
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DS-TG: DYNAMICAL SYSTEMS AS ACCURATE AND
EFFICIENT SOLVERS FOR TIME-DEPENDENT DIFFER-
ENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-Dependent Differential Equations (TDDEs) are central to modeling dy-
namic processes in various scientific and engineering systems. Numerical solvers
typically provide reliable solutions but are burdened by prohibitive costs due to
fine-grained discretization and iterative procedures. Recent machine learning
(ML)-based approaches attempt to accelerate computation through fast ML infer-
ence, yet they are often trained on trajectories produced by numerical solvers, re-
sulting in reduced accuracy and limited generalization. Designing a TDDE solver
that achieves good accuracy and high efficiency remains a fundamental challenge.
In this paper, we introduce DS-TG, a novel TDDE solver that employs Dynamical
Systems (DS) as Trajectory Generators (TG), exploiting the intrinsic connection
between DS and TDDEs. DS-TG leverages a DS-based processor whose physical
states evolve continuously in real time according to carefully designed dynamics
that directly emulate the target TDDE. This approach represents a novel paradigm
fundamentally distinct from traditional discrete-time methods, offering inherent
advantages in both accuracy and efficiency. Specifically, the continuous evolu-
tion of DS-TG can be seen as partitioning the target trajectory into a continuum
of infinitesimal time steps, thereby reducing the problem to learning the trajec-
tory gradient at each intermediate state of evolution. Building on this foundation,
we further introduce two hardware-friendly techniques to enhance the dynamics
design: (1) Laplacian-style interactions for effectively capturing spatial deriva-
tives and (2) higher-order interactions for better representing higher-order tempo-
ral derivatives. Extensive experiments across representative TDDEs demonstrate
that DS-TG achieves superior accuracy while delivering up to 104× efficiency
improvement compared to baseline methods.

1 INTRODUCTION

Time-dependent differential equations (TDDEs) form the mathematical backbone for modeling dy-
namic behavior across many scientific and engineering systems. From the heat equation govern-
ing thermal dynamics in advanced manufacturing systems (Foteinopoulos et al., 2018) to the wave
equation describing electromagnetic propagation in next-generation communication networks (Jin,
2015), and reaction-diffusion equations capturing biochemical processes in living systems (Erban
& Chapman, 2009), TDDEs are indispensable for understanding, predicting, and controlling time-
evolving processes. Therefore, developing accurate and efficient TDDE solvers has been a persistent
focus of research, driving applications in predictive simulations, real-time monitoring, digital twins,
interactive design, and closed-loop control systems, where both accuracy and efficiency are critical.

Existing solutions range from conventional numerical solvers to ML-based approaches. Numerical
solvers, such as finite difference and finite element methods, typically provide reliable solutions
(LeVeque, 2002; Zienkiewicz & Taylor, 2005). However, achieving high accuracy usually requires
fine-grained spatial and temporal discretizations coupled with extensive iterative procedures, which
impose substantial computational and memory overheads that limit their potential for advanced sci-
entific computing and many real-world applications. Recently, ML-based methods have emerged
as promising alternatives for solving TDDEs (Raissi et al., 2019; Lu et al., 2021b; Gupta & Brand-
stetter, 2022). These methods employ sophisticated models trained on ground-truth data to replace

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

iterative procedures with fast ML inference, thus accelerating the solving process (Li et al., 2021;
Brandstetter et al., 2022; Goswami et al., 2023). However, they generally rely on trajectories gen-
erated by numerical solvers and follow auto-regressive paradigms with fixed time steps to produce
solutions. This reliance leads to reduced accuracy and limits generalization (e.g., being constrained
to a fixed temporal resolution), thereby restricting their practical utility in many real-world applica-
tions. Therefore, there is an urgent need for novel approaches that can address these limitations and
generate fast and accurate solutions.

Figure 1: Overview of the proposed DS-TG.

Recognizing the fundamental connection be-
tween physical Dynamical Systems (DS) and TD-
DEs, we propose that recently emerging DS-
based processors (Afoakwa et al., 2021; Song
et al., 2024b; Wu et al., 2025) represent a promis-
ing yet underexplored candidate for solving TD-
DEs. Specifically, a DS consists of a particle or
ensemble of particles whose states evolve con-
tinuously over time according to dynamics typ-
ically described by differential equations. DS-
based processors are designed to physically em-
body such dynamical systems using CMOS elec-
tronic components, with their internal states nat-
urally evolving under DE-governed dynamics.
This continuous evolution enables real-time tra-
jectory generation on a ∼1-watt DS-based pro-
cessor, serving as a natural TDDE solver.

Despite their compelling theoretical alignment with TDDE solving, the potential of current DS-
based processors has only been demonstrated in limited domains such as optimization (Afoakwa
et al., 2021; Sharma et al., 2023b; Sun et al., 2025) and graph learning (Song et al., 2024b; Wu
et al., 2025), leaving their transformative potential for TDDE solving completely unexplored. In
this work, we propose DS-TG, a DS-based solver for TDDEs that achieves good accuracy and rev-
olutionary efficiency, initially realizing the potential of DS-based processors in TDDE solving. As
depicted in Figure 1, DS-TG exploits the continuous evolution of DS-based processors to introduce
a paradigm fundamentally different from traditional discrete-time methods, yielding a more natural
approach to trajectory generation. Our key insight is that the continuous evolution of DS-based pro-
cessors can be seen as partitioning solution trajectories into a continuum of infinitesimal time steps,
thereby reducing the problem to learning the trajectory gradient at each intermediate state of evolu-
tion. Building on these learned gradients, DS-TG naturally evolves to produce the desired solution
trajectories in real time on ultra-low-power DS-based processors. Instead of learning input-output
mappings as in many ML approaches, DS-TG directly learns the underlying dynamics, which inher-
ently provides better generalizability. To further enhance its modeling capability, we introduce two
hardware-friendly techniques for its dynamics design. (a) Laplacian-style Interactions: We employ
Laplacian-inspired node interactions to naturally capture spatial correlations and model the spatial
derivative terms in TDDEs. (b) Higher-order Interactions: We incorporate higher-order interaction
terms that enable accurate representation of higher-order temporal derivatives. These techniques col-
lectively provide the expressivity required to represent diverse TDDE dynamics while maintaining
hardware compatibility.

To the best of our knowledge, DS-TG represents the first attempt to leverage DS-based processors
to solve TDDEs. The key contributions of this work are summarized as follows.

• We introduce DS-TG, a novel TDDE solver that leverages the intrinsic power of dynamical
systems and their fundamental connection to TDDEs to accurately and efficiently solve a
wide range of TDDEs across diverse domains.

• By exploiting the continuous evolution of DS-based processors, we reduce the TDDE solv-
ing problem as learning the trajectory gradient at each intermediate state of evolution,
fundamentally departing from traditional discrete-time methods and enabling continuous
solution generation.

• We propose hardware-friendly techniques including Laplacian-style interactions and
higher-order interactions, enabling DS-TG to effectively capture diverse TDDEs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Experimental results on TDDEs across various scientific and engineering domains demon-
strate that, compared to baselines, DS-TG achieves superior accuracy while delivering up
to 104× efficiency improvement.

2 PRELIMINARIES

This section introduces essential preliminaries for TDDEs and DS-based processors, including their
mathematical foundations and architectures.

Time-Dependent Differential Equations form the mathematical foundation for modeling dynamic
processes that evolve over time in physics, engineering, and applied sciences. A general representa-
tion of TDDEs can be written as:

F

(
t, x1, x2, . . . , xm, u,

∂u

∂t
,
∂u

∂x1
, . . . ,

∂2u

∂x1∂x2
, . . .

)
= 0, (1)

where t is the temporal variable, x1, x2, . . . , xm are spatial variables, and u denotes the unknown
solution that depends on both time and space. Solutions are typically obtained under a combination
of initial conditions (specifying the system state at t = 0) and boundary conditions (constraining
spatial behavior). TDDEs are widely used in applications where capturing the system’s temporal
trajectory is essential, including weather prediction, plasma transport, and neural activity modeling.

Dynamical System-Based Processors mathematically embody a dynamical system that describes
how components (nodes) interact and influence each other’s states over time. Initially, DS-based
processors are employed to address binary optimization problems (e.g., Max-Cut (Böhm et al., 2019;
Liu et al., 2025c) and Satisfiability (Sharma et al., 2023a; Sun et al., 2025)) by minimizing a binary
energy function (Hamiltonian), known as the Ising model. In addition to addressing optimization
problems, DS-based processors have also been extended to a wide range of ML tasks characterized
by real-valued Hamiltonian functions (Song et al., 2024b; Liu et al., 2025a;b), such as:

HRV(s) = −
N∑
i̸=j

Jijσiσj +

N∑
i

hiσ
2
i . (2)

where σi ∈ R. s = {σ1, σ2, ..., σN} denotes the nodes in the dynamical system, Jij represents the
relationship between node σi and node σj , and hi refers to the self-reaction strength. The parameters
J and h capture the relationship between system nodes.

The general architecture of DS-based processors is shown in Figure 2. Each node σi is represented
as a voltage on a capacitor C, while coupling parameters J and h are implemented as resistor
conductance. To control and program the dynamical system, a set of Programming Units configures
the parameters of the network (i.e., the resistance of the programmable resistors). The Column
Select Unit manages column-wise programming of the couplers, while the Node Control Unit is in
charge of node value initialization.

Figure 2: Architecture of DS processors.

DS-based processors realize computation by al-
lowing nodes to evolve continuously under well-
designed dynamics, harnessing the natural flow of
physical processes. For instance, the node dynam-
ics can be designed as:

dσi

dt
=

1

C

 N∑
j ̸=i

Jijσj − 2hiσi

 , (3)

where C denotes the capacitance of the circuit’s
capacitors. According to the hardware implemen-
tation, σi is the voltage on a capacitor, while Jij
and hi are resistor conductance. Consequently, the
terms Jijσj and hiσi correspond to electronic currents. Eq. 3 defines that the voltage of each
capacitor σi is continuously updated by the current

∑N
j ̸=i Jijσj − 2hiσi. Therefore, DS-based pro-

cessors carry out computation through the charging and discharging of capacitor voltages, which
operates at the “speed of electrons.” By redefining the node dynamics, a DS-based processor can be
reconfigured to efficiently and continuously execute a wide variety of computations.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Workflow of the proposed DS-TG. The left panel illustrates Gradient-Based Trajectory
Mapping, while the right panel depicts Physics-Inspired Dynamics Design.

3 METHODOLOGY

We present DS-TG, an accurate and efficient TDDE solver based on the continuous evolution of a
CMOS-compatible dynamical system. As illustrated in Figure 3, DS-TG introduces two key innova-
tions: (1) Gradient-Based Trajectory Mapping, which maps TDDE solving as the continuous state
evolution on a DS, fundamentally eliminating the time discretization error; and (2) Physics-Inspired
Dynamics Design, which instantiates DS-TG with physics-inspired dynamics to better represent the
spatial and temporal derivatives in TDDEs.

3.1 GRADIENT-BASED TRAJECTORY MAPPING (GTM)

Traditional numerical methods approximate TDDE trajectories by discretizing time, which in-
evitably introduces discretization errors and often requires prohibitively small step sizes for stability,
resulting in high computational costs. Recent ML approaches typically train on data generated by
numerical solvers using autoregressive structures, where predictions are sequentially rolled out over
a fixed horizon. These methods not only inherit the discretization errors of the underlying numerical
solvers but also restrict generalization beyond the precomputed temporal windows.

To overcome these limitations, we propose GTM, a fundamentally different paradigm that estab-
lishes a direct mapping between the continuous-time gradient field of the TDDE with the intrin-
sic dynamics of a DS-based processor. Without loss of generality, a TDDE can be formulated as
du(t)
dt = f(u(t)), where u(t) denotes the system state and f defines the gradient field governing its

temporal evolution. A DS-based processor is itself a dynamical system whose physical states evolve
according to:

dx(t)

dt
= g(x(t); θ), (4)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn represents the processor nodes, g denotes the param-

eterized dynamics, and θ represents the learnable parameters. The central idea of GTM is to align the
TDDE gradient field f with the processor dynamics g. This alignment is established by discretizing
the spatial domain of the TDDE into grids and mapping them onto the processor nodes. We then
design and optimize g such that g(x(t)) = f(u(t)). Under this mapping, the physical trajectory of
the processor state x(t) naturally emulates the solution trajectory u(t) of the original TDDE. Since
the DS-based processor evolves continuously at the “speed of electrons” and with ultra-low power
consumption, the solving process is both continuous and highly efficient. Essentially, the proposed
GTM offers advantages:

• Continuous Generation. Unlike discrete-time schemes, GTM leverages the natural evolu-
tion of a DS-based processor to generate trajectories in continuous time, thereby eliminat-
ing the time discretization error.

• Robust Generalization. Instead of learning input–output mappings as in many ML ap-
proaches, GTM encodes the underlying dynamical laws, ensuring robust generalization.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Extraordinary Efficiency. By transforming TDDE solving into natural evolution on a DS-
based processor, GTM enables efficient trajectory generation at the “speed of electrons”.

3.2 PHYSICS-INSPIRED DYNAMICS DESIGN

Through GTM, TDDE solving is effectively mapped to the continuous evolution of a DS-based
processor. The continuous generation can be viewed as partitioning the trajectory into a continuum
of infinitesimal time steps. The infinite steps make the required update at each step correspondingly
simple, enabling us to design dynamics that are both expressive enough to capture complex TDDE
structures and lightweight enough for CMOS hardware compatibility.

To ensure compatibility with the resistor-capacitor architecture of DS-based processors, we begin
with the base dynamics as:

dxi

dt
=

n∑
j=1

Wijxj + bi, (5)

where xi represents the i-th processor node, Wij is the coupling weight encoding the interaction
between node xi and node xj , and bi represents external driving sources. To better capture TDDE
dynamics, we enrich the basic dynamics with two physics-inspired mechanisms: (1) Laplacian-
style interactions for better capturing spatial derivatives and (2) higher-order interactions for better
representing higher-order time derivatives.

Laplacian-Style Interactions for Spatial Derivatives. TDDEs typically contain spatial derivative
terms, such as the Laplacian operator ∇2u = ∂2u

∂x2
1
+ ∂2u

∂x2
1
+ · · · . To effectively capture these spatial

derivatives, we introduce Laplacian-style interactions. Consider a spatial domain discretized into a
regular n-dimensional grid where each grid point corresponds to a processor node xi. The discrete
Laplacian at node i can be approximated using finite differences:

∇2ui ≈
∑

j∈N (i)

wij(uj − ui), (6)

where N (i) denotes the set of neighboring nodes and wij represents the finite difference weight.
Drawing inspiration from this mathematical structure, we further incorporate Laplacian-style inter-
actions in the dynamics of DS-TG:

dxi

dt
=

n∑
j=1

Wijxj +
∑

j∈N (i)

Lijxj + bi, (7)

where L is a sparse coupling matrix with trainable parameters Lij for neighboring node pairs j ∈
N (i) and zero elsewhere, following the connectivity structure of the discrete Laplacian operator.
This formulation naturally preserves the local connectivity patterns of spatial derivatives, while its
sparse structure also ensures efficient hardware implementation.

Higher-order Interactions for Temporal Derivatives. While the above design effectively cap-
tures spatial interactions encoded by the spatial derivatives of TDDEs, extending DS-TG to handle
higher-order temporal derivatives requires additional techniques. We introduce higher-order inter-
action terms that enrich its ability to represent more complex temporal structures. The key insight
is to augment the processor state space to include auxiliary nodes that track higher-order temporal
information. Specifically, for a TDDE involving up to k-th order temporal derivatives, we expand
the processor state from x = [x1, x2, · · ·xn]

T to an augmented hierarchical state representation
x̃ =

[
x(0),x(1), · · ·x(k−1)

]T
, where x(m) ∈ Rn represents the m-th order temporal derivative

information, with x(0) = x corresponding to the original state nodes. This augmented state space
enables us to construct a coupled dynamical system that naturally preserves the hierarchical structure
of temporal derivatives. The governing dynamics for this augmented system are designed as:

dx
(m)
i

dt
=

n∑
j=1

Hijx
(m+1)
j for m = 0, 1, · · · , k − 2, (8)

where Hij is a learnable coupling matrix that encodes the interaction strength between different
state components across temporal derivative orders. This hierarchical coupling scheme maintains
mathematical consistency with the TDDE formulation and enables efficient gradient propagation
across multiple temporal scales.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 HARDWARE IMPLEMENTATION

The overall dynamics design maintains compatibility with the resistor-capacitor (RC) architecture of
DS-based processors, enabling direct mapping from mathematical formulation to analog circuit im-
plementation. Specifically, each node x(m)

i is physically embodied as the voltage across a capacitor.
The learned coupling matrices W, L, and H are realized through programmable resistive coupling
units, consistent with those employed in previous DS-based processors. Each matrix element is
mapped to the conductance of a programmable resistor, with the conductance directly encoding
the corresponding coupling strength. The vector b denotes additional current sources integrated
into the system. As a result, the weighted interactions

∑n
j=1 Wijxj +

∑
j∈N (i) Lijxj + bi and∑n

j=1 Hijx
(m+1)
j are naturally realized as currents flowing through the resistive coupling network

and accumulating on the capacitors. These currents charge and discharge the capacitor voltages,
implementing the continuous-time update dynamics in hardware. The resulting implementation
faithfully reproduces the designed dynamical system while harnessing the computational efficiency
and inherent parallelism of RC networks, making it particularly suitable for real-time processing
applications requiring low power consumption and high throughput.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on five widely-evaluated TDDEs, including Heat equation, Ad-
vection equation, Wave equation, Burger equation, and Reaction-Diffusion (R-Diffusion) equation.
These benchmark equations capture a broad spectrum of physical phenomena, ranging from dif-
fusion and transport to nonlinear convection, oscillatory dynamics, and spatiotemporal pattern for-
mation. Detailed mathematical formulations, initial conditions, and boundary conditions for each
TDDE are provided in the Appendix A.2.

Baselines. Following Takamoto et al. (2022), we compare our approach against representative base-
lines spanning different methodological paradigms: (1) Physics-Informed Neural Networks (PINNs)
(Raissi et al., 2019): neural networks that embed governing physical laws into the loss function to
guide training. (2) Fourier Neural Operator (FNO) (Li et al., 2021): operator learning framework
that models solution mappings in the frequency domain. (3) UNet (Takamoto et al., 2022): con-
volutional encoder–decoder architecture adapted for solving TDDEs. Following standard practice,
FNO and UNet are trained in the auto-regressive paradigm to generate trajectories with two tem-
poral context regimes: (i) AR-1: single-step prediction using ut to predict ut+1; and (ii) AR-16:
multi-step context prediction using the previous 16 states {ut−15, . . . , ut} to predict ut+1. Auto-
regressive baselines use teacher forcing during training and free rollouts at evaluation for the full

Table 1: Accuracy comparison across baselines and TDDEs under ID conditions.

Methods Heat (ST) Advection (ST) Wave (ST) Burger (ST) R-Diffusion (ST)

PINN 2.039e-2 9.746e-3 2.135e-4 1.324e-4 1.216e-3
FNO (AR-1) 2.807e-4 1.353e-4 3.752e-4 5.096e-3 1.522e-4
FNO (AR-16) 1.629e-5 2.699e-5 6.118e-5 2.500e-4 1.022e-4
UNet (AR-1) 9.341e-2 3.123e-4 1.702e-3 7.476e-3 8.681e-3
UNet (AR-16) 8.860e-2 2.577e-4 7.649e-4 6.823e-3 7.212e-3
DS-TG 1.052e-6 1.159e-6 1.343e-6 3.250e-5 1.606e-5

Methods Heat (LT) Advection (LT) Wave (LT) Burger (LT) R-Diffusion (LT)

PINN 2.125e-2 9.963e-3 2.880e-4 1.976e-4 1.483e-3
FNO (AR-1) 7.076e-4 4.403e-3 1.619e-3 3.045e-2 1.835e-3
FNO (AR-16) 1.165e-4 1.561e-4 3.031e-4 5.219e-3 6.850e-4
UNet (AR-1) 1.368e-1 2.628e-2 1.823e-3 8.596e-3 4.432e-2
UNet (AR-16) 1.115e-1 1.651e-3 1.003e-3 7.047e-3 2.686e-2
DS-TG 1.149e-6 1.907e-5 1.591e-5 3.295e-5 2.724e-5

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Accuracy comparison across baselines and TDDEs under OOD conditions.

Methods Heat (ST) Advection (ST) Wave (ST) Burger (ST) R-Diffusion (ST)

PINN 3.325e-2 9.815e-3 2.342e-4 2.864e-4 2.998e-3
FNO (AR-1) 1.443e-3 8.522e-3 3.924e-4 6.425e-3 3.123e-3
FNO (AR-16) 4.549e-5 5.740e-4 6.902e-5 5.791e-4 2.331e-3
UNet (AR-1) 1.426e-1 1.613e-2 3.848e-3 8.385e-3 3.176e-2
UNet (AR-16) 9.244e-2 6.975e-3 8.939e-4 7.284e-3 1.831e-2
DS-TG 1.356e-6 3.827e-5 7.450e-6 3.373e-5 5.761e-5

Methods Heat (LT) Advection (LT) Wave (LT) Burger (LT) R-Diffusion (LT)

PINN 3.423e-2 1.047e-2 3.563e-4 2.991e-4 3.166e-3
FNO (AR-1) 8.113e-3 3.761e-2 5.810e-3 7.133e-2 7.465e-3
FNO (AR-16) 1.490e-3 1.290e-2 4.709e-4 6.811e-3 6.325e-3
UNet (AR-1) 1.613e-1 4.037e-2 1.164e-2 9.158e-3 4.968e-1
UNet (AR-16) 1.568e-1 2.454e-2 3.927e-3 8.445e-3 3.401e-1
DS-TG 1.808e-6 4.041e-5 1.617e-5 4.625e-5 6.564e-5

horizon. Detailed configurations and hyperparameter settings for all baseline methods are adopted
from (Takamoto et al., 2022), ensuring consistency with prior work.

Evaluation Protocol. We systematically evaluate the proposed approach across two temporal scales
to capture both short-term and long-term accuracy, as well as under distinct distributional settings
to assess robustness and generalization capability. Temporal Scales: (i) Short-term (ST): free roll-
outs over 100 time steps, measuring short-term prediction quality. (ii) Long-term (LT): free rollouts
over 2000 time steps, evaluating stability and cumulative error over extended horizons. Distribution
Robustness: (i) In-distribution (ID): test trajectories with initial conditions drawn from the same
distribution as used in training. (ii) Out-of-distribution (OOD): test trajectories initialized with con-
ditions outside the training distribution, assessing generalization capability.

Experimental Platforms. Experiments for PINN, FNO, and UNet are conducted on an NVIDIA
A100 40GB SXM GPU, where we measure both accuracy and per-sample inference latency. For
the proposed DS-TG, we build on the original hardware embodiment BRIM (Afoakwa et al., 2021),
employing a custom CUDA-accelerated Finite Element Analysis (FEA) simulator to evaluate ac-
curacy and latency. Accuracy is reported as the Mean Absolute Error (MAE), computed over the
space–time rollout window. The power consumption of DS-TG is estimated using Cadence Mixed-
Signal Design Environment with 180nm CMOS technology.

4.2 ACCURACY EVALUATIONS

In-Distribution (ID) Performance Comparison is presented in Table 1. DS-TG consistently out-
performs all baselines across the five PDEs in both short-term (ST) and long-term (LT) regimes.
The method achieves errors in the range of 10−6 to 4 × 10−5, representing 1–3 orders of magni-
tude improvement over baselines. Long-term evaluations highlight DS-TG’s exceptional stability:
while most baselines suffer from severe error accumulation over 2000 time steps, DS-TG maintains
remarkably consistent accuracy. Among baselines, PINNs attain moderate accuracy but lack the
precision of operator-based models for complex dynamics. UNet architectures perform the worst,
particularly in long-term scenarios. FNO exhibits stronger performance, especially with AR-16, but
still lags behind DS-TG. Besides, the AR-16 vs. AR-1 comparison further shows that extended tem-
poral context improves accuracy for baselines, though DS-TG achieves superior results regardless
of context length.

Out-of-Distribution (OOD) Performance Comparison. Table 2 summarizes the OOD evalua-
tion results, highlighting DS-TG’s strong generalization capability. DS-TG maintains errors in the
range of 10−6 to 7 × 10−5 across all TDDEs and temporal horizons, showing only modest degra-
dation from its ID performance. In contrast, baseline methods experience severe breakdowns under
distribution shifts. For example, UNet (AR-1) fails catastrophically on the Reaction-Diffusion equa-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tion, with long-term errors escalating to 4.968 × 10−1. FNO models also exhibit instability; for
instance, FNO (AR-1) error on the Burgers equation grows from 6.425× 10−3 to 7.133× 10−2 un-
der long-term OOD evaluation. Despite these challenging conditions, DS-TG consistently achieves
1–2 orders of magnitude better accuracy than the best-performing baselines, demonstrating that its
learned dynamics generalize robustly beyond the training distribution.

PINN FNO (AR-1) FNO (AR-16)

UNet (AR-1) UNet (AR-16) DS-TG

Figure 4: Temporal error evolution on Wave equation under
OOD long-term conditions.

Furthermore, Figure 4 presents
temporal error evolution patterns
via heatmap visualizations compar-
ing different methods on the Wave
equation under out-of-distribution
(OOD) long-term conditions.
PINN displays localized high-
error regions while maintaining
moderate overall performance.
FNO variants (AR-1 and AR-16)
exhibit varying degrees of error
accumulation over time. The UNet
approaches suffer from severe
degradation, characterized by
error propagation and substantial
temporal instability. Most notably,
DS-TG maintains a remarkably uniform low-error distribution throughout the entire temporal do-
main. The consistently low error magnitudes demonstrate exceptional temporal stability and robust
performance under distribution shifts. This visualization validates DS-TG’s superior capability to
preserve high accuracy across extended temporal horizons in OOD scenarios.

4.3 LATENCY AND POWER EVALUATIONS

Heat Advection Wave Burgers R-Diffusion
10

7

10
6

10
5

In
fe

re
nc

e 
Ti

m
e 

(s
)

PINN FNO (AR-1) FNO (AR-16) UNet (AR-1) UNet (AR-16)

Figure 5: Solving latency comparison across baselines and TDDEs.

Figure 5 presents the in-
ference latency comparison
across baselines and TDDEs,
measured as the time re-
quired to produce one time
frame. PINN demonstrates
the lowest latency among the
baselines, while both FNO
and UNet operate at the mil-
lisecond level. Since DS-TG
functions as a real-time con-
tinuous solver, unlike the discrete baselines, a direct latency comparison requires careful consider-
ation. To establish a fair comparison, we evaluate the time required for all methods to evolve to a
fixed TDDE state with equivalent accuracy. The baselines are trained on trajectories produced by
numerical solvers and, once trained, operate with a fixed time step size ∆t. This creates an inher-
ent trade-off between time step size and accuracy: smaller ∆t values yield more fine-grained and
accurate trajectories but require more computational steps. We therefore compare latencies when
DS-TG and the baselines achieve the same accuracy level while evolving to a fixed system state.
Our simulations demonstrate that DS-TG achieves a speedup of more than 104× compared to the
baseline methods. In terms of power consumption, DS-TG operates at approximately 132 mW in
our experimental settings, while the A100 GPU typically consumes around 102W during operation.
This represents a significant efficiency advantage, making DS-TG extraordinarily more efficient than
the baseline approaches in both computational speed and power consumption.

5 RELATED WORK

Solvers for TDDEs. Numerical methods for solving TDDEs form the backbone of scientific simu-
lation across diverse fields. They typically build on well-established discretization techniques, with
the method-of-lines (Hamdi et al., 2007) representing a common strategy where the spatial domain

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

is discretized first using Finite Difference, Finite Element, or Finite Volume methods, reducing the
TDDE to a large system of ordinary differential equations (ODEs) (LeVeque, 2002; Zienkiewicz
& Taylor, 2005). The resulting ODE system is then integrated in time using explicit or implicit
schemes. Explicit methods such as forward Euler and Runge-Kutta schemes (Akinsola, 2023) offer
algorithmic simplicity and straightforward parallelization but are constrained by stability require-
ments that limit time step sizes, leading to prohibitively small time steps and correspondingly high
computational costs (Hairer et al.). Implicit methods, including backward Euler and Crank-Nicolson
schemes (Luskin et al., 1982), provide unconditional stability for many problems and allow larger
time steps, but require solving large linear or nonlinear systems at each time step, introducing sig-
nificant computational overhead and memory requirements (Ascher & Petzold, 1998).

Recent years have seen rapid growth in ML-based solvers for TDDEs. Physics-Informed Neural
Networks (PINNs) approximate the solution with a neural network, and their carefully designed
loss functions could enforce the underlying physical laws (Raissi et al., 2019; Karniadakis et al.,
2021). This formulation allows PINNs to approximate the solution without explicit meshing. De-
spite their flexibility, PINNs often suffer from reduced accuracy and limited generalization across
different initial or boundary conditions (Wang et al., 2021; Huang & Agarwal, 2023). In addition
to PINNs, operator learning frameworks have also attracted significant attention, such as Fourier
Neural Operators (FNOs) (Li et al., 2021), DeepONets (Lu et al., 2019; 2021a), and sequence-to-
sequence surrogates (Brandstetter et al., 2022; Gupta et al., 2021). These methods aim to learn
mappings from initial conditions and forcing functions to entire solution trajectories, providing bet-
ter generalization across problem instances. Nevertheless, they usually exhibit degraded accuracy
for long-term trajectory generation (Kovachki et al., 2023). Moreover, although ML-based solvers
achieve faster inference than classical solvers, they still rely on digital processors and lack the ultra-
low-latency response needed in real-time applications.

DS-Based Processors represent an emerging computational paradigm that has garnered substantial
interest for their exceptional efficiency in solving optimization problems. A prominent example is
the Ising machine, which physically implements the Ising model. These machines have demon-
strated breakthrough performance across diverse NP-hard binary optimization problems, substan-
tially outperforming conventional digital solvers. Applications span MAX-CUT (Haribara et al.,
2016; Inagaki et al., 2016; Wang & Roychowdhury, 2019; Böhm et al., 2019; Mohseni et al., 2022;
Grimaldi et al., 2023; Liu et al., 2025c; Ochs et al., 2021; Liu et al., 2025d; Cılasun et al., 2025),
satisfiability (SAT) problems (Sharma et al., 2023a;b; Jagielski et al., 2023; Su et al., 2023; Bybee
et al., 2023; Jin et al., 2025; Sun et al., 2025), and wireless communication (Singh et al., 2022;
Sreedhara et al., 2023).

Recognizing their potential, DS-based processors have been extended to various machine learning
applications, encompassing both binary and real-valued problem domains (Niazi et al., 2024; Wu
et al., 2024; Song et al., 2024a;b; Liu et al., 2025a;b). However, existing approaches predominantly
focus on the system’s equilibrium state. They map ground truth to the system’s equilibrium and
obtain outputs by letting the system evolve until it converges to equilibrium. This paradigm neglects
the rich information embedded within the system’s evolution, a trajectory that naturally unfolds
according to underlying dynamics, thereby failing to exploit a key computational advantage inherent
to DS-based processors.

6 CONCLUSION

We introduced DS-TG, a dynamical-system-based solver that maps a target TDDE directly onto
CMOS-compatible DS-based processors whose physical states evolve under differential-equation-
governed dynamics. Leveraging the continuous-time evolution of DS-based processors, DS-TG
transforms the TDDE solving problem as learning the trajectory gradient within each instantaneous
state, thereby eliminating time discretization errors inherent in conventional approaches. Further-
more, two hardware-friendly techniques are introduced to improve the dynamics design of DS-TG:
(1) Laplacian-style interactions for better capturing spatial derivatives, and (2) higher-order interac-
tions for better representing higher-order temporal derivatives. Together, these techniques provide
the expressivity required to represent diverse TDDE classes while maintaining hardware compat-
ibility. Extensive experiments demonstrate that DS-TG delivers superior accuracy with orders-of-
magnitude efficiency gains (∼ 104×) over ML-based solvers across representative benchmarks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. To facilitate reproducibility, we provide comprehensive experimental
details in Section 4.1 and in Appendix A.2. These resources can help independent researchers
reproduce our findings and build upon our work.

REFERENCES

Richard Afoakwa, Yiqiao Zhang, Uday Kumar Reddy Vengalam, Zeljko Ignjatovic, and Michael
Huang. Brim: Bistable resistively-coupled ising machine. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 749–760. IEEE, 2021.

Victor Akinsola. Numerical methods: Euler and runge-kutta. In Qualitative and Computational
Aspects of Dynamical Systems. IntechOpen, 2023.

Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and
differential-algebraic equations. SIAM, 1998.

Fabian Böhm, Guy Verschaffelt, and Guy Van der Sande. A poor man’s coherent ising machine
based on opto-electronic feedback systems for solving optimization problems. Nature Commu-
nications, 10(1):3538, Aug 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-11484-3. URL
https://doi.org/10.1038/s41467-019-11484-3.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=vSix3HPYKSU.

Connor Bybee, Denis Kleyko, Dmitri E. Nikonov, Amir Khosrowshahi, Bruno A. Olshausen, and
Friedrich T. Sommer. Efficient optimization with higher-order Ising machines. Nature Commu-
nications, 14(1):6033, September 2023. ISSN 2041-1723.

Hüsrev Cılasun, William Moy, Ziqing Zeng, Tahmida Islam, Hao Lo, Alex Vanasse, Megan Tan,
Mohammad Anees, Ramprasath S, Abhimanyu Kumar, et al. A coupled-oscillator-based ising
chip for combinatorial optimization. Nature Electronics, pp. 1–10, 2025.

Radek Erban and S Jonathan Chapman. Stochastic modelling of reaction–diffusion processes: algo-
rithms for bimolecular reactions. Physical biology, 6(4):046001, 2009.

Panagis Foteinopoulos, Alexios Papacharalampopoulos, and Panagiotis Stavropoulos. On ther-
mal modeling of additive manufacturing processes. CIRP Journal of Manufacturing Sci-
ence and Technology, 20:66–83, 2018. ISSN 1755-5817. doi: https://doi.org/10.1016/j.cirpj.
2017.09.007. URL https://www.sciencedirect.com/science/article/pii/
S1755581717300494.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep
neural operator networks. In Machine learning in modeling and simulation: methods and appli-
cations, pp. 219–254. Springer, 2023.

Andrea Grimaldi, Luciano Mazza, Eleonora Raimondo, Pietro Tullo, Davi Rodrigues, Kerem Y
Camsari, Vincenza Crupi, Mario Carpentieri, Vito Puliafito, and Giovanni Finocchio. Evaluat-
ing spintronics-compatible implementations of ising machines. Physical Review Applied, 20(2):
024005, 2023.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Ernst Hairer, Gerhard Wanner, and Syvert P Nørsett. Solving ordinary differential equations I:
Nonstiff problems. Springer.

Samir Hamdi, William E Schiesser, and Graham W Griffiths. Method of lines. Scholarpedia, 2(7):
2859, 2007.

10

https://doi.org/10.1038/s41467-019-11484-3
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://www.sciencedirect.com/science/article/pii/S1755581717300494
https://www.sciencedirect.com/science/article/pii/S1755581717300494


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yoshitaka Haribara, Shoko Utsunomiya, and Yoshihisa Yamamoto. A coherent ising machine for
max-cut problems: performance evaluation against semidefinite programming and simulated an-
nealing. Principles and Methods of Quantum Information Technologies, 911:251–262, 2016.

Archie J. Huang and Shaurya Agarwal. On the limitations of physics-informed deep learning: Illus-
trations using first-order hyperbolic conservation law-based traffic flow models. IEEE Open Jour-
nal of Intelligent Transportation Systems, 4:279–293, 2023. doi: 10.1109/OJITS.2023.3268026.

Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei Tamate, Toshimori
Honjo, Alireza Marandi, Peter L McMahon, Takeshi Umeki, Koji Enbutsu, et al. A coherent ising
machine for 2000-node optimization problems. Science, 354(6312):603–606, 2016.

Thomas Jagielski, Rajit Manohar, and Jaijeet Roychowdhury. Fpim: field-programmable ising ma-
chines for solving sat. arXiv preprint arXiv:2306.01569, 2023.

Jian-Ming Jin. The finite element method in electromagnetics. John Wiley & Sons, 2015.

Yan Jin, Nitesh Chauhan, Jizhao Zang, Brian Edwards, Pratik Chaudhari, Firooz Aflatouni, and
Scott B Papp. A kerr soliton ising machine for combinatorial optimization problems. arXiv
preprint arXiv:2508.00810, 2025.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge univer-
sity press, 2002.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

Chuan Liu, Ruibing Song, Chunshu Wu, Pouya Haghi, and Tong Geng. Instatrain: Adaptive train-
ing via ultra-fast natural annealing within dynamical systems. In The Thirteenth International
Conference on Learning Representations, 2025a.

Chuan Liu, Chunshu Wu, Ruibing Song, Ang Li, Ying Nian Wu, and Tong Geng. An expressive
and self-adaptive dynamical system for efficient function learning. In Forty-second International
Conference on Machine Learning, 2025b.

Yongchao Liu, Lianlong Sun, Matthew Burns, Michael Huang, and Hui Wu. Ising machine based on
charge re-distribution. In 2025 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5. IEEE, 2025c.

Yongchao Liu, Lianlong Sun, Michael Huang, and Hui Wu. Integrated hardware annealing based on
langevin dynamics for ising machines. In 2025 Design, Automation & Test in Europe Conference
(DATE), pp. 1–6. IEEE, 2025d.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021b.

Mitchell Luskin, Rolf Rannacher, and Wolfgang Wendland. On the smoothing property of the crank-
nicolson scheme. Applicable Analysis, 14(2):117–135, 1982.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Naeimeh Mohseni, Peter L McMahon, and Tim Byrnes. Ising machines as hardware solvers of
combinatorial optimization problems. Nature Reviews Physics, 4(6):363–379, 2022.

Shaila Niazi, Shuvro Chowdhury, Navid Anjum Aadit, Masoud Mohseni, Yao Qin, and Kerem Y
Camsari. Training deep boltzmann networks with sparse ising machines. Nature Electronics, pp.
1–10, 2024.

Karlheinz Ochs, Bakr Al Beattie, and Sebastian Jenderny. An ising machine solving max-cut prob-
lems based on the circuit synthesis of the phase dynamics of a modified kuramoto model. In
2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 982–985.
IEEE, 2021.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Anshujit Sharma, Matthew Burns, Andrew Hahn, and Michael Huang. Augmenting an electronic
ising machine to effectively solve boolean satisfiability. Scientific Reports, 13(1):22858, 2023a.

Anshujit Sharma, Matthew Burns, and Michael C Huang. Combining cubic dynamical solvers with
make/break heuristics to solve sat. In 26th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023b.

Abhishek Kumar Singh, Kyle Jamieson, Peter L McMahon, and Davide Venturelli. Ising machines’
dynamics and regularization for near-optimal mimo detection. IEEE Transactions on Wireless
Communications, 21(12):11080–11094, 2022.

Ruibing Song, Chuan Liu, Chunshu Wu, Ang Li, Dongfang Liu, Ying Nian Wu, and Tong Geng.
DS-LLM: Leveraging dynamical systems to enhance both training and inference of large language
models. In The Thirteenth International Conference on Learning Representations, 2024a.

Ruibing Song, Chunshu Wu, Chuan Liu, Ang Li, Michael Huang, and Tony Tong Geng. DS-GL:
Advancing graph learning via harnessing nature’s power within scalable dynamical systems. In
2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp.
45–57, 2024b.

Shreesha Sreedhara, Jaijeet Roychowdhury, Joachim Wabnig, and Pavan Koteshwar Srinath. Mu-
mimo detection using oscillator ising machines. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Yuqi Su, Tony Tae-Hyoung Kim, and Bongjin Kim. A reconfigurable cmos ising machine with
three-body spin interactions for solving boolean satisfiability with direct mapping. IEEE Solid-
State Circuits Letters, 6:221–224, 2023.

Lianlong Sun, Matthew X. Burns, and Michael C. Huang. General oscillator–based ising machine
models with phase-amplitude dynamics and polynomial interactions. Phys. Rev. Appl., pp. –
, Sep 2025. doi: 10.1103/7s4v-4hs4. URL https://link.aps.org/doi/10.1103/
7s4v-4hs4.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

12

https://link.aps.org/doi/10.1103/7s4v-4hs4
https://link.aps.org/doi/10.1103/7s4v-4hs4


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianshi Wang and Jaijeet Roychowdhury. Oim: Oscillator-based ising machines for solving com-
binatorial optimisation problems. In Ian McQuillan and Shinnosuke Seki (eds.), Unconventional
Computation and Natural Computation, pp. 232–256, Cham, 2019. Springer International Pub-
lishing.

Chunshu Wu, Ruibing Song, Chuan Liu, Yunan Yang, Ang Li, Michael Huang, and Tong Geng.
Extending power of nature from binary to real-valued graph learning in real world. In The Twelfth
International Conference on Learning Representations, 2024.

Chunshu Wu, Ruibing Song, Chuan Liu, Pouya Haghi, Ang Li, Michael Huang, and Tong Geng. DS-
TPU: Dynamical system for on-device lifelong graph learning with nonlinear node interaction. In
Proceedings of the 52nd Annual International Symposium on Computer Architecture, pp. 1867–
1879, 2025.

Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. The finite element method for solid and struc-
tural mechanics. Elsevier, 2005.

A APPENDIX

A.1 LLM USAGE

LLMs were used solely for language polishing in this work. All LLM-assisted text was reviewed,
revised, and verified by the authors.

A.2 EXPERIMENTS CONFIGURATION

In this section, we provide the detailed mathematical formulations, initial conditions, and boundary
conditions used to generate the benchmark datasets for the five time-dependent differential equations
(TDDEs) considered in this work. All equations are solved numerically using the method-of-lines
approach, where spatial derivatives are discretized while time integration is performed using the
solve ivp function with the RK45 scheme from (Virtanen et al., 2020). Unless explicitly stated
otherwise, periodic boundary conditions are applied across all spatial dimensions to ensure consis-
tent treatment of domain boundaries.

Two-Dimensional Heat Equation. This equation models diffusive processes and serves as a fun-
damental example of parabolic partial differential equations. The governing equation is

ut = α (uxx + uyy), α = 0.01, (9)

where u(x, y, t) represents the temperature field and α is the thermal diffusivity constant. This
equation is solved on the unit square domain [0, 1]× [0, 1] using a uniform 16× 16 spatial grid. The
initial condition is a Gaussian temperature distribution centered at the domain midpoint:

u(x, y, 0) = exp

(
− (x− 0.5)2 + (y − 0.5)2

0.01

)
. (10)

This configuration creates a localized heat source that subsequently diffuses throughout the domain.
Periodic boundary conditions are imposed in both x and y directions, effectively creating a toroidal
topology that eliminates edge effects.

Two-Dimensional Advection Equation. This equation represents the transport of a scalar quantity
by a prescribed velocity field without diffusion or source terms. The mathematical formulation is

ut + cxux + cyuy = 0, (11)

where the constant advection velocities are set to (cx, cy) = (1.0, 0.5), creating a diagonal transport
pattern across the domain. Similar to the heat equation, this problem is solved on the unit square
[0, 1] × [0, 1] with a 16 × 16 grid resolution. The initial condition is prescribed as a linear ramp in
the x-direction:

u(x, y, 0) =
x

10
, (12)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

which creates a gradient that is subsequently advected by the prescribed velocity field. Periodic
boundary conditions ensure that material exiting one boundary re-enters from the opposite side,
maintaining conservation properties.

One-Dimensional Wave Equation. The equation examines wave propagation phenomena through:

utt = c2uxx, c = 1.0, (13)

where c represents the wave speed. To facilitate numerical integration using first-order time-stepping
schemes, this second-order equation is reformulated as a coupled system of first-order equations:

ut = v,

vt = c2uxx,
(14)

where v represents the time derivative of the displacement field u. The computational domain spans
[0, 1] with a refined spatial discretization of 256 grid points to adequately resolve wave propagation.
The initial displacement is specified as a Gaussian pulse centered at the domain midpoint:

u(x, 0) = exp

(
− (x− 0.5)2

100

)
, (15)

while the initial velocity field is set to zero, v(x, 0) = 0. This configuration generates symmetric
wave propagation in both directions from the initial disturbance. Periodic boundary conditions allow
waves to wrap around the domain boundaries.

One-Dimensional Burgers’ Equation. The equation combines nonlinear advection with diffusive
effects and serves as a simplified model for fluid dynamics phenomena:

ut +
1

2
(u2)x = ν uxx, ν = 10−3. (16)

The small viscosity parameter ν = 10−3 creates a nearly inviscid flow regime where nonlinear
steepening competes with weak diffusive smoothing. This equation is solved on the unit interval
[0, 1] using a fine spatial grid of 256 points to capture the development of steep gradients. The initial
condition is chosen as a Gaussian profile positioned near the right boundary:

u(x, 0) = exp

(
− (x− 1)2

100

)
. (17)

This placement, combined with periodic boundary conditions, allows observation of shock forma-
tion and subsequent nonlinear evolution as the profile steepens due to the quadratic nonlinearity.

Two-Dimensional Reaction–Diffusion Equation. This equation incorporates both diffusive trans-
port and local chemical reaction kinetics:

ut = γ(uxx + uyy) + r u(1− u), γ = 0.01, r = 5.0. (18)

Here, γ controls the diffusion rate while r governs the strength of the logistic reaction term u(1−u),
which exhibits bistable dynamics with stable states at u = 0 and u = 1. The equation is solved on
the unit square domain [0, 1]× [0, 1] with a 16× 16 spatial grid. The initial condition is prescribed
as a linear gradient:

u(x, y, 0) = x, (19)
creating a smooth transition from the unstable state u = 0 at the left boundary to the stable state
u = 1 at the right boundary. This configuration promotes the formation of propagating reaction
fronts that separate the two stable phases. Periodic boundary conditions are maintained in both
spatial directions.

All solution trajectories are stored at 10,000 uniformly spaced time steps extending to the specified
final time tfinal for each problem. The computational framework preserves both the solution field
u(·, t) and the evaluated right-hand side function f(u) at each time step, providing comprehensive
data for subsequent analysis and validation of different approaches.

14


	Introduction
	Preliminaries
	Methodology
	Gradient-Based Trajectory Mapping (GTM)
	Physics-Inspired Dynamics Design
	Hardware Implementation

	Evaluation
	Experimental Setup
	Accuracy Evaluations
	Latency and Power Evaluations

	Related Work
	Conclusion
	Appendix
	LLM Usage
	Experiments Configuration


