
Informed Augmentation Selection Improves Tabular
Contrastive Learning

Arash Khoeini∗, Shuman Peng∗, Martin Ester
School of Computing Science

Simon Fraser University
akhoeini@sfu.ca shumanp@sfu.ca

ester@sfu.ca

Abstract

While contrastive learning (CL) has demonstrated success in image data, its ap-
plication to tabular data remains relatively unexplored. The effectiveness of CL
heavily depends on data augmentations, yet the suitability of tabular augmentation
techniques for contrastive learning remains unclear. In this study, we assess the
compatibility of various tabular augmentation techniques with CL by examining
their impact on feature space characteristics (i.e., uniformity and alignment) which
serve as proxies for downstream performance. Our investigation reveals that aug-
mentations impact feature space quality, and that achieving a balance between
uniformity and alignment is essential for good downstream performance. We then
propose a novel framework for selecting augmentation combinations that strike
this balance. Experimental results on 21 tabular datasets from the OpenML-CC18
benchmark and on the TCGA cancer genomics dataset consistently demonstrate the
effectiveness of our proposed framework in enhancing downstream performance.

1 Introduction

Deep neural networks excel in classification and regression tasks with large labeled datasets, but
labeled data is often scarce, while unlabeled data is abundant. To address this, self-supervised learning
(SSL) pre-trains models on unlabeled data in image and text domains, allowing effective downstream
task performance with minimal labeled data (Noroozi and Favaro, 2016; Gidaris et al., 2018; Chen
et al., 2020a; Grill et al., 2020; Chen et al., 2020b; Chen and He, 2020; Devlin et al., 2018). While
SSL has mainly been applied to images and text, it has recently expanded to tabular data. Two key
SSL approaches for tabular data are pretext training and contrastive learning (CL). While most tabular
SSL methods rely on pretext training, wherein the model learns to solve auxiliary tasks on unlabeled
data, CL offers the advantage of not requiring the careful design of pretext tasks. However, CL for
tabular data has been relatively underexplored compared to pretext-based approaches.

CL-based SSL methods are widely used in the image domain, and they aim to bring similar (positive)
examples closer and separate dissimilar (negative) examples in the representation space He et al.
(2020); Chen et al. (2020b). CL’s effectiveness relies heavily on data augmentations (Chen and
Li, 2020; Caron et al., 2020; Jaiswal et al., 2020; Tian et al., 2020; Wang and Qi, 2021), which
are employed to generate positive examples without the need for additional annotation. While CL-
pretrained models are ultimately assessed on downstream task performance, real-world applications
often lack ground truth labels during CL-based pre-training, necessitating proxies for downstream
performance. Recent studies show that CL induces feature spaces with properties like uniformity
and alignment, which correlate with downstream task performance Wang and Isola (2020). Superior
downstream performance is associated with a balanced feature space exhibiting high degrees of
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uniformity and alignment, observed in image and text data Wang and Isola (2020). However, the
impact of feature uniformity and alignment on downstream performance remains unexplored within
the tabular data domain, and there is a lack of investigation into the appropriateness of tabular
augmentations for achieving these desirable properties.

In this work, we aim to understand which tabular data augmentation techniques are suitable for
tabular CL by investigating the feature space characteristics generated by each augmentation. We
employ a widely used form of the InfoNCE contrastive loss (van den Oord et al., 2018; Chen et al.,
2020b), following existing tabular CL works (Bahri et al., 2022), and we investigate six prevalent
tabular data augmentation techniques found in the literature in terms of feature space characteristics.

We observe that the augmentation techniques have a strong impact on the quality of feature space
characteristics – some augmentation techniques favor feature alignment while others favor the
uniformity of feature spaces. Based on our observations and also findings from Wang and Isola (2020)
showcasing that a good balance between uniformity and alignment is crucial for good downstream
performance, we devise a novel and practical framework for selecting a combination of augmentation
techniques that pairs an augmentation that achieves the best uniformity with one that achieves the
best alignment, striking a good balance of uniformity and alignment. To the best of our knowledge,
this is the first study to systematically guide the selection and combination of different types of
augmentations for tabular contrastive learning. We evaluate our framework on 21 tabular datasets
from OpenML-CC18, and our experiments demonstrate that our framework for selecting a suitable
pair of augmentations for CL pre-training leads to better classification accuracy on downstream tasks
compared to performing CL pre-training using single augmentation techniques. Moreover, models
pre-trained with our selected augmentation combination consistently achieve better downstream
performance across various corruption rates, an important hyper-parameter for augmenting tabular
data. We further extend and evaluate our framework on The Cancer Genome Atlas (TCGA) dataset
that consists of cancer patient gene expression data. We show that performing CL pre-training using
our proposed framework consistently achieves better downstream performance across a number of
corruption rates than pre-training using single augmentations.

2 Empirical Analysis of Feature Quality Metrics

In contrastive-learned feature spaces, features are more evenly distributed compared to those in
supervised-learned spaces, with similar samples positioned closer together on the unit hypersphere.
These properties, termed “feature uniformity” and “feature alignment” by Wang and Isola (2020), are
key to the quality of learned representations. Feature uniformity ensures a balanced distribution that
preserves information, while feature alignment measures how close similar samples are, therefore
assessing the semantic structure. Wang and Isola (2020) shows that spaces with higher uniformity
and alignment perform better in downstream tasks in image and text domains. Unlike Wang and Isola
(2020) that optimize these characteristics, we analyze the uniformity and alignment of contrastive-
learned spaces using negated version of their loss terms, where higher values are preferred.

Alignment ≜ − E
(x,x′)∼ppos

[∥f(x)− f(x′)∥α2 ], α > 02 (1)

Uniformity ≜ − log E
(x,x′)∼p

[e−t∥f(x)−f(x′)∥2
2 ], t > 0 (2)

In the rest of this section, we undertake empirical analysis aimed at addressing two fundamental
research questions: (1) How do data augmentation techniques influence the feature uniformity and
alignment of contrastive pre-trained models for tabular data (Section 2.3)? and (2) Are feature
uniformity and alignment reliable indicators of downstream performance in the tabular domain
(Section 2.4)?

2.1 Augmentations

In this paper, we explore six tabular data augmentation techniques: joint replacement (JR), marginal
replacement (MR), joint Mixup (JM), marginal Mixup (MM), Gaussian noise (GN), and feature

2In our empirical analyses, α = 2 is used to evaluate feature alignment.
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dropout (DO) (Bahri et al., 2022; Verma et al., 2020). To perform augmentations, a binary feature
mask is first defined using corruption rate c ∈ (0, 1), where each augmentation is applied to c×100%
of the input features.

In MR each masked feature is replaced with a random value from its marginal distribution (Bahri
et al., 2022). In JR masked features are replaced with values from a single random sample (Yoon
et al., 2020). In MM and JM, the original masked features are interpolated with features of another
sample using Mixup rate λ ∈ [0, 1] Zhang et al. (2017); Verma et al. (2020); Lee et al. (2020). In GN,
noise N (0, 0.52) is added to features (Bahri et al., 2022). In DO, selected features are set to zero.
2.2 Datasets, model training and evaluation details

We use 21 of the real-world tabular datasets for classification tasks from the OpenML-CC18 bench-
mark. We follow the authors of (Bahri et al., 2022) for splitting each tabular dataset into unlabelled
pre-training and labelled downstream fine-tuning and testing sets, with more details provided in
Appendix D.3. We follow Bahri et al. (2022) and Chen et al. (2020b) for model design, using a
neural network with a feature extractor f , and either a pre-training head g or a classification head h.
During pre-training, the model consists of f and g, while fine-tuning uses f and h. All components
are fully connected feed-forward networks with ReLU activations. Models were trained on each
dataset with four corruption rates (c = 0.2, 0.4, 0.6, 0.8) and six augmentation techniques, yielding
24 models per dataset. Each model was trained ten times with different splits, and classification
accuracy was used to evaluate downstream performance. Rank-based heat maps were generated to
compare augmentation techniques across corruption rates, considering metrics such as uniformity,
alignment, and accuracy.

2.3 How does data augmentation impact feature spaces?

Our investigation into augmentation techniques and corruption rates for contrastive learning on tabular
data reveals that data augmentations have a strong impact on feature spaces (illustrated in Figure 1).
Specifically, some augmentations (e.g., JM) consistently improve feature uniformity while others
(e.g., MM) yield better feature alignment. In addition, most augmentations are robust to different
corruption rates for feature uniformity and alignment, with the exception of GN for alignment and
DO for uniformity.

2.4 Are feature uniformity and alignment indicative of downstream performance?

We observe that models with feature spaces that exhibit greater uniformity and alignment consistently
achieve higher classification accuracy with a linear classifier. In comparison, models with less uniform
and aligned feature spaces achieve lower classification accuracy. In particular, lower downstream
performance is observed for models with higher alignment than uniformity and for models with
higher uniformity than alignment. This aligns with the findings of (Wang and Isola, 2020) from
the image and text domain, which show that improving only one of uniformity and alignment
degrades downstream performance. Multiple regression analysis supports these results, showing a
positive correlation between uniformity (coefficient: 0.0511) and alignment (coefficient: 0.0466)
with downstream accuracy.

(a) Uniformity (b) Alignment (c) Alignment
Figure 1: Comparing augmentation techniques based on mean ranking across 21 OpenML-CC18
datasets for (a) feature uniformity and (b) alignment at different corruption rates. The last column
in each heatmap shows the mean ranking across all corruption rates. Lower ranks indicate better
performance. (c) Aggregated accuracy over all 21 OpenML-CC18 datasets.
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3 Our Framework for Tabular CL

In the preceding sections, we made two key observations: (i) data augmentations significantly affect
feature space properties (Section 2.3), and (ii) balancing high degrees of feature uniformity and
alignment is crucial for optimal downstream performance (Section 2.4). Based on these insights, we
propose a novel framework for tabular contrastive learning that strikes a balance between uniformity
and alignment, while also attaining high levels of both, through data augmentations.

Our approach selects augmentations in a dataset-specific manner by identifying (1) the augmentation
that maximizes uniformity (A1) and (2) the one that maximizes alignment (A2), based on mean
rankings across corruption rates (Figure 1). During contrastive pre-training with InfoNCE loss, a
positive sample is generated by randomly applying either A1 or A2, ensuring a balance between
uniformity and alignment, leading to improved downstream performance.

4 Experimental Results

Figure 2: Ranking of models’
downstream accuracy across 21
OpenML-CC18 tabular datasets.
Each column shows mean rank-
ings for augmentation techniques
and the supervised baseline (Con-
trol) with 10 independent runs per
model. The “mean” column aggre-
gates ranks across all corruption
rates. Lower ranks (more blue) in-
dicate better performance.

In this section, we validate the effectiveness of our framework
for tabular contrastive learning through empirical experiments
on real-world tabular datasets. We conduct experiments on 21
OpenML-CC18 tabular datasets, with aggregated results pre-
sented in Figure 2. Our framework selects a different pair of
augmentation for each dataset, which we denote as Ours in Fig-
ure 2. Additionally, we evaluate our framework on the more
complex The Cancer Genome Atlas (TCGA) dataset, which in-
cludes multiple distinct downstream tasks (Table 1). Our experi-
ments show that our framework effectively selects augmentation
pairs that enhance the feature space characteristics of contrastive
pre-trained models, consequently improving their downstream
performance on tabular datasets. Details of experiments and full
experimental results are available in Section D of the Appendix.

5 Conclusion

In this study, we conducted a comprehensive analysis of the im-
pact of data augmentations on contrastive-learned feature spaces
in tabular datasets, evaluating six widely-used augmentation
techniques. Our empirical findings confirm a positive correla-
tion between feature uniformity/alignment and downstream task
accuracy in the tabular domain. Moreover, we demonstrate that
models striking a balance between high degrees of feature unifor-
mity and alignment exhibit superior downstream task accuracy,
and that some augmentations promote higher uniformity while
others enhancing alignment. Building upon these insights, we
devised a novel framework for selecting augmentation combi-
nations that facilitate the attainment of a balanced feature space in models. Our experiments on 21
tabular datasets from OpenML-CC18 and on the TCGA cancer genomics show that the augmentation
combination identified by our framework improves the balance between uniformity and alignment,
boosting downstream performance over single augmentations.

Augmentation Task1 Task2 Task3 Task4 Task5
Control 0.750 ± 0.016 0.710 ± 0.060 0.689 ± 0.052 0.709 ± 0.074 0.712 ± 0.030

DO 0.701 ± 0.064 0.713 ± 0.090 0.661 ± 0.090 0.697 ± 0.061 0.746 ± 0.076
GN 0.706 ± 0.070 0.693 ± 0.090 0.680 ± 0.092 0.685 ± 0.077 0.736 ± 0.084
JM 0.758 ± 0.052 0.795 ± 0.074 0.710 ± 0.063 0.756 ± 0.056 0.807 ± 0.057
JR 0.744 ± 0.062 0.786 ± 0.072 0.706 ± 0.083 0.753 ± 0.037 0.788 ± 0.057

MM 0.701 ± 0.072 0.715 ± 0.085 0.676 ± 0.072 0.723 ± 0.053 0.730 ± 0.093
MR 0.685 ± 0.042 0.724 ± 0.065 0.611 ± 0.109 0.624 ± 0.090 0.723 ± 0.090

JM+GN (ours) 0.761 ± 0.044 0.807 ± 0.040 0.721 ± 0.075 0.771 ± 0.064 0.802 ± 0.066

Table 1: Mean AUROC and standard deviation for each augmentation on TCGA downstream tasks,
averaged across corruption rates and 5 runs per model.

4



Acknowledgment

This research was supported by the NSERC Discovery Grant. We would like to thank Shichong Peng
for providing thorough feedback throughout the course of this research.

References
Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. 2022. Scarf: Self-Supervised Contrastive

Learning using Random Feature Corruption. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=CuV_qYkmKb3

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
2020. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. ArXiv
abs/2006.09882 (2020).

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020b. A Simple
Framework for Contrastive Learning of Visual Representations. ArXiv abs/2002.05709 (2020).

Ting Chen and Lala Li. 2020. Intriguing Properties of Contrastive Losses. In Neural Information
Processing Systems.

Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. 2020a. Improved Baselines with
Momentum Contrastive Learning. ArXiv abs/2003.04297 (2020).

Xinlei Chen and Kaiming He. 2020. Exploring Simple Siamese Representation Learning. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), 15745–
15753.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018).

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. 2018. Unsupervised representation learning
by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018).

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. 2021. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems 34 (2021),
18932–18943.

Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. 2020. Bootstrap Your Own
Latent: A New Approach to Self-Supervised Learning. ArXiv abs/2006.07733 (2020).

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 9729–9738.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. 2020. A Survey on Contrastive Self-supervised Learning. ArXiv abs/2011.00362 (2020).

Kyungeun Lee, Ye Seul Sim, Hyeseung Cho, Suhee Yoon, Sanghyu Yoon, and Woohyung Lim. 2023.
Binning as a Pretext Task: Improving Self-Supervised Learning in Tabular Domains. In NeurIPS
2023 Second Table Representation Learning Workshop. https://openreview.net/forum?
id=btK3lk5puP

Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak Lee. 2020. i-mix: A
domain-agnostic strategy for contrastive representation learning. arXiv preprint arXiv:2010.08887
(2020).

Kushal Alpesh Majmundar, Sachin Goyal, Praneeth Netrapalli, and Prateek Jain. 2022. MET:
Masked Encoding for Tabular Data. In NeurIPS 2022 First Table Representation Workshop.
https://openreview.net/forum?id=vMHs3HR7r0A

5

https://openreview.net/forum?id=CuV_qYkmKb3
https://openreview.net/forum?id=btK3lk5puP
https://openreview.net/forum?id=btK3lk5puP
https://openreview.net/forum?id=vMHs3HR7r0A


Mehdi Noroozi and Paolo Favaro. 2016. Unsupervised learning of visual representations by solving
jigsaw puzzles. In European conference on computer vision. Springer, 69–84.

Hossein Sharifi-Noghabi, Parsa Alamzadeh Harjandi, Olga Zolotareva, Colin C Collins, and Martin
Ester. 2021. Out-of-distribution generalization from labelled and unlabelled gene expression data
for drug response prediction. Nature Machine Intelligence 3, 11 (2021), 962–972.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. 2020.
What makes for good views for contrastive learning. ArXiv abs/2005.10243 (2020).

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. 2021. SubTab: Subsetting Features of
Tabular Data for Self-Supervised Representation Learning. In Neural Information Processing
Systems.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning with Contrastive
Predictive Coding. ArXiv abs/1807.03748 (2018).

Vikas Verma, Minh-Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc V. Le. 2020. Towards
Domain-Agnostic Contrastive Learning. In International Conference on Machine Learning.

Feng Wang and Huaping Liu. 2020. Understanding the Behaviour of Contrastive Loss. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), 2495–2504.

Tongzhou Wang and Phillip Isola. 2020. Understanding Contrastive Representation Learning through
Alignment and Uniformity on the Hypersphere. In International Conference on Machine Learning.

Xiao Wang and Guo-Jun Qi. 2021. Contrastive Learning With Stronger Augmentations. IEEE
Transactions on Pattern Analysis and Machine Intelligence 45 (2021), 5549–5560.

John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Shaw, Brad A Ozenberger, Kyle
Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. 2013. The cancer genome atlas
pan-cancer analysis project. Nature genetics 45, 10 (2013), 1113–1120.

Jing Wu, Suiyao Chen, Qi Zhao, Renat Sergazinov, Chen Li, Shengjie Liu, Chongchao Zhao, Tianpei
Xie, Hanqing Guo, Cheng Ji, et al. 2024. SwitchTab: Switched Autoencoders Are Effective Tabular
Learners. arXiv preprint arXiv:2401.02013 (2024).

You Wu, Omid Bazgir, Yongju Lee, Tommaso Biancalani, James Lu, and Ehsan Hajiramezanali. 2023.
Multitask-Guided Self-Supervised Tabular Learning for Patient-Specific Survival Prediction. In
NeurIPS 2023 Second Table Representation Learning Workshop. https://openreview.net/
forum?id=3gBqMkELhZ

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. 2020. VIME: Extending
the Success of Self- and Semi-supervised Learning to Tabular Domain. In Neural Information
Processing Systems.

Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and David Lopez-Paz. 2017. mixup: Beyond
Empirical Risk Minimization. ArXiv abs/1710.09412 (2017).

A Appendix

B Preliminaries

Problem setup Let Du = {Xu} denote an unlabeled tabular dataset of Nu samples with d input
features (covariates), and let Dl = {X l, Y } denote a labeled tabular dataset of N l samples with
the same d features and with class labels Y ∈ {1, ..., C}, where C is the number of classes. The
unlabeled dataset Du is assumed to be far larger than the labeled dataset Dl: Nu ≫ N l. The goal is
to use a contrastive learning method to pre-train a feature extractor f using Du and then apply the
pre-trained f to a downstream classification task based on Dl. Dl is used to train a linear classifier
on top of feature extractor f to perform downstream classification. Optionally, Dl is also used to
fine-tune the feature extractor. In our experiments, we fine-tune the feature extractor to align with
standard practices in contrastive learning Bahri et al. (2022); Chen et al. (2020b).
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B.1 Contrastive Learning

Contrastive learning (CL) is a self-supervised representation learning technique that learns a feature
space from unlabeled data such that semantically similar (positive) samples are close in proximity and
semantically dissimilar (negative) samples are far apart in the feature space. CL’s effectiveness relies
heavily on data augmentation techniques (Chen and Li, 2020; Caron et al., 2020; Jaiswal et al., 2020;
Tian et al., 2020; Wang and Qi, 2021). These techniques enable the generation of positive examples
without additional annotation, thereby producing multiple distinct views of a single example. We
discuss augmentation techniques in Section 2.1.

In this work, we use a widely adopted variant of contrastive loss Chen et al. (2020b); Wang and Isola
(2020); Bahri et al. (2022) that is derived from the InfoNCE loss (van den Oord et al., 2018). The
contrastive loss for a single positive pair (xi, x

′
i) is given by:

LCL = − log
exp(sim(vi, v

′
i)/τ)

exp(sim(vi, v′i)/τ) +
∑K

k=1 exp(sim(vi, vk)/τ)
(3)

where vi is the representation of an original sample xi, and v′i is the representation of a positive
counterpart x′

i (an augmented version of xi). Negative counterparts xk are represented as vk in
the representation space, which encompass all samples xk, k ∈ [1,K] that neither correspond to xi

or its augmentations. Here, sim(vi, vj) denotes a similarity measure between the representations
(commonly the cosine similarity), and τ is a temperature scaling parameter that adjusts the sensitivity
of the loss function to differences in similarity. The denominator sums over one positive and K
negative pairs, effectively normalizing the similarity of the positive pair against the sum of similarities
across all pairs.

C Related Works

Tabular self-supervised representation learning Self-supervised learning (SSL) has garnered
significant attention for learning expressive representations from unlabelled data in image and text
domains. Recently, there has been a surge in efforts to extend SSL to tabular data, with methods
falling into three main categories. The first category leverages pretext tasks, often involving the
reconstruction of original samples from corrupted versions or predicting the applied corruption Yoon
et al. (2020); Lee et al. (2023); Majmundar et al. (2022); Wu et al. (2024). The self-supervised
VIME method by Yoon et al. (2020) introduces two tabular-compatible pretext tasks: recovering the
binary mask vector applied to the original sample and reconstructing the original input. Additionally,
Lee et al. (2023) employs binning as a pretext task, replacing continuous tabular feature values
with corresponding bin indices. The work by Majmundar et al. (2022) introduces a masked input
reconstruction pretext task for tabular data.

The second category employs contrastive learning (CL), aiming to map semantically similar examples
close in the latent representation space and dissimilar examples far apart. The SCARF method,
proposed by Bahri et al. (2022), utilizes the marginal replacement augmentation technique, randomly
sampling values from the empirical marginal distribution of features to replace a portion c ∈ (0, 1] of
the original input features. Based on the SimCLR method Chen et al. (2020b), SCARF optimizes the
InfoNCE contrastive loss (van den Oord et al., 2018). Methods introduced in Verma et al. (2020);
Lee et al. (2020) employ variants of Mixup noise for tabular data augmentation.

The third category integrates both pretext training and CL, resulting in hybrid methods with multiple
components in the loss functions. Examples include the SubTab method Ucar et al. (2021) and its
follow-up work Wu et al. (2023).

Differing from existing tabular CL works, we aim to gain insights into the effectiveness of different
tabular augmentation techniques for contrastive pre-training by using feature uniformity and alignment
as proxies for downstream performance. Building upon these insights, we adopt a systematic approach
to selecting combinations of augmentation techniques, diverging from the conventional practice of
employing a single technique (Yoon et al., 2020; Bahri et al., 2022).

Factors influencing contrastive feature spaces Recent work by Wang and Liu (2020) has demon-
strated that the properties of feature space, such as uniformity and tolerance, can be adjusted by
tuning the temperature τ hyper-parameter of contrastive losses. Feature tolerance, akin to feature
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Algorithm 1 Pseudo-code for pre-training function
Require: X ▷ X is pre-training dataset

function PRE_TRAIN(X)
for each iteration do

p← RANDOM(0, 1) ▷ p ∈ [0, 1]
if p > 0.5 then

X_pos← A_1(X)
else

X_pos← A_2(X)
end if
Z ← MODEL(X)
Z_pos← MODEL(X_pos)
loss← CONTRASTIVE_LOSS(Z,Z_pos)
OPTIMIZER(loss)

end for
end function

alignment as discussed in Wang and Isola (2020), requires labels for measurement, unlike alignment,
which does not necessitate label access. Smaller temperature τ values lead to more uniform feature
spaces, but with less tolerance to samples within the same category, meaning that similar samples
have low degrees of similarity in the feature space. Conversely, larger τ values lead to less uniform
feature spaces but with greater tolerance to samples from the same category Wang and Liu (2020). In
this work, we explore the impact of data augmentations on the uniformity and alignment of feature
spaces in tabular data, and investigate how these factors influence downstream performance. Different
from (Wang and Liu, 2020; Wang and Isola, 2020), which only studied the behavior of feature space
properties on image and text modalities, we study their behavior on tabular data.

D Complete Experimental results

D.1 Training Details

Closely following SCARF Bahri et al. (2022), we use a feed-forward neural network with three
hidden layers, each with 256 units, and an output layer of the same size, followed by a linear classifier.
We include a pre-training head g, with a hidden layer and a output layer of size 256, which is removed
after pre-training and replaced with a classifier head. Using this pre-training head is introduced in
SimCLR Chen et al. (2020b), and became the common approach in contrastive learning.

For FT-Transformer architecture we used the official implementations of its authors with all the default
hyper-parameters 3. We use the Adam optimizer with a learning rate of 0.001 for pre-training and
fine-tuning, with a batch size of 128. Consistent with Bahri et al. (2022), we employ the contrastive
pre-training loss for early stopping. However, in contrast, we employ the classification loss rather
than classification accuracy to guide early stopping during fine-tuning for downstream tasks. We
set a maximum of 1000 epochs for pre-training and 200 epochs for fine-tuning, implementing early
stopping with a patience of 5. We monitor pre-training and fine-tuning loss on a validation set held
out for this purpose. The same validation set is used for both stages, but for pre-training, we create a
static validation set by generating 10 augmentations for each sample, resulting in 10 positive pairs
per sample. This static set is used to evaluate our method after each epoch during pre-training.

All reported results use the feed-forward network mentioned above by default. Results using an
FT-Transformer backbone will be explicitly noted.

D.2 Pseudo-code of our Framework

D.3 Experimental Results on the OpenML-CC18 Datasets

Datasets We use 21 of the real-world tabular datasets for classification tasks from the OpenML-
CC184 benchmark. See Table 3 of the Supplementary for details. Following Bahri et al. (2022), we

3https://github.com/yandex-research/rtdl-revisiting-models
4https://docs.openml.org/benchmark/
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remove the MNIST, Fashion-MNIST, and CIFAR10 datasets from OpenML-CC18 to focus on true
tabular datasets. The datasets for this study were chosen to ensure relevance and applicability of
the analysis, based on two primary criteria: (1) datasets containing only numerical features with at
least 50 features, or (2) datasets including at least one categorical feature with a total feature count
exceeding 15. This selection was driven by the need for datasets that support specific augmentation
techniques applicable exclusively to numerical features (e.g., Gaussian noise) and to ensure the
datasets were sufficiently high-dimensional for robust analysis. Following the authors of Bahri et al.
(2022), for each tabular dataset 70% of the entire dataset is used for unlabelled pre-training,5 25% of
the 70% pre-training data is used to perform supervised fine-tuning of the model for downstream
classification, 10% of the entire dataset is used for validation of the fine-tuned models, and the
remaining 20% of the dataset is used for testing the model’s downstream classification performance.

D.3.1 Baselines

In addition to the six augmentations mentioned in Section 2.1, we also train a model called Control for
comparison. Control uses the same architecture and hyper-parameters as the other methods. However,
it differs in that it is trained using only the labeled data (in the fine-tuning/training set of a downstream
task) through supervised learning. In other words, the main difference between Control and the other
baseline models is that Control starts fine-tuning with a randomly initialized feature extractor, while
the others begin with a feature extractor that has been pre-trained using contrastive learning and
specific augmentation techniques. Therefore Control is not affected by different corruption rates. The
purpose of including Control is to assess the benefits of pre-training the feature extractor with the
unlabeled data.

Following our framework, we select a pair of augmentation techniques for each individual dataset
(shown in Table 2). This pair comprises augmentations with the highest uniformity and alignment for
the dataset. We denote the selected pair as "Ours" and observe that it consistently achieves better
downstream accuracy than any single augmentation technique. This is shown by the ranking heat
map in Figure 2. Further, we plot the mean uniformity and alignment ranks for each augmentation
technique and our combination to check which augmentations enable a CL-trained model to achieve
a good balance between uniformity and alignment.

We observe that our combination leads to the most uniform and aligned feature spaces, shown by
the red dot closest to the origin in Figure 6 (the corresponding rank-based heat maps are included
in the Supplementary Figure 3). This observation corroborates our findings in Section 2 and those
from image datasets Wang and Isola (2020), where CL-pretrained models with a balance between
uniformity and alignment lead to better downstream classification performance. We conducted
the same experiment, but this time using the FT-Transformer feature extractor f , a transformer
architecture specifically designed for tabular datasets Gorishniy et al. (2021) (see Section D.1 for
details). The results were similar, with the pairs selected by our framework achieving the highest
average downstream accuracy across the datasets. The results for the FT-Transformer feature extractor
are shown in Figure 8.

D.4 Further Experiments on Cancer Patient Genomics Datasets

D.4.1 Experimental Setup

Dataset In addition to the 21 tabular benchmark datasets employed in Section 2, we use The Cancer
Genome Atlas (TCGA) dataset Weinstein et al. (2013) to evaluate our framework in biomedical
settings, and perform a series of experiments across 5 distinct downstream tasks. More specifically,
we formulate one binary classification downstream task for each cancer type, resulting in five
separate cancer-type classification tasks. The TCGA dataset serves as an expansive resource aimed
at enhancing our grasp of cancer’s molecular dynamics via genome sequencing analysis. In the
TCGA dataset, rows represent patients, columns (attributes) represent the genes, and the continuous
attribute values represent the level of expression of a particular gene in a patient. Our pre-training data
combines five specific cancer datasets: Lung Adenocarcinoma, Breast Invasive Carcinoma, Pancreatic
Adenocarcinoma, Prostate Adenocarcinoma, and Kidney Carcinoma. The data is preprocessed
following Sharifi-Noghabi et al. (2021), except we do not reduce the number of genes as they did.
The combined dataset contains 2721 samples (patients) and 18,312 shared features (genes), and is

5These datasets are labelled, but we withhold their labels for pre-training.
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Table 2: Datasets and Selected Pair of Augmentations
Dataset Selected Pair of Augmentations

DNA JM+MM
Bioresponse MM+GN

madelon JM+MM
mfeat-pixel MM+GN

cnae-9 JM+MM
first-order-theorem-proving JM+MM

isolet MM+GN
mfeat-factors MM+GN
mfeat-fourier JM+GN

mfeat-karhunen JM+MM
optdigits JM+MM

ozone-level-8hr JM+GN
semeion JM+GN

spambase JM+MM
nomao MM+GN

har JM+GN
sick MM+MM

eucalyptus MM+JM
credit-g MM+GN

cylinder-bands MM+JM
bank-marketing MM+JM

(a) Uniformity (b) Alignment

Figure 3: Uniformity and alignment rank-based heat maps comparing our combination of augmenta-
tions (denoted by "Ours") with single augmentations on the OpenML-CC18 benchmarking datasets.

standardized using Z-score normalization. Statistics of five cancer datasets are shown in Table 4.
For each task, we create balanced training, validation, and test sets, consisting of 100, 50, and 100
samples, respectively. To ensure the integrity of the model’s learning process, we exclude these 250
samples from the pre-training dataset, guaranteeing that all examples in the downstream tasks are
previously unseen by the model. We assess the binary classification performance for each downstream
task using two metrics: the Area Under the ROC curve (AUROC) and classification accuracy.

(a) Uniformity (b) Alignment (c) Accuracy

Figure 4: Uniformity, alignment and accuracy rank-based heat maps comparing our combination of
augmentations with single augmentations on the OpenML-CC18 benchmarking datasets. Here, a
FT-Transformer model was used as the encoder.
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Implementation and Training Details In this experiment, we adopt a model architecture akin to
the one outlined in Bahri et al. (2022), detailed in Section D.1. Details on the model and training
procedure are in Section D.1 of the Supplementary. Our primary objective is to assess the comparative
efficacy of various augmentation methods rather than striving for the highest classification accuracy;
therefore, we refrain from extensive hyper-parameter tuning.

Table 3: The 16 tabular datasets from OpenML-CC18 with numerical features that were utilized in
our empirical analyses.

Dataset # of Samples # of Features # of Categorical Features # of Classes

mfeat-pixel 2000 241 0 10
bioresponse 3751 1777 0 2

first-order-theorem-proving 6118 52 0 6
madelon 2600 501 0 2
spambase 4601 58 0 2

mfeat-fourier 2000 77 0 10
mfeat-factors 2000 217 0 10

ozone-level-8hr 2534 73 0 2
mfeat-karhunen 2000 65 0 10

dna 3186 181 0 3
isolet 7797 618 0 26

optdigits 5620 65 0 10
semeion 1593 257 0 10

har 10299 562 0 6
cnae-9 1080 857 0 9
nomao 34465 119 0 2

sick 3772 30 23 2
eucalyptus 736 19 6 5

bank-marketing 45211 17 9 2
credit-g 1000 21 14 2

cylinder-bands 540 40 20 2

Table 4: Five TCGA datasets that were utilized in our experiments.
Dataset Number of Samples Number of Features

TCGA_LUAD 507 18312
TCGA_BRCA 1051 18312
TCGA_PAAD 131 18312
TCGA_PRAD 498 18312
TCGA_KIRC 534 18312

D.4.2 Compelete Experimental Results

Figure 5: Higher uniformity and alignment correlate with improved downstream performance on
TCGA datasets. Downstream AUROC values represent the average across 5 tasks.
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Figure 6: The augmentation pair selected by our framework leads to the most uniform and aligned
feature spaces (bottom left).

(a) Uniformity (b) Alignment (c) AUROC

Figure 7: Rank-based heat maps showing (a) uniformity, (b) alignment, and (c) AUROC on the
TCGA datasets. The "random" column in (c) indicates randomly sampled corruption rates.

We first verify that balanced feature uniformity and alignment are positively correlated with down-
stream classification accuracy on the TCGA datasets. Figure 5 shows that this correlation also holds
on the TCGA datasets, where the upper right quadrant of the scatter plot (i.e., the region showing
higher alignment and uniformity) hosts the highest density of red colored points that indicate higher
downstream AUROC. Each point in this plot shows the mean AUROC across 5 downstream tasks.

The multiple regression analysis again reveals a positive correlation between both alignment and
uniformity with downstream performance, with the coefficients for uniformity and alignment being
0.091 and 0.059, respectively. We observe the same correlation for each single downstream task and
include the results Figure 9.

Following our framework presented in Section 3, we begin by analyzing the uniformity and alignment
of feature spaces generated by each of the augmentation techniques on the TCGA dataset. Figures 7a
and 7b illustrate the mean uniformity and alignment ranking of each augmentation over all five model
training runs for each corruption rate (shown in each column). We observe that the models pre-trained
with joint Mixup (JM) exhibit the highest uniformity, while those utilizing Gaussian Noise (GN)
demonstrate superior alignment. Consequently, we select these two augmentations as our combination
and conduct pre-training from scratch using this combination (referred to as JM+GN). Figure 7c
demonstrates that JM+GN outperforms all models trained using a single augmentation (except for
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(a) Uniformity (b) Alignment (c) Accuracy

Figure 8: Uniformity, alignment and accuracy rank-based heat maps comparing our combination of
augmentations with single augmentations on the OpenML-CC18 benchmarking datasets. Here, a
FT-Transformer model was used as the encoder.

(a) AUROC averaged over all tasks (b) Task 1 (c) Task 2

(d) Task 3 (e) Task 4 (f) Task 5

Figure 9: Scatter plots of correlation with AUROC for each TCGA downstream task

joint Mixup) in terms of downstream AUROC across all corruption rates. Models pre-trained using
JM+GN also significantly outperform models pre-trained using joint Mixup for lower corruption
rates.

Moreover, our analysis reveals that JM+GN models achieve the highest downstream AUROC when
averaged across corruption rates, as evidenced by the lowest mean rank value of 1.96 in the penul-
timate column (labeled "mean") of Figure 7c. Furthermore, Table 1 presents the mean AUROC
for each downstream task, averaged over all corruption rates, for models pre-trained using each
single augmentation technique as well as our combination. JM+GN models notably outperform other
augmentation techniques, achieving the highest downstream AUROC scores on four out of the five
tasks.

D.4.3 Experimental Results with Random Corruption Rates

Noticing that our combination consistently obtains similar levels of uniformity and alignment across
various corruption rates, we proceed to investigate the impact of randomly sampling the corruption
rate. The corruption rate serves as a crucial hyper-parameter for data augmentation, often tuned
based on the model’s performance on downstream task validation sets Bahri et al. (2022). Given the
potential unavailability of labeled downstream data during model pre-training, randomly sampling
the corruption rate emerges as a viable approach for eliminating this hyper-parameter.

Our experiments show (Figure 10) that our augmentation combination consistently outperforms
single augmentation techniques when using randomly sampled corruption rates c ∈ [0.2, 0.4, 0.6, 0.8].
This superior performance is evident in the "random" column of Figure 7c. Table 5 complements
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this observation by presenting the AUROC scores for each downstream task obtained with models
pre-trained using single augmentations and our combination under randomly sampled corruption
rates. Notably, our augmentation combination yields the highest downstream AUROC scores on three
of the tasks and ranks second-best on the remaining two tasks.

(a) Uniformity (b) Alignment (c) Accuracy

Figure 10: Rank-based heat maps comparing (a) uniformity, (b) alignment, and (c) accuracy of our
combination of augmentations with single augmentations on the TCGA datasets.

Augmentation Task1 Task2 Task3 Task4 Task5
DO 0.762 ± 0.048 0.744 ± 0.021 0.601 ± 0.017 0.730 ± 0.064 0.791 ± 0.019
GN 0.708 ± 0.075 0.716 ± 0.060 0.676 ± 0.059 0.741 ± 0.079 0.756 ± 0.072
JM 0.759 ± 0.052 0.778 ± 0.021 0.657 ± 0.095 0.736 ± 0.033 0.727 ± 0.130
JR 0.743 ± 0.059 0.747 ± 0.082 0.648 ± 0.096 0.710 ± 0.033 0.774 ± 0.046

MM 0.750 ± 0.020 0.722 ± 0.050 0.611 ± 0.134 0.664 ± 0.063 0.699 ± 0.083
MR 0.705 ± 0.065 0.713 ± 0.080 0.632 ± 0.077 0.663 ± 0.126 0.794 ± 0.045

JM+GN (ours) 0.759 ± 0.037 0.770 ± 0.080 0.697 ± 0.044 0.760 ± 0.043 0.810 ± 0.070

Table 5: Mean and standard deviation of AUROC for each augmentation on TCGA downstream
classification tasks with random corruption rates (averaged over 5 runs).

Imbalanced Downstream Task Dataset We conducted further experiments on an imbalanced
version of the TCGA dataset, where the downstream data class ratio was 25:75. The results, presented
in Figure 11, show that our approach also outperforms all other augmentation techniques in this
setting.

Figure 11: AUROC rank-based heat maps compare our combination of augmentations with single
augmentations on the TCGA datasets for downstream tasks involving imbalanced classes.

Ablation Study Our ablation study compares our framework’s selected pair with all other pairs.
The chosen pair outperformed the others on average. Detailed results are in Figure 12.
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Figure 12: AUROC rank-based heat maps comparing all possible augmentation pairs on TCGA
dataset. JM + GN, picked by our framework, outperforms all other pairs on average.

D.5 Limitations and Future Work

In this study, we focused on combining a pair of augmentations alternately (i.e., applying one at
a time). This approach is more principled and aligns better with our framework, as it allows us to
directly improve uniformity and alignment. An interesting avenue for future research would be to
apply both augmentations simultaneously and to study their complex compound effects on feature
space qualities. Additionally, extending our framework to systematically include more than two
augmentations offers another promising direction for exploration. While we explored the interaction
between augmentations and contrastive-learned feature space qualities in this work, we recognize
that this is not the only factor affecting feature space quality. Future research could investigate the
complex interplay between other factors, such as model architecture and methods, and how they
influence feature space quality.
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