
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROVABLE OPTIMAL TRANSPORT WITH TRANSFORM-
ERS: THE ESSENCE OF DEPTH AND PROMPT ENGINEER-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Can we establish provable guarantees for transformer performance? Providing
such theoretical guarantees is a milestone in developing trustworthy generative
AI. In this paper, we take a step toward addressing this question by focusing on
optimal transport, a fundamental problem at the intersection of combinatorial and
continuous optimization. Leveraging the computational power of attention layers,
we prove that a transformer with fixed parameters can effectively solve the optimal
transport problem (in Wasserstein-2 with entropic regularization) for an arbitrary
number of points. Consequently, the transformer can sort lists of arbitrary size
up to an approximation factor. Our results rely on an engineered prompt that
enables the transformer to implement gradient descent with adaptive step sizes
on the dual optimal transport. Combining the convergence analysis of gradient
descent with Sinkhorn dynamics, we establish an explicit approximation bound for
optimal transport with transformers, which improves with increasing depth. Our
findings provide novel insights into the essence of prompt engineering and depth
for transformers.

1 INTRODUCTION

Language models with theoretical guarantees are reliable and, therefore, more practical. Extensive
experiments confirm the striking capabilities of transformers, such as "multi-task learning" (Radford
et al., 2019), "in-context learning" (Brown, 2020), generalization Garg et al. (2022) to name but a
few. But is it possible to theoretically ensure these capabilities and quantify their limits? Consider
the simple example of sorting. We prompt the GPT-4 model to assess whether it can sort:

prompt: sort(2, 1, 4, 3) → output: (1, 2, 3, 4)

While GPT-4 seems to be capable of sorting, querying to verify sorting is computationally infeasible
for two reasons: (i) the elements in the list can be arbitrary numbers, and (ii) the list can be arbitrarily
large. Thus, an infinite number of queries would be needed to verify that GPT-4 can sort. For
theoretical verification of sorting, we need to study language models at a mechanistic level beyond
black-box querying. Here, we investigate how to develop theoretical guarantees for the more general
problem of optimal transport.

Optimal transport is a fundamental optimization problem at the intersection of combinatorial and
continuous optimization. Sorting is a special case of optimal transport in one dimension (Brockett,
1991). While efficient sorting algorithms are discrete, Brockett (1991) raised the fundamental
question of how to solve optimal transport with continuous dynamical systems. This question was
motivated by the success of neural networks, which generate continuous state dynamics across their
layers for feature extraction. Brockett (1991) proposes a continuous-state dynamical system over
the orthogonal group that iteratively solves optimal transport and, hence, can sort and diagonalize
matrices. Building upon this study, we investigate whether the feature dynamics in transformers are
capable of performing optimal transport.

Beyond statistical parametric models, language models are powerful computational machines. Recent
studies show that language models are capable of learning to implement algorithms, including
gradient descent for least squares (Ahn et al., 2024; Von Oswald et al., 2023; Akyürek et al., 2022),

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and the temporal difference method for reinforcement learning (Wang et al., 2024), and support
vector mechanism (Tarzanagh et al., 2023). This computational perspective has provided valuable
insights into language models at a mechanistic level, linking them to algorithms with provable
guarantees. Using this approach, we establish theoretical guarantees for solving optimal transport
(in Wasserstein-2) with transformers. Specifically, we prove that transformers can implement
gradient descent (with adaptive step sizes) on the dual optimal transport objective regularized by
entropy. In particular, each layer with two attention heads can simulate an iteration of gradient descent.
Therefore, the induction of multiple attention heads can implement several iterations of gradient
descent. This connection allows us to establish error bound for optimal transport with transformers
that vanishes with depth: Given two sets of n points in Rd, a transformer can approximate the optimal
transport map up to

O
(

n3/2

depth1/2

)
-error for all integer n. (1)

Remarkably, the above bound holds for different choice of n indicating that the transformer can solve
multi-instances of optimal transport at the same time, an assertion for the capability of multi-task
learning. Our results depend on the specific engineering of the prompt.

Recent studies demonstrate that interacting with language models is an art: proper prompting can
significantly enhance their performance. The seminal work of Kojima et al. (2022) shows that adding
phrases such as "let’s think step by step" to the prompt encourages language models to produce
more accurate reasoning. Prompting is becoming an essential skill in modern society, as prompt
engineering positions are now being posted and well-paid by various companies. But what is the
essence of prompt engineering? For the case study of optimal transport, we show that prompt
engineering can significantly enhance the computational capabilities of transformers by providing the
necessary memory and statistics.

2 BACKGROUND

2.1 OPTIMAL TRANSPORT

Consider two sets of points x1, . . . , xn ∈ Rd and y1, . . . , yn ∈ Rd, and define C ∈ Rn×n such that
Cij = ∥xi − yj∥22. Finding the optimal transport map (in Wasserstein-2 metric) between these two
sets of points casts to the optimization of a linear function over the set of permutation matrices (Cuturi,
2013):

P∗ := arg min
P∈Rn×n

Tr(PC), subject to P being a permutation matrix, (2)

where Tr(M) denotes the trace of matrix M . Sorting lists is an example of optimal transport.
Specifically, if Cij = (xi − yj)

2, where yi = i for i = 1, . . . , n and x1, . . . , xn ∈ R, then the linear
transformation of [x1, . . . , xn] with P∗ sorts x1, . . . , xn(see Remark 2.28 in (Peyré et al., 2019) for
more details). Yet, the optimal transport problem is more general than sorting.

Optimal transport lies at the intersection of discrete and continuous optimization. There are various
combinatorial algorithms for sorting and optimal transport, but our primary focus here is on continuous
optimization methods, which allow us to understand the mechanism of transformers. In particular,
we review two fundamental methods: (i) constrained continuous optimization and (ii) Sinkhorn
regularization.

While optimal transport involves optimization over the combinatorial set of permutation matrices, it
can be relaxed to optimization over a continuous set. The state-of-the-art method is based on linear
programming, specifically solving the following continuous convex optimization problem:

P̂ = arg min
P∈Rn×n

tr(PC), subject to P being a doubly stochastic matrix.

Comparing the above problem with the original problem in (2), we notice that the constraint requiring
P to be a permutation matrix has been relaxed to allowing P to be a doubly stochastic matrix. Recall
the solutions to linear programs lie among the extreme points of the constraint set. Since the extreme
points of doubly stochastic matrices are permutation matrices (Conte et al., 1991), the above linear
program has the same solution as (2), i.e., P∗ = P̂ .

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The above linear program requires the optimization of O(n2) variables. Due to the quadratic growth
with n, solving the linear program becomes computationally challenging for large n. Cuturi (2013)
proposes a computationally efficient alternative based on regularization with entropy:

P ∗
γ := arg min

P∈Rn×n
Tr(PC) + λ

∑
ij

Pij log(Pij), subject to P is a doubly stochastic matrix (3)

The Lagrangian dual of the above program reduces to the optimization of O(n) variables which
is considerably fewer than O(n2) variables for the original linear program. Introducing the dual
parameters v ∈ Rn and u ∈ Rn, the Lagrangian function is defined as follows:

L(u, v, C) = Tr(PC) + λ
∑
ij

Pij log(Pij)− u⊤
(
P1n − 1

n
1n

)
− v⊤

(
P⊤1n − 1

n
1n

)
.

It is easy to check that the minimizer of L with respect to P is Pij = e
−Cij+vj+ui

λ −1. This structure
inspired the use of Sinkhorn’s fixed point iteration to find the solution of the dual problem. In
particular, (Sinkhorn, 1967) proves that there exists a unique doubly stochastic matrix of the form

[P ∗
λ ]ij = e

−Cij+v∗
i +u∗

j
λ −1 that is the solution of a simple fixed point iteration where u∗, v∗ are unique

up to scaling factors. Leveraging this fundamental theorem, Cuturi (2013) proposes a fixed-point
iteration that efficiently solves the dual problem. We will later elaborate on the fixed-point iteration
and its convergence.

Apart from Sinkhorn’s fixed point iteration, there are many different methods to solve Lagrangian
dual problem such as first-order optimization methods. Recall the minimizer Pij = e

−Cij+ui+vj
λ −1.

Plugging the minimizer into L reduces the problem to the following optimization

arg min
v,u∈Rn

L(u, v) := λ

∑
ij

e(−Cij+ui+vj)/λ−1

− 1

n

∑
vi −

1

n

∑
i

ui

 .

It is easy to check that L is convex in u and v as its Hessian is diagonally dominant, hence positive
semi-definite. Thus, standard first-order optimization can optimize L. In particular, one can use
gradient descent (with adaptive stepsizes), such as the following recurrence{

u(ℓ+1) = u(ℓ) −Dℓ∇uL(u
(ℓ), v(ℓ))

v(ℓ+1) = v(ℓ) −D′
ℓ∇vL(u

(ℓ), v(ℓ))
, (4)

where ∇uL denotes the gradient of L with respect to u and Dℓ, D
′
ℓ ∈ Rn×n are are diagonal matrices

with positive diagonal elements. We will prove that self-attention layers can implement the above
recurrence.

2.2 SELF-ATTENTION LAYERS

Attention layers are fundamental building blocks of neural networks, developed over decades of
research. Hochreiter (1997) pioneered this development by proposing an attention mechanism for
Recurrent Neural Networks (RNNs) inspired by human cognition. Graves (2014) employs the
attention mechanism to develop a memory system for a parametric version of the Turing machine.
Bahdanau (2014) adapts this attention mechanism in neural Turing machines to design a powerful
model for machine translation. While attention was originally introduced for recurrent models,
Vaswani (2017) introduced non-recurrent attention layers, combined with residual connections (He
et al., 2016), thereby significantly enhancing the training of attention weights.

Attention layers rely on on a convex combination. Let Z ∈ Rm×d. An attention layer is a function
denoted by attenw : Rm×d → Rm×d with parameters w :=

[
wk, wv, wq ∈ Rd×d

]
defined as

atten[w](Z) = Am×mZwv, Aij =
e⟨wkzi,wqzj⟩∑m

j=1 e⟨wkzi,wqzj⟩
, (5)

where zi and zj are rows of Z. The convex combination of data points imposes a local dependency
that can simulate the focusing mechanism in neural networks.

Tay et al. (2020) investigates whether attention layers are capable of sorting. Since self-attention
layers cannot directly implement Sinkhorn’s fixed-point iteration, Tay et al. (2020); Sander et al.
(2022) propose a novel attention mechanism called "Sinkhorn attention". However, we demonstrate
that standard attention layers can implement gradient descent with adaptive step sizes on L.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROMPTING AND MODEL

The Engineered Prompt. We propose a particular prompt structure to encode optimal transport in
transformers:

Zn =


x1 y1 ∥x1∥2 ∥y1∥2 1 1 1 1 0 0 0
x2 y2 ∥x2∥2 ∥y2∥2 1 1 1 1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

xn yn ∥xn∥2 ∥yn∥2 1 1 1 1 0 0 0
0 0 0 0 0 0 0 −1/n 0 0 0

 ∈ R(n+1)×(2d+9). (6)

The highlighted elements in blue are the original prompts, which are sufficient for optimal transport.
The elements highlighted in red are carefully engineered. We will prove that this particular prompt
engineering allows attention layers to iteratively solve optimal transport.

Transformer. We consider a specific transformer architecture composed of multiple attention
and feedforward layers, all connected via residual connections. Let Z(ℓ) denote the intermediate
representation of the input Z at layer ℓ which obeys the following recurrence

Z(0)
n = Zn,

Z(ℓ+1/2)
n = Z(ℓ)

n +

2∑
j=1

attenw(ℓ,j)(Z(ℓ)
n )B

(ℓ)
j ,

Z(ℓ+1)
n = Z(ℓ+1/2)

n + (Z(ℓ+1/2)
n w

(ℓ)
f )+,

(7)

where w
(ℓ)
f ∈ Rd′×d′

are the weight matrices for the feedforward layers, B(ℓ)
j ∈ Rd′×d′

are the
mixing weights for the attention heads, and (a)+ = max(0, a) represents the ReLU activation
function used in the feedforward layers. The model includes two attention heads and employs the
standard softmax attention mechanism commonly used in practice. This makes our model more
closely aligned with practical transformer architectures, in contrast to previous theoretical studies
focusing on linear attention layers (Ahn et al., 2024; Wang et al., 2024).

4 TRANSFORMERS AS ITERATIVE ALGORITHMS

4.1 ADAPTIVE GRADIENT DESCENT WITH TRANSFORMER

We prove that transformers can implement iterations of gradient descent. The proof relies on the
expressive power of attention layers combined with the engineered prompt, which provides the
required memory to store iterates of gradient descent.
Theorem 1. There exists a configuration of parameters such that{

[Z
(ℓ)
n ](1:n),(2d+7) = u(ℓ) −Dℓ∇uL(u

(ℓ), v(ℓ))

[Z
(ℓ)
n ](1:n),(2d+8) = v(ℓ) −D′

ℓ∇vL(u
(ℓ), v(ℓ))

,

holds for all integer values of n, where u(ℓ) and v(ℓ) are gradient descent in (4) iterations starting
from u0 = v0 = 0 with the following adaptive stepsizes

[Dℓ]ii =
γℓ∑

j e
(−Cij+u

(ℓ)
i +v

(ℓ)
j )/λ−1 + 1

, [D′
ℓ]jj =

γℓ∑
i e

(−Cij+u
(ℓ)
i +v

(ℓ)
j )/λ−1 + 1

.

Remarkably, the above result holds for an arbitrary n since a transformer can accept inputs of
varying sizes. Indeed, a single transformers with a constant parameters can implement GD with
adaptive stepsizes for optimal transport of arbitrary input size n. We will elaborate on this important
property by establishing convergence rate to P ∗

λ , thereby proving that a single transformer is capable
of solving optimal transport for all n.

Notably, the above result supports the "iterative inference hypothesis" (Jastrzębski et al., 2017), that
links the mechanism of deep neural networks to widely used optimization methods. This hypothesis

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

posits that residual connections enable deep networks to implicitly implement gradient descent across
layers to tackle complex tasks. It is based on striking observations on the underlying mechanisms of
Convolutional Neural Networks (CNNs) (Alain, 2016). Previous studies have theoretically proven
this hypothesis for solving least-squares problems (Ahn et al., 2024; Von Oswald et al., 2023; Akyürek
et al., 2022) using transformers. Building on these studies, we demonstrate that transformers can
implement gradient descent for a different objective function to solve optimal transport, advancing
our understanding of the iterative inference mechanism in deep networks

Prompt engineering is essential for the proof. Expanding the input size by adding columns and rows
creates an extended data representation matrix across the layers. Attention layers can utilize a part
of this expanded matrix as memory to store the iterates of gradient descent. Furthermore, the input
dependent part of the prompt supplies the necessary statistics for the attention layers to implement
gradient descent. To elaborate, we will present the proof and explain the essence of attention layers
and prompt engineering.

4.2 PROOF OF THEOREM 1

The proof leverages the computational power of attention layers. We demonstrate that two attention
heads can jointly implement a single step of gradient descent (with adaptive step sizes) on L(u, v).
By induction, multiple attention heads can implement several iterations of gradient descent with
adaptive step sizes. The proof is constructive, explicitly determining the choice of parameters.

Parameters Choice. Define Q(ℓ,j) = w
(ℓ,j)
k (w

(ℓ,j)
q )⊤. Let d′ = 2d + 9 and ei ∈ Rd′

denote the

i-th standard basis vector [ei]j =
{
1 i = j

0 otherwise
. We choose parameters such that

λQ(ℓ,1) = [0d′×d 2e1, . . . , 2ed 0d′ −e2d+3 −e2d+1 e2d+7 0d′ −λe2d+5 0d′ 0d′ e2d+5 0d′ ] ∈ Rd′×d′

λQ(ℓ,2) = [2ed+1, . . . , 2e2d 0d′×d −e2d+3 0d′ −e2d+2 e2d+8 −λe2d+5 0d′ e2d+5 0d′ 0d′ ] ∈ Rd′×d′

[w(ℓ,1)
v ]ij =

{
1 i = 2d+ 6 and j = 2d+ 7

0 otherwise
, w

(ℓ)
f = 0d′×d′

[w(ℓ,2)
v ]ij =

{
1 i = 2d+ 6 and j = 2d+ 8

0 otherwise
, B

(ℓ)
j = γℓId′×d′ .

(8)
Notably, there are many choices for w(ℓ,j)

k and w
(ℓ,j)
q that ensure the above equations hold.

Notations. Consider the matrix M ∈ Rn×n defined as Mij = e
−Cij+ui+vj

λ −1. By definition,

L(u, v) = λ
∑
ij

exp

(
−Cij + ui + vj

λ
− 1

)
︸ ︷︷ ︸

=Mij

− 1

n

∑
i

ui −
1

n

∑
j

vj ,

holds for Cij = ∥xi − yj∥2 = x2
i + y2j − 2⟨xi, yj⟩.

A Proof Based on Induction. Assuming that the statement holds for ℓ, we prove that it holds for
ℓ+ 1. It is easy to check that induction base holds. The choice of wℓ

f and w
(ℓ,j)
v ensure that only the

2d+ 7-th and 2d+ 8-th columns of Z(ℓ)
n change with ℓ. Induction hypothesis concludes

Z(ℓ)
n =


x1 y1 ∥x1∥2 ∥y1∥2 1 1 1 1 u

(ℓ)
1 v

(ℓ)
1 0

x2 y2 ∥x2∥2 ∥y2∥2 1 1 1 1 u
(ℓ)
2 v

(ℓ)
2 0

...
...

...
...

...
...

...
...

...
...

...
xn yn ∥xn∥2 ∥yn∥2 1 1 1 1 u

(ℓ)
n v

(ℓ)
n 0

0 0 0 0 0 0 0 −1/n ? ? 0

 ∈ R(n+1)×(2d+9),

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where elements highlighted in teal indicates the equality that follows from the induction assumption.
Assuming the inequality above holds, we proceed to prove that

Z(ℓ)
n =


x1 y1 ∥x1∥2 ∥y1∥2 1 1 1 1 u

(ℓ+1)
1 v

(ℓ+1)
1 0

x2 y2 ∥x2∥2 ∥y2∥2 1 1 1 1 u
(ℓ+1)
2 v

(ℓ+1)
2 0

...
...

...
...

...
...

...
...

...
...

...
xn yn ∥xn∥2 ∥yn∥2 1 1 1 1 u

(ℓ+1)
n v

(ℓ+1)
n 0

0 0 0 0 0 0 0 −1/n ? ? 0

 ∈ R(n+1)×(2d+9).

Indeed, the extended prompt offers sufficient memory to store the vectors u(ℓ) and v(ℓ) obtained
through gradient descent on L(u, v).

Constructing Gradients With Attention Heads. We begin by computing the output of the first
attention head in layer ℓ+ 1, step by step. Through straightforward algebra, we obtain the following:

Z(ℓ)
n Q(ℓ,1) =

[
0 2x/λ 0n −1n/λ −∥x∥2/λ u(ℓ)/λ 0 −1n 0n 0n 1n/λ 0
0 0 0 0 0 0 0 0 0 0 0

]
∈ R(n+1)×d′

where x = [x1, . . . , xn] ∈ Rn×d and x2 = [∥x1∥2, . . . , ∥xn∥2] ∈ Rn. This equation results in the
following:

Z(ℓ)
n Q(ℓ,1)(Z(ℓ)

n )⊤ =

[
1
λ

(
−x21⊤n + 2xy⊤ − 1n(y2)⊤ + u(ℓ)1⊤

n + 1n(v(ℓ))⊤
)
− 1n1⊤n 0n

0⊤
n 0

]

=

[
log(Mn×n) 0n

0⊤
n 0

]
where log(M) for an input matrix M is defined as a matrix with [log(M)]ij = log(Mij). Similarly,
we define the matrix exp(M) such that [exp(M)]ij = eMij . Thus,

exp(Z(ℓ)
n Q(ℓ,1)(Z(ℓ)

n )⊤) =

[
Mn×n 1n

1⊤n 1

]
(9)

Furthermore, the choice of parameters w(ℓ,1)
v obtains

Z(ℓ)
n w(ℓ,1)

v = −γ

[
0n . . . 0n 1n 0n 0n

0 . . . 0 −1/n 0 0

]
Stitching all equations together yields

attenw(ℓ,1)(Z(ℓ)
n )B

(ℓ)
1 =

[
0n . . . 0n −Dℓ(M1n − 1

n1n) 0n 0n

0
... 0 n− 1/n 0 0

]

Similarly, we can show that

attenw(ℓ,2)(Z(ℓ)
n )B

(ℓ)
2 =

[
0n . . . 0n 0n −D′

ℓ(M
⊤1n − 1

n1n) 0n

0
... 0 0 n− 1/n 0

]

Replacing the last two equations into (7) concludes the induction proof.

5 PROVABLE OPTIMAL TRANSPORT WITH TRANSFORMERS

By linking the intermediate data representation to a well-established algorithm, we gain access to
powerful theoretical tools to prove that transformers can solve optimal transport. In particular, we
utilize convergence analysis for gradient descent as well as Sinkhorn’s recurrence.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Linking Attention Patterns to the Optimal Transport Map. Recall the optimal transport map
P ∗
λ defined in (3). We will prove that this matrix can be estimated by the attention matrices across

the layers. Consider a block of attention patterns denoted by A(ℓ) ∈ Rn×n, defined as

A
(ℓ)
ij =

e⟨w
(ℓ,1)
k z

(ℓ)
i ,w(ℓ,1)

q z
(ℓ)
j ⟩∑n

j=1 e
⟨w(ℓ,1)

k z
(ℓ)
i ,w

(ℓ,1)
q z

(ℓ)
j ⟩

, (10)

where z
(ℓ)
i is the i-th row of Z(ℓ). We establish the convergence of A(ℓ) to P ∗

λ in an appropriate
metric.

Convergence Proof. As discussed, the optimal transport matrix P ∗
λ has the following form (Cuturi,

2013):

P ∗
λ = diag(w∗)Qdiag(q∗), w∗, q∗ ∈ Rn

+, Q ∈ Rn×n
+ , Qij = e−

Cij

λ −1.

It is easy to verify that replacing w∗ and q∗ with cw∗ and q∗/c leads to the same matrix P ∗
λ for all

c ∈ R+. Franklin and Lorenz (1989) introduce a metric that accounts for this particular scaling
invariance. Consider the following metric

µ(w,w′) = log

(
max
ij

wiw
′
j

wjw′
i

)
. (11)

Remarkably, µ is a metric that satisfies the triangle inequality (Franklin and Lorenz, 1989). However,
µ is not a norm, as µ(w,w′) = 0 only implies that there exists a constant c such that w = cw′. The
next theorem establishes an explicit convergence rate for the attention matrices A(ℓ) to the solution of
optimal transport in µ.
Theorem 2. There exists a choice of parameters and an integer k ≤ ℓ such that A(k) can be expressed
as:

A(k) = diag(w(k))Qdiag(q(k)),

where w(k), q(k) ∈ Rn
+ obey:

max
{
µ(q(k), q∗), µ(w(k), w∗)

}
≤ 36n

3/2e
r/λ

√
r√

ℓ(1− η)
,

for (1/4)r2 = ∥w(1) − w∗∥22 + ∥q(1) − q∗∥22, η = (ϕ(Q)1/2 − 1)/(ϕ(Q)1/2 + 1), ϕ(Q) =
maxijkl QikQjl/(QjkQil), as long as ℓ ≥ 64n3 exp(3r/λ)r.

The above theorem theoretically verifies that transformers can solve optimal transport for an arbitrary
number of points n, with provable worst-case approximation guarantees. According to the theorem,
the attention patterns converge to the optimal transport matrix P ∗

λ at a rate of O
(

1
depth1/2

)
, implying

that the transformer performance improves with increasing depth.

An application of the last theorem is the provable sorting capability of transformers, achieved up to
certain approximation factors. As discussed, sorting is a specific case of optimal transport for d = 1
with y1 ≤ · · · ≤ yn. By solving the optimal transport problem, transformers can effectively sort lists.
Since convergence is guaranteed for regularized transportation, we expect the transformer to sort
with an error that diminishes as λ → 0. We will experimentally assess the sorting accuracy with the
transformer in experiments.

The statement of the last theorem proves that it is possible to avoid the rank collapse of attention
layers, which indicate that attention patterns converge to a certain low-rank matrix as depth in-
creases (Geshkovski et al., 2024; Wu et al., 2024; Dong et al., 2021). Dong et al. (2021) shows that
attention layers without residual connection suffer from this collapse. Geshkovski et al. (2024) proves
even with residual connections attention with symmetric weights may suffer from the rank collapse.
This rank collapse significantly reduces the expressivity of attention layers and poses challenges for
training (Daneshmand et al., 2020). Consequently, a line of research investigates effective techniques
to avoid the rank collapse issue (Meterez et al., 2023; Daneshmand et al., 2021; Joudaki et al., 2023).
We argue that the last theorem demonstrates the possibility of avoiding the rank collapse of attention
patterns with a specific prompt engineering and particular parameter choices. Recall that P ∗

λ serves
as an approximation of the optimal transport matrix P ∗, which is a full-rank permutation matrix.
Consequently, we anticipate that the attention patterns will retain a high rank throughout the layers,
as will be demonstrated in the experiments.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 EXPERIMENTS

While our contribution is primarily theoretical, we connect the theoretical findings to practical
observations through experiments. First, we experimentally validate our findings in Theorems 1 and
2, proving that transformers are capable of optimal transport. Second, we show that transformers can
learn from data to solve optimal transport, combining the theoretical expressivity with data-driven
learning used in practice. Finally, we show the significance of prompt engineering in practice.

Data specification. We consider optimal transport with d = 1, varying n, which is the focus of our
study. In particular, x1, . . . , xn are a random permutation of [1/n, 2/n, . . . , n/n], and yi = i/n in our
experiments. We use a regularization constant of λ = 0.005 in the related experiments.

Training protocol. In Sections 6 and 6, we use Adam (?) with a step size of 0.001 and 104

iterations for training. We reparameterize Qℓ := w
(ℓ)
k (w

(ℓ)
q )⊤ and optimize Qℓ. Parameters are

initialized randomly from a Gaussian distribution with variance 1/(2d + 9). Notably, we set w(ℓ)
f =

0, B
(ℓ)
j = (1/20)Id′ , and only optimize w(ℓ,j) := [w

(ℓ,j)
k , w

(ℓ,j)
q , w

(ℓ,j)
v ], as this does not limit the

optimal transport capability (see (8) ). Training is conducted on a single T4 GPU.

Validations. Since the proof of Theorem 1 is constructive, it provides an explicit choice of parame-
ters for transformers. Specifically, we set γk = 0.01 and use the weight matrices defined in (8). We
examine the sorting accuracy of the transformer. As previously discussed, sorting is equivalent to
optimal transport for d = 1. Given the attention pattern A(2000), we compute the linear transformation
of the input x = [x1, . . . , xn] using A(2000) to generate an estimate for the sorted x. An example of
sorting is:

Input : [0.5, 0.75, 0.25, 0.0] → Output : [0.018, 0.24, 0.50, 0.73]

We observe that generated output approximates the sorted list [0.0, 0.25, 0.5, 0.75]. Interestingly, the
same transformers can also approximately sorts larger lists:

[0.375, 0.5, 0.125, 0.875, 0.75, 0.25, 0.0, 0.625] → [0.02, 0.12, 0.25, 0.37, 0.5, 0.62, 0.75, 0.84]

A(1) A(300) A(600) P ∗
λ

Figure 1: Convergence of Attention Patterns. The plotted matrices are A(1), A(300) and A(600) defined in
(10). We observe these matrices converge to P ∗

λ (the rightmost plot). Thm 2 proves this convergence.

Figure 1 illustrates the convergence of the attention matrices A(ℓ) to P ∗
γ , as established in Theorem 2.

Notably, we observe that the attention patterns maintain high rank across in contrast to the observations
on the rank collapse phenomenon; please refer to remarks in Section 5.

Figure 2 further illustrates that a single network can solve optimal transport on different sample sizes.
In particular, this figure demonstrates that the transformer, with the parameter choices specified in
(8), can find P ∗

γ for both n = 4 and n = 8 simultaneously without any changes to the parameters.

Training. So far, we proved and experimentally validate that a transformers is capable of optimal
transportation. Now, we experimentally investigate whether a transformer can learn from data to
solve optimal transport. Recall the hidden representation of transformer at layer ℓ denoted by Zℓ. We
optimize parameters w(ℓ,j) to solve the following minimization problem

min
w(1,j),...,w(20,j)

E
[
∥[Z20]1:n,2d+9 − sorted(x)∥2

]
(training loss)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

A(2000) P ∗
λ A(2000) P ∗

λ

Figure 2: Optimal Transport of Different Sizes. left: n = 8, right: n = 4. The transformer weights remain
exactly the same.

A(5) A(10) A(15) A(20) P ∗

0 1 2 3 4 5 6

0

1

2

3

4

5

6
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

0

1

2

3

4

5

6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

0

1

2

3

4

5

6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8

0

1

2

3

4

5

6

7

8 0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8

0

1

2

3

4

5

6

7

8

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8

0

1

2

3

4

5

6

7

8

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8

0

1

2

3

4

5

6

7

8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3: Optimal Transport After Training. Rows: n = 7 and n = 9; Columns: attention patterns A(ℓ)

defined in (10) for ℓ = 5, 10, 15, 20. The last columns shows the optimal transport map, i.e., P ∗ in (2) ; Training:
optimizing the training loss on random data with n = 7 (see Section 6 for more details).

where sorted(x) ∈ Rn contains sorted xis and the expectation is taken over random data (details in
Data specification). In order to approximate the expectation, we draw 500 samples uniformly at
random. Figure 3 compares the attention patterns —denoted by A(ℓ) defined in (10)— across the
layers where we observe that these patterns are converging to the optimal solution. This observation
validates that transformers iteratively solve optimal transport across their layers (similar to gradient
descent on L). While the the transformer is trained for n = 7, we observe a good approximation for
n = 9.

Prompt engineering. We experimentally evaluate the impact of the engineered prompt (6) on
solving optimal transport for d = 1. Specifically, we reduce the number of columns in the prompt by
removing additional ones as

Z ′ =

x1 y1 0
...

...
...

xn yn 0

 ∈ Rn×3. (12)

The last column is designated for the output. Let Z ′
20 represent the output of a transformer with

20 layers. We optimize the weights so that the last column of Z ′
20 predicts the sorted values of

x1, . . . , xn:

min
w(1,j),...,w(20,j)

E
[
∥[Z ′

20]:,3 − sorted(x)∥2
]

(13)

where details on training data and process are presented in Data specification and Training protocol,
respectively.

Figure 4 shows the clear impact of prompt engineering on the performance, where the above prompt
(without engineering) leads to a significantly worse approximate of optimal transport matrix.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6

0

1

2

3

4

5

6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

0

1

2

3

4

5

6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

without prompt engineering (12) with the engineered prompt (6) optimal solution P ∗

Figure 4: The Significance of Prompt Engineering. Left: attention pattern in the last layer denoted by A(20)

after optimizing the training loss (13) for inputs without prompt engineering; Middle: attention pattern in the
last layer (A(20)) after training with the engineered prompt in (6); Right: optimal transport map associated with
the input. x1, . . . , xn and y1, . . . , yn in prompts are fixed.

7 DISCUSSIONS

We proved that transformers with fixed parameters can solve multiple instances of optimal transport
on different number of points, with an explicit accuracy bound. Our analysis shows that transformers
can implement gradient descent on a specific objective function using a specially engineered prompt.
The engineered prompt provides additional memory to implement gradient descent. These findings
open several avenues for future research, including: including: (i) depth-efficient guarantees, (ii) the
analysis of training dynamics, and (iii) studying prompt engineering beyond optimal transport.

(i) Depth Efficient Guarantees. According to Theorem 2, a transformer with O(ϵ−2)-depth can
obtain an O(ϵ)-accurate solution. This is due to the established convergence rate for gradient descent
with adaptive stepsizes. However, O(log(1/ϵ)) Sinkhorn iterations suffice for achieving ϵ-accuracy.
While there is a considerable gap between the established convergence analysis for gradient descent
and the convergence rate of Sinkhorn’s iteration, our result is sufficient to prove deep transformers
can provably solve optimal transport. We call for bridging this gap through a tighter convergence
analysis.

(ii) Training for Optimal Transport. We proved that transformers are able to provably solve
optimal transportation and experimentally showed (in Section 6) that transformers can learn to solve
optimal transport in R by training over random observations. Building upon this observation, we
suggest a theoretical analysis of the training mechanism for optimal transport. To pursue this line of
research, one can check whether parameters in (8) are local or global minimizers of the training loss.
(Ahn et al., 2024; Wang et al., 2024) demonstrate that the properties of generative data distributions
can be leveraged to analyze the stationary points of training dynamics. We believe that this technique
can be used to analyze the landscape of training loss for optimal transport.

(iii) Prompt Engineering Beyond Optimal Transport. Prompt engineering is essential for demon-
strating that transformers are capable of solving optimal transport. In Section 6, we experimentally
show that prompt engineering is also important in practice. Despite its widespread use, the underlying
mechanisms of prompt engineering remain understudied. Studying prompt engineering for optimal
transport is a step towards the broader goal of understanding the role of prompt engineering in
general. We conjecture that prompt engineering enhances the computational power of transformers,
enabling them to simulate a wider class of algorithms.

REFERENCES

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Roger W Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear program-
ming problems. Linear Algebra and its applications, 146:79–91, 1991.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36, 2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers learn temporal
difference methods for in-context reinforcement learning. arXiv preprint arXiv:2405.13861, 2024.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

G Conte, AM Perdon, B Wyman, Roger W Brockett, and Wing Shing Wong. A gradient flow for
the assignment problem. In New Trends in Systems Theory: Proceedings of the Università di
Genova-The Ohio State University Joint Conference, July 9–11, 1990, pages 170–177. Springer,
1991.

Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The
American Mathematical Monthly, 74(4):402–405, 1967.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Alex Graves. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.

Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pages 9438–9447. PMLR, 2020.

Michael E Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transformers with
doubly stochastic attention. In International Conference on Artificial Intelligence and Statistics,
pages 3515–3530. PMLR, 2022.

Stanisław Jastrzębski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guillaume Alain. Understanding intermediate layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its
applications, 114:717–735, 1989.

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. The emergence of clusters
in self-attention dynamics. Advances in Neural Information Processing Systems, 36, 2024.

Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the role of attention
masks and layernorm in transformers. arXiv preprint arXiv:2405.18781, 2024.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pages 2793–2803. PMLR, 2021.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch
normalization provably avoids ranks collapse for randomly initialised deep networks. Advances in
Neural Information Processing Systems, 33:18387–18398, 2020.

Alexandru Meterez, Amir Joudaki, Francesco Orabona, Alexander Immer, Gunnar Rätsch, and
Hadi Daneshmand. Towards training without depth limits: Batch normalization without gradient
explosion. arXiv preprint arXiv:2310.02012, 2023.

Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch normalization orthogonalizes repre-
sentations in deep random networks. Advances in Neural Information Processing Systems, 34:
4896–4906, 2021.

Amir Joudaki, Hadi Daneshmand, and Francis Bach. On the impact of activation and normalization
in obtaining isometric embeddings at initialization. Advances in Neural Information Processing
Systems, 36:39855–39875, 2023.

12


	Introduction
	Background
	Optimal transport
	Self-attention layers

	Prompting and Model
	Transformers as iterative algorithms
	Adaptive gradient descent with transformer
	Proof of Theorem 1

	Provable optimal transport with Transformers
	Experiments
	Discussions

