
Under review as a conference paper at ICLR 2024

A WEIGHT VARIATION-AWARE TRAINING METHOD
FOR HARDWARE NEUROMORPHIC CHIPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hardware neuromorphic chips that mimic the biological nervous systems have re-
cently attracted significant attention due to their ultra-low power and parallel com-
putation. However, the inherent variability of nano-scale synaptic devices causes
a weight perturbation and performance drop of neural networks. This paper pro-
poses a training method to find weight with robustness to intrinsic device variabil-
ity. A stochastic weight characteristic incurred by device inherent variability is
considered during training. We investigate the impact of weight variation on both
Spiking Neural Network (SNN) and standard Artificial Neural Network (ANN)
with different architectures including fully connected, CNN, VGG, ResNet, Mo-
bileNet and EfficientNet on MNIST, N-MNIST, CIFAR-10, CIFAR-100, and Im-
ageNet. Experimental results show that a weight variation-aware training method
(WVAT) can dramatically minimize the performance drop on weight variability by
exploring a flat loss landscape. On ferroelectric tunnel junctions (FTJ) devices,
WVAT yields 78.01% accuracy of VGG-5 on CIFAR-10 for weight perturbations,
while SGD scores 28.43%. Finally, WVAT is easy to implement on various archi-
tectures with little computational overhead.

1 INTRODUCTION

Deep Neural Networks (DNN) have achieved remarkable breakthroughs in computer vision, auto-
matic driving, and image/voice recognition (LeCun et al., 2015). With this success, neuromorphic
technology, which mimics the human nervous system, has recently received significant attention in
the semiconductor industry. Compared with the conventional von Neumann architecture which has
limitations in power consumption and real-time pattern recognition (Schuman et al., 2017; Indiveri
et al., 2015), neuromorphic chips, biologically inspired from the human brain, are new compact
semiconductor chips that collocate processing and memory (Chicca et al., 2014; Catherine D. Schu-
man & Kay, 2022). Therefore, neuromorphic chips can process highly parallel operations and be
suitable for real-time recognizing images, videos, and audios with ultra-low power consumption
(Indiveri & Liu, 2015).

Neuromorphic chips are also suitable for ”Edge AI computing,” which process data in edge devices
rather than in the cloud at a data center (Nwakanma et al., 2021). In other words, tasks that require
a large amount of computation, such as training, are performed in the cloud and inference in edge
devices. Traditional cloud AI processing requires sufficient computing power and network connec-
tivity. This means that an enormous amount of data transmission is required, likely increasing data
latency and transferring disconnections (Li et al., 2020). It causes severe problems in autonomous
driving, robotics, and mobile VR/AR that require real-time processing. Therefore, there is a grow-
ing need for data processing on edge devices. Neuromorphic devices are compact, mobile, and
energy-efficient, promising candidates for edge computing systems.

However, despite enormous advances in semiconductor integrated circuit (IC) technology, hard-
ware neuromorphic implementation and embedded systems with numerous synaptic devices remain
challenging (Prezioso et al., 2015; Esser et al., 2015; Catherine D. Schuman & Kay, 2022). De-
sign considerations such as multi-level state, device variability, programming energy, speed, and
array-level connectivity, are required. (Eryilmaz et al., 2015). In particular, nano-electronic device
variability is an inevitable issue originating from manufacturing fabrication (Prezioso et al., 2010).
Although there are many kinds of nano-electronic devices for neuromorphic systems and in-memory
computing–including memristor, flash memory, phase-change memory, ferroelectric devices, and
optoelectronic devices–we call them “devices” for readability in this paper.

1

Under review as a conference paper at ICLR 2024

Device variability causes mapped synaptic weight values in hardware to differ undesirably from
software weight, especially on analog synapses or neurons. This gap between hardware synapse
and software weight makes it challenging to implement neural networks in real-world applications.
Many recent studies have reported that device variability can significantly reduce the accuracy of
neuromorphic hardware and DNN accelerators (Catherine D. Schuman & Kay, 2022; Peng et al.,
2020; Joshi et al., 2020; Sun & Yu, 2019; Kim et al., 2019; 2018). Although there are various studies
to solve this problem, they focus on the unique behaviors of devices (Hennen et al., 2022; vls; Fu
et al., 2022). The diversity of devices used to implement neuromorphic hardware results in the
customized solutions required for a given device variation. Therefore, the versatility of customized
solutions at the device level is limited.

There is a growing need for a hardware-oriented training method to learn parameters robust to device
variability. It is widely known that wide and flat loss landscapes lead to improved generalization
(Keskar et al., 2017; Li et al., 2018). It is natural to think that wide and flat loss landscapes with
respect to weight will mitigate the accuracy drop caused by device variability. However, we experi-
mentally confirm that related studies (Izmailov et al., 2018; Wu et al., 2020; Foret et al., 2021) can
not significantly reduce the accuracy drop by device variation (Experiments are provided later in
section 2). This observation reminds us of the need for a hardware-oriented neural network training
method.

Motivated by this, we propose a weight variation-aware training method (WVAT) that alleviates
performance drops induced by device variability at the algorithmic level rather than the device level.
This method explores a wide and flat weight loss landscape through the ensemble technique and the
hardware-simulated variation-aware update method, which is more tolerant to the software weight
perturbation caused by hardware synaptic variability. WVAT can effectively minimize performance
drops with respect to weight variations with little additional computational overhead in the training
phase. Our contributions include the following:

• For the first time to the best of our knowledge, we investigate and analyze the impact of
variations in model parameters on performance in several architectures, including standard
Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), which are suitable
for hardware neuromorphic implementation due to event-driven spike properties.

• By exploring the flatter weight loss landscape, we propose WVAT that is tolerant to in-
trinsic device variability. We introduce an ensemble technique for better generalization and
present a intuitive weight update method with a hardware-simulated variation. This method
is also efficient for quantization and input noise, which is one of the hardware implemen-
tation issues besides weight perturbations.

• We experimentally demonstrate that WVAT achieves nearly similar performance to the
typical training method stochastic gradient descent (SGD) while having robustness to vari-
ations in model parameters. WVAT is easy to implement with little computational cost.1

2 BACKGROUND

Many studies have been conducted to develop training methods robust to device variability (Liu
et al., 2015; Long et al., 2019; Zhu et al., 2020; Joshi et al., 2020; Joksas et al., 2022; Huang et al.,
2022). Liu et al. (2015) proposed adding a penalty for variations in model parameters to training
loss. Long et al. (2019) and Zhu et al. (2020) generated a noise model to reflect device variability
during a training phase. Although Long et al. (2019) achieved good performance, this method has
a limitation, a binary device (1 bit per cell). However, as mentioned in section 1, the customized
solutions for the given device has limitation in applying to the general case. (A comparison of
WVAT with these methods is in Appendix A.1)

Recently, there have been many studies investigating the effect of loss landscape on generalization
(Garipov et al., 2018; Izmailov et al., 2018; Wu et al., 2020; Foret et al., 2021; Liu et al., 2022). It is
widely known that a flat loss landscape reduces the generalization gap. Stochastic weight averaging
(SWA) (Izmailov et al., 2018) is an ensemble technique that averages the weights as a time axis
instead of storing multiple models with different weights. It has been experimentally demonstrated
that the ensemble method brings a flatter loss landscape, resulting in a lower test error than SGD.

1A source code will be available soon.

2

Under review as a conference paper at ICLR 2024

Adversarial weight perturbation (AWP) (Wu et al., 2020) and sharpness-aware minimization (SAM)
(Foret et al., 2021) were proposed to improve model generalization by seeking the flat loss landscape.
These methods explore the direction of weight perturbation in the worst case and update the weight
based on that direction.

AWP AWP proposed a adversarial weight perturbation v based on the generated adversarial exam-
ples x′

i for adversarial training:

v =
∇v

1
m

∑m
i=1 l(fw+v(x

′
i), yi)

||∇v
1
m

∑m
i=1 l(fw+v(x′

i), yi)||
||w||

where yi is label, and m is batch size. fw(·) is neural network with weight w, and l is standard
classification loss.

SAM SAM seeks model parameters whose entire neighborhoods have uniformly low training loss
value. Neighborhood ϵ(w)—maximizing loss value— is given by the solution of a classical dual
norm problem:

ϵ(w) = ρ sign(∇wLS(w))
|∇wLS(w)|q−1

(||∇wLS(w)||qq)
1
p

where 1/p + 1/q = 1, ρ is neighborhood size, and LS(·) is training set loss. In the case of p = 2,
ϵ(w) is a norm of the gradient scaled by ρ.

Both methods have similarities in finding weight perturbations in the gradient-ascent direction, ex-
cept the perturbation is scaled by a norm of weight (AWP) or neighborhood size (SAM). Although
both methods yielded state-of-the-art performance, they have drawbacks in terms of computational
overhead . An update rule in AWP and SAM requires two sequential gradient computations, one
for obtaining weight perturbation and another for computing the gradient descent update (Liu et al.,
2022). This has twice the computational overhead compared with SGD.

SGD SWA SAM AWP
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

w/o variation
w/ variation

Figure 1: Accuracy of VGG-5 on
CIFAR-10 using SGD, SWA, SAM, and
AWP.

The effect of weight perturbation induced by device vari-
ability on model performance can also be considered a
kind of generalization problem. We start with a per-
spective that the flat loss landscape will have robustness
against variations in model parameters. A naive approach
to solve device variability issues is applying techniques
related to generalization. Unfortunately, as shown in Fig-
ure 1, these techniques did not lead to a significant im-
provement in weight variation. When there are varia-
tions in the weight, an accuracy drop of 36.58% for SGD,
34.17% for SWA, 27.44% for SAM, and 14.89% for AWP
occurs compared with a case without variation. The accu-
racy drop caused by device variability is one of the major
issues that make hardware implementation a challenge.
This motivates us to explore a new hardware-oriented neural network training method. Therefore,
we proposed efficient and intuitive WVAT by considering stochastic weight characteristics incurred
by device inherent variability in the training phase and in the weight update to flatten the loss land-
scape.

3 WEIGHT VARIATION-AWARE TRAINING (WVAT)

Our goal is to find parameters that are tolerant to perturbations of model parameters (e.g., weights)
caused by the variability of synaptic hardware devices. We aim to minimize the loss, along with the
difference in the loss with respect to perturbed weights. Thus, objective is as follows:

min
w

[(L(w +wv)− L(w)) + L(w)]→ min
w

L(w +wv)

where where w and wv denotes weight and weight variation, respectively. L(·) represents loss
function. In order to explore the flat loss landscapes with respect to weight variation, the difference
term L(w + wv) − L(w) should be minimized. When the weight trained in software (cloud) is
transferred to a hardware device (edge device), the mapped weight is likely to be different from

3

Under review as a conference paper at ICLR 2024

the software weight due to device variability. This results in performance degradation. For these
reasons, here we devise two types of variations that reproduce device variations during a training
phase. One is a hardware-simulated variation (HSV) reflecting device variability, and the other is a
gradient-ascent variation (GAV).

3.1 HARDWARE-SIMULATED VARIATION (HSV)

 μ +3σ-3σ

A
wmaxwmin

Weight value

Figure 2: Weight distribution of a layer.
A graph indicates the histogram of the
software weight. Due to the device
variability, the original software weight
is perturbed. HSV is drawn from the
weight range A to mimic the variation.

Assume ”analog” synaptic devices, as shown in Figure 2,
the layer-wise weight range A is set [µ − 3σ, µ + 3σ]
across the weight distribution, and we take a weight vari-
ation on A.

∆w = γN (0, Aσv
2)

where ∆w is a hardware-simulated variation (HSV) to
imitate intrinsic hardware device variability, which is a
random sample of the same size as w from a Gaussian
distribution with mean 0 and variation Aσv . γ is a range
coefficient, scaling factor, to determine the variation size.
In general, when mapping software weights to a synaptic
hardware device, clipping method is widely used rather
than the full range of software weights ([wmin, wmax])
due to the memory window limit of the synaptic device
(Kwon et al., 2019; Joshi et al., 2020). Therefore, A is
the range of weights that can be expressed in synaptic
hardware devices. HSV refers to how much variation occurs within the range that can be expressed
in the device.

Many studies have reported that fabricated synaptic devices have Gaussian distribution (Gong et al.,
2018; Boybat et al., 2018; Yu et al., 2013); therefore, we use a Gaussian distribution when gener-
ating HSV. (However, noise may not follow normal distribution on real hardware devices. Further
experiments on the distributions of real hardware devices and the noise distributions are in Section
4.5 and Appendix. A.5, respectively) Considering that the standard deviation of the fabricated de-
vices is usually∼5% (Joshi et al., 2020; Wan et al., 2019), we set that a 10% standard deviation was
simulated during training for more stable results. For example, σv of 10% means that the weight has
changed by 10% of A. In order to minimize objective L(w +∆w) using SGD as an optimizer, the
loss can be differentiated as follows:

∇wL(w +∆w) =
d(w +∆w)

dw

dL(w)

dw

∣∣∣∣
w=w+∆w

= ∇wL(w)|w=w+∆w

∇wL(w + ∆w) can be calculated as the differentiation at the value in which the weight variation
occurs by the differentiation of the composite function.

3.2 GRADIENT-ASCENT VARIATION (GAV)

In addition to reproducing HSV during the training phase, the weight variation corresponding to
the worst-case—making the greatest the difference term—should also be reflected to find flat loss
landscapes. Recalling our objective, this is modified as a maximization problem.

min
w

[L(w) + max
v(w)

(L(w +wv)− L(w))]

→ min
w

max
wv

L(w +wv)

L(w + wv) can be approximated by first-order Taylor expansion to find the weight variation wv

that maximizes the loss. For GAV, wv is a function of w, which can be expressed as follows:

L(w +wv) = L(w + αv(w))

≈ L(w) + αv(w)T∇wL(w)

4

Under review as a conference paper at ICLR 2024

Δw

Δw

v(w)

sampling

Δw = HSV
v(w) = GAV

(a) (b)

Figure 3: (a) Schematic of the weight update of the each method. (b) Schematice of the HSV
and GAV. HSV reproduces in a randomized direction based on device variability, while GAV is the
steepest ascent direction, which is the direction of weight perturbation in the worst case.

where α is a step-length parameter. v(w)T∇wL(w) is the rate of change in L along the direction
v(w) at w. Therefore, the most rapidly increasing direction is the solution to the problem.

max
v(w)

v(w)T∇wL(w) subject to ||v(w)|| = ||∆w||

v(w) =
∇Lw(w)

||∇Lw(w)||
||∆w||

where the magnitude of the weight variation is set to be the same as that of HSV. ∇Lw(w) is the
steepest ascent direction for a line search method (Nocedal & Wright, 1999). For this reason, we
name v(w) a gradient-ascent variation (GAV). This is a similar approach to AWP and SAM.

3.3 WEIGHT UPDATE

Weight variation is simulated during training and updates the weight via SGD. The training process
is as follows:

Weight variation: w ← w +wv

Weight update: w ← w − η∇Lw(w +wv)

Weight reverse: w ← w −wv

where η is a learning rate. In this case, wv can be one of the two proposed HSV and GAV. Depending
on the probability p, it determines whether or not to add wv for each batch. If no variance is added,
the weight update is equivalent to SGD, and no weight reverse is performed. We experimentally find
that if wv is larger than η∇L, it tends to diverge. γ and α can be used to adjust the size of wv .

x ∼ U(0, 1)

wv = ∆w if x < wth

wv = v(w) if x ≥ wth

wth is a threshold of what kind of weight variation it will reproduce during training. x is a randomly
sampled value from a uniform distribution for each batch. For each batch, x determines what kind
of variation will be generated. Figure 3 schematically illustrates the weight update according to each
method. SWA averages multiple points along the trajectory of SGD, leading to better generalization
than SGD. By applying SWA to WVAT, wider loss landscapes can be explored.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the proposed WVAT on both artificial neural
network (ANN) and spiking neural network (SNN) with different architectures, including fully con-
nected (FC), convolutional neural network (CNN), VGG, ResNet, MobileNet, and EfficientNet on
benchmark datasets (MNIST, N-MNIST, CIFAR-10, CIFAR-100, and ImageNet). These bench-
marks and models have been widely used in hardware implementations (Kim et al., 2018; Long
et al., 2019; Zhu et al., 2020; Joshi et al., 2020; Joksas et al., 2022; Huang et al., 2022; Jung et al.,
2022). Edge devices are mainly implemented using small models; moreover, small models are
vulnerable to performance degradation due to device variability. Hence, we focus on experiments
on small models, including ablation studies and comparisons with SGD and SWA. Although SWA
yields better performance via longer training, all method is trained for the same epochs for a fair
comparison. We report the mean and standard deviation of test accuracy over 5 runs.

5

Under review as a conference paper at ICLR 2024

HSV GAV HSV GAV

VGG-5 on CIFAR-10 VGG-16 on CIFAR-100 VGG-9 on CIFAR-10 RESNET-20 on CIFAR-10(a) (b) (c) (d)

Figure 4: Accuracy of SGD and WVAT. (a), (b) Effect of HSV and GAV, and (c), (d) range coeffi-
cient γ on model performance.

Figure 4 (a) and (b) shows the effect of two hyperparmeters on model performance for VGG-5 on
CIFAR-10 and VGG-16 on CIFAR-100, respectively. We test WVAT for hyperparameter wth ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. If wth = 0, only HSV is reflected, and if wth = 1,
only GAV is generated during training. For a baseline, we test SGD and SGD Test Time Variation
(SGD-TTV), which means when the weight of the trained model perturbs during a test phase. As
shown in Figure 4 (a), SGD achieved 90.09% accuracy, while SGD-TTV 53.51% when σv of 10%
(36.58% performance drop by the variation). In the case of wth = 1, only GAV is reproduced
during the training phase. Although it achieved the highest accuracy, it did not effectively prevent
the degradation in accuracy when there was a variation in the weight. On the other hand, in the case
of wth = 0, WVAT minimized the degradation in accuracy during TTV, but the model performance
was poor than SGD. Therefore, we set wth = 0.5 as the default value, which achieves nearly the
similar performance as SGD and is robust to weight perturbation induced by device variability.

Since HSV requires one gradient computation, like SGD, and GAV requires two sequential gradient
computations, our proposed WVAT, which is a mixture of HSV and GAV, has less computational
overhead compared to AWP and SAM. Training time using NVIDIA GPU Titan XP to train VGG-5
on CIFAR-10 is as follows. SGD took about 98.68 minutes, AWP (wth = 1, only GAV) 147.11
minutes, and WVAT (wth = 0.5) 114.42 minutes. Through this experiment, we experimentally
confirmed that incorporating both HSV and GAV is a key factor in model performance and robust-
ness against stochastic weight characteristics.

Range coefficient γ is a hyperparameter that determines the variation size simulated in training.
γ = 1 means that the variation size during TTV is equally reflected during training. As shown in
Figure 4 (c) and (d), HSV with the same variation size as the test minimizes the accuracy drop.
We set γ = 1 as the default value. Depending on the characteristics of each device, engineers can
choose wth and γ by considering the trade-offs for accuracy whether variations occur or not.

In terms of energy efficiency, it is ideal for a single device to represent a single synaptic value
(Multi-bit per cell). We assume analog synaptic devices, but still, many devices are represented by
multi-level states. Hence, we analyze the effect of quantization in Appendix A.3. We confirm that
WVAT is comprehensively effective for implementing multi-bit cells with weight perturbations.

4.1 MNIST, N-MNIST

For MNIST and N-MNIST (Neuromorphic MNIST, Orchard et al. (2015)), we compared the accu-
racy of ANNs and SNNs in Appendix A.2. WVAT minimizes accuracy degradation from weight
perturbations and achieves comparable performance to SGD and SWA when there are no weight
perturbations. In SNNs, spatial and temporal integration exist, and the information is encoded by
spike trains rather than values in ANNs. This is why SNNs are more vulnerable to weight variability.
We find that WVAT works well with SNN training methods. In addition, WVAT does not require any
changes to the training method itself, as it only needs to reproduce the weight perturbations during
training. Therefore, there is no design or trick required for SNNs. This is one of the advantages of
WVAT: it can be applied to a wide variety of cases without any customized tricks.

4.2 CIFAR-10
We test WVAT on CIFAR-10 in Table 1. For comparison experiments, we use VGG-5, VGG-16,
and ResNet-110 models. While there are studies on how to train SNNs, converting trained ANNs
to SNNs is still widely used due to high performance and limited resources. We adopt a hybrid
conversion method (Rathi et al., 2020) for SNN. VGG-5 and VGG-16 are trained for 200 epochs
using SGD with momentum 0.9, weight decay 0.0005, and an initial learning rate lr of 0.01. We

6

Under review as a conference paper at ICLR 2024

Table 1: Accuracy on CIFAR-10 for different model and method.

MODEL METHOD ACC (%) ACC (%)
σv = 5%

ACC (%)
σv = 10%

VGG-5
(ANN)

SGD 89.96 ± 0.16 79.08 ± 0.95 53.39 ± 3.92
SWA 89.97 ± 0.22 80.62 ± 1.51 57.14 ± 2.42

WVAT 87.76 ± 0.24 87.05 ± 0.25 85.21 ± 0.19

VGG-16
(SNN

CONVERSION)

SGD 92.68 ± 0.11 90.49 ± 0.08 79.71 ± 1.27
SWA 92.77 ± 0.08 91.05 ± 0.16 84.10 ± 0.75

WVAT 91.79 ± 0.14 91.20 ± 0.12 89.25 ± 0.10

RESNET-110
(ANN)

SGD 95.06 ± 0.17 93.58 ± 0.12 84.68 ± 0.71
SWA 95.47 ± 0.06 94.26 ± 0.09 87.26 ± 0.95

WVAT 94.45 ± 0.16 93.64 ± 0.13 90.47 ± 0.12

Table 2: Accuracy on CIFAR-100 for different model and method.

MODEL METHOD ACC (%) ACC (%)
σv = 5%

ACC (%)
σv = 10%

VGG-16
(ANN)

SGD 70.17 ± 0.19 63.88 ± 0.41 43.02 ± 0.76
SWA 70.46 ± 0.32 66.33 ± 0.25 51.87 ± 1.25

WVAT 68.13 ± 0.12 66.51 ± 0.14 62.16 ± 0.11

WRN-28-10
(ANN)

SGD 80.62 ± 0.21 78.83 ± 1.05 69.37 ± 2.90
SAM 82.31 ± 0.20 79.25 ± 0.38 71.88 ± 2.22
SWA 82.12 ± 0.18 80.00 ± 0.44 74.07 ± 1.97

WVAT 81.26 ± 0.34 80.23 ± 0.19 76.53 ± 0.79

RESNET-110
(ANN)

SGD 76.72 ± 0.55 69.22 ± 0.42 32.68 ± 0.75
SWA 78.52 ± 0.19 74.33 ± 0.14 52.53 ± 0.32

WVAT 78.13 ± 0.94 74.59 ± 0.87 54.25 ± 0.82

use Preactivation ResNet-110 in Garipov et al. (2018). ResNet-110 are trained for 150 epochs using
SGD with momentum 0.9, weight decay 0.0003, and an initial lr of 0.1. When applying SWA, we
first run SGD optimizer with a decaying lr schedule for 75% of the training budget, and then apply
SWA with a fixed lr of 0.005 for all models except for 0.01 for ResNet-110. Hyperparameters for
WVAT are set as p = 1, γ = 1, wth = 0.5, and α = 0.01 except for p = 0.5 for ResNet-110.

We experimentally confirm that WVAT minimizes the decrease in accuracy when there is variation
induced by device variability in most models. Compared to MNIST, the performance degradation
due to weight perturbation is more pronounced. In the case of VGG-5, when σv = 10%, WVAT
yields 85.21% accuracy, while 53.39% for SGD and 57.14% for SWA. The accuracy drop is 36.57%
for SGD, 32.83% for SWA, and 2.55% for WVAT. We demonstrated that the advantage of WVAT
in small models is more significant.

4.3 CIFAR-100
We compare the accuracy of each method on CIFAR-100, and the results are summarized in Table 2.
For comparison experiments, we use VGG-16, WideResNet(WRN)-28-10, and ResNet-110 models.
VGG-16 is the same as the experimental setting of CIFAR-10. WRN-28-10 is trained for 200 epochs
using SGD with momentum 0.9, weight decay 0.0005, and an initial lr of 0.1. ResNet-110 is trained
for 150 epochs using SGD with momentum 0.9, weight decay 0.0003, and an initial lr of 0.05. For
SWA settings, same as CIFAR-10. Hyperparameters for WVAT are set as p = 0.5, γ = 1, wth = 0.5
for all models, and α = 0.01 for VGG-16, α = 0.05 for WRN-28-10, and α = 0.1 for ResNet-110.

A comparison experiment is conducted with SAM, a method similar to GAV, using the WRN-28-
10. When σv = 10%, WVAT yields 76.53% accuracy, and SAM does 71.88%. It is confirmed
that WVAT is more robust to weight perturbations than SAM. As mentioned in Section 4.2, WVAT
outperforms other methods not only in the small model but also in ResNet-110. It is important
to note that the standard deviation of accuracy for WVAT is also the smallest for each network
architecture, which means that the proposed WVAT is tolerant to weight variation. For example,
when σv = 10% on VGG-16, WVAT achieves (62.16 ± 0.11) %, (43.02 ± 0.76) % for SGD, and
(51.87 ± 1.25) % for SWA.

7

Under review as a conference paper at ICLR 2024

4.4 IMAGENET

1.5 2.0 2.5 3.0 3.5
v (%)

67

68

69

70

71

72

73

74

To
p-

1
Ac

cu
ra

cy
 (%

)

SGD
WVAT-TTV
Joshi et al.-TTV
SGD-TTV

Figure 5: ResNet-34 on ImageNet.

We test each method on ImageNet (Russakovsky et al.,
2015). We use ResNet-34, MobileNetV2 (Sandler et al.,
2019), and EfficientNet (Tan & Le, 2020) for comparison
experiments, which are pre-trained models provided by
PyTorch. For WVAT training, ResNet-34 is retrained for
10 epochs with similar settings as (Joshi et al., 2020). The
top-1 accuracy of ResNet-34 is shown in Figure 5. HSV
mimics the variability that occurs in hardware. Joshi et al.
(2020) injects Gaussian noise during training, which is
the same way as HSV. The accuracy of the pre-trained
ResNet-34 model using SGD is 73.31%. When σv =
3.8%, WVAT yields 71.23% accuracy, while 68.24% for SGD and 70.7% for Joshi et al. (2020).
We find the accuracy on ImageNet to be more vulnerable to weight variability. Through comparison
with SAM in CIFAR-100 and comparison with (Joshi et al., 2020) in ImageNet, it is again confirmed
that incorporating both GAV and HSV in training is significant in the robustness of the model with
regard to weight perturbations. This is in line with the experiments in Figure 4 (a). Results for
MobileNetV2 and EfficientNet and detailed experimental settings are in Appendix A.4.

4.5 REAL HARDWARE DEVICE

Figure 6: Tunneling current distribution of ferroelectric tunnel junctions (FTJ) at low resistance
state (LRS). (left) Intra-device distribution (middle) Inter-device distribution. (right) Accuracy of
VGG-5 on CIFAR-10 on FTJ decives.

Since the noise in a real device can have other distributions besides the normal distribution, we con-
ducted experiments using the distributions of real hardware devices. We investigate the impact of
device variability on neural network performance using measurements of ferroelectric tunnel junc-
tions (FTJ), the neuromorphic synaptic devices fabricated by our group. Figure 6 shows the mea-
surements of the fabricated devices. Where intra-device distribution is 1000 repeated measurements
of low resistance state (LRS) tunneling current in a single FTJ device, and inter-device distribution
is the same measurement on 100 different devices. HSV is reproduced by following the measured
FTJ device distributions during training, which is the same during test time.

The experimental results of VGG-5 on CIFAR-10 are shown on the right side of Figure 6. For
the intra-device, WVAT achieves an accuracy of 88.14%, while 82.06% for SGD with variation.
For the inter-device, WVAT is 78.01%, and SGD is 28.43%, with WVAT outperforming by a large
margin. The intra-device distribution of the FTJ device has a variance of 3.83% and a right-skewed
normal distribution. However, the inter-device distribution has a multimodal distribution, which
makes SGD more vulnerable to performance degradation due to weight perturbation by inherent
device variability. However, WVAT shows it is robust to weight variation even with a multimodal
distribution. WVAT is also effective for other noise distributions (see Appendix A.5).

5 DISCUSSION

5.1 WEIGHT LOSS LANDSCAPES

In this section, an experiment is first conducted to investigate the effect of the proposed WVAT on
the geometry of weight loss landscapes. We visualize the loss landscapes by plotting the change in
loss as the weight moves along the direction of the weight variation ∆w.

L(w +∆w) = L(w + γN (0, Aσv
2))

8

Under review as a conference paper at ICLR 2024

where σv varies in the range of [0, 15]%, and moving direction is adjusted with γ = −1 and γ = 1.
We visualize it as σv drawn from 10 different samplings.

Spiking-CNN2 VGG-5

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Te
st

 lo
ss

Te
st

 lo
ss

Figure 7: Loss landscapes with respect to model weights. (left) Spiking-CNN2 on MNIST, and
(right) VGG-5 on CIFAR-10.

Figure 7 shows the test loss as a function of the magnitude of the weight variation. Weight loss
landscapes become broader and flatter in the order of SGD, SWA, and WVAT, and are uniform for
multiple trials. We are taken together with the experimental results in Section 4; these experiments
show the connection between flat weight loss landscapes and robustness to weight perturbations.

VGG-5 VGG-16 ResNet-20

Figure 8: Weight distribution of the first convolutional layer on CIFAR-10.

Secondly, we carefully investigate the effect of the proposed WVAT on the weight distribution.
As shown in Figure 8, we verify that WVAT produces larger weights than SGD and SWA (The
weight distribution over the entire network is in Appendix A.6). Li et al. (2018) argued that small
weights are more sensitive to weight perturbations and make a sharper loss landscape. This claim
is consistent with our experimental results. Thus, based on these observations, we demonstrate that
WVAT produces larger weights, which makes it less sensitive to weight perturbations and leads to a
flatness of the weight loss landscapes.

6 CONCLUSION

This paper proposes a weight variation-aware training method that is robust to weight perturbations
incurred by device variability. For the first time to our knowledge, we investigate and analyze the
impacts of weight variations on various benchmark datasets and network architectures. The pro-
posed WVAT effectively minimizes performance degradation by more than 1/10 compared to SGD
when there is a weight variation. We propose HSV and GAV to mimic weight variations during the
training and present a weight update method that considers the stochastic weight characteristics. We
experimentally confirm that WVAT is tolerant to weight perturbations by finding the flat loss land-
scapes with respect to weight. This method is a hardware-oriented training method at the algorithm
level rather than a custom solution at the device level to reduce the performance degradation for the
stochastic weight characteristic caused by the inherent variability of the device. Therefore, when the
weights trained by WVAT are transferred to hardware, accuracy drop due to device variability can
be prevented. It is especially effective in small models.

For limitations and future works, WVAT computes the gradient-ascent variation, requiring two se-
quential gradient computations, like AWP and SAM, so there is room for computational improve-
ment. Further research is needed on how to achieve similar performance to WVAT with less com-
putational overhead. We think that studies like Liu et al. (2022) can inspire us to solve this problem.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Irem Boybat, Manuel Le Gallo, SR Nandakumar, Timoleon Moraitis, Thomas Parnell, Tomas Tuma,
Bipin Rajendran, Yusuf Leblebici, Abu Sebastian, and Evangelos Eleftheriou. Neuromorphic
computing with multi-memristive synapses. Nature communications, 9(1):1–12, 2018.

Maryam Parsa J. Parker Mitchell Prasanna Date Catherine D. Schuman, Shruti R. Kulka-
rni and Bill Kay. Opportunities for neuromorphic computing algorithms and applications.
Nature Computational Science, 2:10–19, 2022. ISSN 2662-8457. doi: https://doi.org/
10.1038/s43588-021-00184-y. URL https://www.sciencedirect.com/science/
article/pii/S240595952100059X.

Elisabetta Chicca, Fabio Stefanini, Chiara Bartolozzi, and Giacomo Indiveri. Neuromorphic elec-
tronic circuits for building autonomous cognitive systems. Proceedings of the IEEE, 102(9):
1367–1388, 2014. doi: 10.1109/JPROC.2014.2313954.

S. Burc Eryilmaz, Duygu Kuzum, Shimeng Yu, and H.-S. Philip Wong. Device and system
level design considerations for analog-non-volatile-memory based neuromorphic architectures.
In 2015 IEEE International Electron Devices Meeting (IEDM), pp. 4.1.1–4.1.4, 2015. doi:
10.1109/IEDM.2015.7409622.

Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, and Dharmendra S Modha.
Backpropagation for energy-efficient neuromorphic computing. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.
cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Jingyan Fu, Zhiheng Liao, and Jinhui Wang. Level scaling and pulse regulating to mitigate the
impact of the cycle-to-cycle variation in memristor-based edge ai system. IEEE Transactions on
Electron Devices, 69(4):1752–1762, 2022. doi: 10.1109/TED.2022.3146801.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Nanbo Gong, T Idé, S Kim, Irem Boybat, Abu Sebastian, V Narayanan, and Takashi Ando. Sig-
nal and noise extraction from analog memory elements for neuromorphic computing. Nature
communications, 9(1):1–8, 2018.

Tyler Hennen, Alexander Elias, Jean-François Nodin, Gabriel Molas, Rainer Waser, Dirk J Wouters,
and Daniel Bedau. A high throughput generative vector autoregression model for stochastic
synapses. Frontiers in Neuroscience, pp. 1423, 2022.

Chenglong Huang, Nuo Xu, Junwei zeng, Wenqing Wang, Yihong Hu, Liang Fang, Desheng Ma,
and Yanting Chen. Rescuing reram-based neural computing systems from device variation. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 2022.

Giacomo Indiveri and Shih-Chii Liu. Memory and information processing in neuromorphic systems.
Proceedings of the IEEE, 103(8):1379–1397, 2015. doi: 10.1109/JPROC.2015.2444094.

Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep
neural networks. In 2015 IEEE International Electron Devices Meeting (IEDM), pp. 4.2.1–4.2.4,
2015. doi: 10.1109/IEDM.2015.7409623.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

10

https://www.sciencedirect.com/science/article/pii/S240595952100059X
https://www.sciencedirect.com/science/article/pii/S240595952100059X
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://openreview.net/forum?id=6Tm1mposlrM

Under review as a conference paper at ICLR 2024

Dovydas Joksas, Erwei Wang, Nikolaos Barmpatsalos, Wing H Ng, Anthony J Kenyon, George A
Constantinides, and Adnan Mehonic. Nonideality-aware training for accurate and robust low-
power memristive neural networks. Advanced Science, pp. 2105784, 2022.

Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, Sasidharan Rajalekshmi Nandakumar,
Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, and Evangelos Eleftheriou.
Accurate deep neural network inference using computational phase-change memory. Nature com-
munications, 11(1):1–13, 2020.

Seungchul Jung, Hyungwoo Lee, Sungmeen Myung, Hyunsoo Kim, Seung Keun Yoon, Soon-Wan
Kwon, Yongmin Ju, Minje Kim, Wooseok Yi, Shinhee Han, et al. A crossbar array of magnetore-
sistive memory devices for in-memory computing. Nature, 601(7892):211–216, 2022.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=H1oyRlYgg.

Sungho Kim, Meehyun Lim, Yeamin Kim, Hee-Dong Kim, and Sung-Jin Choi. Impact of synaptic
device variations on pattern recognition accuracy in a hardware neural network. Scientific reports,
8(1):1–7, 2018.

Sungho Kim, Hee-Dong Kim, and Sung-Jin Choi. Impact of synaptic device variations on classifi-
cation accuracy in a binarized neural network. Scientific reports, 9(1):1–7, 2019.

Dongseok Kwon, Suhwan Lim, Jong-Ho Bae, Sung-Tae Lee, Hyeongsu Kim, Chul-Heung Kim,
Byung-Gook Park, and Jong-Ho Lee. Adaptive weight quantization method for nonlinear synaptic
devices. IEEE Transactions on Electron Devices, 66(1):395–401, 2019. doi: 10.1109/TED.2018.
2879821.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–444, 2015.
doi: https://doi.org/10.1038/nature14539.

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural
network inference via edge computing. IEEE Transactions on Wireless Communications, 19(1):
447–457, 2020. doi: 10.1109/TWC.2019.2946140.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Beiye Liu, Hai Li, Yiran Chen, Xin Li, Qing Wu, and Tingwen Huang. Vortex: Variation-aware
training for memristor x-bar. In Proceedings of the 52nd Annual Design Automation Conference,
pp. 1–6, 2015.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12360–12370, June 2022.

Yun Long, Xueyuan She, and Saibal Mukhopadhyay. Design of reliable dnn accelerator with un-
reliable reram. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1769–1774. IEEE, 2019.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Cosmas Ifeanyi Nwakanma, Jae-Woo Kim, Jae-Min Lee, and Dong-Seong Kim. Edge ai
prospect using the neuroedge computing system: Introducing a novel neuromorphic technol-
ogy. ICT Express, 7(2):152–157, 2021. ISSN 2405-9595. doi: https://doi.org/10.1016/j.icte.
2021.05.003. URL https://www.sciencedirect.com/science/article/pii/
S240595952100059X.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

11

https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
https://www.sciencedirect.com/science/article/pii/S240595952100059X
https://www.sciencedirect.com/science/article/pii/S240595952100059X

Under review as a conference paper at ICLR 2024

Xiaochen Peng, Shanshi Huang, Hongwu Jiang, Anni Lu, and Shimeng Yu. Dnn+neurosim v2.0: An
end-to-end benchmarking framework for compute-in-memory accelerators for on-chip training,
2020. URL https://arxiv.org/abs/2003.06471.

M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, and K. K. Likharev D. B. Strukov. Nan-
otube devices based crossbar architecture: toward neuromorphic computing. Nanotechnology, 21
(17):175202, 2010. doi: https://doi.org/10.1088/0957-4484/21/17/175202.

M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, and K. K. Likharev D. B. Strukov.
Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
Nature, 521:61–64, 2015. doi: https://doi.org/10.1038/nature14441.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation.
International Conference on Learning Representations, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks, 2019.

Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean,
Garrett S. Rose, and James S. Plank. A survey of neuromorphic computing and neural networks
in hardware. CoRR, abs/1705.06963, 2017. URL http://arxiv.org/abs/1705.06963.

Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances
in neural information processing systems, 31, 2018.

Xiaoyu Sun and Shimeng Yu. Impact of non-ideal characteristics of resistive synaptic devices on
implementing convolutional neural networks. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 9(3):570–579, 2019.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks, 2020.

Qingzhou Wan, Mohammad T. Sharbati, John R. Erickson, Yanhao Du, and Feng Xiong. Emerg-
ing artificial synaptic devices for neuromorphic computing. Advanced Materials Technolo-
gies, 4(4):1900037, 2019. doi: https://doi.org/10.1002/admt.201900037. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900037.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
alization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Shimeng Yu, Bin Gao, Zheng Fang, Hongyu Yu, Jinfeng Kang, and H-S Philip Wong. Stochastic
learning in oxide binary synaptic device for neuromorphic computing. Frontiers in neuroscience,
7:186, 2013.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. Advances in Neural Information Processing Systems, 33:12022–12033, 2020.

Ying Zhu, Grace Li Zhang, Tianchen Wang, Bing Li, Yiyu Shi, Tsung-Yi Ho, and Ulf Schlichtmann.
Statistical training for neuromorphic computing using memristor-based crossbars considering pro-
cess variations and noise. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1590–1593. IEEE, 2020.

12

https://arxiv.org/abs/2003.06471
http://arxiv.org/abs/1705.06963
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900037
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900037

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 COMPARISON WITH OTHER VARIATION-AWARE METHODS

The approach of Liu et al. (2015); Zhu et al. (2020) is the customized solutions for the given device,
and Long et al. (2019) (1 bit per cell) is different from the analog synapse, which is the main target
of the paper. Although these methods do not apply to the general case, it is meaningful to compare
other variation-aware methods, so we conducted comparison experiments.

We conducted the comparison experiments on a 2-layer fully-connected network on MNIST, the
same in Liu et al. (2015); Zhu et al. (2020), and AlexNet on CIFAR-10, the same in Long et al.
(2019), respectively. Table 3 and Figure 9 shows comparison results. These results show that WVAT
is more robust to weight variation than other variation-aware methods.

Table 3: Accuracy in a 2-layer fully-connected network on MNIST.

METHOD ACC (%) ACC (%)
σv = 10%

SGD 97 32 ± 3.3
LIU ET AL. (2015) 92 38 ± 3.2
ZHU ET AL. (2020) 92 92 ± 1.0

WVAT 95 93 ± 1.0

0 5 10 15 20 25 30
v (%)

70

75

80

85

Ac
cu

ra
cy

 (%
)

Alexnet on CIFAR-10

SGD
WVAT-TTV
Y. Long et al.-TTV
SGD-TTV

Figure 9: Accuracy of AlexNet on CIFAR-10.

A.2 MNIST, N-MNIST

For MNIST and N-MNIST, we compare the accuracy of the FC network and spiking CNN trained
by each method in Table 4. We experimented with SLAYER (Shrestha & Orchard, 2018) and TSSL-
BP (Zhang & Li, 2020), a method for training SNNs. We train the FC network by (1) using an SGD
optimizer to train an ANN on the MNIST and (2) using an Adam optimizer with SLAYER to train
an SNN on N-MNIST. We also train spiking-CNNs by TSSL-BP for training SNN on MNIST. All
models are trained for 100 epochs. The learning rate is 0.0005 for ANN. For SLAYER and TSSL-
BP, we use Adam optimizer with a learning rate of 0.001 and 0.0005, respectively, and other settings
are the same as in Shrestha & Orchard (2018); Zhang & Li (2020). Hyperparameters for WVAT are
set as default value, p = 1, γ = 1, wth = 0.5, and α = 0.1, except for α = 0.05 for SLAYER.
When applying SWA, we use SWA training with a fixed learning rate schedule from scratch.

For each network architecture and method, WVAT achieves nearly similar performance as SGD
and SWA and minimizes accuracy degradation when weight variation occurs. Hardware devices
inevitably have inherent variability. Therefore, in most cases, the model performance in software
cannot be directly reproduced in hardware implementation. From the hardware implementation
point of view, it is preferable to refer to the accuracy when there is weight variation rather than
the accuracy when there is no variation. In the case of spiking-CNN1, when σv = 10%, WVAT

13

Under review as a conference paper at ICLR 2024

substantially reduces the performance drop compared with TSSL-BP (3.29% performance drop for
WVAT, 16.97% for TSSL-BP).

Table 4: Accuracy on MNIST and N-MNIST for different model and method. 15C5 means convo-
lution layer with 15 of the 5 × 5 filters, and P2 pooling layer with 2 × 2 filters.

MODEL METHOD ACC (%)
ACC (%)
σv = 5%

ACC (%)
σv = 10%

FC 2-LAYER1

(ANN, MNIST)

SGD 98.13 ± 0.09 97.86 ± 0.14 96.54 ± 0.23
SWA 98.56 ± 0.12 98.31 ± 0.71 97.20 ± 1.54

WVAT 98.47 ± 0.05 98.39 ± 0.04 97.98 ± 0.19

FC 2-LAYER1

(SNN, N-MNIST)

SLAYER 98.64 ± 0.04 72.01 ± 0.13 38.76 ± 15.43
SWA 98.61 ± 0.06 78.97 ± 9.08 39.83 ± 13.50

WVAT 98.02 ± 0.05 97.48 ± 0.13 96.29 ± 0.63

SPIKING-CNN12

(SNN, MNIST)

TSSL-BP 99.37 ± 0.02 98.08 ± 0.15 82.40 ± 8.03
SWA 99.29 ± 0.11 98.62 ± 0.60 90.24 ± 2.34

WVAT 99.31 ± 0.07 99.07 ± 0.07 96.02 ± 0.82

SPIKING-CNN23

(SNN, MNIST)

TSSL-BP 99.38 ± 0.05 98.81 ± 0.06 86.17 ± 8.55
SWA 99.44 ± 0.03 98.23 ± 0.08 89.73 ± 2.69

WVAT 99.39 ± 0.03 99.24 ± 0.08 95.57 ± 1.87
1 784-400-200-10.
2 16C5-P2-CONCAT(32C3, 8C1)-8C1-288.
3 15C5-P2-40C5-P2-300.

A.3 ROBUSTNESS TO QUANTIZATION

SGD+PTQ WVAT+PTQ QAT QAT+WVAT
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

ResNet-18 on CIFAR-10

v = 0%, FP32
v = 0%, INT8
v = 10%, INT8

Figure 10: Accuracy of ResNet-18 on CIFAR-10.

We assume analog synapses in the main paper, but many synapses still represent multi-bit weights.
Although WVAT is not for a quantization technique, the fact that WVAT is robust to weight pertur-
bation implies that it is also effective against quantization, another hardware implementation issue.
Therefore, we conduct experiments to verify the validity of WVAT when quantization is applied
using ResNet-18 on CIFAR-10.

Figure 10 shows the comparison results of two widely-used quantization methods, Post-Training
Quantization (PTQ) and Quantization-Aware Training (QAT). The case of training with SGD and
applying PTQ is called SGD+PTG, and the case of training with WVAT and applying PTQ is called
WVAT+PTQ. When σv = 10%, SGD+PTQ achieves 87.06% accuracy and 50.93% accuracy drop
on int8, while WVAT+PTQ has 85.97% accuracy and 13.86% accuracy drop on int8, respectively.
QAT achieves 86.49% accuracy and 39.06% accuracy drop on int8, while QAT+WVAT has 84.41%
accuracy and 7.06% accuracy drop on int8, respectively. We experimentally confirm that WVAT

14

Under review as a conference paper at ICLR 2024

is more robust to weight variation in quantization. WVAT is effective at both analog synapses and
multi-level state synapses, making the method applicable to a wide range of neuromorphic imple-
mentation scenarios.

A.4 IMAGENET

Figure 11: Training results on (left) MobileNetV2 and (right) EfficientNet on ImageNet.

We test each method on ImageNet (Russakovsky et al., 2015). For WVAT training, we train ResNet-
34 model using similar settings as Joshi et al. (2020); ResNet-34 is fine-tuned for 10 epochs using
SGD with momentum 0.9, weight decay 0.0001, and a constant lr of 0.00005. Hyperparameters for
WVAT are set as p = 1.0, γ = 0.833, wth = 0.5, and α = 0.005 for ResNet-34. For comparison
with (Joshi et al., 2020), the weight range is adjusted to be the same as (Joshi et al., 2020), and
γ = 0.833.

We use pre-trained MobileNetV2 and EfficientNet provided by PyTorch model zoo. MobileNetV2
is also fine-tuned for 10 epochs using SGD with momentum 0.9 and weight decay 0.0001. It used
StepLR, a learning rate scheduler with an initial learning rate of 0.0001 and a multiplicative factor
of a learning rate of 0.95 for every epoch. Hyperparameters for WVAT are the same as those of
ResNet-34, except for γ = 1.0 for MobileNetV2. EfficientNet is fine-tuned for 5 epochs using
RMSprop with momentum 0.9 and weight decay 10−5. It used ExponentialLR, a learning rate
scheduler with an initial learning rate of 0.0001 and a multiplicative factor of a learning rate of
0.965. Hyperparameters for WVAT are the same as those of MobileNetV2.

The accuracies of the pre-trained MobileNetV2 and EfficientNet models are 71.88% and 77.69%,
respectively. In case of MobileNetV2, when σv = 3.8%, WVAT yields 59.44% accuracy, while
30.24% for SGD. In case of EfficientNet, when σv = 3.8%, WVAT yields 67.08% accuracy, while
22.37% for SGD. We confirm that similar to CIFAR-10 and CIFAR-100, the proposed method also
prevents accuracy degradation for weight variations on ImageNet.

A.5 EFFECT ON NOISE DISTRIBUTION

Weibull distribution Uniform distribution

Figure 12: Noise Distribution. (left) Weibull distribution (right) Uniform distribution.

As mentioned in Section 3.1, we experimented by inserting Gaussian noise, which was effective in
real devices (Joshi et al., 2020). However, noise in real hardware devices may not follow Gaussian

15

Under review as a conference paper at ICLR 2024

Figure 13: (left) Accuracy of ResNet-18 on CIFAR-10 when the same noise distribution occurs
in training and test. (right) Results of generating Gaussian noise distribution during training and
different noise distributions during the test.

distribution. For this reason, an experiment is conducted to verify if the proposed method is effec-
tive even when the noises follow a distribution other than the Gaussian distribution. We assume
that the noise follows the Weibull distribution, which is a right-skewed distribution, and a uniform
distribution, which can be considered the worst-case. Figure 12 shows each noise distribution.

The left side of Figure 13 shows the results when the same noise is used for training and test time
(inference), while the right side shows the results when Gaussian noise is used for training and
a different type of noise is used for test. As shown in Figure 13 (left), in the case of Weibull
distribution, an accuracy drop of 27.60% for SGD and 21.90% for WVAT occurs compared with
a case without variation. When noise follows uniform distribution, accuracy drops are 38.38% for
SGD and 27.22% for WVAT. We confirm that WVAT is effective against weight variations even
when the noise follows a distribution other than the ideal Gaussian distribution.

Moreover, Figure 13 (right) shows that it is still robust to weight variations even when trained with
Gaussian distribution and then follows a distribution different from the Gaussian distribution at test
time. We experimentally confirm that WVAT is effective not only in Gaussian distribution but also in
other types of distribution. Therefore, if real hardware devices do not follow Gaussian distribution,
reproducing the distribution of real hardware devices when generating the HSV can still obtain a
model that is robust to device variability. From this, we demonstrate that incorporating the effects
of weight perturbations at inference during the training is a more critical factor than the shape of the
noise distribution. Therefore, if the distribution of the real device is known, it is best to reproduce
that distribution during training; if not, users can still get a model that is robust to weight variations
by training under the assumption that the noise follows a Gaussian distribution.

16

Under review as a conference paper at ICLR 2024

A.6 WEIGHT DISTRIBUTION

1st convolutional layer 2nd convolutional layer 3rd convolutional layer

1st fully conneted layer 2nd fully conneted layer last fully conneted layer

Figure 14: Weight distribution of the entire network layer of VGG-5 on CIFAR-10.

VGG-16 ResNet-20

Figure 15: Weight distribution of the last FC layer of VGG-16 and ResNet-20 on CIFAR-10.

17

	Introduction
	Background
	Weight variation-aware training (WVAT)
	Hardware-simulated variation (HSV)
	Gradient-ascent variation (GAV)
	Weight update

	Experiments
	MNIST, N-MNIST
	CIFAR-10
	CIFAR-100
	ImageNet
	Real hardware device

	Discussion
	Weight loss landscapes

	Conclusion
	Appendix
	Comparison with other variation-aware methods
	MNIST, N-MNIST
	Robustness to quantization
	ImageNet
	Effect on noise distribution
	Weight distribution

