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Abstract

Detecting AI-generated images (AIGIs), such as
natural images or face images, has become in-
creasingly important yet challenging. In this pa-
per, we start from a new perspective to exca-
vate the reason behind the failure generalization
in AIGI detection, named the asymmetry phe-
nomenon, where a naively trained detector tends
to favor overfitting to the limited and monotonous
fake patterns, causing the feature space to be-
come highly constrained and low-ranked, which
is proved seriously limiting the expressivity and
generalization. One potential remedy is incorpo-
rating the pre-trained knowledge within the vision
foundation models (higher-ranked) to expand the
feature space, alleviating the model’s overfitting
to fake. To this end, we employ Singular Value
Decomposition (SVD) to decompose the original
feature space into two orthogonal subspaces. By
freezing the principal components and adapting
only the remained components, we preserve the
pre-trained knowledge while learning fake pat-
terns. Compared to existing full-parameters and
LoRA-based tuning methods, we explicitly en-
sure orthogonality, enabling the higher rank of
the whole feature space, effectively minimizing
overfitting and enhancing generalization. We fi-
nally identify a crucial insight: our method im-
plicitly learns a vital prior that fakes are actually
derived from the real, indicating a hierarchical
relationship rather than independence. Modeling
this prior, we believe, is essential for achieving
superior generalization. Our codes are publicly
available at GitHub.
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Figure 1. Illustration of the asymmetry phenomenon in AI-
generated image detection. We show that the baseline detector
(i.e., Xception) tends to quickly overfit to the fake patterns in
the training set (Rossler et al., 2019), causing the limited general-
ization when facing previously unseen fakes (Li et al., 2020b).

1. Introduction
The rapid development of AI generative technologies has
significantly lowered the barrier for creating highly realis-
tic fake images. As deep generative models advance and
mature (Goodfellow et al., 2020; Ho et al., 2020; Rom-
bach et al., 2022b; Yan et al., 2025), the proliferation of AI-
generated images (AIGIs1) has drawn considerable attention,
driven by their ability to produce high-quality content with
relative ease. However, these advancements also introduce
significant risks, if misused for malicious purposes such as
deepfakes (mainly including face-swapping (Korshunov &
Marcel, 2018) and face-reenactment (Thies et al., 2016)),
which may violate personal privacy, spread misinformation,
and erode trust in digital media. Consequently, there is an
urgent need to develop a reliable and robust framework for
detecting AIGIs.

Most existing studies in AIGI detection (Wang et al., 2020b;
Rossler et al., 2019) typically approach the real/fake classi-
fication problem as a symmetric binary classification task,
akin to the “cat versus dog” problem. A standard binary

1In the context of this research, AIGI primarily refers to deep-
fakes (face-swapping) and synthetic images (e.g., nature or arts).
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Figure 2. t-SNE visualizations between Xception and CLIP
(full-finetune). We show that both models only learn the specific
fake patterns within the training set, treating samples with seen
fake patterns as fake while other samples are all considered real,
thereby limiting their generalization in detecting unseen fakes.

classifier, often based on deep neural networks, is trained to
distinguish between real and fake images by predicting the
likelihood of a given test image being fake during inference.
Although this paradigm yields promising results when the
training and testing distributions (in terms of fake generation
methods) are similar, its performance tends to degrade sig-
nificantly when applied to previously unseen fake methods,
indicating the generalization issue (Ojha et al., 2023).

To understand the underlying reasons for the failure in gen-
eralization, we have conducted extensive preliminary in-
vestigations and identified an asymmetry phenomenon in
AIGI detection: naively trained detectors tend to take the
shortcut and very quickly overfit the limited fake patterns
presented in the training set. Visualization in Fig. 1 cor-
roborates this claim. Specifically, the vanilla detector (i.e.,
Xception (Rossler et al., 2019)) quickly fits the fake pat-
terns at the very early training stage (only a few iterations),
resulting in a very low loss of fake, while the real loss is
significantly higher than the fake loss (∼ 100× larger). This
is likely because existing AIGI detection datasets (Rossler
et al., 2019; Wang et al., 2020b) typically contain limited
and homogeneous fake types, while real samples exhibit
significantly greater diversity and variance between each
other such as different categories and scenarios.

Consequently, the learned feature spaces become fake-
dominated and thus highly constrained. As evidenced
by the t-SNE visualization in Fig. 2, we see that the whole
feature space is indeed dominated by the forgery patterns,
where both the Xception (Vanilla CNN) and CLIP (Radford
et al., 2021) detector group only the specific fake patterns
within the training set into a single cluster, while all other
data, including real samples and fake samples from unseen
forgeries, are mapped into a separate cluster.

To quantify this, we analyze the effective information2 con-
tained in the model’s feature space via Principal Compo-

2In PCA, it refers to variance captured by principal components.
Larger eigenvalues indicate components explaining more variance
and contributing more to data representation.

First principal component

Second principal component

Two principal components capture all information Many principal components are meaningful

Vanilla Detector Ours

Figure 3. Analysis for the effective information contained in the
model’s feature space. We apply PCA for dimension reduction
and visualize the explained variance ratio of principal components
with high contribution. We show that the baseline model trained
on the AIGI dataset can be highly constrained and low-ranked.

nent Analysis (PCA). Specifically, we visualize the ex-
plained variance ratio of different principal components
for the model’s feature space in Fig. 3. The results show
that the feature space of the naive detector can be highly
constrained and low-ranked, with only two principal com-
ponents to capture all information, resulting in limited
generalization. This aligns with the previous theoretical
analysis (Gunasekar et al., 2017) that low-ranked3 feature
spaces hinder generalization by memorizing trivial patterns.

One potential remedy to address the low-ranked problem is
incorporating pre-trained knowledge within vision founda-
tion models (VFMs), which provide higher-ranked feature
representations, to expand the low-ranked feature space,
thus alleviating the overfitting. However, naively fine-tuning
a VFM (even CLIP) risks distorting the original rich repre-
sentation feature space (Fig. 2), pushing the feature space
to become low-ranked again (verified in Fig. 6).

To address this, we design a novel approach called Effort:
Efficient orthogonal modeling for generalizable AIGI detec-
tion. Specifically, we employ Singular Value Decomposition
(SVD) to construct two orthogonal subspaces. By freez-
ing the principal components and adapting the remained
components, we preserve the pre-trained knowledge while
learning forgery-related patterns.

We have conducted extensive experiments on both deepfake
detection and synthetic image detection benchmarks and
find that our approach achieves significant superiority over
other SOTAs with very little training cost. Compared to ex-
isting full-parameters and LoRA-based tuning methods, we
explicitly ensure orthogonality, enabling the higher rank of
the whole feature space, effectively minimizing overfitting
to fake and enhancing generalization.

Finally, we arrive at a key insight for generalizable AIGI
detection: there exists an important prior of the detection

3The “rank” here means the number of significant principal
components.
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task, where fake images are generated from real ones, es-
tablishing a hierarchical relationship rather than an in-
dependent or symmetric one. When aligning semantic
information-such as distinguishing a fake dog from a real
dog-this prior allows the model to focus discrimination
within a smaller, semantically consistent subspace, e.g., only
among dogs (see Fig. 4 for illustration). This focused dis-
crimination simplifies the task and aligns with theoretical re-
sults from Rademacher complexity (Mohri & Rostamizadeh,
2008), which states that reducing model complexity leads
to tighter generalization bounds. In contrast, naively trained
detectors that treat real and fake data as independent fail
to capture this structure, resulting in limited generalization
performance. Therefore, modeling this hierarchical prior,
we believe, is vitally crucial for AIGI detection.

Our work makes the following key contributions:

• Asymmetry phenomenon in AIGI detection: We in-
troduce the concept of asymmetry phenomenon, where
a naively trained detector tends to quickly fit the seen
fake methods well but, in doing so, it often overfits to
specific fake patterns in the training set, limiting its
generalization ability to detect unseen fake methods.

• New perspective to explain the failure reasons be-
hind generalization: We use PCA to quantitatively as-
sess the effective information within the learned feature
space, and we find that the overfitting to fake, results
in a highly low-ranked and constrained feature space,
thus leading to the limited generalization capability.

• Novel method via orthogonal subspace decomposi-
tion: To address the overfitting, we propose a novel ap-
proach, Effort, with two careful designs: (1) incorporat-
ing the pre-trained knowledge (proving higher-ranked
feature space) within the vision foundation models
to expand the previous feature space, improving the
model’s expressivity and alleviating the overfitting; and
(2) employing SVD to explicitly construct two orthog-
onal subspaces, where the principal one for preserving
pre-trained knowledge and the remained one for learn-
ing new forgeries, avoiding the distortion of original
rich feature space during learning fakes.

• Key insight toward generalizable detection: We re-
veal that fake data is actually generated from real data,
forming a hierarchical relationship rather than being
independent. Our method effectively models this prior
by maintaining the pre-trained semantic components
while adapting to fake detection effectively, enabling
the detector to make discrimination on the semantic-
aligned subspaces, reducing model complexity and
thus improving generalization.

Semantic

Forgery

Ours (Semantic and Forgery Space)Vanilla CNN (Only Forgery Space)

Forgery

Unseen Fake (CycleGAN) 

Acc: 85.20 Acc: 99.85

Apple Horse Orange Summer Winter Zebra

Apple Horse Orange Summer Winter Zebra
Real:
Fake:

Figure 4. t-SNE visualizations of the latent feature spaces be-
tween vanilla CNN (Wang et al., 2020b) and ours. Our method
achieves orthogonal learning between the dimensions of semantic
and forgery, allowing the model to capture fake patterns on the
semantically-aligned subspace, simplifying the discrimination and
thereby improving the generalization.

2. Related Work
Our work focuses on detecting AI-generated images
(AIGIs), especially deepfake images (e.g., face-swapping)
and synthetic images (e.g., nature or art), following Yan
et al. (2024a). As the majority of recent works specifi-
cally focus on dealing with the generalization issue, where
the training and testing distribution differ (in terms of fake
methods), we will briefly introduce the classical and recent
detection methods toward generalization in deepfake and
synthetic images, respectively.

Generalizable Deepfake Image Detection. The task of
deepfake detection grapples profoundly with the issue of
generalization. To tackle the generalization issue, one main-
stream approach is fake pattern learning. Most existing
works are within this line. These methods generally de-
sign a “transformation function”, e.g., frequency transfor-
mation (Li et al., 2021; Luo et al., 2021; Liu et al., 2021a),
blending operations (Li et al., 2020a; Zhao et al., 2021;
Shiohara & Yamasaki, 2022; Chen et al., 2022a), recon-
struction (Zhu et al., 2021; Cao et al., 2022), content/ID
disentanglement (Yan et al., 2023a; Fu et al., 2025; Huang
et al., 2023; Dong et al., 2023), to transform the original
input x into x′, where they believe that the more general
fake patterns can be captured within the feature space of x′

compared to x. However, given the ever-increasing diver-
sity of forgery methods in the real world, it is unrealistic to
elaborate all possible fake patterns and “expect” good gener-
alization on unseen fake methods. Another notable direction
is to real distribution learning, with a specific methodol-
ogy involved: one-class anomaly detection (Khalid & Woo,
2020; Larue et al., 2023). Specifically, Khalid & Woo (2020)
introduced a one-class-based anomaly detection, where “ab-
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normal” data is detected by the proposed reconstruction
error as the anomaly score. Larue et al. (2023) proposed a
similar approach to create pseudo-fake “anomaly” samples
by using image-level blending on different facial regions.
However, it is challenging to ensure that the detector can
learn a robust representation of real images by using the
very limited real data in existing deepfake datasets (e.g., the
FF++ dataset (Rossler et al., 2019) contains only 1,000 real
videos with imbalanced facial attribute distributions (Trinh
& Liu, 2021)).

Generalizable Synthetic Image Detection. With the
rapid advancement of existing AI generative technologies,
the scope of forged content has expanded beyond facial
forgeries to encompass a wide range of scenes. In this con-
text, similar to the deepfake detection field, most existing
works typically focus on fake pattern learning that mines the
low-level forgery clues from different aspects. Specifically,
several approaches have been proposed to capture low-level
artifacts, including RGB data augmentations (Wang et al.,
2020b), frequency-based features (Jeong et al., 2022), gradi-
ents (Tan et al., 2023), reconstruction artifacts (Wang et al.,
2023a; Chen et al., 2024; Luo et al., 2024), and neighboring
pixel relationships (Tan et al., 2024c), random-mapping fea-
ture (Tan et al., 2024a). To illustrate, BiHPF (Jeong et al.,
2022) amplifies artifact magnitudes through the application
of dual high-pass filters, while LGrad (Tan et al., 2023)
uses gradient information from pre-trained models as arti-
fact representations. NPR (Tan et al., 2024c) introduces a
straightforward yet effective artifact representation by re-
thinking up-sampling operations. In addition to learning
from scratch, there are also several research works (Ojha
et al., 2023; Wu et al., 2023; Liu et al., 2024) that perform
fake pattern learning by leveraging the existing vision foun-
dation models. For instance, UniFD (Ojha et al., 2023)
directly freezes the visual encoder of the pre-trained CLIP
model and tunes only a linear layer for binary classification,
demonstrating effective deepfake detection even with previ-
ously unseen sources. LASTED (Wu et al., 2023) proposes
designing textual labels to supervise the CLIP vision model
through image-text contrastive learning, advancing the field
of synthetic image detection. These arts have shown notable
improvement in generalization performance when facing
previously unseen fake methods.

3. Methodology
The overall pipeline of the proposed Effort approach is illus-
trated in Fig. 5, aiming to address the asymmetry phenom-
ena in AIGI detection. Our approach involves the SVD to
construct explicit orthogonality for preserving pre-trained
knowledge and learning forgery-related patterns, avoiding
the distortion of well-learned pre-trained knowledge during
learning forgeries.

Formally, given a pre-trained weight matrix W ∈ Rd1×d2

for a certain linear layer, we perform SVD to decompose
W :

W = UΣV ⊤, (1)

where U ∈ Rd1×d1 and V ∈ Rd2×d2 are orthogonal ma-
trices containing the left and right singular vectors, respec-
tively, and Σ ∈ Rd1×d2 is a diagonal matrix with singular
values on the diagonal. Since the linear layer of VFM gener-
ally has the same input and output dimensions, we consider
the case of SVD with d1 = d2 = n in the following discus-
sion.

To obtain a rank-r approximation of the pre-trained weight
matrix, we retain only the top r singular values and corre-
sponding singular vectors:

W ≈ Wr = UrΣrV
⊤
r , (2)

where Ur ∈ Rn×r, Σr ∈ Rr×r, and Vr ∈ Rn×r. We keep
Wr frozen during training to preserve dominant pre-trained
knowledge learned from large-scale data.

The residual component, defined as the difference between
the pre-trained weights and the SVD approximation, is used
to learn representations specific to fake images:

∆W = W −Wr = Un−rΣn−rV
⊤
n−r, (3)

where Un−r ∈ Rn×(n−r), Σn−r ∈ R(n−r)×(n−r), Vn−r ∈
Rn×(n−r). It is important to note that ∆W represents a
learnable form associated with the remaining singular value
decomposition, reflecting slight modifications or perturba-
tions to the original weight matrix.

During training, we only optimize ∆W while keeping Ur,
Σr, and Vr fixed. This implementation ensures that the
model retains its capability to process real images via the
SVD approximation and adapts to detect deepfakes through
the trivial residual components of the weight matrix.

To encourage the ∆W to capture both useful and meaning-
ful discrepancy between the real and fake, it’s significant to
guarantee that optimizing ∆W does not change the prop-
erties of the overall weight matrix W (i.e., Minimize the
impact on the real information of the pre-trained weight as
much as possible). Thus, we proposed two constraints to
realize this goal, as follows.

Orthogonal Constraint. We maintain the orthogonality
among each singular vector to keep orthogonal subspace for
learning real/fake:

Lorth = ∥Û⊤Û − I∥2F + ∥V̂ ⊤V̂ − I∥2F , (4)

where Û ∈ Rn×n denote the concatenation of Ur and Un−r

along the row dimension, V̂ ∈ Rn×n denote the concatena-
tion of Vr and Vn−r along the row dimension, ∥·∥F denotes
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Figure 5. The proposed approach for AIGI detection. The left branch is the decomposition matrix of the principle components
approximation using SVD, while the right residual branch enables the orthogonal learning of real/fake discriminative features.

the Frobenius norm, and I is the identity matrix of appropri-
ate dimensions.

Singular Value Constraint. The singular values can be
interpreted as a type of scaling that affects the magnitude of
the corresponding singular vectors. There is a relationship
between singular values and the Frobenius norm of the
weight matrix being decomposed:

∥W∥F =

√∑
i

σ2
i , (5)

where σi denotes the i-th singular value of the corresponding
weight matrix.

To maximize the reduction of the impact of real knowledge,
we constrain the singular values of the optimized weight
matrix Ŵ to remain consistent with those of the original
weight matrix W :

Lksv =

∣∣∣∣ n∑
i=r+1

σ̂2
i −

n∑
i=r+1

σ2
i

∣∣∣∣ = ∣∣∣∣∥Ŵ∥2F − ∥W∥2F
∣∣∣∣, (6)

where Ŵ represents the weights after the optimization of
W , and |·| represents the absolute value. Note that this
regularization will control the importance of the ∆W during
optimization to prevent overfitting of learning real/fake.

Loss Function. The overall loss function for training the
model combines the classification loss Lcls (e.g., cross-
entropy loss for binary classification) and the orthogonality
regularization loss:

L = Lcls + λ1
1

m

m∑
i

Li
orth + λ2

1

m

m∑
i

Li
ksv, (7)

where λ1, λ2 are hyperparameters that balance the impor-
tance of the corresponding regularization term, and m rep-
resents the number of pre-trained weight matrices on which
our approach is applied. In practice, we adapt our approach
to the linear layers within the self-attention module across
all transformer layers of the VFM to leverage their rich,
well-learned real distributions.

Finally, we provide an algorithm illustration of the proposed
approach in Alg. 1 for an overall understanding.

Algorithm 1 Effort Approach Algorithm
Input: Pre-trained weight matrix W ∈ Rn×n; Rank r; Training

data D = {(xi, yi)}Ni=1; Hyperparameters λ1, λ2

Output: Updated weight matrix W
1: ▷ Step 1: Singular Value Decomposition
2: Decompose W via SVD: W = UΣV ⊤

3: Retain top r singular values and vectors:
4: Ur ∈ Rn×r , Σr ∈ Rr×r , Vr ∈ Rn×r

5: Compute Wr = UrΣrV
⊤
r

6: Keep Wr fixed during training
7: Compute residual component: ∆W = W −Wr

8: Decompose ∆W via SVD: ∆W = Un−rΣn−rV
⊤
n−r

9: Initialize ∆W
10: Define concatenated matrices:
11: Û = [Ur, Un−r] ∈ Rn×n

12: V̂ = [Vr, Vn−r] ∈ Rn×n

13: ▷ Step 2: Training Loop
14: for each epoch do
15: for each batch in D do
16: ▷ Forward Pass
17: Compute model output using W = Wr +∆W
18: Compute classification loss Lcls

19: ▷ Compute Constraints
20: Compute orthogonality loss:

21: Lorth =
∥∥∥Û⊤Û − I

∥∥∥2

F
+

∥∥∥V̂ ⊤V̂ − I
∥∥∥2

F
22: Compute singular value constraint loss:

23: Lksv =

∣∣∣∣∥∥∥Ŵ∥∥∥2

F
− ∥W∥2F

∣∣∣∣
24: ▷ Total Loss
25: L = Lcls + λ1Lorth + λ2Lksv

26: ▷ Backward Pass and Optimization
27: Update ∆W using gradient descent to minimize L
28: end for
29: end for
30: return Updated weight matrix W ←Wr +∆W

4. Experiment
4.1. Deepfake Image Detection
Implementation Details. We utilize CLIP ViT-L/14 (Rad-
ford et al., 2021) as the default vision foundation model
(VFM). We also investigate other VFMs in Tab. 5. We fol-
low the pre-processing and training pipeline and use the
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Table 1. Benchmarking Results of Cross-dataset Evaluations (Protocol-1) and Cross-method Evaluations (Protocol-2). All detectors
are trained on FF++ c23 (Rossler et al., 2019) and evaluated on other fake data. † indicates the results are obtained by using the model’s
checkpoint provided by the authors, otherwise, the results are cited from (Yan et al., 2023b; 2024a; Cheng et al., 2024).

Methods Trainable Cross-dataset Evaluation Cross-method Evaluation

Param. CDF-v2 DFD DFDC DFDCP DFo WDF FFIW Avg. UniFace BleFace MobSwap e4s FaceDan FSGAN InSwap SimSwap Avg.

F3Net (Qian et al., 2020) 22M 0.789 0.844 0.718 0.749 0.730 0.728 0.649 0.743 0.809 0.808 0.867 0.494 0.717 0.845 0.757 0.674 0.746
SPSL (Liu et al., 2021a) 21M 0.799 0.871 0.724 0.770 0.723 0.702 0.794 0.769 0.747 0.748 0.885 0.514 0.666 0.812 0.643 0.665 0.710
SRM (Luo et al., 2021) 55M 0.840 0.885 0.695 0.728 0.722 0.702 0.794 0.767 0.749 0.704 0.779 0.704 0.659 0.772 0.793 0.694 0.732
CORE (Ni et al., 2022) 22M 0.809 0.882 0.721 0.720 0.765 0.724 0.710 0.762 0.871 0.843 0.959 0.679 0.774 0.958 0.855 0.724 0.833

RECCE (Cao et al., 2022) 48M 0.823 0.891 0.696 0.734 0.784 0.756 0.711 0.779 0.898 0.832 0.925 0.683 0.848 0.949 0.848 0.768 0.844
SLADD (Chen et al., 2022a) 21M 0.837 0.904 0.772 0.756 0.800 0.690 0.683 0.777 0.878 0.882 0.954 0.765 0.825 0.943 0.879 0.794 0.865

SBI (Shiohara & Yamasaki, 2022) 18M 0.886 0.827 0.717 0.848 0.899 0.703 0.866 0.821 0.724 0.891 0.952 0.750 0.594 0.803 0.712 0.701 0.766
UCF (Yan et al., 2023a) 47M 0.837 0.867 0.742 0.770 0.808 0.774 0.697 0.785 0.831 0.827 0.950 0.731 0.862 0.937 0.809 0.647 0.824
IID (Huang et al., 2023) 66M 0.838 0.939 0.700 0.689 0.808 0.666 0.762 0.789 0.839 0.789 0.888 0.766 0.844 0.927 0.789 0.644 0.811

LSDA† (Yan et al., 2024a) 133M 0.875 0.881 0.701 0.812 0.768 0.797 0.724 0.794 0.872 0.875 0.930 0.694 0.721 0.939 0.855 0.793 0.835
ProDet† (Cheng et al., 2024) 96M 0.926 0.901 0.707 0.828 0.879 0.781 0.751 0.828 0.908 0.929 0.975 0.771 0.747 0.928 0.837 0.844 0.867

CDFA† (Lin et al., 2024) 87M 0.938 0.954 0.830 0.881 0.973 0.796 0.777 0.878 0.762 0.756 0.823 0.631 0.803 0.942 0.772 0.757 0.781

Effort (Ours) 0.19M 0.956 0.965 0.843 0.909 0.977 0.848 0.921 0.917 0.962 0.873 0.953 0.983 0.926 0.957 0.936 0.926 0.940

Table 2. Benchmarking Results of Cross-method Evaluations in terms of AP Performance on the UniversalFakeDetect Dataset. †
indicates that the results are obtained by using the official pre-trained model or reproduction.

Methods
GAN Deep

fakes

Low level Perceptual loss
Guided

LDM Glide
Dalle mAPPro-

GAN
Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN SITD SAN CRN IMLE 200

steps
200

w/cfg
100
steps

100
27

50
27

100
10

CNN-Spot (Wang et al., 2020b) 100.0 93.47 84.50 99.54 89.49 98.15 89.02 73.75 59.47 98.24 98.40 73.72 70.62 71.00 70.54 80.65 84.91 82.07 70.59 83.58
Patchfor (Chai et al., 2020) 80.88 72.84 71.66 85.75 65.99 69.25 76.55 76.19 76.34 74.52 68.52 75.03 87.10 86.72 86.40 85.37 83.73 78.38 75.67 77.73

Co-occurence (Nataraj et al., 2019) 99.74 80.95 50.61 98.63 53.11 67.99 59.14 68.98 60.42 73.06 87.21 70.20 91.21 89.02 92.39 89.32 88.35 82.79 80.96 78.11
Freq-spec (Zhang et al., 2019) 55.39 100.0 75.08 55.11 66.08 100.0 45.18 47.46 57.12 53.61 50.98 57.72 77.72 77.25 76.47 68.58 64.58 61.92 67.77 66.21

F3Net† (Qian et al., 2020) 99.96 84.32 69.90 99.72 56.71 100.0 78.82 52.89 46.70 63.39 64.37 70.53 73.76 81.66 74.62 89.81 91.04 90.86 71.84 76.89
UniFD (Ojha et al., 2023) 100.0 98.13 94.46 86.66 99.25 99.53 91.67 78.54 67.54 83.12 91.06 79.24 95.81 79.77 95.93 93.93 95.12 94.59 88.45 90.14
LGrad† (Tan et al., 2023) 100.0 93.98 90.69 99.86 79.36 99.98 67.91 59.42 51.42 63.52 69.61 87.06 99.03 99.16 99.18 93.23 95.10 94.93 97.23 86.35

FreqNet† (Tan et al., 2024b) 99.92 99.63 96.05 99.89 99.71 98.63 99.92 94.42 74.59 80.10 75.70 96.27 96.06 100.0 62.34 99.80 99.78 96.39 77.78 91.95
NPR† (Tan et al., 2024c) 100.0 99.53 94.53 99.94 88.82 100.0 84.41 97.95 99.99 50.16 50.16 98.26 99.92 99.91 99.92 99.87 99.89 99.92 99.26 92.76

FatFormer† (Liu et al., 2024) 100.0 100.0 99.98 99.75 100.0 100.0 97.99 97.94 81.21 99.84 99.93 91.99 99.81 99.09 99.87 99.13 99.41 99.20 99.82 98.16

Effort (Ours) 100.0 100.0 99.99 99.77 100.0 100.0 98.95 97.53 97.53 100.0 100.0 95.39 99.99 99.89 100.0 99.87 99.92 99.98 99.96 99.41

Table 3. Benchmarking Results of Cross-method Evaluations in terms of Acc Performance on the UniversalFakeDetect Dataset. †
indicates that the results are obtained by using the official pre-trained model or reproduction.

Methods
GAN Deep

fakes

Low level Perceptual loss
Guided

LDM Glide
Dalle mAccPro-

GAN
Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN SITD SAN CRN IMLE 200

steps
200

w/cfg
100
steps

100
27

50
27

100
10

CNN-Spot (Wang et al., 2020b) 99.99 85.20 70.20 85.70 78.95 91.70 53.47 66.67 48.69 86.31 86.26 60.07 54.03 54.96 54.14 60.78 63.80 65.66 55.58 69.58
Patchfor (Chai et al., 2020) 75.03 68.97 68.47 79.16 64.23 63.94 75.54 75.14 75.28 72.33 55.30 67.41 76.50 76.10 75.77 74.81 73.28 68.52 67.91 71.24

Co-occurence (Nataraj et al., 2019) 97.70 63.15 53.75 92.50 51.10 54.70 57.10 63.06 55.85 65.65 65.80 60.50 70.70 70.55 71.00 70.25 69.60 69.90 67.55 66.86
Freq-spec (Zhang et al., 2019) 49.90 99.90 50.50 49.90 50.30 99.70 50.10 50.00 48.00 50.60 50.10 50.90 50.40 50.40 50.30 51.70 51.40 50.40 50.00 55.45

F3Net† (Qian et al., 2020) 99.38 76.38 65.33 92.56 58.10 100.0 63.48 54.17 47.26 51.47 51.47 69.20 68.15 75.35 68.80 81.65 83.25 83.05 66.30 71.33
UniFD (Ojha et al., 2023) 100.0 98.50 94.50 82.00 99.50 97.00 66.60 63.00 57.50 59.50 72.00 70.03 94.19 73.76 94.36 79.07 79.85 78.14 86.78 81.38
LGrad† (Tan et al., 2023) 99.84 85.39 82.88 94.83 72.45 99.62 58.00 62.50 50.00 50.74 50.78 77.50 94.20 95.85 94.80 87.40 90.70 89.55 88.35 80.28

FreqNet† (Tan et al., 2024b) 97.90 95.84 90.45 97.55 90.24 93.41 97.40 88.92 59.04 71.92 67.35 86.70 84.55 99.58 65.56 85.69 97.40 88.15 59.06 85.09
NPR† (Tan et al., 2024c) 99.84 95.00 87.55 96.23 86.57 99.75 76.89 66.94 98.63 50.00 50.00 84.55 97.65 98.00 98.20 96.25 97.15 97.35 87.15 87.56

FatFormer† (Liu et al., 2024) 99.89 99.32 99.50 97.15 99.41 99.75 93.23 81.11 68.04 69.45 69.45 76.00 98.60 94.90 98.65 94.35 94.65 94.20 98.75 90.86

Effort (Ours) 100.0 99.85 99.60 95.05 99.60 100.0 87.60 92.50 81.50 98.90 98.90 69.15 99.30 96.80 99.45 97.45 97.80 97.15 98.05 95.19

codebases of DeepfakeBench (Yan et al., 2023b). Addition-
ally, we sample 8 frames from each video for training and
32 frames for inference, following (Shiohara & Yamasaki,
2022). We use the fixed learning rate of 2e-4 for training our
approach and employ the Adam (Kingma & Ba, 2014) for
optimization. We set the batch size to 32 for both training
and testing. We also employ several widely used data aug-
mentations, such as Gaussian Blur and Image Compression,
following other existing works (Yan et al., 2024a; Shiohara
& Yamasaki, 2022; Cheng et al., 2024). For the evaluation
metric, we report the widely-used video-level Area Under
the Curve (AUC) to compare our approach with other works,
following (Lin et al., 2024; Shiohara & Yamasaki, 2022).
We compute the average model’s output probabilities of
each video to obtain the video-level AUC.

Evaluation Protocols and Dataset. We adopt two widely
used and standard protocols for evaluation: Protocol-
1: cross-dataset evaluation and Protocol-2: cross-
manipulation evaluation within the FF++ data domain. For
Protocol-1, we conduct evaluations by training the mod-
els on FaceForensics++ (FF++) (Rossler et al., 2019) and
testing them on other seven deepfake detection datasets:
Celeb-DF-v2 (CDF-v2) (Li et al., 2020b), DeepfakeDetec-
tion (DFD) (DFD., 2020), Deepfake Detection Challenge
(DFDC) (detection challenge., 2020), the preview version of
DFDC (DFDCP) (Dolhansky et al., 2019), DeeperForensics
(DFo) (Jiang et al., 2020), WildDeepfake (WDF) (Zi et al.,
2020), and FFIW (Zhou et al., 2021). Note that FF++ has
three different compression versions and we adopt the c23
version for training all methods in our experiments, follow-
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ing most existing works (Yan et al., 2024a). For Protocol-
2, we evaluate the models on the latest deepfake dataset
DF40 (Yan et al., 2024b), which contains the forgery data
generated within the FF++ domain, ensuring the fake meth-
ods different while the data domains remain unchanged.

Evaluation Benchmarking. To provide a comprehensive
benchmark for comparison, we introduce 13 competitive de-
tectors, including several classical detection methods such
as F3Net (Qian et al., 2020) (ECCV’20), SPSL (Liu et al.,
2021a) (CVPR’20), SRM (Liu et al., 2021a) (CVPR’21),
CORE (Ni et al., 2022) (CVPRW’22), RECCE (Cao et al.,
2022) (CVPR’22), and SBI (Shiohara & Yamasaki, 2022)
(CVPR’22), and also several latest SOTA methods (af-
ter 2023), such as UCF (Yan et al., 2023a) (ICCV’23),
IID (Huang et al., 2023) (CVPR’23), TALL (Xu et al.,
2023) (ICCV’23), LSDA (Yan et al., 2024a) (CVPR’24),
ProDet (Cheng et al., 2024) (NeurIPS’24), and CFDA (Lin
et al., 2024) (ECCV’24). All detectors are trained on FF++
(c23) and tested on other fake data. Results in Tab. 1 demon-
strate two notable advantages of our approach. (1) gen-
eralizability: we see that our approach consistently and
largely outperforms other models across basically all tested
scenarios, validating that our method is generalizable for
detecting unseen fake data, even for the latest face-swapping
techniques such as BleFace (Shiohara et al., 2023). (2) effi-
ciency: it is worth noting that our method only needs 0.19M
parameters for training to achieve superior generalization.
As we can see most latest SOTA detectors such as LSDA and
ProDet all use about 100M parameters for training, while
we are about 1,000× smaller.

4.2. Synthetic Image Detection

Evaluation Metrics. We follow existing works (Wang
et al., 2020a; Ojha et al., 2023; Liu et al., 2024) for bench-
marking and report both average precision (AP) and classi-
fication accuracy (Acc). For Acc, we set the classification
threshold for each dataset to 0.5 to ensure a fair comparison.
UniversalFakeDetect Dateset. We adhere to the protocol
outlined in (Wang et al., 2020a; Ojha et al., 2023) and uti-
lize ProGAN’s real and fake images as our training dataset,
which includes 20 subsets of generated images. The evalua-
tion set contains 19 subsets derived from different kinds of
generative models, including ProGAN (Karras et al., 2018),
CycleGAN (Zhu et al., 2017), BigGAN (Brock et al., 2018a),
StyleGAN (Karras et al., 2019), GauGAN (Park et al., 2019),
StarGAN (Choi et al., 2018), DeepFakes (Rössler et al.,
2019), SITD (Chen et al., 2018), SAN (Dai et al., 2019),
CRN (Chen & Koltun, 2017), IMLE (Li et al., 2019), Guided
(guided diffusion model)(Dhariwal & Nichol, 2021), LDM
(latent diffusion model) (Rombach et al., 2022a), Glide
(Nichol et al., 2022), and DALLE (Ramesh et al., 2021).
Implementation Details. Similar to the setting of deep-
fake image detection, we adopt pre-trained CLIP ViT-L/14
as the backbone and use the Adam optimizer (Kingma &

Table 4. Ablation studies regarding the proposed SVD, singular
value constraint (Lksv), and orthogonal constraint (Lorth). All
models are trained on FF++ (c23) and tested on other datasets.

Ours CDF-v2 SimSwap Avg.
SVD Lksv Lorth

× × × 0.857 0.860 0.859
✓ × × 0.940 0.910 0.925
✓ ✓ × 0.944 0.927 0.936
✓ × ✓ 0.945 0.914 0.930
✓ ✓ ✓ 0.956 0.926 0.941

Table 5. Ablation studies regarding different vision foundation
models (VFMs) were used. All models are trained on FF++ (c23)
and tested on CDF-v2 and SimSwap.

VFMs #Params #ImgSize CDF-v2 SimSwap Avg.

BEIT-v2 (Peng et al., 2022) 303M 224 0.855 0.821 0.838
+ Ours 0.14M 224 0.894 0.850 0.872

SigLIP (Zhai et al., 2023) 316M 256 0.877 0.713 0.795
+ Ours 0.19M 256 0.895 0.778 0.867

CLIP (Radford et al., 2021) 307M 224 0.857 0.860 0.859
+ Ours 0.19M 224 0.956 0.926 0.941

Ba, 2014) with a fixed learning rate of 2e-4. The batch size
is set to 48. Other settings and details are the same with
(Ojha et al., 2023).

Evaluation Analysis. The AP and Acc results are pre-
sented in Tab. 2 and Tab. 3, respectively. Our method attains
impressive detection results, achieving 95.19% mAcc and
99.41% mAP across the 19 test subsets. One similar ap-
proach to ours is UniFD, which also preserves the original
pre-trained knowledge of CLIP and fine-tunes only the FC
layer for discrimination. In contrast to UniFD which di-
rectly performs discrimination in the pre-trained knowledge
space, our approach utilizes SVD to create an orthogonal
low-ranked subspace for learning forgeries while preserving
the essential high-ranked representational space, achieving
the discrimination by leveraging both representational and
forgery subspaces, achieving a significant improvement of
9.27% in mAcc and 13.81% in mAP over UniFD. Besides,
when compared to the SOTA method, FatFormer, we achieve
4.33% mAcc improvement without relying on the extra text
encoder of CLIP. This further demonstrates the superiority
of our approach.

4.3. Ablation Study and Analysis

Incremental improvement of the proposed designs. Ab-
lation studies in Tab. 4 demonstrate incremental gains from
the proposed SVD method and loss constraints: the base-
line (no modules) achieves an average AUC of 0.859, while
adding SVD alone boosts performance to 0.925 (+6.6%),
underscoring its efficacy in isolating forgery artifacts via
orthogonal feature decomposition. Further integrating the
singular value constraint (Lksv) and orthogonal constraint
(Lorth) refines performance, yielding 0.936 and 0.930 AUC,
respectively, with their combined synergy (SVD + Lksv +
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Table 6. Ablation studies on synthetic image detection regard-
ing the tunable n − r values in SVD (Ours) and r values in
LoRA. All models are trained on ProGAN’s images and tested
on 19 different generative models’ images. “FFT” indicates the
full fine-tuning. “Linear-Prob” indicates fine-tuning FC layer only,
where we reproduce the results from UniFD (Ojha et al., 2023).

Archs. n− r r mAcc

UniFD (Linear-Prob) – – 81.02
Baseline (FFT) – – 86.22

LoRA

Variant-1 – 256 91.42
Variant-2 – 64 91.06
Variant-3 – 16 91.89
Variant-4 – 4 93.53
Variant-5 – 1 93.03

Ours

Variant-1 256 – 92.13
Variant-2 64 – 93.68
Variant-3 16 – 94.45
Variant-4 4 – 94.37
Variant-5 1 – 95.19

Table 7. Cross-dataset generalization evaluations with existing
adapter-based deepfake detectors. The results are cited from
their original papers. The metric is frame-level AUC.

Methods CDF-v2 DFD DFDC Avg.

LoRA (Kong et al., 2023) 0.838 0.834 0.717 0.796
MoE-LoRA (Kong et al., 2024) 0.867 0.904 – –
Dual-Adapter (Shao et al., 2023) 0.717 – 0.727 –

Ours 0.901 0.923 0.798 0.874

Lorth) achieving peak performance (0.941 AUC). These
results highlight the significant contribution of SVD as the
primary driver of performance gains while illustrating the
complementary benefits of Lksv and Lorth in further refin-
ing the generalization performance.

Compatibility with other vision foundation models. By
default, we choose CLIP as the vision foundation model
(VFM) in our experiments. To validate the generality and
versatility of our approach, we conduct an ablation study to
apply our method to other VFMs, including BEIT-v2 (Peng
et al., 2022) and SigLIP (Zhai et al., 2023). Results in Tab. 5
show that our approach can be seamlessly applied to other
VFMs to improve the model’s generalization performance.

Comparison with Existing Adapter-Based Detectors.
Parameter-efficient fine-tuning (PEFT) has become a popu-
lar technique for adapting pre-trained large models to down-
stream tasks (Ding et al., 2023). Low-ranked adaptation
(LoRA) (Hu et al., 2021) is a widely used approach for
PEFT. Previous works (Kong et al., 2023; Liu et al., 2024)
employing LoRA in the VFMs have achieved good empiri-
cal generalization results for detection. Additionally, (Kong
et al., 2024) and (Shao et al., 2023) introduce MoE-LoRA
techniques and dual adapters into the deepfake detection
fields. However, the existing adapter-based methods do not
explicitly ensure this orthogonality, still having the po-
tential to distort the pre-existing pre-trained knowledge and
result in unexpected generalization results. In contrast, our

Number of main principal components (by PCA)

- 23

- 103

- 1

Figure 6. PCA quantifying feature space information retention,
measured by the minimum number of components required to
explain ≥ 90% variance. Our SVD-based fine-tuning preserves
159/160 principal components (retaining 99.3% original variance),
while LoRA and FFT exhibit notable degradation, with 14.4% and
64.4% variance loss, respectively. See Tab. 8 for more results.

Table 8. Comparison of different fine-tuning methods. We com-
pute both the effective rank and mean accuracy for evaluation. Our
SVD retains most principal components (notably higher effective
rank), thus achieving the best detection results.

Fine-tuning Methods Face Domain General Domain
Effective Rank Accuracy Effective Rank Accuracy

Baseline (No FT) 160 - 479 -
SVD (ours) 159 95.60 316 95.19
LoRA 137 89.40 304 93.03
FFT 57 85.70 238 86.22

method explicitly constructs two orthognoal subspaces
for pre-trained knowledge and forgery using SVD, ensuring
the pre-existing pre-trained knowledge will not be distorted,
thereby achieving better generalization performance. To
verify this, we provide several empirical results in Tab. 7
and Tab. 6. From these results, we can see that our pro-
posed SVD-based method achieves clearly higher general-
ization results than adapter-based methods in both deepfake
detection and synthetic image detection fields, as our ap-
proach explicitly preserves the pre-trained knowledge
while learning the forgery patterns. We also use PCA
to compute the rank of the feature space, similar to Fig. 3.
Results in Fig. 6 highlight the superiority of our method,
where full-parameters fine-tuning and LoRA can lead to
a notable reduction (-103 and -23, respectively) while our
method best retains the pre-trained knowledge, maintaining
a higher-ranked feature space for better generalization.

The naively trained models leverage very limited forgery
patterns for discrimination. In our motivation, we ar-
gue that conventional training paradigms cause models to
over-rely on very limited forgery patterns for discrimina-
tion, thereby causing the highly low-ranked and constrained
feature space, limiting their expressivity and generalization
(Fig. 2 and Fig. 3). To further validate this argument, we
analyze the discrimination behavior of baseline models
(e.g., Xception and CLIP) through decision boundary visu-
alization using the model’s output logits of real and fake
classes (Fig. 7). The linear alignment of predictions along
y = −x + b reveals that Xception collapses real/fake
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CLIP (FFT)

SVD (ours)

In-Domain Evaluation Cross-Forgery Evaluation Cross-Dataset Evaluation
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Real Fake Boundary (real logits = fake logits)

AUC: 0.999 AUC: 0.864 AUC: 0.798

AUC: 0.997 AUC: 0.883 AUC: 0.857

AUC: 0.995 AUC: 0.962 AUC: 0.956

Figure 7. Evidence for validating the discrimination dimension
from the logits space. The first row shows that the vanilla CNN
(i.e., Xception) overfits to the seen fakes and relies only on the
forgery pattern for discrimination. The second row shows that
fully fine-tuning the VFM (i.e., CLIP) involves pre-trained knowl-
edge but also distorting part of it during learning forgery patterns.
The third row shows that our method uses SVD to achieve the
orthogonality, thereby best retaining the pre-trained knowledge.

discrimination into a single discriminative dimension,
confirming its exclusive dependence on forgery cues. No-
tably, while CLIP’s original higher-ranked representations
initially preserve informative structures, full fine-tuning
catastrophically degrades this structure, forcing decisions
into a similarly collapsed subspace (y = −x + b). Our
method addresses this concern by learning forgery-related
features in a novel orthogonal complement subspace rela-
tive to CLIP’s original representational embedding space,
thereby achieving optimal generalization performance.

How to determine the value of rank in tuning SVD?
Our choice of using a lower rank (specifically, “n-r”=1)
for fine-tuning DFD is primarily motivated by two critical
factors: First, the nature of the real-fake classification
task itself makes it relatively straightforward. Specifi-
cally, fake samples in existing training sets tend to exhibit
a limited number of distinctive forgery patterns (FF++ con-
tains only four forgery types), each with relatively simple
and consistent characteristics. Due to this simplicity and
limited diversity, a low-rank adaptation with a small rank
(e.g., “n-r”=1, 4, or 16) is sufficient for the model to ef-
fectively learn these forgery patterns. As demonstrated by
Table 5 in our paper, choosing ranks of 1, 4, or 16 yields
very similar performance results. Given this observation, we
prioritize efficiency and parameter economy, making rank 1

the optimal choice. Second, the inherent characteristics
of binary classification further justify selecting a smaller
rank. Binary classification tasks typically do not require the
model to learn extensive and nuanced patterns, but rather to
identify just enough distinctive features to separate the two
classes, making the learned feature space inherently con-
strained. Thus, binary classification inherently simplifies the
complexity of the learning problem, meaning that employ-
ing a higher rank would not provide significant additional
benefit.

5. Conclusion
In this paper, we start our research from a new perspec-
tive to excavate the failure reason of the generalization in
AIGI detection, namely the asymmetry phenomena, where
a naively trained detector very quickly shortcuts to the seen
fake patterns, collapsing the feature space into a low-ranked
structure that limits expressivity and generalization. To ad-
dress this, we propose integrating higher-ranked pre-trained
knowledge from vision foundation models to expand the fea-
ture space. Simultaneously, we decompose the feature space
into two orthogonal subspaces, for preserving pre-trained
knowledge while learning forgery. Beyond LoRA and full-
parameters tuning, we explicitly ensure the orthogonality,
maintaining the higher rank of the whole feature space for
better generalization. Furthermore, we reveal a very impor-
tant prior for generalizable AIGI detection that fake data
actually originates from real data in a hierarchical structure,
not independently. Our method leverages this prior by pre-
serving pre-trained semantic components while adapting to
fake detection, enabling discrimination in semantic-aligned
subspaces with reduced model complexity and improved
generalization. Extensive experiments with deep analysis
on both deepfake and synthetic image detection benchmarks
have demonstrated the superior advantages of the proposed
method in AIGI detection.

Impact Statement
This research advances application-driven machine learning
by proposing a novel method for detecting AI-generated
images. By effectively identifying deepfakes and curbing
malicious uses of generative models, it holds significant
potential for positive social impact. However, a possible
negative outcome is the misuse of our method to enhance the
realism of deepfake generators. To address this concern, we
plan to implement measures like access control. Overall, we
urge the research community to minimize negative impacts
while leveraging the positive contributions of this work.
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A. Additional Results and Ablations
In this section, we provide additional experimental results
and ablation studies of our proposed approach.

A.1. Results on GenImage Benchmark

In our manuscript, we present the benchmarking outcomes
of the UniversalFakeDetect Dataset. Additionally, we report
the results obtained from another widely utilized bench-
mark known as GenImage (Zhu et al., 2024). This Gen-
Image dataset predominantly utilizes the Diffusion model
for image generation, incorporating models such as Mid-
journey (MidJourney.), SDv1.4 (Rombach et al., 2022b),
SDv1.5 (Rombach et al., 2022b), ADM (Dhariwal et al.,
2021), GLIDE (Nichol et al., 2021), Wukong (Wuk, 2022.
5), VQDM (Gu et al., 2022a), and BigGAN (Brock et al.,
2018b). Following the settings defined for GenImage, we
designate SDv1.4 as the training set and the remaining mod-
els as the test set. Given the diverse image sizes within the
GenImage dataset, images with a size smaller than 224 pix-
els are duplicated and subsequently cropped to 224 pixels,
following (Tan et al., 2024c). We employ the same setting
to re-implement FreqNet, FatFormer, and NPR, and also
report the results of UnivFD and DRCT from (Chen et al.,
2024).

The results on the GenImage dataset are presented in Table
9. When SDv1.4 is employed as the training set, our method
attains an overall accuracy rate of 91.1% across the entire
test set. Compared to similar methods that utilize CLIP as
the backbone, such as UnivFD and FatFormer, our approach
improves accuracy by 11.6% and 2.2%, respectively. More-
over, when contrasted with the latest state-of-the-art (SOTA)
method DRCT (ICML 2024), the proposed method achieves
a 1.6% enhancement in accuracy. This clearly indicates
that our method demonstrates superior generalization capa-
bilities and achieves SOTA performance on the GenImage
benchmark.

A.2. Comparison with Existing Video Detectors

In the manuscript, we mainly compare our method with
image detectors. Here, we provide an individual result to
compare our approach with existing SOTA video detectors.
Following (Zhang et al., 2024; Xu et al., 2023), we conduct
evaluations on the widely-used CDF-v2 (Li et al., 2020b)
and DFDC (detection challenge., 2020) using the video-
level AUC metric. We have considered both the classical
detectors such as LipForensics and the latest SOTA detectors
such as NACO (ECCV’24) for a comprehensive comparison.
Results in Tab. 10 demonstrate that our image-based ap-
proach achieves higher generalization performance in both
CDF-v2 and DFDC, improving 4.5% and 3.9% points than
the second-best video-based models. This further validates

the superior generalization performance of our approach.

A.3. Robustness Evaluation

To evaluate our model’s robustness to random perturbations,
we adopt the methodology used in previous studies (Halias-
sos et al., 2021; Zheng et al., 2021), which involves ex-
amining three distinct types of degradation: Block-wise
distortion, Change contrast, and JPEG compression. We
apply each of these perturbations at five different levels to
assess the model’s robustness under varying degrees of dis-
tortion, following (Chen et al., 2022b; Yan et al., 2024a).
The video-level AUC results for these unseen perturbations,
using the model trained on FF++ (c23), are depicted in
Fig. 8. Generally, our approach shows higher results than
other methods, demonstrating the better robustness of our
approach than other models.

B. Additional Cross-Method Evaluation
The capability of face forgery detectors to generalize to new
manipulation methods is crucial in practical, real-world ap-
plications. In our manuscript, we present cross-method eval-
uations using the DF40 dataset (Yan et al., 2024b). Specifi-
cally, we train the models with four manipulation methods
from FF++ (c23) and then test them on the other eight ma-
nipulation techniques provided in DF40. Furthermore, we
conduct an additional cross-method evaluation following the
protocol introduced in (Sun et al., 2022; Miao et al., 2023;
Luo et al., 2023a). This protocol involves training the model
on diverse manipulation types of samples and subsequently
testing it on unknown manipulation methods. The results
of this evaluation are reported in Tab. 11. It is evident that
our proposed method attains remarkable performance in
cross-manipulation evaluation. In terms of accuracy (ACC),
it outperforms the latest SOTA detector FA-ViT by 2.85%
on GID-DF and 3.14% on GID-F2F, respectively.

B.1. Additional Ablation Studies

Impact of Different Vision Foundation Models We ini-
tialize the ViT backbone with several widely used pre-
trained weights from different vision foundation models,
including BEIT-v2 (Peng et al., 2022), CLIP (Radford et al.,
2021), and SigLIP (Zhai et al., 2023). The results are shown
in Tab. 12 and Tab. 13. It is evident that our proposed
approach improves the generalization performance of dif-
ferent pre-trained ViTs. On the other hand, we note that
different initialization significantly impacts generalization
performance, indicating the importance of choosing a suit-
able pre-trained initialization. Through empirical results,
we discover that the ViT pre-trained on CLIP exhibits the
highest performance in both deepfake detection and syn-
thetic image detection tasks. Therefore, we choose CLIP as
the default setting for our approach.
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Table 9. Benchmarking results of cross-method evaluations in terms of Acc performance on the Genimage dataset. We follow
(Zhu et al., 2024) and use the SDv1.4 as the training set while others as the testing sets. We directly cite the results of ResNet-50,
DeiT-S, Swin-T, CNNSpot, Spec, F3Net, and GramNet from (Zhu et al., 2024). We obtain the results of UnivFD and DRCT from (Chen
et al., 2024), and FreqNet, NPR, and FatFormer by using the official checkpoints for reproduction. We report the Accuracy metric for
comparison following (Chen et al., 2024).

Methods Venues Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN mAcc
ResNet-50 (He et al., 2016) CVPR 2016 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1

DeiT-S (Touvron et al., 2021) ICML 2021 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6
Swin-T (Liu et al., 2021b) ICCV 2021 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8

CNNSpot (Wang et al., 2020b) CVPR 2020 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2
Spec (Zhang et al., 2019) WIFS 2019 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8
F3Net (Qian et al., 2020) ECCV 2020 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7

GramNet (Liu et al., 2020) CVPR 2020 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9
UnivFD (Ojha et al., 2023) CVPR 2023 91.5 96.4 96.1 58.1 73.4 94.5 67.8 57.7 79.5

NPR (Tan et al., 2024c) CVPR 2024 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6
FreqNet (Tan et al., 2024b) AAAI 2024 89.6 98.8 98.6 66.8 86.5 97.3 75.8 81.4 86.8
FatFormer (Liu et al., 2024) CVPR 2024 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 88.9
DRCT (Chen et al., 2024) ICML 2024 91.5 95.0 94.4 79.4 89.2 94.7 90.0 81.7 89.5

Ours – 82.4 99.8 99.8 78.7 93.3 97.4 91.7 77.6 91.1
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Figure 8. Robustness to unseen perturbations. We present video-level AUC for five distinct degradation levels across three types of
perturbations in (Jiang et al., 2020).
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Figure 9. t-SNE visualizations of the initial latent feature spaces between vanilla CNN (Wang et al., 2020b) and CLIP (Radford
et al., 2021). We show that both the pre-trained CNN and CLIP can identify different semantic objects.

Impact of Different ViT Backbones Here, we investi-
gate the effects of different ViT architectures. Specifically,
we consider two backbones that were implemented in the
original paper of CLIP: ViT-Base-16 and ViT-Large-14. We
conduct evaluations on both deepfake detection and syn-
thetic image detection benchmarks, as shown in Tab. 14 and

Tab. 15. Compared to fully fine-tuning the CLIP model, our
proposed approach consistently demonstrates substantial
enhancements in generalization performance across these
ViT backbones. It is worth noting that CLIP-Large performs
better than CLIP-Base by a notable margin. Based on this
ablation experiment, we ultimately choose ViT-Large as our
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Figure 10. t-SNE visualizations of the latent feature spaces between vanilla CNN (Wang et al., 2020b) and ours. We use the testing
set of ProGAN and StyleGAN within UniversalFakeDetect Dataset (Wang et al., 2020b) for visualization. We see that after fine-tuning on
AIGI data, the baseline quickly shortcuts to the fake and “forgets” the pre-existing semantic knowledge, thereby resulting in a highly
constrained feature space.

Table 10. Cross-dataset generalization evaluations with exist-
ing SOTA video detectors. The results of other detectors are
directly cited from their original papers. The metric is video-level
AUC.

Methods Venues CDF-v2 DFDC Avg.

LipForensics (Haliassos et al., 2021) CVPR 2021 0.824 0.735 0.780
FTCN (Zheng et al., 2021) ICCV 2021 0.869 0.740 0.805

HCIL (Gu et al., 2022b) ECCV 2022 0.790 0.692 0.741
RealForensics (Haliassos et al., 2022) CVPR 2022 0.857 0.759 0.808

LTTD (Guan et al., 2022) NeurIPS 2022 0.893 0.804 0.849
AltFreezing (Wang et al., 2023b) CVPR 2023 0.895 – –

TALL-Swin (Xu et al., 2023) ICCV 2023 0.908 0.768 0.838
StyleDFD (Choi et al., 2024) CVPR 2024 0.890 – –
NACO (Zhang et al., 2024) ECCV 2024 0.895 0.767 0.831

Ours – 0.956 0.843 0.900

Table 11. Additional results of cross-manipulation evaluation
on FF++ (c23). Following (Miao et al., 2023; Luo et al., 2023a),
we conduct evaluations by training on the other three manipulated
methods while testing on the remaining one. Specifically, GID-
DF means training on the other three manipulated methods (FF-
F2F, FF-FS, FF-NT) while testing on the FF-DF. Results of other
methods are cited from (Miao et al., 2023; Luo et al., 2023a).

Methods GID-DF GID-F2F
Acc AUC Acc AUC

EfficientNet (Tan & Le, 2019) 82.40 91.11 63.32 80.10
MLGD (Li et al., 2018) 84.21 91.82 63.46 77.10
LTW (Sun et al., 2021) 85.60 92.70 65.60 80.20
DCL (Sun et al., 2022) 87.70 94.90 68.40 82.93

M2TR (Wang et al., 2022) 81.07 94.91 55.71 76.99
F3Net (Qian et al., 2020) 83.57 94.95 61.07 81.20

F2Trans (Miao et al., 2023) 89.64 97.47 81.43 90.55
CFM (Luo et al., 2023b) 85.00 92.74 76.07 84.55

FA-ViT (Luo et al., 2023a) 92.86 98.10 82.57 91.20
Ours 95.71 99.26 85.71 93.83

Table 12. Ablation studies on deepfake image detection (Cross-
dataset) regarding different vision foundation models (VFMs)
were used. All models are trained on FF++ (c23) and tested on
CDF-v2 and SimSwap.

VFMs #Params #ImgSize CDF-v2 SimSwap Avg.

BEIT-v2 (Peng et al., 2022) 303M 224 0.855 0.821 0.838
+ Ours 0.14M 224 0.894 0.850 0.872

SigLIP (Zhai et al., 2023) 316M 256 0.877 0.713 0.795
+ Ours 0.19M 256 0.895 0.778 0.867

CLIP (Radford et al., 2021) 307M 224 0.857 0.860 0.859
+ Ours 0.19M 224 0.956 0.926 0.941

Table 13. Ablation studies on synthetic image detection (Univer-
salFakeDetect Dataset) regarding different vision foundation
models (VFMs) were used. All models are trained on ProGAN’s
images and tested on 19 different generative models’ images.

VFMs #Params #ImgSize mAP mAcc

BEIT-v2 (Peng et al., 2022) 303M 224 93.50 79.11
+ Ours 0.14M 224 97.39 83.66

SigLIP (Zhai et al., 2023) 316M 256 94.30 81.23
+ Ours 0.19M 256 96.24 90.46

CLIP (Radford et al., 2021) 307M 224 97.95 86.22
+ Ours 0.19M 224 99.41 95.19

default backbone.

C. Additional Analysis and Visualizations
C.1. Additional t-SNE Visualizations

We further visualize the t-SNE of the seen fake ProGAN,
unseen fake StyleGAN and useen CycleGAN for the com-
parison of vanilla CNN (Res-50 (Wang et al., 2020b)) and
ours (see Fig. 9, Fig. 10). As we can see from both two
figures, our approach maximizes and preserves the pre-
trained knowledge while fitting the forgery patterns during
training, whereas the vanilla CNN overfits the seen fake
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Table 14. Ablation studies on deepfake image detection (Cross-
dataset) regarding different ViT architectures were used. We
employ the two architectures implemented in the original paper
of CLIP (Radford et al., 2021) for experiments. All models are
trained on FF++ (c23).

VFMs #Params #ImgSize CDF-v2 SimSwap Avg.

CLIP-Base/16 86M 224 0.854 0.833 0.844
+ Ours 0.07M 224 0.915 0.919 0.917

CLIP-Large/14 307M 224 0.857 0.860 0.859
+ Ours 0.19M 224 0.956 0.926 0.941

Table 15. Ablation studies on synthetic image detection (Uni-
versalFakeDetect Dataset) regarding different architectures
were used. All models are trained on ProGAN’s images and tested
on 19 different kinds of generative models’ images.

VFMs #Params #ImgSize mAP mAcc

CLIP-Base/16 86M 224 96.25 82.52
+ Ours 0.07M 224 98.47 88.46

CLIP-Large/14 307M 224 97.95 86.22
+ Ours 0.19M 224 99.41 95.19

method, learning forgery patterns only, thereby resulting
in a highly low-ranked feature space (see Fig. 6 and Fig. 7
of the manuscript for details) and causing the overfitting
to seen forgery patterns in the training set. Additionally,
we see that the logit distribution of the vanilla CNN has
a larger overlapping between fake and real, while ours is
highly smaller, suggesting that our approach achieves a
better generalization performance.

C.2. Self-Attention Map Visualizations

Here, we perform the self-attention maps visualization of
the original CLIP-ViT model (Original), the fully fine-
tuned CLIP-ViT model (FFT), the LoRA-trained CLIP-ViT
model (LoRA), and our proposed orthogonal trained CLIP-
ViT model (Ours) on the UniversalFakeDetect dataset (see
Fig. 11, Fig. 12, Fig. 13 and Fig. 14). Specifically, for each
block of the ViT, the self-attention map denotes the self-
attention coefficient matrix calculated between the [CLS]
token and the patch tokens. In the case of the LoRA compo-
nent, the self-attention maps are generated from left to right
using the original + LoRA weights, the original weights,
and the LoRA weights, respectively. In the case of the Ours
component, the self-attention maps are generated from left
to right using the principal + residual weights, the principal
weights, and the residual weights, respectively. Surprisingly,
we observe that the semantic information is primarily con-
centrated in the earlier blocks, and our proposed approach
establishes orthogonality between the semantic subspace
and the learned forgery subspace at the level of the self-
attention map. It further explains that our proposed ap-
proach can better preserve the pre-trained knowledge while

learning fake patterns.

D. Limitation and Future Work
The core idea of this paper is to decompose the original
feature space into two orthogonal subspaces for preserving
pre-trained knowledge while learning the forgery. In our
manuscript and supplementary, we have conducted exten-
sive experiments and in-depth analysis on both deepfake
and synthetic image detection benchmarks, showing the su-
perior advantages in both generalization and efficiency. One
limitation of our work is that our approach regards all fake
methods in one class during training real/fake classifiers, po-
tentially ignoring the specificity and generality of different
fake methods.

In the future, we plan to expand our approach into a incre-
mental learning framework, where each fake method will be
regarded as “one SVD branch”, ensuring the orthogonality
between different fake methods, thereby avoiding the severe
forgetting of previous learned fake methods. This extension
design will help our approach better address the future deep-
fake types in the real-world scenario. Additionally, although
our work’s scope mainly focuses on deepfake and synthetic
image detection, our approach also has the potential to be
applied to other similar fields such as face anti-spoofing,
anomaly detection, etc. Furthermore, we hope our proposed
approach can inspire future research in developing better
orthogonal modeling strategies.

Ethics & Reproducibility. All of the facial images that
are utilized are sourced from publicly available datasets and
are accompanied by appropriate citations. This guarantees
that there is no infringement upon personal privacy. We will
make all codes and checkpoints available for public access
upon acceptance.
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Figure 11. Self-attention map visualizations of CycleGAN part in UniversalFakeDetect Dataset (Wang et al., 2020b). We visualize
the fake image of CycleGAN part and the corresponding real image for each block of the CLIP-ViT model (there are a total of 24 blocks,
with IDs gradually increasing from top to bottom).
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Figure 12. Self-attention map visualizations of ProGAN part in UniversalFakeDetect Dataset (Wang et al., 2020b). We visualize the
fake image of ProGAN part and the corresponding real image for each block of the CLIP-ViT model (there are a total of 24 blocks, with
IDs gradually increasing from top to bottom).
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Figure 13. Self-attention map visualizations of DeepFake part in UniversalFakeDetect Dataset (Wang et al., 2020b). We visualize
the fake image of DeepFake part and the corresponding real image for each block of the CLIP-ViT model (there are a total of 24 blocks,
with IDs gradually increasing from top to bottom).
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Figure 14. Self-attention map visualizations of LDM part in UniversalFakeDetect Dataset (Wang et al., 2020b).We visualize the fake
image of LDM part and the corresponding real image for each block of the CLIP-ViT model (there are a total of 24 blocks, with IDs
gradually increasing from top to bottom).
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