
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOLVE TO ADAPT, NOT GUESS: A GRADIENT-FREE
AND ROBUST FRAMEWORK FOR LAYER-WISE FINE-
TUNING VIA EVOLUTIONARY LEARNING RATE OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning pretrained neural networks for domain adaptation requires careful
adjustment of layer-specific learning rates, yet existing strategies often rely on
manual heuristics or global schedules that fail to capture diverse adaptation pat-
terns. This challenge is amplified in data-scarce settings, where gradient-based
hyperparameter optimization suffers from high variance. To this end, we present
REVO-Tune, which systematically employs evolutionary optimization to discover
optimal layer-specific learning rates during fine-tuning neural networks automati-
cally. Our approach introduces two encoding strategies: binary representation that
selectively adapts layers with a shared global rate for computational efficiency, and
continuous representation that assigns per-layer learning rates for fine-grained con-
trol. Both strategies use gradient-free population-based search to explore optimal
configurations. Across diverse datasets and architectures, REVO-Tune consis-
tently improves fine-tuning performance, yielding 2-4% higher accuracy and 1-3%
higher AUC than standard fine-tuning approaches. The continuous encoding ex-
cels in performance-critical scenarios, while binary encoding offers substantial
efficiency-accuracy trade-offs. Our empirical analysis demonstrates that evolution-
ary optimization can effectively complement modern adaptive optimizers, providing
practical improvements for automated fine-tuning in resource-constrained environ-
ments where manual hyperparameter tuning is impractical. Code is provided as
supplementary material.

1 INTRODUCTION

Deep neural networks (DNNs) demonstrate exceptional performance across domains through their
ability to learn hierarchical representations from raw data Krizhevsky et al. (2017); LeCun et al.
(2015). However, DNNs suffer performance deterioration when confronted with distribution shifts
between source pretraining and target datasets Recht et al. (2019); Hendrycks et al. (2019); Koh et al.
(2021). This phenomenon occurs due to statistical disparities from changes in data collection methods,
environmental variations, or demographic differences, leading to mismatched representations and
reduced generalization Hendrycks & Dietterich (2019); Koh et al. (2021). For instance, DNNs trained
on high-quality studio images struggle with real-world images containing noise, blur, or varying
lighting conditions Saenko et al. (2010).

Addressing distribution shifts is crucial for developing robust DNN models that perform consistently
across scenarios. Researchers have proposed strategies to mitigate these shifts, including transfer
learning (domain adaptation) He et al. (2024), domain generalization (data augmentation and meta-
learning) Ding et al. (2022); Liu et al. (2022b), and unsupervised approaches (self-supervised learning
and unsupervised domain adaptation) Dragoi et al. (2022); Dasgupta et al. (2022). These strategies
align source and target distributions by learning invariant representations, simulating varied scenarios,
or imposing consistency constraints Tzeng et al. (2017).

Fine-tuning pre-trained models on limited labeled target datasets has emerged as an effective adapta-
tion strategy that outperforms domain generalization and unsupervised approaches Kirichenko et al.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

BUSI

HAM10000

Le
av

es

SRSMASResNet-18

Full finetuning
First layer

Last layer
Our REVO-Tune (Bin)

Our REVO-Tune (Cont.)

(a) ResNet-18

BUSI

HAM10000

Le
av

es

SRSMASResNet-50

Full finetuning
First layer

Last layer
Our REVO-Tune (Bin)

Our REVO-Tune (Cont.)

(b) ResNet-50

Figure 1: Motivation for layer-wise learning rate optimization. Radar plots compare five fine-tuning
strategies across four diverse datasets (BUSI, HAM10000, Leaves, SRSMAS) at 40% training data
using ResNet-18 and ResNet-50. Radii represent normalized AUC performance

(2022). This technique adapts models with general representations from large source datasets to
smaller, task-specific datasets, leveraging transferable knowledge while customizing components
for the target domain Lee et al. (2022). Fine-tuning efficacy depends on balancing adaptation to
novel data while preserving valuable pre-trained knowledge, mitigating overfitting while enabling
adjustment to domain-specific characteristics Kumar et al. (2022).

Consequently, several techniques have been developed to optimize the trade-off between adaptation
and preservation of pre-trained knowledge. The most common approach uses lower learning rates
than during pre-training, enabling gradual adaptation Kornblith et al. (2019); Li et al. (2020). Another
strategy selectively freezes and gradually unfreezes layers from top to bottom, preserving low-level
features while allowing higher-level adaptation Howard & Ruder (2018); Mukherjee & Awadallah
(2019). Researchers have also explored assigning different learning rates to layers—higher rates for
upper and lower rates for bottom layers—facilitating rapid high-level adaptation while maintaining
stable low-level features Ro & Choi (2021); Shen et al. (2021).

Although existing fine-tuning methods show promising results, they have critical limitations. Lower
learning rates may cause slow convergence, requiring more computational resources and leading to
poor adaptation Smith & Topin (2019). Selectively freezing and unfreezing layers is susceptible to
hyperparameter tuning, where inappropriate decisions significantly degrade performance Lee et al.
(2022). Setting different learning rates requires tuning multiple hyperparameters, causing complexity
and training instability. Improperly calibrated rates may change layers too rapidly, overriding valuable
features. Additionally, some techniques require trial-and-error methods and gradient information that
may not be consistently available or computationally feasible Choi et al. (2024).

To address these limitations, we present REVO-Tune, which applies evolutionary optimization to
automatically discover optimal layer-specific learning rates during fine-tuning. Our approach is moti-
vated by the observation that different layers may require distinct learning rates to adapt effectively to
target tasks. REVO-Tune uses gradient-free population-based search to explore layer-wise learning
rate configurations, making it particularly suitable for data-scarce scenarios where gradient-based
hyperparameter optimization may be unreliable due to high variance. The method systematically
searches for learning rate patterns that balance adaptation to target data while preserving valuable
pretrained knowledge.

REVO-Tune approach addresses the challenge of representing layer-wise learning rate configurations
for evolutionary optimization through two encoding strategies. The binary encoding selectively
adapts layers using a shared global learning rate for computational efficiency, while the continuous

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

encoding assigns individual learning rates to each layer for fine-grained control. Both strategies use
mixed variable CMA-ES to evolve populations of candidate solutions over successive generations
through fitness evaluation, selection, and adaptation operations.

Figure 1 illustrates that existing fine-tuning strategies exhibit inconsistent performance across target
domains. While full fine-tuning may excel on one dataset, it underperforms significantly on others;
similarly, layer-specific approaches such as first-layer and last-layer fine-tuning demonstrate dataset-
dependent effectiveness. This performance variability motivates the need for adaptive layer-wise
learning rate optimization. Our proposed REVO-Tune method addresses this limitation by maintaining
consistently high performance across all evaluated datasets through evolutionary optimization for
automated layer-specific learning rate discovery.
Our key technical contributions and breakthroughs in this work include the followings:

• We employ CMA-ES evolutionary optimization to automatically discover layer-specific
learning rates for neural network fine-tuning, providing an alternative to manual hyperpa-
rameter search.

• We develop and evaluate binary and continuous encoding strategies for representing layer-
wise learning rate configurations in evolutionary optimization for fine-tuning tasks.

• Extensive experiments were conducted on multiple datasets and models to validate the effi-
cacy of the proposed approach. Results demonstrate that the proposed method outperforms
existing fine-tuning techniques, underscoring its versatility and robustness.

• We show that evolutionary optimization is particularly effective in data-scarce scenarios
and analyze the discovered layer-wise learning rate patterns across different datasets and
training conditions.

2 RELATED WORKS

Recent advancements in fine-tuning strategies for DNNs have highlighted the effectiveness of differ-
ential learning rates across layers. Discriminative fine-tuning Howard & Ruder (2018) applies lower
learning rates to early layers to preserve generalizable features while allowing greater adaptation in
later layers. Several approaches have refined layerwise adjustments, including cyclical learning rates
Smith (2017) and the Lookahead optimizer Zhang et al. (2019), which enables granular modifications
through parameter space exploration. Automated approaches have gained attention, with AutoLR Ro
& Choi (2021) combining layerwise pruning with automatic tuning, while other methods initialize
layerwise rates using gradient magnitudes to enhance stability Lee et al. (2022).

Recent advancements emphasize the importance of tailoring fine-tuning processes. The Fisher
Information Matrix has been used to identify crucial adaptation layers for evolving data streams
Park et al. (2024), while evolutionary search techniques for selective layer freezing have achieved
state-of-the-art few-shot learning Shen et al. (2021). However, this method Shen et al. (2021) searches
among K candidate learning rates for M layers, requiring M logK variables using binary encoding,
which can be computationally intensive. While these layerwise learning strategies have advanced deep
learning, they face limitations including slower convergence, hyperparameter sensitivity, gradient
dependency, and increased computational complexity.

Fine-tuning DNNs requires recognizing the unequal contribution of individual layers to model
performance. This uneven distribution significantly impacts overall accuracy Lee et al. (2022), with
some layers contributing substantially while others exert minimal influence—a critical consideration
often overlooked in fine-tuning. Experimental evidence Kaplun et al. (2023) demonstrates that layer
importance cannot be reliably predicted from structural properties such as depth, parameter count, or
spatial resolution. The same architecture can exhibit dramatically different fine-tuning profiles across
tasks or initializations, revealing non-linear relationships between layer properties and performance
Kaplun et al. (2023). Simplistic assumptions about architectural characteristics frequently lead to
suboptimal fine-tuning strategies.

This complexity Lee et al. (2022); Kaplun et al. (2023) necessitates careful analysis of specific
fine-tuning profiles for each architecture-dataset combination. Effective fine-tuning must balance
adaptation to target characteristics while preserving valuable pre-trained representations. Evolutionary
optimization offers an automated alternative to manual tuning, efficiently exploring the search space

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 0 1 0 0 1

Binary Encoding

ƞ1 ƞ2 ƞ3 ƞ4 ƞ5 ƞ6

Continuous Encoding

Ƞ1= 0.9 Ƞ2= 0.6 Ƞ6= 0.2…

Encoding Schemes & Optimization

Population

Selection

Fitness 

Evaluation
Adaptation

New 

Generation

Train -- Freeze --1 0

CMA-ES

Pre-trained 

Model (θP)

Fine-tuned 

Model (θf)

Target Dataset

Figure 2: The overall framework of the proposed method. First, we initialize the model with the
pre-trained weights θp, which are obtained from training on a large-scale generic dataset such as
ImageNet Deng et al. (2009). Then, the evolutionary optimization process is initiated using one of
two different encoding strategies. During the optimization process, the model is fine-tuned using the
corresponding update rule with the generated solution and evaluated on the validation set. After the
optimization, the best-performing genome is selected as the final learning rate representation, and the
resulting model weights are set as the final weights for evaluation on the test set.

of fine-tuning strategies through iterative evolution of candidate solutions. These algorithms discover
optimal configurations that balance model adaptation with knowledge retention through systematic
mutation and recombination.

3 OUR APPROACH: REVO-TUNE

This section outlines the problem statement and presents the proposed method that employs evolu-
tionary search to optimize layer-specific learning rates for neural network fine-tuning.

3.1 OPTIMIZATION PROBLEM

The problem setting involves two datasets with distinct distributions: a larger dataset that follows the
source distribution Psrc, and a relatively smaller dataset Dtgt that adheres to the target distribution Ptgt.
The primary objective is to achieve high accuracy on the target data by utilizing the related yet distinct
source distribution. This challenge is common in real-world applications requiring adaptability across
varying data distributions.

First, a network is pre-trained to minimize the loss on the source dataset, resulting in the model θp,
which has high accuracy on the source distribution. Next, a fine-tuning stage is performed, starting
from the pretrained model parameters and minimizing the loss on the labeled target data Dtgt, resulting
in the model θf . The proposed method employs an evolutionary search to optimize layerwise learning
rates and enhance the fine-tuning performance of the model. This approach employs two encoding
strategies to facilitate layer-specific adjustments during the evolutionary optimization process using
the loss on validation set as an objective Ltgt(Dtgt, θf ) = E(x,y)∼Ptgt [l((x, y), θf )]. Finally, the
performance of the fine-tuned model θf is evaluated on held-out data from the target distribution.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 OVERALL FRAMEWORK

This section presents the proposed method for enhancing DNN fine-tuning through evolutionary
search. The core concept involves optimizing layer-specific learning rates, enabling more precise
control than using a single global learning rate across all layers. Fig. 2 depicts the overall framework.
First, pretrained model weights θp are obtained from a large-scale dataset such as ImageNet Deng
et al. (2009). Next, evolutionary optimization is initiated with a population where each genome
represents layer configurations, with genes encoding either layer selection (binary) or learning rate
values (continuous). The method employs two encoding schemes for layer-specific control: binary
and continuous representation.

After initialization, the fitness of each genome is evaluated. The DNN with pretrained weights is
initialized, then the encoded layer configuration is applied, involving either freezing/fine-tuning
layers (binary representation) or setting layer-specific learning rates (continuous representation). The
model is fine-tuned using the generated solution and corresponding update rule on a portion of the
target dataset with the configured layer-wise settings. Performance is then evaluated on a held-out
validation set from the target dataset, serving as the fitness score for each genome. This evaluation
enables the evolutionary algorithm to assess the effectiveness of each encoded layer configuration
and estimate how well it adapts to the target task. This approach allows robust comparison of various
layer configurations and their influence on model performance.

The fitness score guides the evolutionary search, enabling the algorithm to iteratively refine layer
configurations and discover the optimal setup for fine-tuning on the target task. After optimization, the
best-performing genome is selected as the final learning rate representation, and the resulting model
weights are used for evaluation on the test set. Consistent evaluation across binary and continuous
representation strategies ensures fair comparison of the two methods.

3.3 ENCODING STRATEGIES

The encoding strategy is crucial in evolutionary optimization because it defines the representation of
candidate solutions as individuals in the population. These strategies significantly affect the efficiency,
effectiveness, and applicability of the algorithm across optimization problems. The proposed method
employs two distinct encoding strategies for layer-specific control in the evolutionary process: binary
and continuous representation.

3.3.1 BINARY REPRESENTATION

The first approach uses binary representation for the genome in the evolutionary algorithm population.
This representation encodes configurations for selectively freezing or fine-tuning individual layers.
Each genome corresponds to a unique configuration, with each gene representing a specific DNN
layer. The gene holds a binary value of 0 or 1, as depicted in Fig. 2. A value of 0 designates that
layer weights remain frozen during fine-tuning, preserving pretrained knowledge, while a value of 1
indicates the layer is updated and fine-tuned to the target task.

All layers marked for fine-tuning (gene value of 1) in this binary representation strategy share a single,
fixed learning rate. This simplifies the learning rate selection process by requiring the evolutionary
algorithm to optimize only one global learning rate for fine-tuned layers rather than individual rates
for each layer. The binary strategy balances flexibility and efficiency by identifying the optimal layer
subset to adapt using this simplified scheme. The evolutionary process can pinpoint critical layers for
fine-tuning without the complexity of optimizing unique learning rates per layer.

3.3.2 CONTINUOUS REPRESENTATION

In continuous representation, each genome is structured as a vector where each gene directly encodes
the learning rate of the corresponding model layer. Learning rates are represented as continuous
values in [0, 1]. Values closer to 0 indicate slower adaptation during fine-tuning, allowing gradual
changes to preserve pretrained knowledge. Values closer to 1 allow faster weight modification,
facilitating rapid adaptation to the target task.

This continuous representation provides fine-grained control over the fine-tuning process. The
evolutionary algorithm can explore a broader range of configurations and find optimal adaptation

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

speeds across network layers by assigning tailored learning rates to each layer. This control is
beneficial for complex neural network architectures where layers have different roles and sensitivities
to fine-tuning. By tuning learning rates at the individual layer level, the continuous representation
strategy better accommodates the unique characteristics of each layer, more effectively fine-tuning
the model on the target task.

3.4 WEIGHT UPDATE RULE

The weight update rule outlines the systematic process by which network parameters are iteratively
adjusted as the model learns from a dataset. The weight update rule for both encoding schemes is as
follows:

Binary Representation: For a layer l, let bl ∈ {0, 1} be the binary value in the genome, with 0
indicating a frozen layer and 1 a fine-tuned layer. Let η be the global learning rate. The weight update
rule is:

θt+1
l = θtl − bl ∗ η ∗ ∇θlL (1)

Continuous Representation: Here, each layer l has an associated learning rate ηl ∈ [0, 1] encoded
within the genome. The weight update rule is:

θt+1
l = θtl − ηl ∗ ∇θlL (2)

In both cases, ∇θlL represents the gradient of the loss function concerning layer weights l, computed
using standard backpropagation. Evolutionary optimization applies nature-inspired techniques,
such as evaluation, selection, and adaptation, in the proposed approach. This evolutionary process
continues to discover highly effective layerwise fine-tuning strategies over multiple generations.

3.5 EVOLUTIONARY OPTIMIZATION METHOD

We employ mixed-variable CMA-ES Uchida et al. (2024), a derivative-free optimization algorithm
designed for mixed discrete-continuous problems, to determine layer-specific learning rates through
progressive adaptation of a multivariate normal distribution:

1. Initialization: Candidate solutions are sampled from a multivariate normal distribution
parameterized by a mean vector and covariance matrix.

2. Evaluation: Each candidate undergoes fitness assessment on a validation set, measuring
fine-tuning performance improvement.

3. Selection: Mixed-variable CMA-ES selects best-performing candidates based on fitness
scores.

4. Adaptation: The distribution’s covariance matrix and mean adapt based on selected solutions,
focusing search on promising regions.

5. Sampling: New candidates are sampled and evaluated iteratively until convergence.

For binary encoding, mixed-variable CMA-ES optimizes discrete layer selections and continuous
global learning rates. For continuous encoding, it optimizes per-layer learning rates while maintaining
covariance adaptation properties for mixed variable types.

3.6 SOME ADVANTAGES IN DATA-SCARCE SCENARIOS

Traditional gradient-based fine-tuning methods require extensive labeled data from the target domain
to compute accurate gradient estimates. When data are limited, these gradient calculations become
unreliable due to increased noise, hindering optimization and leading to suboptimal performance. The
proposed REVO-Tune approach, employing CMA-ES for layerwise learning rate optimization, offers
significant advantages in low-data regimes. CMA-ES operates in a black-box manner, relying solely
on final performance metrics (e.g., validation accuracy) to guide optimization. This eliminates the
need for explicit gradient computations and associated susceptibility to noise in data-scarce scenarios.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We let L(Dtgt, θ) represent the model performance metric on the validation set, with θ denoting
the entire set of model weights. The goal of CMA-ES is to optimize this objective function:
minimize L(Dtgt, θ). By directly focusing on the evolutionary search for optimal model per-
formance, our CMA-ES-based method effectively navigates fine-tuning even when labeled target
data is limited.

Black-box, gradient-free optimization approaches like CMA-ES offer several advantages in data-
scarce scenarios. First, they have reduced sensitivity to noise that emerges when gradient estimates
are computed with limited data, allowing the optimization process to filter out misleading noisy
gradients. Second, black-box methods demonstrate applicability to non-smooth or non-differentiable
objective functions where gradient-based methods may struggle.

4 EXPERIMENTS

This section details our experimental methodology, encompassing dataset characteristics, implemen-
tation specifications, and a comprehensive analysis of empirical results.

4.1 EXPERIMENTAL SETUP

We evaluated the proposed approach on four diverse datasets: Structure Rosenstiel School of Marine
and Atmospheric Science (SRSMAS) Gómez-Ríos et al. (2019), a dataset of coral reef types; Breast
Ultrasound Images (BUSI) Al-Dhabyani et al. (2020); Human Against Machine with 10000 training
images (HAM10000)Tschandl et al. (2018), a dermatoscopic image dataset of skin lesions; and
Leaves Rauf et al. (2019), a dataset of citrus leave diseases. These datasets span different applications,
including underwater imaging, medical imaging, and plant classification, allowing the assessment of
the generalizability of the proposed method across diverse domains.

We conducted experiments using two well-known DNN architectures: ResNet-18 and ResNet-50
He et al. (2016). These models were trained on the ImageNet Deng et al. (2009) dataset and served
to initialize the fine-tuning experiments. Their performance was evaluated using the area under
the receiver operating characteristic curve (AUC) and the overall classification accuracy. The AUC
provides a comprehensive measure of the trade-off between the true- and false-positive rates, whereas
accuracy quantifies the overall correctness of the predictions. Further, we compared the proposed
method against several baselines: full fine-tuning, first-layer fine-tuning, last-layer fine-tuning, a
relative gradient norm (auto-RGN) Lee et al. (2022) that sets the learning rates based on the gradient
norm of the layers, and a set encoding-based Shen et al. (2021) evolutionary algorithm (a genetic
algorithm approach that optimizes a set of learning rates for each layer).

In our implementation, we use CMA-MV with a population size of 10 and run optimization for 10
iterations, providing a computational budget of 100 evaluations. For binary encoding, the algorithm
jointly optimizes binary layer selections and a global learning rate of 1e-3. For continuous encoding,
it optimizes individual learning rates for each layer in the range [0,1]. These parameters provide an
effective balance between exploration and computational efficiency for the layer-wise optimization
task. For the gradient-based baselines, we tuned the learning rate and weight decay using the
HyperOpt Bergstra et al. (2013) search algorithm with successive halving, as implemented in the
Ray Tuner Liaw et al. (2018) library, with the same computational budget as the evolutionary
algorithms. Other hyperparameters, such as the batch size, are consistent across all methods and
datasets, following the recommended settings in the original papers for the respective models.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Tables 1 - 2 present the experimental results obtained by comparing the proposed REVO-Tune
approach with two strategies (binary and continuous representation) against the baseline schemes.
The experimental results reveal that the proposed REVO-Tune using the continuous representation
strategy consistently outperforms the baselines (i.e., full fine-tuning, first-layer fine-tuning, last-layer
fine-tuning, auto-RGN Lee et al. (2022), and set encoding Shen et al. (2021)) across all four datasets
(BUSI, HAM10000, Leaves, and SRSMAS) with varying training data sizes.

REVO-Tune with binary representation also displays strong performance, often surpassing baselines
and occasionally matching continuous representation results, indicating that even simplified layer

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: ResNet–18 results across BUSI Al-Dhabyani et al. (2020), HAM10000 Tschandl et al.
(2018), Leaves Rauf et al. (2019), and SRSMAS Gómez-Ríos et al. (2019). For REVO–Tune we
report mean ± std over 3 runs. Baselines include full, first, and last layer fine-tuning, Auto-RGN Lee
et al. (2022), and Set encoding Shen et al. (2021). Best per column is in bold.

Dataset

BUSI HAM10000 Leaves SRSMAS

D
at

a
si

ze

Method AUC Acc AUC Acc AUC Acc AUC Acc

0.
05

Full finetuning 81.2 67.0 86.0 73.4 96.1 82.3 86.8 42.2
First layer 59.0 55.0 85.4 72.0 94.4 74.7 74.0 18.5
Last layer 67.6 56.2 86.8 71.5 94.2 71.6 80.3 20.5
Auto-RGN 73.4 61.2 86.3 72.5 93.7 75.1 81.9 25.3
Set encoding 86.7 70.9 84.9 75.1 96.2 79.3 87.0 49.4
REVO-Tune (Bin) 81.8±0.5 67.5±1.9 86.5±0.5 74.5±0.2 96.5±1.8 83.6±2.1 84.3±0.8 44.2±1.1
REVO-Tune (Cont.) 86.1±1.5 72.3±0.9 89.1±0.4 76.8±0.2 97.2±0.1 84.9±0.4 87.0±0.9 39.6±1.6

0.
2

Full finetuning 92.4 80.8 92.7 80.7 97.7 87.5 95.4 59.5
First layer 83.4 65.2 92.5 78.3 97.6 84.7 94.0 56.3
Last layer 84.8 70.7 90.5 74.7 97.4 84.2 94.1 49.0
Auto-RGN 87.2 74.1 92.5 78.0 97.1 82.3 94.5 61.5
Set encoding 92.7 82.1 93.3 81.0 98.4 89.9 95.9 72.9
REVO-Tune (Bin) 90.4±0.2 79.3±0.7 93.4±1.1 80.6±0.9 98.7±0.5 88.0±1.7 96.5±0.5 71.3±2.2
REVO-Tune (Cont.) 92.0±3.9 80.1±5.5 94.0±0.6 81.4±1.5 98.6±0.2 90.7±1.7 96.7±3.2 72.5±5.0

0.
4

Full finetuning 94.3 82.4 94.7 83.4 98.5 91.4 97.6 80.0
First layer 88.1 71.2 91.5 75.5 98.2 91.0 93.9 62.4
Last layer 86.9 73.4 92.2 76.4 98.3 90.6 96.6 72.1
Auto-RGN 90.7 75.3 94.5 81.1 98.5 90.6 97.8 81.2
Set encoding 94.2 85.3 93.3 82.0 98.5 95.1 97.5 84.2
REVO-Tune (Bin) 93.0±0.7 81.1±0.5 96.4±0.3 84.2±0.5 98.5±0.4 91.4±1.2 97.9±0.2 83.0±1.2
REVO-Tune (Cont.) 94.8±0.8 84.3±0.3 95.3±0.4 83.0±0.9 98.8±0.2 94.3±1.3 98.0±0.2 84.2±1.2

0.
6

Full finetuning 93.5 82.7 95.2 85.8 98.4 89.4 99.2 83.1
First layer 89.5 71.8 94.6 81.7 98.7 93.5 97.6 72.3
Last layer 89.3 73.7 93.2 77.2 97.2 88.6 98.1 77.1
Auto-RGN 93.1 80.1 95.4 82.1 97.5 89.4 98.1 83.1
Set encoding 93.5 84.0 95.7 85.9 98.6 94.3 99.4 85.5
REVO-Tune (Bin) 95.0±0.2 84.0±1.2 96.7±1.5 86.5±1.9 98.8±0.1 92.7±1.3 99.5±0.3 86.7±2.0
REVO-Tune (Cont.) 95.9±2.6 88.5±6.5 96.5±1.2 87.3±1.1 99.4±0.2 94.3±1.4 99.5±0.1 86.7±2.0

freezing decisions significantly improve fine-tuning effectiveness. The advantages of REVO-Tune
are particularly pronounced in low-data regimes. On the BUSI dataset with only 5% training data,
continuous representation achieves 86.1% AUC and 72.3% accuracy with ResNet-18, substantially
outperforming full fine-tuning (81.2% AUC, 67.0% accuracy). This trend is consistent across all
datasets, highlighting the robustness of the proposed approach in data-scarce scenarios.

Our experiments reveal that training data size significantly influences the performance of fine-tuning
strategy. As training data increases, the performance gap between REVO-Tune and baselines narrows,
aligning with expectations that models adapt more effectively with sufficient data. Nevertheless,
despite larger training sizes (e.g., 60%), REVO-Tune with continuous representation maintains its
advantage. The Leaves dataset using ResNet-18 with 60% training data achieves 99.4% AUC and
94.3% accuracy versus 98.4% and 89.4% for full fine-tuning, showing that optimizing layer-wise
learning rates benefits even data-rich scenarios.

Further, the proposed method demonstrates robustness across neural architectures, with continuous
representation consistently outperforming baselines on both ResNet-18 and ResNet-50. Performance
gains are more pronounced with the deeper ResNet-50, particularly in low-data settings. On the
SRSMAS dataset with 5% training data, continuous representation achieves 87.6% AUC and 50.6%
accuracy using ResNet-50, compared to 86.3% and 37.0% for full fine-tuning, indicating effective
handling of deeper models with limited data.

Compared to the set encoding approach Shen et al. (2021), which applies evolutionary algorithms
to optimize learning rates per layer, REVO-Tune performs comparably or slightly better across
most datasets and training sizes. Our approach’s advantage lies in its simplicity and computational
efficiency: directly encoding learning rates as continuous or binary values reduces search space
complexity compared to managing multiple learning rates per layer, enabling faster convergence and
reduced computational overhead during evolutionary optimization.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: ResNet–50 results across BUSI Al-Dhabyani et al. (2020), HAM10000 Tschandl et al.
(2018), Leaves Rauf et al. (2019), and SRSMAS Gómez-Ríos et al. (2019). For REVO–Tune we
report mean ± std over 3 runs. Baselines include full, first, and last layer fine-tuning, Auto-RGN Lee
et al. (2022), and Set encoding Shen et al. (2021). Best per column is in bold.

Dataset

BUSI HAM10000 Leaves SRSMAS

D
at

a
si

ze

Method AUC Acc AUC Acc AUC Acc AUC Acc

0.
05

Full finetuning 76.2 63.9 82.4 73.5 93.2 70.7 86.3 37.0
First layer 61.5 56.6 82.3 69.3 93.0 71.4 82.2 28.2
Last layer 62.7 56.6 84.1 70.6 91.3 63.3 82.2 26.9
Auto-RGN 59.1 55.4 79.1 69.6 87.6 59.4 81.7 21.1
Set encoding 84.2 68.7 85.4 75.8 95.7 81.7 82.0 38.0
REVO-Tune (Bin) 71.1±4.2 58.3±4.9 88.3±0.6 76.5±0.7 92.8±3.1 66.4±1.9 83.5±2.9 30.8±2.2
REVO-Tune (Cont.) 86.3±4.3 71.3±0.3 87.9±1.7 76.6±1.7 95.8±0.9 76.6±0.5 87.6±0.8 50.6±0.7

0.
2

Full finetuning 89.1 74.6 91.7 77.8 96.2 81.5 95.9 66.4
First layer 73.6 60.9 92.2 76.9 97.5 83.9 93.9 59.1
Last layer 80.3 65.4 90.4 75.1 96.5 81.7 95.0 62.3
Auto-RGN 69.0 55.1 90.7 75.1 95.9 68.7 93.9 53.8
Set encoding 90.4 76.7 93.9 80.6 98.0 88.8 97.0 76.1
REVO-Tune (Bin) 88.8±0.6 73.7±1.4 93.3±0.8 81.7±0.3 97.9±0.4 82.8±2.0 96.3±0.6 73.3±3.3
REVO-Tune (Cont.) 92.6±0.5 81.0±1.6 94.5±0.6 81.5±0.5 98.8±0.3 89.9±0.8 97.4±0.3 76.9±0.8

0.
4

Full finetuning 91.5 76.9 94.0 83.3 98.1 90.6 98.0 86.1
First layer 83.8 65.7 94.6 80.4 98.3 89.0 96.9 77.6
Last layer 86.6 71.5 92.4 77.3 97.4 82.4 97.5 75.8
Auto-RGN 78.9 55.1 92.8 77.9 97.6 86.1 96.9 77.0
Set encoding 92.6 80.8 96.6 86.1 97.6 88.6 97.0 82.4
REVO-Tune (Bin) 93.6±0.3 79.8±0.4 95.5±0.4 85.4±0.6 99.0±0.2 92.7±1.3 98.0±0.4 84.8±1.7
REVO-Tune (Cont.) 94.4±0.2 84.9±0.8 95.4±0.2 83.8±0.3 98.9±0.4 93.5±1.1 98.1±0.7 87.9±2.9

0.
6

Full finetuning 92.6 83.3 95.8 84.2 97.2 92.7 99.5 89.2
First layer 87.3 75.6 95.0 82.0 97.9 87.8 97.5 79.5
Last layer 87.4 71.8 93.1 79.4 98.2 86.2 97.9 79.5
Auto-RGN 85.4 69.2 93.9 80.9 96.5 77.2 97.9 80.7
Set encoding 92.7 82.1 96.5 87.1 98.9 91.9 96.2 77.1
REVO-Tune (Bin) 93.7±0.5 84.6±2.0 96.4±0.2 86.6±0.3 98.9±0.3 94.3±1.3 98.7±0.2 86.7±1.8
REVO-Tune (Cont.) 95.3±0.5 86.5±1.6 95.9±0.1 84.9±0.3 99.0±0.7 95.1±3.3 99.4±0.3 91.6±0.6

5 CONCLUSIONS AND FUTURE WORKS

We present REVO-Tune, which applies CMA-ES evolutionary optimization to discover layer-specific
learning rates for neural network fine-tuning automatically. Our approach employs binary and continu-
ous encoding strategies to optimize layer-wise configurations without gradient-based hyperparameter
search. Experiments across four datasets demonstrate consistent improvements over traditional
fine-tuning, achieving 2-4% accuracy and 1-3% AUC gains. The method proves particularly effective
in data-scarce scenarios where gradient-based optimization becomes unreliable. Our analysis reveals
that evolutionary optimization can automatically discover dataset-specific learning rate patterns,
with continuous encoding excelling in performance-critical scenarios and binary encoding providing
computational efficiency.

Future work will explore comparisons with modern hyperparameter optimization methods and
evaluation on larger-scale datasets to validate the approach’s effectiveness further.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. We provide full experimental
details in Section 4.1, including datasets, architectures (ResNet-18/50), evaluation metrics, and CMA-
MV parameters (population 10, 10 iterations, global LR 1e-3 for binary, [0,1] range for continuous).
Baselines were tuned with identical budgets using HyperOpt and successive halving. Results are
reported as mean ± std over three runs, with weight update rules in Eqs. 1–2. Each run required 6
hours on an NVIDIA RTX A5000. Large language models (LLMs) were used only for language
polishing; all ideas, methods, and experiments are by the authors. Source code will be released upon
acceptance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. Dataset of breast
ultrasound images. Data in brief, 28:104863, 2020.

James Bergstra, Dan Yamins, David D Cox, et al. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. SciPy, 13:20, 2013.

Caroline Choi, Yoonho Lee, Annie Chen, Allan Zhou, Aditi Raghunathan, and Chelsea Finn. Autoft:
Robust fine-tuning by optimizing hyperparameters on ood data. arXiv preprint arXiv:2401.10220,
2024.

Avijit Dasgupta, CV Jawahar, and Karteek Alahari. Overcoming label noise for source-free unsuper-
vised video domain adaptation. In Proc. 13th Indian Conf. Comput. Vis., Graph. Image Process.,
pp. 1–9, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yu Ding, Lei Wang, Bin Liang, Shuming Liang, Yang Wang, and Fang Chen. Domain generalization
by learning and removing domain-specific features. Proc. Adv. Neural Inf. Process. Syst., 35:
24226–24239, 2022.

Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin Brad. Anoshift: A
distribution shift benchmark for unsupervised anomaly detection. Proc. Adv. Neural Inf. Process.
Syst., 35:32854–32867, 2022.

Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, ASM Shihavuddin, and Francisco Herrera. Coral
species identification with texture or structure images using a two-level classifier based on convo-
lutional neural networks. Knowledge-Based Systems, 184:104891, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Zelin He, Ying Sun, and Runze Li. Transfusion: Covariate-shift robust transfer learning for high-
dimensional regression. In Proc. Int. Conf. Artif. Intell. Statist., pp. 703–711. PMLR, 2024.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In Proc. Int. Conf. Learn. Represent., 2019.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In International conference on machine learning, pp. 2712–2721. PMLR, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

Gal Kaplun, Andrey Gurevich, Tal Swisa, Mazor David, Shai Shalev-Shwartz, and Eran Malach.
Less is more: Selective layer finetuning with subtuning. arXiv preprint arXiv:2302.06354, 2023.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning, pp.
5637–5664. PMLR, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2661–2671, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint
arXiv:2210.11466, 2022.

Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and
Stefano Soatto. Rethinking the hyperparameters for fine-tuning. arXiv preprint arXiv:2002.11770,
2020.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022a.

Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Rong Jin, Xiangyang Ji, and Antoni B Chan.
An empirical study on distribution shift robustness from the perspective of pre-training and data
augmentation. arXiv preprint arXiv:2205.12753, 2022b.

Subhabrata Mukherjee and Ahmed Hassan Awadallah. Distilling bert into simple neural networks
with unlabeled transfer data. arXiv preprint arXiv:1910.01769, 2019.

Junyoung Park, Jin Kim, Hyeongjun Kwon, Ilhoon Yoon, and Kwanghoon Sohn. Layer-wise
auto-weighting for non-stationary test-time adaptation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 1414–1423, 2024.

Hafiz Tayyab Rauf, Basharat Ali Saleem, M Ikram Ullah Lali, Muhammad Attique Khan, Muhammad
Sharif, and Syed Ahmad Chan Bukhari. A citrus fruits and leaves dataset for detection and
classification of citrus diseases through machine learning. Data in brief, 26:104340, 2019.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Youngmin Ro and Jin Young Choi. Autolr: Layer-wise pruning and auto-tuning of learning rates in
fine-tuning of deep networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 2486–2494, 2021.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In Proc. Eur. Conf. Comput. Vis., pp. 213–226. Springer, 2010.

Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng. Partial is better than
all: Revisiting fine-tuning strategy for few-shot learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 9594–9602, 2021.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386. SPIE, 2019.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9,
2018.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 7167–7176, 2017.

Kento Uchida, Ryoki Hamano, Masahiro Nomura, Shota Saito, and Shinichi Shirakawa. Cma-es for
discrete and mixed-variable optimization on sets of points. In International Conference on Parallel
Problem Solving from Nature, pp. 236–251. Springer, 2024.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in neural information processing systems, 32, 2019.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Supplementary Material

TABLE OF CONTENTS

A. Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.1. Layer-wise Learning Rate Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.2. Performance Comparison on Different Models . . . . . . . . . . . . . . . . . . . . . . . . 14
A.3. Computational Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B. Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ABLATION STUDIES

A.1 LAYER-WISE LEARNING RATE PATTERNS

Figures 3 and 4 visualize the magnitudes of the optimized learning rates across datasets and training
data ratios to gain insight into the layerwise learning rate patterns discovered by the proposed
evolutionary algorithm. Figure 3 reveals distinct patterns in the learning rate distributions across
datasets. For instance, in the HAM10000 dataset, the algorithm assigns lower learning rates to
earlier layers, suggesting the importance of adapting low-level features for this task. In contrast, the
SRSMAS dataset has a more uniform distribution of learning rates, indicating the need for balanced
adaptation across all layers.

Figure 4 illustrates the influence of the training data size on the learning rate patterns. As the
proportion of training data increases, the algorithm tends to assign higher learning rates to larger
layers. This observation aligns with the expectation that more training data allow the model to adapt
a more significant portion of the parameters to the target domain. These visualizations highlight the
ability of the evolutionary algorithm to discover dataset-specific and data-size-dependent learning
rate patterns, enabling effective fine-tuning adaptation.

1 10 20 30 40 50
Layers

BUSI

1 10 20 30 40 50
Layers

HAM10000

1 10 20 30 40 50
Layers

SRSMAS

1 10 20 30 40 50
Layers

Leaves

Figure 3: Distribution of the learning rate magnitudes for each dataset

1 10 20 30 40 50
Layers

0.6

1 10 20 30 40 50
Layers

0.4

1 10 20 30 40 50
Layers

0.2

1 10 20 30 40 50
Layers

0.05

Figure 4: Distribution of the learning rate magnitudes for different training data ratios

A.2 PERFORMANCE COMPARISON ON DIFFERENT MODELS

This study presents an ablation study conducted using various well-known DNN architectures
beyond the ResNet models evaluated in the principal experiments to validate the effectiveness of the
proposed layerwise learning rate optimization approach. Specifically, ConvNext Liu et al. (2022a),
EfficientNet Tan & Le (2019), MobileNet Howard et al. (2017), and ShuffleNet Zhang et al. (2018)
were evaluated on the target dataset. Table 3 compares the proposed method and the full fine-tuning
baseline across these diverse model architectures. Classification accuracy and AUC metrics provide a
comprehensive evaluation.

Table 3: We compare the Accuracy and AUC of different models using Full finetuning fine-tuning
and the proposed method. We search for the best learning rate for the Full finetuning method using
Ray tuner Liaw et al. (2018)

Full finetuning fine-tuning REVO-Tune (Binary Rep.) REVO-Tune (Cont. Rep.)

Accuracy AUC Accuracy AUC Accuracy AUC

ConvNext 0.777 0.9846 0.8667 0.9865 0.8424 0.9849
EfficientNet 0.753 0.9705 0.7697 0.9765 0.8 0.9773
MobileNet 0.7407 0.9611 0.8182 0.9778 0.8424 0.9835
ShuffleNet 0.666 0.9327 0.7576 0.9746 0.7394 0.9636

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The proposed layerwise learning rate optimization method consistently outperformed the full fine-
tuning approach across all considered models. For instance, with the ConvNext architecture, the
proposed method achieved an accuracy of 84.24%, surpassing the full fine-tuning baseline by a
substantial 6.64 percentage points. Similar gains were observed for EfficientNet and MobileNet,
with improved accuracy of 4.7% and 10.17%, respectively. Even the ShuffleNet architecture, which
performed worse overall compared to the other models, saw a notable boost of 7.34 percentage
points in accuracy using the proposed method over the full fine-tuning approach. These consistent
improvements across diverse model families substantiate the general applicability and effectiveness
of the layerwise optimization strategy.

A.3 COMPUTATIONAL EFFICIENCY ANALYSIS

While more computationally intensive than standard fine-tuning, the proposed evolutionary fine-
tuning approach offers a favorable trade-off between computational cost and optimization efficacy.
The proposed method evaluates 100 distinct configurations, comparable to a grid search over five
learning rates, five weight decay values, and four epoch numbers. However, the proposed approach
adaptively refines its search space, concentrating the computational resources on promising regions of
the hyperparameter space and enabling layer-specific learning rate optimization, which is infeasible
with a traditional grid search.

The computational complexity of the algorithm scales linearly with the number of network layers,
making it suitable for modern deep architectures. In contrast, exhaustive grid search methods expo-
nentially grow in complexity as the number of hyperparameters increases, becoming prohibitively
expensive for fine-grained layerwise optimization. The population-based nature of the proposed
algorithm facilitates efficient parallelization in multi–graphics processing units or distributed com-
puting environments, potentially reducing wall-clock time and offsetting increased computational
demands. Despite requiring more computation than a single fine-tuning run, the performance gains
observed across datasets and architectures suggest that this additional computational investment
yields substantial improvements in model adaptation, particularly in scenarios with limited training
data.

B COMPUTATIONAL RESOURCES

Each experimental run could be completed in approximately 6 hours using an NVIDIA RTX A5000
with 24GB GPU memory.

15


	Introduction
	Related Works
	Our Approach: REVO-Tune
	Optimization Problem
	Overall framework
	Encoding strategies
	Binary Representation
	Continuous Representation

	Weight Update Rule
	Evolutionary Optimization Method
	Some Advantages in Data-Scarce Scenarios

	Experiments
	Experimental Setup
	Experimental Results and Analysis

	Conclusions and Future Works
	Ablation Studies
	Layer-wise Learning Rate Patterns
	Performance comparison on Different Models
	Computational Efficiency Analysis

	Computational Resources

