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Abstract

Current status quo in machine learning is to use static datasets of real images
for training, which often come from long-tailed distributions. With the recent
advances in generative models, researchers have started augmenting these static
datasets with synthetic data, reporting moderate performance improvements on
classification tasks. We hypothesize that these performance gains are limited by the
lack of feedback from the classifier to the generative model, which would promote
the usefulness of the generated samples to improve the classifier’s performance.
In this work, we introduce a framework for augmenting static datasets with
useful synthetic samples, which leverages one-shot feedback from the classifier
to drive the sampling of the generative model. In order for the framework to be
effective, we find that the samples must be close to the support of the real data
of the task at hand, and be sufficiently diverse. We validate three feedback criteria
on a long-tailed dataset (ImageNet-LT) as well as a group-imbalanced dataset
(NICO++). On ImageNet-LT, we achieve state-of-the-art results, with over 4%
improvement on underrepresented classes while being twice efficient in terms of
the number of generated synthetic samples. NICO++ also enjoys marked boosts
of over 5% in worst group accuracy. With these results, our framework paves the
path towards effectively leveraging state-of-the-art text-to-image models as data
sources that can be queried to improve downstream applications. A more detailed
version of this work is available on arXiv.

1 Introduction

In the recent year, we have witnessed unprecedented progress in image generative models [22, 36,
40, 42, 39, 45, 3, 29]. The photo-realistic results achieved by these models has propelled an arms
race towards their widespread use in content creation applications, and as a byproduct, the research
community has focused on developing models and techniques to improve image realism [29] and
conditioning-generation consistency [25, 68, 66]. Yet, the potential for those models to become
sources of data to train machine learning models is still under debate, raising intriguing questions
about the qualities that the synthetic data must possess to be effective in training downstream
representation learning models.

Several recent works have proposed using generative models as either data augmentation or sole
source of data to train machine learning models [20, 47, 53, 4, 16, 17, 2, 60], reporting moderate
model performance gains. These works operate in a static scenario, where the models being trained
do not provide any feedback to the synthetic data collection process that would ensure the usefulness
of the generated samples. Instead, to achieve performance gains, the proposed approaches often rely
on laborious ’prompt engineering’ [17] to promote synthetic data to be close to the support of the
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Figure 1: Exemplary samples from different distributions. Subfigures show random samples for
Jack-o-lantern class coming from: (a) ImageNet-LT; (b) Latent Diffusion Model (LDM-unclip v2-1),
conditioned on the text prompt Jack-o-lantern; (c) our pipeline.

real data distribution on which the downstream representation learning model is to be deployed [52].
Moreover, recent studies have highlighted the limited conditional diversity in the samples generated by
state-of-the-art image generative models [18, 10, 34, 5], which may hinder the promise of leveraging
synthetic data at scale. From these perspectives, synthetic data still falls short of real data.

Yet, the generative model literature has implicitly encouraged generating synthetic samples that are
close to the support of the real data distribution by developing methods to increase the controllability
of the generation process [62]. For example, researchers have explored image generative models
conditioned on images instead of only text [9, 6, 7]. These approaches inherently offer more control
over the generation process, by providing the models with rich information from a real image without
relying on ’prompt engineering’ [64, 70, 30]. Similarly, the generative models literature has aimed
to increase sample diversity by devising strategies to encourage models to sample from the tails
of their distribution [48, 61]. However, the promise of the above-described strategies to improve
representation learning is yet to be shown.

In this work, we propose to leverage the recent advances in the generative models to address
the shortcomings of synthetic data in representation learning, and introduce feedback from the
downstream classifier model to guide the data generation process. In particular, we devise a framework
which leverages a pre-trained image generative model to provide useful, and diverse synthetic samples
that are close to the support of the real data distribution, to improve on representation learning tasks.
Since real world data is most often characterized by long tail and open-ended distributions, we focus
on imbalanced classification-scenarios, in which different classes or groups are unequally represented,
to demonstrate the effectiveness of our framework. More precisely, we conduct experiments on
ImageNet Long-Tailed (ImageNet-LT) [33] and NICO++ [69] and show consistent performance gains
w.r.t. prior art. Our contributions can be summarized as:

• We devise a diffusion model sampling strategy which leverages feedback from a pretrained
classifier in order to generate samples that are useful to improve its own performance.

• We find that for the classifier’s feedback to be effective, the synthetic data must lie close to
the support of the downstream task data distribution, and be sufficiently diverse.

• We report state-of-the-art results (1) on ImageNet-LT, with an improvement of 4% on
underrepresented classes while using half the amount of synthetic data than the previous
state-of-the-art; and (2) on NICO++, with improvements of over 5% in worst group accuracy.

Through experiments, we highlight how our proposed approach can be effectively implemented to
enhance the utility of synthetic data. See Figure 1 for samples from our framework.

2 Methodology

Figure 2 presents an overview of our proposed approach. We assume access to a pre-tained diffusion
model, which takes as input an image and a text prompt, and produces an image consistent with the
inputs. We train a classifier fϕ on an imbalanced dataset of real images, Dreal. This initial classifier
serves as a foundation for the subsequent generation of synthetic samples. We then collect a dataset
of synthetic data, Dsyn, by conditioning the pre-trained diffusion model on text prompts formatted as
class-label and random images from the corresponding class. We leverage feedback signals from
the pre-trained classifier to guide the sampling process of the pre-trained diffusion model, promoting
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Figure 2: Overview of our framework. Given an imbalanced dataset, Dreal, a classifier fϕ(x) is
initially trained. Knowing that the validation and test sets are balanced, the goal is to create a balanced
training set using synthetic data. The Diffusion Model, Gθ, is conditioned on a randomly selected
real image and a label-containing text prompt. The model’s generation is also guided by feedback,
C(fϕ), from the classifier to increase usefulness of the synthetic samples. Subsequently, fϕ(x) is
retrained on the combined real and synthetic samples.

useful samples for fϕ. Finally, we train the classifier from scratch on the union of the original real
data and the generated synthetic data, Dreal ∪ Dsyn.

2.1 Increasing the usefulness of synthetic data: feedback-guided synthesis

Feedback-guided synthesis. Inspired by the literature in active learning [63, 65], we propose to
generate useful samples by leveraging feedback from our pre-trained classifier fϕ. More precisely,
we use the classifier feedback to steer the generation process towards generating useful synthetic data.
Leveraging classifier feedback allows for a systematic approach for generating useful samples that
provide gradient for the classification task at hand.

Our proposed feedback-guidance might be reminiscent of classifier-guidance in diffusion mod-
els [14, 22], which drives the sampling process of the generative model to produce images that are
close to the distribution modes. The proposed feedback-guidance is also related to the literature
aiming to increase sample diversity in diffusion models [48, 61], whose goal is to drive the sampling
process of the generative model towards low density regions of the learned distribution. Instead,
the goal of our proposed feedback-guidance is to synthesize samples which are useful for a classifier
to improve its performance.

Formally, let Dreal be a training dataset of real data, fϕ a classifier, and Gθ a state-of-the-art
pre-trained diffusion model. We start by training fϕ on Dreal, and define h ∈ {0, 1} as a binary
variable that describes whether a sample is useful for the classifier fϕ or not. Our goal is to generate
samples from a specific class that are informative, i.e. from the distribution of p(x|h, y). To generate
samples using the reverse sampling process defined in section I, we need to compute ∇x log p(x|h, y).
Following Eq. 12, we have:

∇x log p̂γ,ω(x|h, y) = ∇x log p̂θ(x) + γ∇x log p̂θ(y|x) + ω∇xC(x, y, fϕ), (1)

where C(x, y, fϕ) is a criterion function approximating the sample usefulness (h), and ω is a scaling
factor that controls the strength of the signal from our criterion function. Note that by using
a pre-trained diffusion model, we have access to the estimated class conditional score function
∇x log p̂θ(x|y) as well as the estimated unconditional score function ∇x log p̂θ(x). The derivation
of Eq. 1 is presented in Appendix A.1.

2.1.1 Feedback criteria C(x, y, fϕ)
We examine three feedback criteria: (1) classifier loss, (2) prediction entropy on generated samples,
and (3) hardness score [48]. We explore criteria functions that promote generating samples which are
informative and challenging for the classifier.

Classifier Loss. To focus on generating samples that pose a challenge for the classifier fϕ, we use
the classifier’s loss as the criterion function for the feedback guided sampling. Formally, we define
C(x, y, fϕ) in terms of the loss function L as:

C(x, y, fϕ) = L(fϕ(x), y). (2)
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Since L is the negative log-likelihood, and following Eq. 1, we have:

∇x log p̂ω(x|h, y) = ∇x log p̂θ(x) + γ∇x log p̂θ(y|x)− ω∇x log p̂ϕ(y|x). (3)

Note that p̂θ is the probability distribution modeled by the generative model and p̂ϕ is the probability
distribution modeled by the classifier fϕ. We are effectively moving towards space where under
the classifier fϕ the samples have lower probability2, but simultaneously the term ∇x log p̂θ(y|x)
which is modeled by the generative model, ensures that the samples belong to class y. Figure 13
shows a grid of images as the scaling factor ω and γ is varied.

Entropy. Another measure for the usefulness of the generated samples is the entropy [49] of the
output class distributions for x predicted by fϕ(x). Entropy is a common measure that quantifies
the uncertainty of the classifier on a sample x [63, 58, 54]. We adopt entropy as a criterion, C =
H(fϕ(x)), as higher entropy leads to generating more informative samples. Following Eq. 1, we
have,

∇x log p̂ω(x|h, y) = ∇x log p̂θ(x) + γ∇x log p̂θ(y|x) + ω∇xH(fϕ(x)). (4)

This sampling method encourages the generation of samples for which the classifier fϕ has low
confidence in its predictions. Figure 12 shows a grid of images with varying scaling factors ω and γ.

Hardness Score. In [48], authors introduce the Hardness score that quantifies how difficult or
informative a sample (x, y) is for a given classifier fϕ. Hardness score is defined as:

HS(x, y, fϕ) =
1

2

[(
fϕ(x)− µy

)T
Σ−1

y

(
f(x)− µy

)
+ ln

(
det(Σy)

)
+ k ln(2π)

]
, (5)

where µy and Σy are the sample mean and sample covariance for embeddings of class y and k is the
dimension of embedding space. We directly adopt the Hardness score as a criterion;

∇x log p̂ω(x|h, y) = ∇x log p̂θ(x) + γ∇x log p̂θ(y|x) + ω∇xHS(x, y, fϕ). (6)

This sampling procedure promotes generating samples that are challenging for the classifier fϕ.
Figure 14 shows a grid of images as the scaling factor ω and γ is varied.

2.1.2 Feedback-guided synthesis in LDM

To apply feedback-guided synthesis in latent diffusion models, we need to compute the criteria
function C(fϕ(xt)) at each step of the reverse sampling process with the minor change that the
diffusion is applied on the latent variables z. However, the classifier fϕ operates on the pixel space
x. Consequently, a naive implementation of feedback-guided sampling would require a full reverse
chain to find z0, which would then be decoded to find x0 to finally compute C(f(x0)). Therefore, to
reduce the computational cost, instead of applying the full reverse chain, we use the DDIM predicted
z0 (or equivalently predicted x0 in Eq. 11) at each step of the reverse process. We find that this
approach is computationally much cheaper and is highly effective.

2.2 Towards synthetic generations lying within the distribution of real data

We identify three scenarios where using only text prompt results in synthetic samples that are not
close to the real data used to train machine learning downstream models:

• Homonym ambiguity. A single text prompt can have multiple meanings. For example,
consider generating data for the class iron that could either refer to the ironing machine or
the metal element. See Figure 17 (a) for further illustrations.

• Text misinterpretation. The text-to-image generative model can produce images which are
semantically inconsistent or partially consistent with the input prompt. An example of that
is the class carpenter’s plane from ImageNet-LT. When prompted with this term, the
diffusion model generated images of wooden planes instead of the intended carpentry tools.
See Figure 17 (b) for further illustrations.

2This is in contrast to classifier guidance, which directs the sampling process towards examples that have a
high probability under class y.
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(a) iron (b) carpenter’s plane (c) tucan

Figure 3: Examples highlighting synthetic samples that are not close to the real data distribution
and the need for dual text-image conditioning. Each subfigure depicts columns of images from left
to right: ImageNet-LT, LDM (text), LDM(text and image). See also Figures 7, 8.

• Stylistic Bias. The generative model can produce images with a particular style for some
prompts, which does not match the style of the real data. For instance, the Toucan images
in the ImageNet-LT dataset are mostly real photographs, but the generative model frequently
outputs drawings of this species of bird. See Figure 17 (c) for further illustrations. Also see
more samples in Figures 7, 8.

To alleviate the above-described issues, we borrow from the generative models’ literature a dual-
conditioning technique. In this approach, the generator is conditioned on both a text descriptor
containing the class label and a randomly selected real image from the same class in the real training
dataset. This additional layer of conditioning steers the diffusion model to generate samples which are
more similar to those in the real training data; see Figure 17, to contrast samples from text-conditional
models with those of text-and-image-conditional models. Using the unCLIP model in [42], the noise
prediction network ϵ

(t)
θ (xt) in Equation 11 is extended to be a function of the conditioning image’s

embedding, denoted as ϵ(t)θ (xt, zcond), where zcond is the CLIP embedding of the conditioning image.

2.3 Increasing the conditional diversity of synthetic data

As discussed in Section 2.2 leveraging conditioning from real images to synthesize data results in
generating samples that are closer to the real data distribution. However, this comes at the cost of
limiting the generative model’s ability to produce diverse images. Yet, such diversity is essential to
train downstream classification models. We propose to apply random dropout on image embdding.
Dropout is a technique used for preventing overfitting by randomly setting a fraction of input units to
0 at each update during training time [59]. In this setup, the application of dropout serves a different
yet equally crucial purpose: enhancing the diversity of generated images.

By applying random dropout to the embedding of the conditioning image, we effectively introduce
variability into the information that guides the generative model. This stochasticity breaks the
deterministic link between the conditioning image and the generated sample, thereby promoting
diversity in the generated images. For instance, if the conditioning image contains a Persian
Cat with a specific set of features (e.g., shape, color, background), dropout might nullify some of
these features in the embedding, leading the generative model to explore other plausible variations
of Persian Cat in Figure 4 (a, b). Intuitively, this diverse set of generated samples, which now
contain both the core characteristics of the class and various incidental features, better prepares the
downstream classification models for real-world scenarios where data can be highly heterogeneous.3.

3 Experiments

Class-imbalanced classification We consider the ImageNet-LongTail (ImageNet-LT) dataset [33]
which is a subset of the original ImageNet [13] consisting of 115.8K images distributed non-uniformly
across 1,000 classes. However, the test and validation sets are balanced. Our goal is to synthesize
missing data points in a way that, when combined with the real data, results in a uniform distribution
of examples across all classes. We report the overall average accuracy as well as accuracy across
classes Many (any class with over 100 samples), Medium (any class with 100-20 samples), and Few
(any class with less than 20 samples). Figure 5 presents the results. Comparing frameworks which

3Also see Figure 9
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Conditioning on: 
 text prompt: “Persian cat” +  

Image embedding of a real 
sample

(a) Regular sampling (b) Regular sampling and dropout (c) Feedback Guided sampling

Figure 4: Impact of dropout and Feedback-Guided (FG) sampling. Subfigures (a), (b) and (c)
depicts regular sampling, sampling with dropout, and sampling with dropout and Feedback Guidance
(Entropy), respectively. All samples are generated with the same seed. Also see Figures 9, 10.

Method # Syn. data ImageNet-LT

Overall Many Medium Few

ERM [37] ✗ 43.43 65.31 36.46 8.15
Decouple-cRT [28] ✗ 47.3 58.8 44.0 26.1
Decouple-LWS [28] ✗ 47.7 57.1 45.2 29.3
Remix [11] ✗ 48.6 60.4 46.9 30.7
Balanced Softmax [41] ✗ 51.0 60.9 48.8 32.1
Mix-Up GLMC [15] ✗ 57.21 64.76 55.67 42.19

Fill-Up [52] 2.6M 63.7 69.0 62.3 54.6
LDM (txt) 1.3M 57.90 64.77 54.62 50.30
LDM (txt and img) 1.3M 58.92 56.81 64.46 51.10
LDM-FG (Loss) 1.3M 60.41 66.14 57.68 54.1
LDM-FG (Hardness) 1.3M 56.70 58.07 55.38 57.32
LDM-FG (Entropy) 1.3M 64.7 69.8 62.3 59.1 Number of synthetic samples
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Figure 5: Classification accuracy on ImageNet-LT using ResNext50 backbone. In the table on the
left we compare the performances of our model LDM-FG with respect to the current state-of-the
art. In the figure on the right, we plot the performances on the class Few with respect to the number
of synthetic data added during the classifier’s training.

use generated data from state of the art generative models, our framework surpasses the LDM baseline.
Notably, the LDM with Feedback-Guidance (LDM-FG) based on the entropy criteria increases the
LDM baseline performance ∼ 5 points overall and, perhaps more interestingly, these improvements
translate into a ∼ 9 points boost on classes Few. Our best LDM-FG also surpasses the most recent
competitor, Fill-Up [52], by 1% accuracy point overall while using a half the amount of synthetic
images.

Group-imbalanced classification We consider the NICO++[69] dataset introduced in [67] which
is imbalanced across groups. In the training set, the maximum number of examples in a group is
811 and the minimum is 0. For synthetic samples generated using our framework see Figure 11.
Following prior work on sub-population shift [67, 44], we report worst-group accuracy (WGA) and
overall accuracy as the benchmark metrics. We consider a vanilla LDM baselines conditioned on text
prompt, and report results for all three criteria. We balance the NICO++ dataset such that each group
has 811 samples. Table 1 presents the average performance across five random seeds of our method
in contrast with previous works. Our method achieves remarkable improvements over prior art which
does not leverage synthetic data from generative models. More precisely, we observe notable WGA
improvements of ∼ 6% over the best previously reported results on the ResNet architecture.

For details on the experiments see Appendix J and for ablation study see I.1.

4 Conclusion

We introduced a framework that leverages a pre-trained classifier together with a state-of-the-art text-
and-image generative model to extend challenging long-tailed datasets with useful, diverse synthetic
samples that are close to the real data distribution, with the goal of improving on downstream
classification tasks. We achieved usefulness by incorporating feedback signals from the downstream
classifier into the generative model; we employed dual image-text conditioning to generate samples
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Table 1: Classification average and worst group accuracy on NICO++ dataset using ResNet50
pretrained on Imagenet.

Algorithm # Syn. data Avg. Accuracy Worst Group Accuracy

ERM [67] ✗ 85.3 ± 0.3 35.0 ± 4.1
GroupDRO [44] ✗ 82.2 ± 0.4 37.8 ± 1.8
IRM [1] ✗ 84.4 ± 0.7 40.0 ± 0.0
BSoftmax [41] ✗ 84.0 ± 0.5 40.4 ± 0.3
CRT [27] ✗ 85.2 ± 0.3 43.3 ± 2.7

LDM 229k 86.02 ± 1.14 32.66 ± 1.33
LDM FG (Loss) 229k 84.55 ± 0.20 45.60± 0.54
LDM FG (Hardness) 229k 84.66 ± 0.34 40.80 ± 0.97
LDM FG (Entropy) 229k 85.31 ± 0.30 49.20 ± 0.97

that are close to the real data manifold and we improved the diversity of the generated samples by
applying dropout to the image conditioning embedding. We validated the proposed framework on
ImageNet-LT and NICO++, consistently surpassing prior art with notable improvements.
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A Appendix

A.1 Derivation of equation 1

Simply writing the Bayes rule, we have:

∇x log p(x|h, y) = ∇x log

[
p(x, h, y)

p(h, y)

]
= ∇x log

[
p(h|x, y)p(x|y)p(y)

p(h|y)p(y)

]
= ∇x log [p(h|x, y)p(x|y)] = ∇x log p(x|y) +∇x log p(h|x, y). (7)

Note that by using a pre-trained diffusion model, we have access to the estimated class conditional
score function ∇x log p̂θ(x|y). We then assume there exists a criterion function C(x, y, fϕ) that
evaluates the usefulness of a sample x based on the classifier fϕ. Consequently, we model p(h|x, y) as:

p(h|x, y) = exp (C(x, y, fϕ))
Z , (8)

where Z is a normalizing constant. As a result, we can generate useful samples based on the criteria
function C(x, y, fϕ), and following Eq. 7, we have:

∇x log p̂ω(x|h, y) = ∇x log p̂θ(x|y) + ω∇xC(x, y, fϕ), (9)
where ω is a scaling factor that controls the strength of the signal from our criterion function C.
Following Eq. 12, we have,

∇x log p̂ω(x|h, y) = ∇x log p̂θ(x) + γ∇x log p̂θ(y|x) + ω∇xC(x, y, fϕ). (10)

A.2 Related Work: Balancing Methods for Imbalanced Datasets.

An effective strategy for mitigating class imbalance include balancing the dataset [50, 26, 51, 37, 33].
Dataset balancing can either involve up-sampling the minority classes to bring about a uniform
class/group distribution or sub-sampling the majority classes to match the size of the smallest
class/group. Traditional up-sampling methods usually involve either replicating minority samples
or through simple methods such as linearly interpolating between them. However, such simple
up-sampling techniques have been found to be less effective in scenarios with limited data [24].
Sub-sampling is generally more effective, but it carries the risk of overfitting due to reduced dataset
size. Another line of research focuses on re-weighting techniques [44, 46, 8, 41, 12]. These methods
scale the importance of underrepresented classes or groups according to specific criterion, such
as their count in the dataset or the loss incurred during training [32]. Some approaches adapt the
loss function itself or introduce a regularization technique to achieve a more balanced classification
performance [43, 31, 38]. Another effective method is the Balanced Softmax [41] that adjusts the
biases in the softmax layer of the classifier to counteract imbalances in class distribution.

A.3 A Toy 2-dimensional Example of Criteria Guidance

Figure 6 illustrates the experimental results of using a simple 2-dimensional dataset for a classification
task. The dataset contains two classes represented by blue and red data points. Within each class, the
data consists of two modes: the majority mode, containing 90% of the data points, and the minority
mode, which holds the remaining 10%. We initially train a diffusion model on this dataset. Sampling
from the trained diffusion model generates synthetic data that closely follows the distribution of the
original training data, showing an imbalance between the modes of each class (see Figure 6 (b)).

To encourage generation of data from the mode with lower density, we introduce a binary variable h
into the model. In this context, h = 0 indicates the minority mode, while h = 1 signifies the majority
mode. Following the criteria guidance discussed in Section 2.1.1, without retraining the model, we
modify the sampling process so that the generator is guided towards generating samples of higher
entropy. To that end, we train a linear classifier for several epochs until it effectively classifies the
majority mode, but the decision boundary intersects the minority mode, resulting in misclassification
of those points. Leveraging the classifier’s uncertainty around this decision boundary, we guide the
generative model to produce higher entropy samples. This results in more synthetic samples being
generated from the minority modes of each class (see Figure 6 (c)).

Integrating this synthetic data with the original data produces a more uniform distribution across
modes, leading to a more balanced classifier. This is desirable in our context as it mitigates the biases
inherent in the original dataset and improves the model’s generalization.
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(a) Real data (b) DDPM - regular sampling (c) DDPM - feedback guided sampling

Decision boundary

Figure 6: Experimental results on a 2-dimensional classification dataset showcasing the effect of
feedback-guided sampling. Panel (a): Real data consists of two classes represented by blue and
red data points. Within each class, two modes are identified: a majority mode comprising 90%
of the data and a minority mode containing the remaining 10%. Panel (b): The synthetic data
generated by regular sampling of a DDPM replicates the imbalances of the original dataset. Panel
(c): Synthetic data generated after modifying the diffusion model guided by feedback from a linear
classifier. Feedback-guided sampling leads to more samples being generated from the minority modes.
Combining with real data, it results in more balanced data with increased representation from the
minority mode, ultimately improving classifier performance.

B Samples Stylistic Bias

Stylistic Bias is one of the challenges in synthetic data generation where the generative model
consistently produces images with a particular style for some prompts, which does not correspond
to the style of the real data. This results in a mismatch between synthetic and real data, potentially
impacting the performance of machine learning models trained on such data.

(a)

(b)

(c)

Figure 7: Here we plot more samples from Imagenet-LT where stylistic bias appears in synthetic
generations. This scenario arises when the generative model produces images with a particular style
for some prompts, which does not match the style of the real data. See Section 2.2 for more details.
(a) real samples from class scorpian, (b) synthtic samples using LDM, (c) synthetic samples with
image and text conditioning.

C Samples for Dropout on Image Embedding

Dropout introduces variability into the information that guides the generative model by randomly
omitting certain features from the conditioning image embedding. This stochasticity breaks the
deterministic relationship between the conditioning image and the generated sample, leading to
increased diversity in the generated images. See Figure 9.
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(a)

(b)

(c)

Figure 8: Here we plot more samples from Imagenet-LT where stylistic bias appears in synthetic
generations. This scenario arises when the generative model produces images with a particular style
for some prompts, which does not match the style of the real data. See Section 2.2 for more details.
(a) real samples from class triceratops, (b) synthetic samples using LDM, (c) synthetic samples with
image and text conditioning.

Conditioning on: 
 text prompt: “Persian cat” +  

Image embedding of a real sample

(a) Without random dropout (p=0) (b) With random dropout p=0.2 (c) With random dropout p=0.4

(e) With random dropout p=0.8(d) With random dropout p=0.6 (f) With random dropout p=1.0

Figure 9: Synthetic sample generation using text prompt and image embedding. We plot different
levels of dropout. We condition on a single random real sample (plotted on the left most). As observed,
using only image conditioning and text (a), we observe very low diversity in the generations. As we
increase the dropout probability, we observe more diversity. If we only condition on the text prompt
(f), we also observe low diversity.
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D Samples Feedback Guided Sampling

In this section we provide more synthetic samples using Feedback guided sampling. See Figure 10
and 11 for more details.

Figure 10: Synthetic samples of three different classes of Imagenet-LT. Column 1: class rocking
chair, Column 2: class flower pot. First row: Real samples from Imagenet-LT, Second row: synthetic
samples vanilla LDM. Third row: synthetic samples using Entropy as the guidance.
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Figure 11: Synthetic samples of three different classes of NICO++. Column 1: class ship in context
autumn, Column 2: class cat in context autumn , Column 3: class rabbit in autumn. First row: Real
samples from NICO++, Second row: synthetic samples LDM. Third row: synthetic samples using
Entropy as the guidance and dropout.
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D.1 The interplay between clip-guidance and feedback-guidance

Figures 12, 13, and 14 display grids of synthetically generated images. Each is conditioned to
generate the class "African Chameleon", with variations in feedback-guidance scales based on
three different criteria: entropy, loss, and hardness. The grids are organized such that rows and
columns correspond to varying levels of two distinct guidance scales: clip-guidance and feedback-
guidance. Clip-guidance serves the role of ensuring that the generated images are faithful to the
visual characteristics of an "African Chameleon", such as color patterns, skin details, or posture. On
the other hand, feedback-guidance relies on the uncertainties in the classifier’s predictions to guide
the generative model.

As we move from left to right along the columns, the clip-guidance scale increases, thereby leading
to images that become increasingly accurate and recognizable as chameleons. These images would
likely be easier for both humans and classifiers to correctly identify as representing the African
Chameleon class.

Conversely, when we move from the top row to the bottom, the feedback-guidance scale increases.
This change leads to the generative model generating more challenging images. These images diverge
from the standard or typical depictions of a chameleon, thus posing a greater challenge for the
classifier.

Increase in clip-guidance scale
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Figure 12: A grid of images generated for the class "African Chameleon". Along the x-axis, from
left to right, the clip-guidance scale is increased, while along the y-axis, from top to bottom, the
classifier-feedback guidance scale is increased. The random seed is consistent across all images,
ensuring that any observed variations are only due to changes in the guidance scales. Moving from
left to right, it is evident that increasing the clip guidance scale results in samples that more faithful
to the "African Chameleon" class. However, this comes at the cost of generating very typical, easily
classifiable images. Conversely, as we move from top to bottom, increasing the classifier-feedback
guidance results in the generation of more ’challenging’ or atypical images of African chameleon.
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Figure 13: A grid of images generated based on the ’loss’ criterion for the class "African Chameleon".
Like Figure 12, as the clip guidance scale increases from left to right, images become more faithful
to the class, while increasing the classifier-feedback guidance from top to bottom produces more
atypical images.
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Figure 14: A grid of images generated based on the ’hardness’ criterion for the class "African
Chameleon". As with Figures 12 and 13, variations in the images are due to changes in the clip and
classifier-feedback guidance scales.
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E Impact of the number of generated images

Figure 15 shows the performances on a classifier trained on ImageNet-LT when using a different
amount of generated images. We show that adding generated synthetic data significantly help to
increase the overall performance of the model. In addition, we observe significant gain on the few
classes which highlight that generated images are well-suited for imbalanced real data scenarios.
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Figure 15: Test accuracy depending on the number of generated synthetic data used to train the
classifier. The first curve shows the accuracy on the class Few, while the second one shows the
accuracy on the class Medium and the last one shows the accuracy on class Many. Our method
significantly outperforms Fill-Up[52] while using less synthetic data.
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F Impact of using balanced softmax with synthetic data

In our experiments, we have used balanced softmax to train our classifier to increase the performances
on class Few. We also ran experiments using a weighted average of a traditional cross-entropy loss
using balanced softmax with the same loss without balanced softmax. In this experiment, we added a
scalar coefficient α which controls the weight of the balanced softmax loss in contrast to the standard
loss. In Figure 16, we plot the test accuracy with respect to this balanced softmax weight. Without
balanced softmax, the accuracy on the class many is extremely high while the accuracy on class few
is much lower. However by increasing the balanced softmax coefficient, we significantly increase the
performances on class few and medium as well as the overall accuracy. However, this comes at the
price of lower performance for classes Many.
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Figure 16: Test accuracy on Few, Medium, Many and Overall with respect to the balanced softmax
coefficient. All the models use 1.3M synthetic samples.

G Experimental Details

General setup in sample generation We use the LDM v2-1-unclip [42] as the state-of-the-art
latent diffusion model that supports dual image-text conditioning. We use a pretrained classifier on
the real data to guide the sampling process of the LDM. For Imagenet-LT, the classifier is trained
using ERM with learning rate of 0.1 (decaying) and weight-decay of 0.0005 and batch-size of 32.
For NICO++ we use a pre-trained classifier on Imagnet and then fine-tune it on NICO++.

We apply 30 steps of reverse diffusion during the sampling. To apply different criteria in the sampling
process, we use the pretrained classifier on the real data. For lower computational complexity, we use
float16 datatype in PyTorch. Furthermore, we apply the gradient of the criterion function every 5
steps. So for 30 reverse steps, we only compute and apply the criterion 6 times. Through experiments
we find that 5 is optimal as the generated samples look very similar to applying the criterion in every
step.

For the hardness criterion in Eq. 2.1.1 where we need the µy and Σ−1
y for each class, we pre-compute

these values. We compute the mean and covariance inverse of the feature representation of the
classifier over all real samples. These values are then loaded and used during the sampling process.

G.1 ImageNet-LT

We follow the setup in [27] and use a ResNext50 architecture. We apply the balanced softmax for all
the LDM models reported for Imagenet-LT. We train the classifier for 150 epochs with a batch size
of 512. We also use standard data augmentations such a random cropping, color-jittering, blur and
grayscale during training.

G.2 NICO++

We follow the setup in [67], where a pre-trained ResNet50 model on ImageNet is used for all the
methods. We assume access to the attributes labels (contexts). For training our LDM model we only
apply ERM without any extra algorithmic changes. We use the SGD with momentum of 0.9 and
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(a) iron (b) carpenter’s plane (c) tucan

Figure 17: Examples highlighting synthetic samples that are not close to the real data distribution
and the need for dual text-image conditioning. Each subfigure depicts columns of images from left
to right: ImageNet-LT, LDM (text), LDM(text and image). See also Figures 7, 8.

train for 50 epochs. We apply standard data augmentation such as resize and center crop and apply
ImageNet statistics normalization.

Following the setup in [67], for every method, we try 10 sets of hyper-parameters (learning rate,
batch-size4). We perform model selection and early stopping based on average validation accuracy.
We then train the selected model on 5 random seeds and report the test performance.

H Samples highlighting the need for dual text-image conditioning

We identify three scenarios where using only text prompt results in synthetic samples that are not
close to the real data used to train machine learning downstream models: 1)Homonym ambiguity,
2)Text misinterpretation, 3)Stylistic Bias

I Background

Diffusion models. Diffusion models [55, 57] learn data distributions p(x) or p(x|y) by sim-
ulating the diffusion process in forward and reverse directions. In particular, Denoising Dif-
fusion Probabilistic Models (DDPM) [22] add noise to data points in the forward process and
remove it in the reverse process. The continuous-time reverse process in DDPM is given by,
dxt =

[
f(xt, t)− g2(t)∇ log pt(xt)

]
dt + g(t)dwt, where t indexes time, and f(xt, t) and g(t)

are drift and volatility coefficients. A neural network ϵ
(t)
θ (xt) is trained to predict noise in DDPM,

aligning with the score function ∇ log pt(xt). Given a trained model ϵ(t)θ (xt), Denoising Diffusion
Implicit Models (DDIM) [56], a more generic form of diffusion models, can generate an image x0

from pure noise xT by repeatedly removing noise, getting xt−1 given xt (from [56]):

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

“ predicted x0 ”

+
√
1− αt−1 − σ2

t · ϵ(t)θ (xt)︸ ︷︷ ︸
“direction pointing to xt ”

+ σtϵt︸︷︷︸
random noise

, (11)

with αt and σt as time-dependent coefficients and ϵt ∼ N (0, I) being standard Gaussian noise.

Classifier-guidance in diffusion models. Guidance in latent diffusion models involves leveraging
additional information, such as class labels or text prompts, to condition the generated samples on.
This modifies the score function as follows:

∇x log pγ(x|y) = ∇x log p(x) + γ∇x log p(y|x), (12)

where γ is a scaling factor. The term ∇x log p(y|x) is generally modeled either as classifier-
guidance [14] or classifier-free guidance [23]. In the Latent Diffusion Model (LDM) used in this
paper, ∇x log p(y|x) is modeled in a classifier-free approach and γ controls its guidance strength.

4Learning rate is randomly selected from 10Uniform(−4,−2) and batch-size is randomly selected from
2Uniform(6,7).
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Table 2: Ablation of our framework based on LDM. Results are computed w.r.t. the real balanced
validation set of the ImageNetLT. All hyper-parameters for each setup are tuned.

Text Img dropout FG FID↓ Density ↑ Coverage↑ Avg. / Few validation acc. ↑
✓ ✗ ✗ ✗ 18.46 0.962 0.690 59.52 / 50.74
✓ ✓ ✗ ✗ 14.24 1.019 0.676 59.95 / 49.5
✓ ✓ ✓ ✗ 13.63 1.06 0.722 60.16 / 54.79
✓ ✓ ✓ Loss 18.48 0.8672 0.6398 62.19 / 54.78
✓ ✓ ✓ Hardness 10.84 1.07 0.82005 57.7 / 56.57
✓ ✓ ✓ Entopy 21.36 0.8217 0.6148 65.7 / 57.7

I.1 Ablations

To validate the effect of dual image-text conditioning, dropout on the image conditioning embed-
ding, and feedback-guidance, we perform an ablation study and report Fréchet Inception Distance
(FID) [21], density and coverage [35], and average accuracy overall and on the classes Few. FID and
density serve as a proxy to measure how close the generated samples are to the real data distribution.
Coverage serves as proxy for diversity, and accuracy improvement for usefulness. FID, density and
coverage are computed by generating 20 samples per class and using the ImageNet-LT validation set
(20,000 samples) as reference. The accuracies are computed on the ImageNet-LT validation set. As
shown in the Table 2, leveraging the vanilla sampling strategy of an LDM conditioned on text only
(row 1) results in the worse performance across metrics. By leveraging image and text conditioning
simultaneously (row 2) , we improve both FID and density, suggesting that generated samples are
closer to the ImageNet-LT validation set. When applying dropout to the image embedding (row 3),
we observe a positive effect on both FID and coverage, indicating a higher diversity of the generated
samples. Finally, when adding feedback signals (rows 4–6), we notice the highest accuracy improve-
ments (comparing to the model trained only on real data) both on average (except for hardness) and
on the classes Few, highlighting the importance of leveraging feedback-guidance to improve the
usefulness of the samples for representation learning downstream tasks. It is important to note that
quality and diversity metrics such as FID, density and coverage may not be reflective of the usefulness
of the generated synthetic samples (compare Hardness row with the Entropy row in Table 2).

J Experimental Details

General setup in sample generation We use the LDM v2-1-unclip [42] as the state-of-the-art
latent diffusion model that supports dual image-text conditioning. We use a pretrained classifier on
the real data to guide the sampling process of the LDM. For Imagenet-LT, the classifier is trained
using ERM with learning rate of 0.1 (decaying) and weight-decay of 0.0005 and batch-size of 32.
For NICO++ we use a pre-trained classifier on Imagnet and then fine-tune it on NICO++.

We apply 30 steps of reverse diffusion during the sampling. To apply different criteria in the sampling
process, we use the pretrained classifier on the real data. For lower computational complexity, we use
float16 datatype in PyTorch. Furthermore, we apply the gradient of the criterion function every 5
steps. So for 30 reverse steps, we only compute and apply the criterion 6 times. Through experiments
we find that 5 is optimal as the generated samples look very similar to applying the criterion in every
step.

For the hardness criterion in Eq. 2.1.1 where we need the µy and Σ−1
y for each class, we pre-compute

these values. We compute the mean and covariance inverse of the feature representation of the
classifier over all real samples. These values are then loaded and used during the sampling process.

J.1 Imagenet-LT

We follow the setup in [27] and use a ResNext50 architecture. We apply the balanced softmax for all
the LDM models reported for Imagenet-LT. We train the classifier for 150 epochs with a batch size
of 512. We also use standard data augmentations such a random cropping, color-jittering, blur and
grayscale during training.
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We leverage the pre-trained state-of-the-art image-and-text conditional LDM v2-1-unclip [42] to
sample from. We adopt the widely used ResNext50 architecture as the classifier for all our experiments
on ImageNet-LT. Our classifier is trained for 150 epochs. To improve model scaling with synthetic
data, we modify the training process to include 50% real and 50% synthetic samples in each mini-
batch. 5 We apply a balanced mini-batch approach when training all LDM methods. We also use the
balanced Softmax [41] loss when training the classifier.

We compare the proposed approach with prior art which does not leverage synthetic data from
pre-trained generative models and with recent literature which does. We also compare the proposed
approach with a vanilla sampling LDM that uses only the text prompts6 as conditioning. We report the
results of our proposed framework for the three feedback guidance techniques introduced in section 2,
namely, Loss, Hardness and Entropy. When leveraging synthetic data, we balance ImageNet-LT by
generating as many samples as required to obtain 1,300 examples per class.

J.2 NICO++

NICO++ contains 62,657 training examples, 8,726 validation and 17,483 test examples. This dataset
contains 60 classes of animals and objects within 6 different contexts (autumn, dim, grass, outdoor,
rock, water). The pair of class-context is called a group, and the dataset is imbalanced across groups.
We generate the text prompts as class-label in context.

We again leverage the pre-trained state-of-the-art image-and-text conditional LDM v2-1-unclip [42]
as high performant generative model to sample from. Since some groups in the dataset do not
contain any real examples, we cannot condition the LDM model on random images from group,
and so instead, we condition the LDM on random in-class examples. We adopt the ResNet50 [19]
architecture as the classifier, given its ubiquitous use in prior literature. For each baseline, we train
the classifier with five different random seeds.

We follow the setup in [67], where a pre-trained ResNet50 model on ImageNet is used for all the
methods. We assume access to the attributes labels (contexts). For training our LDM model we only
apply ERM without any extra algorithmic changes. We use the SGD with momentum of 0.9 and
train for 50 epochs. We apply standard data augmentation such as resize and center crop and apply
ImageNet statistics normalization.

Following the setup in [67], for every method, we try 10 sets of hyper-parameters (learning rate,
batch-size7). We perform model selection and early stopping based on average validation accuracy.
We then train the selected model on 5 random seeds and report the test performance.

5This change boosts the performance by nearly 4 points.
6Text prompts are in the format of class-label.
7Learning rate is randomly selected from 10Uniform(−4,−2) and batch-size is randomly selected from

2Uniform(6,7).
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