, 4] 1.5 0 2
βR divider [1, 1.5, 2, 3, 4] 2 1.5 2.5

(d) DAgger

Hyperparameter Values RaceCar HalfCheetah Maze

β [0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95] 0.5 0.7 0.8

With L being a positive factor, a hyperparameter to be tuned. For the second threshold of Lazy-
DAgger, we set it to be a factor of the first one: βR = βH/L∗, with L∗ being the hyperparameter
tuned. That’s a different method compared to other methods, such as Zhang & Cho (2017) or Hoque
et al. (2021) who set their threshold so that approximately 20% of the initial dataset is unsafe, or
Ensemble-DAgger Menda et al. (2019) that directly grid searched the value. The Table 2 summarizes
the values used for our grid search.

B INTERACTIVE SESSION VISUALIZATIONS

Typical interactive situations In Figure 11, one can understand better how, in the RaceCar
environment, an oracle (and by extend a human taken as an expert) would interact with the learner. In
(a), the current learned policy has control of the car, and the OOD measure (green circle) is below
the threshold: the learner is confident. In (b), the car crashes into a wall, so the measure (red circle)
queries the expert to take control (transparent red capsule). From (c) to (e), the expert demonstrates
how to get back on track, until (f) the measure falls below the threshold again (green circle) for at
least W consecutive frames (see Section 3 for further explanations)

Qualitative study On Figure 10, we reported the context switches and full trajectories on both
the RaceCar and Maze environments. The results are taken from the same session and the same
seed to better compare the figures. From (a) to (b), it is clear that Ensemble-DAgger exhibits the
most context switches compared to Lazy-DAgger and RND-DAgger, which show comparable counts.
However, the context switches in Lazy-DAgger are more concentrated in specific areas, whereas those
in RND-DAgger are more evenly distributed. Then, from (d) to (f) we can see the corresponding
episodes with expert demonstrations (in red) added to the dataset during that session. We can see
that the expert demonstrations are either way longer (the whole episode) or way shorter (only a few
frames) for Lazy-DAgger compared to our method, providing more consistency throughout the map.
The difference is clearer on the RaceCar environment. Indeed, on both context switch figures, we see
that Lazy-DAgger and Ensemble-DAgger are comparable, and that the queries for RND-DAgger are
concentrated around only two zones that generated most of the failure cases.
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(a) RND-DAgger (b) Lazy-DAgger (c) Ensemble-DAgger

(d) RND-DAgger (e) Lazy-DAgger (f) Ensemble-DAgger

(g) RND-DAgger (h) Lazy-DAgger (i) Ensemble-DAgger

(j) RND-DAgger (k) Lazy-DAgger (l) Ensemble-DAgger

Figure 10: We conduct a qualitative analysis of the the different query methods. (a)-(d) and (g)-(i):
Each dot represents a context switch : a transition from autonomous to expert control. (e)-(h) and
(j)-(l): In red, the expert demonstrations, in blue the novice segments.
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(a) 0 (b) 1 (c) 2

(d) 3 (e) 4 (f) 5

Figure 11: (a) The agent has control. (b) The OOD measure is triggered (RND), the expert is given
control. (c)-(e) The expert demonstrates how to recover. (f) The state is in distribution, the expert
keeps the control until the Minimal Expert Time is reached.

C ABLATION STUDY

C.1 RND-DAGGER ON HALFCHEETAH

In this ablation study, we evaluate RND-DAgger, focusing on the additive advantages of three key
enhancements: a Minimal Expert Time (MET) of size W , historical context, and the architecture
of the random networks (see Section 2 for insights on the values tested). The addition of a Minimal
Expert Time should increase the quality of the frames by letting the expert finish its demonstration
and making sure the learner is fully recovered before letting it the control again. The historical context
enriches decision-making by incorporating temporal information from past actions and concatenating
them to the current state. This particularly helps in tasks where there is a strong relation between
the states. For example, a state where the car is close to a wall is not necessarily a bad state, unless
the car is going towards it for several frames in a row. However, a historical context chosen too big
is detrimental, because it can overshadow useful dimensions of the sate, and thus preventing the
predictor network to seize useful information.

Results of that ablation are reported in Table 3 and Figure 12. We note that the Minimal Expert
Time W helps reducing the context switching, without impacting that much the performance at the
end of the sessions of RND-DAgger. In other words, it helps decreasing the expert burden, without
impacting the task performance.
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Figure 12: Ablation study on our method. RND-DAgger compared to: (light blue) RND w/o MET,
(orange) bigger historical context, (dark blue) smaller architecture for the random networks.
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Task Performance # Context Switch
BC 2455 ± 424 -
RND-DAgger 2490 ± 160 708 ± 130
RND-DAgger - MET 2432 ± 175 1985 ± 215
RND-DAgger - small 2167 ± 140 1136 ± 76
RND-DAgger - historic 2172 ± 290 554 ± 90
Lazy-DAgger 2314 ± 278 312 ± 45

Table 3: Performance and context switches at the end of the sessions. We report the results of the key
ablations on RND-DAgger, along with the results of Lazy-DAgger for further comparisons

C.2 MINIMAL EXPERT TIME FOCUS

Ablation study on all the methods We further investigated the impact of the Minimal Expert
Time (MET) on our method and on our baselines, across all the tasks. We reported the results of that
study in Figure 13 and Table 4. In particular, we can see that LazyDAgger + MET isn’t appropriate in
HalfCheetah. The combination of the Lazy mechanism (introduction of a second threshold to create a
hysteresis band) and the MET forces the expert to always have control over the agent, which explains
the extremely low value for the context switches (which happens only once per episode) and the poor
performance learning curve (Fig. 13b). The same remark holds for Ensemble-DAgger on RaceCar,
but in this case, this behavior doesn’t seem to impact the task performance of the method (Fig. 13a).

(a) Task performance RaceCar (b) Task performance HalfCheetah (c) Task performance Maze

(d) Context switches RaceCar (e) Context switches HalfCheetah (f) Context switches Maze

Figure 13: Results for the ablation study with focus on the addition of the Minimal Expert Time
(MET) on the baselines Ensemble-DAgger and LazyDAgger. RND-DAgger remains the same as in
Table 1

Qualitative interpretation On Figure 14 we report the context switches on the RaceCar environ-
ment, at the second DAgger epoch of a given seed with and without a MET. We can clearly see that
the number of context switches increases and a third critical zone appeared at the top right of the map
for RND-DAgger (Fig. 14a). We interpret that the bot is fairly confident in the top straight line of the
course, but the last turn is difficult to manage when the velocity of the car is too high, inducing a
query to the expert. There are also more context switches at the entrance of that straight line, because
the learner has to be precise to pass without touching the walls or the speed ramps on the sides. We
conclude that the MET increases the quality of the demonstrations without impacting the quality of
the measure, that still grasps the relevant critical areas of the track.
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Task Performance # Context Switch
RC HC Maze RC HC Maze

Lazy-DAgger + MET 0.943 ± 0.011 2374 ± 325 0.575 ± 0.101 759 ± 39 78 ± 0.0 876 ± 71
Lazy-DAgger 0.939 ± 0.025 2314 ± 278 0.590 ± 0.057 3437 ± 89 312 ± 45 1238 ± 79
Ensemble-DAgger + MET 0.935 ± 0.019 2502 ± 228 0.707 ± 0.023 77 ± 4 315 ± 84 2034 ± 79
Ensemble-DAgger 0.952 ± 0.018 2489 ± 108 0.626 ± 0.045 2785 ± 41 1452 ± 134 2871 ± 94
RND-DAgger 0.944 ± 0.014 2490 ± 160 0.717 ± 0.018 368 ± 11 708 ± 130 1214 ± 25
RND-DAgger w/o MET - 2432 ± 175 - - 1985 ± 215 -

Table 4: We conduct an ablation study on the impact of the Minimal Expert Time (MET) on all
baselines across our three environments. We report the final task performance and number of context
switches. We conducted the same grid search for the value of W as for RND-DAgger (see section A
for more details).

(a) RND-DAgger W = 0 (b) Ensemble-DAgger W = 0 (c) LazyDAgger W = 0

(d) RND-DAgger W = 30 (e) Ensemble-DAgger W = 30 (f) LazyDAgger W = 10

Figure 14: Ablation study: a focus on the effect of the MET on the RaceCar environment. We see an
increase of the context switches and shorter episode traces as there is no Minimal Expert Time for all
the methods. RND-DAgger seems to have a better grasp on the difficult zones of the track, whereas
the two other measures trigger the expert rather uniformly across the track.

D TOTAL EXPERT TIME COMPARISONS

While focusing solely on task performance and context switches provides important insights on
the efficiency of a method and on a given task, it doesn’t tell the complete story about expert
burden. We conducted an additional analysis on the Total Expert Time, as we did in the Fig 8b
on human experiments. The Table 5 shows that Ensemble-Dagger is highly time consuming for the
expert without statistically outperforming RND-Dagger. For example, on Maze, it is three times
longer to achieve a similar performance than with RND-DAgger, even with the addition of our MET
mechanism on that baseline. This demonstrates that we are more efficient in real human expert
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scenarios. Moreover, and especially in a fast-paced environment like RaceCar, that baseline - and its
improved MET variant - requires the expert to input actions at the same time as the agent to be able
to compute the discrepancy measure, which is not natural in practice.

Task Performance Total Expert Time
RC HC Maze RC HC Maze

RND-DAgger 0.944 ± 0.014 2490 ± 160 0.717 ± 0.018
16664 ± 73

(27.8 ± 0.1 mins)
11968 ± 107

(6.60 ± 0.06 mins)
16173 ± 44

(27.0 ± 0.1 mins)

Ensemble-DAgger 0.952 ± 0.018 2489 ± 108 0.626 ± 0.045
31394 ± 506

(52.3 ± 0.8 mins)
21535 ± 774

(11.8 ± 0.4 mins)
51434 ± 1507

(85.7 ± 2.5 mins)

Ensemble-DAgger + MET 0.935 ± 0.019 2502 ± 228 0.707 ± 0.023
18216 ± 165

(30.4 ± 0.3 mins)
13474 ± 631

(7.40 ± 0.35 mins)
48125 ± 900

(80.2 ± 1.5 mins)

Table 5: The results considering the Total Expert Time i.e. the total number of frames on which the
expert had to be involved to provide an action. In the case of Ensemble-DAgger, the expert action
is needed at each time step to compute the discrepancy measure between the mean action of the
ensemble of policies and the expert action. The time spent in minutes is computed with a typical
frame rate of 30 for HalfCheetah (arbitrary) and 60 with one action taken every 6 frames, for the two
game environments.

19


	Introduction
	Preliminaries and Related Models
	Random Network Distillation-based DAgger
	Experiments
	Results

	Conclusion and limitations
	Acknowledgements
	Reproducibility Statement
	Experimental Details
	Interactive session visualizations
	Ablation Study
	RND-DAgger on HalfCheetah
	Minimal Expert Time focus

	Total expert time comparisons

