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ABSTRACT

We study off-policy evaluation (OPE) in contextual bandits with data collected from
multiple logging policies. As highlighted by Agarwal et al. (2017), there seemingly
exists no IPS estimator that consistently outperforms the others in this setting. We
resolve this dilemma by deriving an optimal IPS estimator with sample-dependent
weights that minimize variance. Through a calculus-of-variations approach, we
obtain closed-form optimal weights under the unbiasedness condition, yielding an
estimator that is unbiased and achieves asymptotically optimal variance. Experi-
ments on four benchmark datasets confirm this resolution in practice, showing that
our estimator consistently outperforms state-of-the-art methods with substantial
relative RMSE reductions across diverse logger mixtures and numbers of logging
policies.

1 INTRODUCTION

Off-policy evaluation (OPE) in contextual bandits is an essential causal inference tool with applica-
tions in areas such as recommender systems, medical treatment planning, and ad placement. The
problem becomes substantially more challenging when data is collected under multiple logging
policies—a setting that often arises in practice, where data originates from heterogeneous sources
governed by different behavior policies. The presence of multiple logging policies can greatly increase
the variance of OPE estimates, heightening the risk of suboptimal or unreliable policy evaluation.

Traditional OPE methods often rely on inverse propensity scoring (IPS) estimators Rosenbaum &
Rubin (1983), which reweight observed data to account for discrepancies between the logging and
evaluation policies. In the unstratified setting, where all data are collected under a single logging
policy, IPS estimators adjust each sample using the ratio of the evaluation policy’s probability to that
of the logging policy for the observed action Precup et al. (2000); Bottou et al. (2013). In contrast,
the stratified setting, where data are collected under multiple logging policies with fixed sample sizes,
introduces substantial complexity in determining how to weight and combine data across sources.

Agarwal et al. (2017) were among the first to study OPE with multiple logging policies. They analyzed
three IPS estimators based on multiple importance sampling (MIS) Cornuet et al. (2012); Elvira et al.
(2019); Veach & Guibas (1995): (i) a naive estimator that averages IPS estimates computed separately
for each dataset; (ii) an estimator that applies IPS to the averaged logging policy, weighted by dataset
size; and (iii) an estimator that constructs a weighted average using a divergence-based weighting
scheme between the logging and evaluation policies. Their analysis highlighted a key challenge:
while the naive IPS estimator consistently performs the worst, the variance of the other two is highly
instance-dependent, with no estimator consistently dominating. This variance sensitivity poses a
practical obstacle for practitioners seeking reliable and robust OPE methods.

Building on these insights, Kallus et al. (2021) addressed this ambiguity by deriving the theoretical
efficiency bound for the stratified setting—that is, the minimum achievable asymptotic variance
for a broad class of OPE estimators—and proposed estimators that attain this optimal efficiency.
Moreover, they showed that the efficiency bound is identical in both stratified and unstratified settings,
implying that incorporating logger identities (i.e., information about which data point comes from
which logging policy) is unnecessary to achieve the minimum possible variance.

In this work, we propose a novel framework for deriving optimal weight functions for the IPS estimator
in the stratified OPE setting. Using the calculus of variations, we directly obtain weights that minimize
the estimator’s variance subject to the unbiasedness constraint. We further introduce a feasible version
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of this optimally weighted IPS estimator—referred to as the optimal IPS estimator—by employing a
cross-fitting approach to ensure that the optimal weights are estimated independently of the data used
to compute the final estimate. Finally, we provide theoretical guarantees establishing its unbiasedness
and asymptotic efficiency.

Our approach directly addresses the dilemma identified by Agarwal et al. (2017), namely that no
single estimator consistently outperforms the others in the multi-logger setting, but does so differently
from Kallus et al. (2021), who analyzed a broader class that includes doubly robust estimators. In
contrast, we establish optimality strictly within the class of IPS estimators considered by Agarwal
et al. (2017).

Contributions Our main contribution is the derivation of an optimal IPS estimator for OPE in the
presence of multiple logging policies. Specifically, it includes:

1. We formulate variance minimization for the generalized weighted IPS estimator (Eq. 4) as a
calculus-of-variations problem. Unlike prior IPS methods, our approach allows for sample-
dependent weights (Eq. 7) to achieve further variance reduction.

2. We characterize these optimal weights in closed form (Theorem 5.1). Since these quantities
depend on the underlying data distribution, we propose estimating them from data. Algorithm 1
presents a practical implementation of the optimal IPS estimator using cross-fitting (van der Laan
et al., 2011; Chernozhukov et al., 2018), in the spirit of Kallus et al. (2021).

3. We prove that the resulting estimator is unbiased and asymptotically optimal (Theorem 5.2).
Finally, in Section 6, we empirically demonstrate that our method substantially reduces variance
and consistently outperforms existing IPS baselines across four contextual bandit benchmarks.
We provide code in the supplementary material to enable exact reproduction of results.

2 RELATED WORKS

OPE assesses the performance of counterfactual policies using logged data (Precup et al., 2000;
Bottou et al., 2013).While the standard OPE setup typically assumes data collected under a single
logging policy, real-world applications often involve data gathered from multiple logging policies,
such as in parallel A/B testing (Agarwal et al., 2017; He et al., 2019; Kallus et al., 2021; Chen et al.,
2020). This multi-logger setting, often modeled as stratified sampling with logger identities serving
as strata (Kallus et al., 2021; Wooldridge, 2001), introduces unique challenges, particularly the risk
of inefficiencies arising from poor-quality logging policies among the mix.

OPE with Multiple Loggers. Agarwal et al. (2017) initiated the study of OPE with multiple logging
policies, proposing several IPS estimators inspired by multiple importance sampling (Veach & Guibas,
1995; Cornuet et al., 2012; Elvira et al., 2019). They identified a key challenge: no single estimator
consistently outperforms the others across problem instances. Kallus et al. (2021) formalized this
setting by deriving a efficiency bound and showing it is achievable without incorporating logger
identities. They also introduced a doubly robust estimator that asymptotically attains this bound.
Related work includes off-policy learning extensions (He et al., 2019), infinite-horizon analysis (Chen
et al., 2020), and generalization under selection bias (Hatt et al., 2022). Complementary to our setting,
Liu et al. (2025) studied efficient multi-policy evaluation in reinforcement learning by designing a
tailored behavior policy across multiple target policies, whereas we address off-policy evaluation
from fixed logged bandit data with multiple loggers.

Multiple Importance Sampling. Multiple importance sampling addresses the challenge of com-
bining data from multiple sources, originally developed to reduce variance in Monte Carlo render-
ing (Veach & Guibas, 1995; Owen & Zhou, 2000; Elvira et al., 2019; Kondapaneni et al., 2019). Veach
& Guibas (1995) introduced the balance and power heuristics, which provide robust performance
under non-negative weights. Subsequent work explored more general weighting schemes (Elvira
et al., 2019). In particular, Kondapaneni et al. (2019) derived provably optimal MIS weights via
direct variance minimization, allowing negative weights and achieving further variance reduction,
especially in defensive sampling scenarios. Our technique adapts this idea from the domain of
computer graphics to OPE in contextual bandits.
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3 PRELIMINARIES

In this section, we formulate the problem and provide background on existing methods, which will
later be compared with our optimal IPS method in the experimental section.

Notations. For n ∈ N, let [n] := {1, . . . , n}. Indexed objects such as vectors and matrices are
written in boldface: v ∈ Rn, M ∈ Rn×n, where vi denotes the ith component of v, and Mij

denotes the (i, j)th entry of M, that is, the element in the ith row and jth column. The notation 1[ · ]
denotes the indicator function. For real-valued integrable functions f, g : Ω → R and a probability
distribution µ over Ω, we write

⟨f, g⟩µ := Eω∼µ[f(ω)g(ω)] = Eµ[fg],

which represents the inner product under µ. Finally, supp(µ) denotes the support of distribution µ.

3.1 PROBLEM SETTING

We consider the OPE problem in the contextual bandit setting as studied in previous works Agarwal
et al. (2017); He et al. (2019); Kallus et al. (2021).

A policy π is a function mapping a context (i.e., a state) s ∈ S to a distribution over possible actions
A, formally represented as a conditional distribution π(a|s) for each s ∈ S.

An environment consists of unknown distributions: a context distribution ps(s) and reward distribu-
tions pr(r|s, a) over R ⊆ R for each context-action pair (s, a). The interaction between a policy and
the environment begins with the environment sampling a context from ps(s), followed by the policy
selecting an action a ∼ π(a|s), and concludes with a reward sampled from pr(r|s, a). This process
induces a joint distribution µπ over S ×A×R with density (or mass) ps(s)π(a|s)pr(r|s, a). The
expected reward of a policy, denoted by J(π), is defined as

J(π) := Eµπ
[r],

where Eµπ
denotes the expectation with respect to µπ .

The goal of OPE is to estimate the expected reward J(πe) of a target evaluation policy πe using
i.i.d. data D := {(sj , aj , rj)}nj=1 sampled from µπ, the distribution induced by a logging policy π,
which is generally different from πe. In this work, we consider stratified OPE with multiple logging
policies (πi)i∈[K], where the dataset is given by D := (Di)i∈[K], and each data Di consists of ni

i.i.d. samples from µπi
, that is, Di := {(sij , aij , rij)}ni

j=1.

3.2 EXISTING APPROACHES

Naive IPS. Naive IPS addresses OPE by reweighting observed rewards from logged data to account
for the probability of actions under the evaluation policy relative to the logging policy. The naive IPS
estimator is defined as:

ĴIPS(πe;D) =
1

N

K∑
i=1

ni∑
j=1

πe(aij |sij)
πi(aij |sij)

rij , (1)

where N :=
∑K

i=1 ni is the total number of samples.

Naive IPS provides an unbiased estimate of the policy value when the propensity scores are correctly
specified, making it a fundamental and widely used technique in the toolkit of OPE methods.

Weighted IPS. Agarwal et al. (2017) proposed an estimator based on MIS Veach & Guibas (1995),
which combines probabilities from multiple logging policies to create a more efficient estimator.
They introduced an IPS estimator with a balanced heuristic of MIS, defined as:

ĴbIPS(πe;D) =
1

N

K∑
i=1

ni∑
j=1

πe(aij |sij)
πavg(aij |sij)

rij , (2)

where πavg(a|s) = 1
N

∑K
i=1 niπi(a|s).
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Motivated by adaptive MIS Elvira et al. (2019), Agarwal et al. (2017) also introduced a weighted
version of the IPS estimator, defined as:

ĴwIPS(πe;D) =

K∑
i=1

λ⋆
i

ni∑
j=1

πe(aij |sij)
πi(aij |sij)

rij , (3)

where λ⋆
i := 1

σ2
r(πe||πi)

(∑K
j=1

nj

σ2
r(πe||πj)

)−1

and the divergence σ2
r between the target policy πe

and a logging policy π is given by σ2
r(πe||π) := Varµπ

[
πe(a|s)
π(a|s) r

]
.

Unlike ĴIPS and ĴbIPS, the estimator ĴwIPS is not directly feasible in practice since the weights λ⋆
i

must first be estimated from data. To address this, Kallus et al. (2021) proposed a feasible version of
ĴwIPS using a cross-fitting technique van der Laan et al. (2011); Chernozhukov et al. (2018).

4 OPTIMAL IPS ESTIMATOR FOR OPE WITH MULTIPLE LOGGERS

In this section, we present our main contribution: the optimal IPS estimator for OPE with multiple
loggers, denoted ĴoIPS and outlined in Algorithm 1.

4.1 GENERALIZED WEIGHTED IPS ESTIMATOR CLASS ΓgwIPS .
We show that our estimator is optimal within a general class of weighted IPS estimators. Let
w := (wi)i∈[K], where each wi : S ×A×R → R is a sample-dependent weight. The generalized
weighted IPS estimator class, ΓgwIPS, is defined as the set of all estimators of the following form:

Ĵ(πe,w;D) :=

K∑
i=1

1

ni

ni∑
j=1

wi(sij , aij , rij)πe(aij |sij)rij
πi(aij |sij)

. (4)

An estimator in ΓgwIPS is unbiased if the weights wi satisfy the following conditions. The first is the
normalization condition:

K∑
i=1

wi(s, a, r) = 1, ∀(s, a, r) ∈ supp(µπe
), (5)

and the second is the dominance condition:

∀i ∈ [K], πi(a|s) = 0 =⇒ wi(s, a, r) = 0. (6)

Under these constraints, a straightforward calculation shows that Ĵ(πe,w;D) is unbiased, as stated
in the following theorem (full proof in Appendix A).
Theorem 4.1. For any weights w : Ω → R that satisfies conditions (5) and (6),

E[Ĵ(πe,w;D)] = J(πe),

where the first expectation is over the randomness of the sampling of the dataset D := (Di)i∈[K].

Subject to conditions (5) and (6), we seek weights w that minimize the variance Var[Ĵ(πe,w;D)].
This variance can be viewed as a functional over vector-valued functions w : S×A×R → RK , which
allows us to derive the optimal weights w⋆(s, a, r) using the calculus of variations. Theorem 5.1
shows that these optimal weights w⋆ minimizing Var[Ĵ(πe,w;D)] take the form of

w⋆
i (s, a, r) =

αiπi(a|s)
rπe(a|s)

+
niπi(a|s)∑K

k=1nkπk(a|s)

(
1−

∑K
k=1αkπk(a|s)
rπe(a|s)

)
, (7)

the internal weight vector α := (αi)i∈[K] is a solution to the linear system Tα = c, with the entries
of T ∈ RK×K and c ∈ RK given by

Tij := Eµπi

[
niπj(a|s)∑K

k=1 nkπk(a|s)

]
, ci := Eµπi

[
r ni πe(a|s)∑K
k=1 nkπk(a|s)

]
. (8)

We refer to T as the technique matrix and c as the contribution vector.

4
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Algorithm 1 Optimal IPS for Off-Policy Evaluation

1: Input: Dataset D := (Di)i∈[K] where

Di := {(sij , aij , rij)}ni

j=1 ,

being i.i.d. samples from µπi
.

2: Output: Estimated policy value ĴoIPS(πe;D).

3: For each i ∈ [K], let {D(z)
i }z∈[Z] be a Z-fold random partition of Di, such that the sizes of the

folds, |D(z)
i |, are approximately equal.

4: For each z ∈ [Z], let D(z) :=
{
D(z)

i

}
i∈[K]

and D(−z) :=
{
Di \ D(z)

i

}
i∈[K]

.

5: for z ∈ [Z] do
6: Estimate the technique matrix T̂(z) and the contribution vector ĉ(z) using D(−z) via (9).

7: Let α̂(z) := (T̂(z)⊤T̂(z))−1T̂(z)⊤ĉ(z) be the OLS estimator.

8: Compute Ĵ (z) using α̂(z) and D(z) via (11).
9: end for

10: Return ĴoIPS(πe;D) := 1
N

∑
z∈[Z] |D(z)|Ĵ (z), where N :=

∑K
i=1 ni.

Unfortunately, T and c depend on the unknown contextual bandit environment (i.e., ps and pr), so
w⋆ cannot be computed directly. This is analogous to the weighted IPS estimator (3), where the
optimal coefficients λ⋆

i also depend on the environment, rendering the naive form infeasible. Instead,
these quantities must be estimated from data via cross-fitting, which yields a feasible estimator Kallus
et al. (2021). Following this approach, in the next section we present a feasible version of the ideal
optimal IPS estimator Ĵ(πe,w

⋆;D), denoted ĴoIPS.

4.2 ASYMPTOTICALLY OPTIMAL IPS ESTIMATOR ĴoIPS

In this section, we outline how cross-fitting can be used to derive a feasible optimal estimator ĴoIPS.
Specifically, we employ the cross-fitting strategy van der Laan et al. (2011); Chernozhukov et al.
(2018): one part of the data is used to estimate T and c (and hence the optimal weights), while the
other is used to compute the weighted IPS estimator with these estimated weights. The complete
procedure for computing ĴoIPS is provided in Algorithm 1.

Computing ĴoIPS. For each i ∈ [K], let
{
D(z)

i

}
z∈[Z]

be a Z-fold random partition of Di, such that

the sizes of the folds |D(z)
i | are approximately equal. Then, for each z ∈ [Z], we estimate T and c

using T̂(z) and ĉ(z), respectively—obtained as sample averages of (8) over the rest of zth fold data,
D(−z) :=

{
Di \ D(z)

i

}
i∈[K]

.

For each i ∈ [K] and z ∈ [Z], let n(z)
i denote the size of D(z)

i . Assign indices j = 1, . . . , n
(z)
i to the

data points in D(z)
i , and indices j = n

(z)
i +1, . . . , ni to the remaining data points in Di \D(z)

i . Then,
the estimators T̂(z) ∈ RK×K , ĉ(z) ∈ RK of T and c, respectively, are given by

T̂
(z)
ij :=

1

ni − n
(z)
i

ni∑
l=n

(z)
i +1

ni πj(ail|sil)∑K
k=1 nk πk(ail|sil)

,

ĉ
(z)
i :=

1

ni − n
(z)
i

ni∑
l=n

(z)
i +1

ril ni πe(ail|sil)∑K
k=1 nk πk(ail|sil)

. (9)

5
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We use the above estimates as drop-in replacements for T and c when computing α, and hence w⋆.
Specifically, let N :=

∑K
i=1 ni and N (z) :=

∑K
i=1 n

(z)i. The optimal IPS estimator is defined as

ĴoIPS(πe;D) :=
1

N

∑
z∈[Z]

N (z)Ĵ (z), Ĵ (z) :=

K∑
i=1

1

n
(z)
i

n
(z)
i∑

j=1

ŵ
(z)
ij rij

πe(aij |sij)
πi(aij |sij)

, (10)

where the weight ŵ(z)
ij := ŵ

(z)
i (sij , aij , rij) is given by

ŵ
(z)
i (s, a, r) :=

α̂
(z)
i πi(a|s)
r πe(a|s)

+
n
(z)
i πi(a|s)∑K

k=1 n
(z)
k πk(a|s)

(
1−

∑K
k=1 α̂

(z)
k πk(a|s)

r πe(a|s)

)
,

where α̂(z) = (α̂
(z)
i )i∈[K] is the OLS estimator, defined as α̂(z) := (T̂(z)⊤T̂(z))−1T̂(z)⊤ĉ(z).

By plugging the above directly into (10), Ĵ (z) simplifies to

Ĵ (z) =

K∑
i=1

α̂
(z)
i +

K∑
i=1

n
(z)
i∑

j=1

rijπe(aij |sij)∑K
k=1 n

(z)
k πk(aij |sij)

−
∑K

k=1 α̂
(z)
k πk(aij |sij)∑K

k=1 n
(z)
k πk(aij |sij)

. (11)

Notably, the second term recovers the balanced IPS estimator over D(z).

For the optimal IPS estimator with cross-fitting, we prove in Theorem 5.2 that ĴoIPS(πe;D), as defined
above, remains unbiased, consistent, and asymptotically efficient.

When Logging Policies are Unknown. When logging policies are unknown, we substitute consis-
tent estimators of the propensities πi(ajk|sik) when computing ĴoIPS. The estimation procedure for
unknown logging policies is described in Section 6. We show that our estimator achieves good and
stable practical performance even when using estimated logging propensities.

5 ANALYSIS

In this section, we provide a theoretical analysis of our optimal IPS estimator ĴoIPS. Specifically, we
prove the optimality of the generalized weights w⋆ given by (7) and establish that ĴoIPS(πe;D) is
consistent and asymptotically normal with the optimal variance Var[Ĵ(πe,w

⋆;D)].

5.1 TECHNICAL ASSUMPTION

Before proceeding, we state a technical assumption on the logging and evaluation policies.
Assumption 5.1. For almost all s ∈ S, ∪i∈[K]supp(πi(a|s)) ⊆ supp(πe(a|s)).
This assumption is used only to streamline the proofs and is not required for the final statements. It
can be removed via a standard continuity (smoothing) argument: for any πe, define the ε–perturbed
policy πε

e := (1 − ε), πe + ε, πu, where πu is uniform over actions. Then πε
e has full support and

satisfies Assumption 5.1. Results proven under Assumption 5.1 therefore hold for πε
e ; letting ε → 0

and using continuity of our estimator and objective in πe, the optimality conclusions extend to the
original πe.

Notably, our estimator does not rely on the weak or strong overlap conditions of Kallus et al. (2021),
such as πe(a|s) ⊆ ∪i∈[K]πi(a|s) (weak) or πe(a|s) ⊆ ∩i∈[K]πi(a|s) (strong).

5.2 CHARACTERIZING VARIANCE OF ESTIMATORS IN ΓgwIPS

We begin our analysis with the following theorem, which characterizes the variance of Ĵ(πe,w;D)
and enables computation of the functional derivative with respect to w. The full proof is provided in
Appendix A.

Lemma 5.1. Let Ω := S ×A×R. For any weights w : Ω → R that satisfies conditions (5) and (6),

Var
[
Ĵ(πe,w;D)

]
=

K∑
i=1

1

ni

(〈
w2

i ,
πeΠ

2
r

πi

〉
µπe

− ⟨wi, Πr⟩2µπe

)
,

where Πr(ω) := r for all ω := (s, a, r) ∈ Ω.

6
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5.3 DERIVATION OF OPTIMAL GENERALIZED WEIGHTS.
We aim to find optimal weights w⋆, defined as the solution to the following variance minimization
problem, subject to constraints that guarantee unbiasedness:

minimize
w

Var
[
Ĵ(πe,w;D)

]
(12)

subject to
K∑
i=1

wi(ω) = 1, ∀ω ∈ supp (µπe
), and

πi(a|s) = 0 =⇒ wi(s, a, r) = 0, ∀i ∈ [K].

With this formulation, we provide a characterization of the optimal weights w⋆ : Ω := S×A×R → R
in the following theorem whose proof is provided in Appendix A.
Theorem 5.1. For logging and evaluation policies (πi)i∈[K] and πe that satisfy Assumption 5.1, let
T ∈ RK×K be the technique matrix and c ∈ RK be the contribution vector defined in (8). Let α
be any solution to Tα = c, if one exists. Then, with respect to such α, the weight vector w⋆ given
by (7) solves the optimization problem (12).

Unbiasedness and Asymptotic Efficiency of ĴoIPS. We show that ĴoIPS, the feasible version of
Ĵ(πe,w

⋆;D) given in Algorithm 1, remains unbiased. Furthermore, the estimator is consistent and
asymptotically achieves the optimal variance Var[Ĵ(πe,w

⋆;D)]. By the asymptotic regime in the
multi-logger setting, we follow the scaling of Kallus et al. (2021): for each logger i ∈ [K], let
n′
i = mni, and consider the limit m → ∞.

Theorem 5.2. Let N ′ :=
∑K

i=1 n
′
i with n′

i = mn′
i. Then, ĴoIPS is unbiased and

√
N ′
(
ĴoIPS(πe;D)− J(πe)

)
d→ N

(
0, N Var[Ĵ(πe,w

⋆;D)]
)

as m → ∞, where N :=
∑K

i=1 ni.

In other words, ĴoIPS is asymptotically normal with the optimal variance Var[Ĵ(πe,w
⋆;D)], while

higher-order variances are asymptotically negligible. The proof is provided in Appendix A.

6 NUMERICAL EXPERIMENTS

In this section, we conduct numerical benchmarks to evaluate the performance of our optimal IPS
estimator and compare it against existing methods.

6.1 BENCHMARK DATASETS AND EXPERIMENT SETUP

Table 1: Dataset Statistics

Dataset Name OptDigits SatImage PenDigits Letter
#Classes (l) 10 6 10 26
#Data (n) 5620 6435 10992 20000

To evaluate the efficacy of different
OPE methods under multiple logging
policies, we adopt experimental se-
tups from prior work on multi-logger
OPE (Agarwal et al., 2017; Kallus
et al., 2021). We use four datasets
from the UCI Machine Learning Repository (Table 1): OptDigits Alpaydin & Kaynak (1998), SatIm-
age Srinivasan (1993), PenDigits Alpaydin & Alimoglu (1998), and Letter Slate (1991) (Table 1).
Each classification dataset is converted into a contextual bandit dataset by treating labels as actions
and assigning rewards of 1 for correct classifier predictions and 0 otherwise, as described in more
detail below.

Mapping Classification to Contextual Bandits. We map the multi-class classification problem to
a contextual bandit setting. In multi-class classification with deterministic labels, data is distributed
as (s, y(s)), where s ∼ ps(s) is the marginal data distribution. We treat ps as the state distribution in
the contextual bandit framework, and define the deterministic reward as r(s, a) := 1[y(s) = a].

To generate bandit feedback from a dataset {(si, yi)}ni=1, we train a deterministic classifier ŷ on 30%
of the data and construct the corresponding policy πdet(a|s) := 1[a = ŷ(s)]. Specifically, we use
logistic regression on 30% of the data to obtain πdet. The evaluation policy is set to πe = πdet, while
the logging policies are defined as mixtures: π1 = 0.95πdet + 0.05πu and π2 = 0.05πdet + 0.95πu,
where πu is the uniform random policy over actions. This setup creates different levels of overlap

7
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Figure 1: Relative-RMSEs (13), computed over M = 200 independent experiments, are reported
across different datasets and estimators under the setting where the logging policies are known. Our
proposed estimator ĴoIPS is implemented with Z = 5-fold cross-fitting. The x-axis denotes the
stratum size ratio (n1/n2) on a logarithmic scale, while the y-axis shows the relative RMSE, also on
a logarithmic scale. Lower values indicate better performance.

between the logging and evaluation policies, enabling robustness evaluation of estimators under
varying conditions.

The classification accuracy of ŷ on the remaining 70% of the data (the evaluation set) is taken as
the ground-truth value of the policy πe = πdet. We partition the evaluation set into D1 (generated
by π1) and D2 (generated by π2) according to the ratio n1/n2 = ρ1/(1− ρ1), with ρ1/(1− ρ1) ∈
{0.1, 0.25, 0.5, 1, 2, 4, 10}. This corresponds to 100×ρ1/(1−ρ1) percent of the evaluation set being
assigned to D1, while smaller ratios yield larger D2, generated by a logging policy less similar to the
evaluation policy. Using this partitioned evaluation set, we benchmark estimators Ĵ in estimating the
true policy value J .

We evaluate estimators with the Relative Root Mean Squared Error (Relative-RMSE), which quantifies
the accuracy of an estimator in predicting the expected reward of the target policy. Suppose we run
M experiments with independently sampled datasets. The Relative-RMSE of an estimator Ĵ is

Relative-RMSE(Ĵ) :=
1

J(πe)

√√√√ 1

M

M∑
m=1

(
J(πe)− Ĵm

)2
, (13)

where Ĵm denotes the estimated policy value in the m-th experiment.

When Logging Policies are Unknown. When logging policies are unknown, we estimate each
logger’s behavior policy π̂i using per-logger, 2-fold cross-fitted multinomial logistic regression.
Out-of-fold model provides per-sample propensities π̂i(aij |sij), while a model trained on all data
from logger i is used to score every sample (sjk, ajk), yielding π̂i(ajk|sjk). To stabilize importance
weights, we blend predicted action distributions with a 1% uniform component, clip propensities
below 10−3, and default to the uniform policy for degenerate strata (e.g., too few samples or only
one observed class) before plugging π̂ into the IPS estimators.

Estimators Considered. We compare the performance of our optimal IPS estimator ĴoIPS, with
following baseline estimators:

• Naive IPS ĴIPS (Eq. 1). The naive IPS estimator reweights observed rewards from logged data
based on the probability of the actions under the evaluation policy relative to the logging policy.
This method provides an unbiased estimate of the policy value when the propensity scores are
correctly specified.

• Balanced IPS ĴbIPS (Eq. 2). The bIPS estimator, introduced by Agarwal et al. (2017), employs a
balanced heuristic inspired by multiple importance sampling Veach & Guibas (1995), aiming to
improve performance across multiple logging policies.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Relative-RMSEs (13), computed over M = 200 independent experiments, are reported
across different datasets and estimators under the setting where the logging policies are estimated.

• Weighted IPS ĴwIPS (Eq. 3). The wIPS estimator, motivated by adaptive MIS Elvira et al. (2019)
and proposed by Agarwal et al. (2017), combines samples from different logging policies using
adaptive weights. For our experiments, we use the feasible version of ĴwIPS Kallus et al. (2021),
which computes empirical adaptive weights.

6.2 EXPERIMENTAL RESULTS.
The Relative-RMSEs on the Letter, OptDigits, PenDigits, and SatImage datasets, for varying values
of n1/n2, are presented in Figures 1 and 2, with each value computed from M = 200 independent
experiments. We use the Z = 5-fold cross-fitting version of our estimator ĴoIPS.

When the logging policies are known (Figure 1), the optimal IPS estimator consistently outperforms
all baselines across datasets and stratum size ratios, confirming its theoretical optimality in practice.
Its Relative-RMSE remains low and stable, demonstrating both accuracy and robustness. In contrast,
Naive IPS and Balanced IPS exhibit higher Relative-RMSEs, particularly at smaller stratum size
ratios, underscoring their sensitivity to mismatches between logging and evaluation policies.

When logging policies are unknown, we observe the same qualitative pattern as in the known-policy
setting: our optimal IPS achieves the lowest Relative-RMSE across datasets and most stratum ratios,
often by a wide margin. This advantage arises from ĴoIPS’s sample-dependent weights, learned via
cross-fitting of the technique matrix and contribution vector, which robustly balance strata even when
propensity estimates are noisy. By contrast, ĴwIPS underperforms ĴbIPS because its adaptive mixture
weights rely on plug-in divergence estimates, which are sensitive to logging-policy estimation error.
In these cases, estimation noise leads to suboptimal weighting across loggers and inflated variance,
whereas the balance heuristic in ĴbIPS remains more stable.

Overall, the optimal IPS estimator achieves superior performance to other IPS estimators, whether
logging policies are known or estimated. Its lower variance and robustness across diverse scenarios
underscore its effectiveness in handling various logging-policy conditions. We supplement this
conclusion in Appendix B and C, where we report additional experiments with more than two loggers
and varying mixture ratios. These results confirm that the asymptotic optimality guarantee of the
optimal IPS estimator extends to practical regimes.

7 CONCLUSION

This study tackles the challenge of OPE in scenarios where data is generated by multiple logging
policies. We proposed the optimal IPS method, which leverages sample-dependent weights to achieve
asymptotically optimal variance. Through numerical experiments on four benchmark datasets, we
showed that our estimator consistently outperforms baseline methods, both when logging policies are
known and when they are estimated. These results validate the asymptotic optimality of our method
and demonstrate its practical advantages.

Future work could focus on deriving finite-sample analyses and generalization bounds for the optimal
IPS estimators, providing a precise understanding of their behavior under limited data. Additionally,
exploring the integration of the optimal IPS framework with doubly robust methods and advanced
robust estimation techniques could further improve its robustness and efficiency.

9
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ETHICS STATEMENT

This study examines off-policy evaluation in contextual bandits using only publicly available bench-
mark datasets. It does not involve human-subject research, interventions, or protected health informa-
tion. No personally identifiable data were collected or processed, so institutional review board (IRB)
approval was not required. All datasets were used in accordance with their licenses/terms, and no
re-identification attempts were made.

While our methods aim to reduce variance in policy evaluation, they could inform decisions in
sensitive domains (e.g., recommendations, healthcare, advertising). To mitigate potential harms,
we stress that our estimator is not a substitute for domain-specific oversight and should be paired
with uncertainty reporting, distribution-shift checks, subgroup bias audits, and human review before
deployment. We discourage use in settings where such safeguards cannot be met.

We release code and experimental configurations to support reproducibility and responsible verifica-
tion of results, but do not release any data that could compromise privacy. The authors declare no
financial or personal conflicts of interest and no external sponsorship that could unduly influence the
work.

REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide all necessary resources to replicate our results. The
complete algorithmic procedure—including cross-fitting, construction of the technique matrix, and
contribution vector—is presented in Algorithm 1. Theoretical guarantees (unbiasedness, consistency,
and asymptotic efficiency) are stated in Theorems 4.1–5.2, with full proofs deferred to Appendix A.
Experimental details, including datasets, data-to-bandit conversions, train/evaluation splits, and
evaluation metrics (Relative-RMSE), are described in Section 6.

Our anonymously submitted codebase implements optimal-IPS weights together with a cross-fitting
pipeline. It includes scripts to reproduce all figures, configuration files for each dataset, and end-to-
end instructions covering raw data preparation through evaluation. Environment files (e.g., Dockerfile,
requirements.txt) are provided to standardize dependencies.
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A OMITTED PROOFS

In this section, we present detailed proofs of the theorems and lemmas stated in the main text.
Theorem 4.1. For any weights w : Ω → R that satisfies conditions (5) and (6),

E[Ĵ(πe,w;D)] = J(πe),

where the first expectation is over the randomness of the sampling of the dataset D := (Di)i∈[K].

Proof of Theorem 4.1. Let Ω := S × A × R and ω := (s, a, r) ∈ Ω ald µπi
be the probability

distribution with density (mass) pr(r|s, a)πi(a|s)ps(s). Recall the general weighted MIS estimator,

Ĵ(πe,w;D) :=

K∑
i=1

1

ni

ni∑
j=1

wi(sij , aij , rij)πe(aij |sij)rij
πi(aij |sij)

:=

K∑
i=1

1

ni

ni∑
j=1

Ĵij(wi;Di).

Then,

E[Ĵ(πe,w;D)] =
K∑
i=1

1

ni

ni∑
j=1

E[Ĵij(wi;Di)]

=

K∑
i=1

1

ni

ni∑
j=1

∫
supp(µπi

)

wi(ω)πe(a|s)r
πi(a|s)

dµπi(ω)

=

K∑
i=1

1

ni

ni∑
j=1

∫
supp(µπi

)

wi(ω)πe(a|s)r
πi(a|s)

pr(r|s, a)πi(a|s)ps(s) dµ(ω)

=

K∑
i=1

∫
supp(µπi

)

wi(ω) · r · pr(r|s, a)πe(a|s)ps(s) dµ(ω)

=

K∑
i=1

∫
Ω

wi(ω) · r · pr(r|s, a)πe(a|s)ps(s) dµ(ω)

=

∫
Ω

K∑
i=1

wi(ω) · r · pr(r|s, a)πe(a|s)ps(s) dµ(ω)

=

∫
Ω

r · pr(r|s, a)πe(a|s)ps(s) dµ(ω)

= Eπe
[r].

where the fifth line follows from the condition πi(a|s) = 0 =⇒ wi(s, a, r) = 0 for all i ∈ [K].

Lemma 5.1. Let Ω := S ×A×R. For any weights w : Ω → R that satisfies conditions (5) and (6),

Var
[
Ĵ(πe,w;D)

]
=

K∑
i=1

1

ni

(〈
w2

i ,
πeΠ

2
r

πi

〉
µπe

− ⟨wi, Πr⟩2µπe

)
,

where Πr(ω) := r for all ω := (s, a, r) ∈ Ω.

Proof of Lemma 5.1. As Ĵij(wi;Di) are independent to each other,

Var[Ĵ(πe,w;D)] = Var

 K∑
i=1

1

ni

ni∑
j=1

Ĵij(wi;Di)

 =

K∑
i=1

1

n2
i

ni∑
j=1

Var[Ĵij(wi;Di)]

=

K∑
i=1

1

n2
i

ni∑
j=1

E[Ĵ 2
ij(wi;Di)]−

K∑
i=1

1

n2
i

ni∑
j=1

E[Ĵij(wi;Di)]
2.
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The first term is
K∑
i=1

1

n2
i

ni∑
j=1

E[Ĵ 2
ij(wi;Di)] =

K∑
i=1

1

n2
i

ni∑
j=1

∫
Ω

w2
i (ω)π

2
e(a|s)r2

π2
i (a|s)

pr(r|s, a)πi(a|s)ps(s)dµ(ω)

=

K∑
i=1

1

ni

∫
Ω

w2
i (ω)πe(a|s)r2

πi(a|s)
pr(r|s, a)πe(a|s)ps(s)dµ(ω)

=

K∑
i=1

1

ni

∫
Ω

w2
i (ω) ·

πe(a|s)r2

πi(a|s)
dµπe

(ω)

=

K∑
i=1

1

ni

〈
w2

i ,
πeΠ

2
r

πi

〉
µπe

.

The second term is
K∑
i=1

1

n2
i

ni∑
j=1

E[Ĵij(wi;Di)]
2 =

K∑
i=1

1

n2
i

ni∑
j=1

(∫
Ω

wi(ω)πe(a|s)r
πi(a|s)

· pr(r|s, a)πi(a|s)ps(s)dµ(ω)
)2

=

K∑
i=1

1

ni

(∫
Ω

wi(ω) · r · pr(r|s, a)πe(a|s)ps(s)dµ(ω)
)2

=

K∑
i=1

1

ni

(∫
Ω

wi(ω) · r dµπe(ω)

)2

=

K∑
i=1

1

ni
⟨wi,Πr⟩2µπe

.

Theorem 5.1. For logging and evaluation policies (πi)i∈[K] and πe that satisfy Assumption 5.1, let
T ∈ RK×K be the technique matrix and c ∈ RK be the contribution vector defined in (8). Let α
be any solution to Tα = c, if one exists. Then, with respect to such α, the weight vector w⋆ given
by (7) solves the optimization problem (12).

Proof of Theorem 5.1. We first solve the constrained minimization problem (12), initially considering
only the normalization constraint:

∑K
i=1 wi(ω) = 1 for all ω ∈ supp(µπe

). We will then verify that
the resulting solution also satisfies the second constraint, namely πi(a|s) = 0 =⇒ wi(s, a, r) = 0
for all i ∈ [K].

Let Ω := S ×A×R, and define the functional I[w, λ] as

I[w, λ] := Var
[
Ĵ(πe,w;D)

]
−

K∑
i=1

〈
λ,

K∑
i=1

wi − 1

〉
µπe

= Var
[
Ĵ(πe,w;D)

]
−

K∑
i=1

⟨λ,wi⟩µπe
+ ⟨λ, 1⟩µπe

,

where λ : Ω → R is the Lagrange multiplier enforcing the normalization constraint.

Next, for a perturbation direction δ(ω) := (δi(ω))i∈[K] and ϵ ∈ RK , define I(ϵ; δ,w, λ) as

I(ϵ; δ,w, λ) := I[w1 + ϵ1δ1, . . . , wK + ϵKδK , λ],

which can be interpreted as the variation of I[w, λ] under perturbations along the direction δ.

By the Lagrange multiplier theorem in the calculus of variations (Gelfand et al., 2000), all extrema
w⋆ of (12) satisfies the following: There exists λ⋆ such that, for any δ and i ∈ [K],

∂I(ϵ; δ,w⋆, λ⋆)

∂ϵi

∣∣∣∣
ϵ=0

= 0,
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which is equivalent to 〈
δi,

2w⋆
i πeΠ

2
r

niπi
−

2Πr ⟨w⋆
i ,Πr⟩µπe

ni
− λ⋆

〉
µπe

= 0. (14)

Next, we deduce w⋆ and λ⋆ from (14) and verify that the deduced w⋆ is indeed a minimizer.

To proceed, let us define αi := ⟨w⋆
i ,Πr⟩µπe

. Then, (14) implies that, for all ω := (s, a, r) ∈
supp(µπe

),

2w⋆
i (ω)πe(a|s)r2

niπi(a|s)
− 2αir

ni
− λ⋆(ω) = 0.

Rearranging it and summing over i ∈ [K], we obtain

w⋆
i (ω) =

αiπi(a|s)
πe(a|s)r

+
niπi(a|s)
2πe(a|s)r2

λ⋆(ω) (15)

=⇒ 1 =

∑K
i=1 αiπi(a|s)
πe(a|s)r

+

∑K
i=1 niπi(a|s)
2πe(a|s)r2

λ⋆(ω),

where we used the fact that
∑K

i=1 w
⋆
i (ω) = 1 for all ω ∈ supp (µπe

). Solving the above for λ⋆(ω),

λ⋆(ω) =
2πe(a|s)r2 − 2r

∑K
i=1 αiπi(a|s)∑K

i=1 niπi(a|s)
.

Plugging λ⋆(ω) back into (15) results in

w⋆
i (ω) =

αiπi(a|s)
r πe(a|s)

+
ni πi(a|s)∑K
j=1njπj(a|s)

(
1−

∑K
j=1 αjπj(a|s)
r πe(a|s)

)
, (16)

where one can easily verify that the omitted constraint “πi(a|s) = 0 =⇒ wi(ω) = 0 for all i ∈ [K]”
is satisfied for any α.

Next, we derive a self-consistency equation for α by plugging the above expression for w⋆
i (ω) into

αi := ⟨w⋆
i ,Πr⟩µπe

,

αi = αi · Eµπe

[
πi(a|s)
πe(a|s)

]
+ Eµπe

[
r ni πi(a|s)∑K
k=1 nkπk(a|s)

]
−

K∑
j=1

αj · Eµπe

[
niπi(a|s)πj(a|s)

πe(a|s)
∑K

k=1 nkπk(a|s)

]
.

(17)

Since

Eµπe

[
πi(a|s)
πe(a|s)

]
=

∫
Ω

πi(a|s)
πe(a|s)

pr(r|s, a)πe(a|s)ps(s)dµ(ω)

=

∫
supp(µπe )

pr(r|s, a)πi(a|s)ps(s)dµ(ω)

= Eµπi

[
1[πe(a|s) > 0]

]
= 1,

where the last equality follows from Assumption 5.1, Equation (17) can thus be compactly written as
Tα = c, with T and c given in (8).

Given that a solution to Tα = c exists for the matrix T, the weights w⋆ defined in (16), derived
from any such solution α, satisfy the first-order condition (14). Furthermore, we show that for any
solution α to Tα = c, which may yield different w⋆, the resulting variance Var[Ĵ(πe,w

⋆;D)]
remains unchanged.

This follows from the characterization of the variance in Lemma A.2: for any w⋆ of the form given
in (16),

Var[Ĵ(πe,w
⋆;D)] = −α⊤N−1Tα+ C,

14
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where N := diag(n1, . . . , nK) and C is independent of α. For any two solutions α1 and α2 to the
equation Tα = c, we can write α1 = α2 + v for some v such that Tv = 0. Then,

α⊤
1 N

−1Tα1 = (α2 + v)⊤N−1T(α2 + v)

= α⊤
2 N

−1Tα2 +α⊤
2 N

−1Tv + v⊤N−1Tα2 + v⊤N−1Tv

= α⊤
2 N

−1Tα2 + 2α⊤
2 N

−1 Tv︸︷︷︸
= 0

+ v⊤N−1 Tv︸︷︷︸
= 0

= α⊤
2 N

−1Tα2,

where the third equality follows from the symmetry of N−1T (Lemma A.1). Hence, any solution to
Tα = c results in the same variance. Moreover, by Lemma A.1, the matrix N−1T is positive semi-
definite. It follows that −α⊤Tα ≤ 0, which implies that Var[Ĵ(πe,w

⋆;D)] ≤ Var[Ĵ(πe,w;D)] for
weights w corresponding to α = 0 (which yields the balanced IPS estimator ĴbIPS in (2)).

Therefore, the extremal weights w⋆, derived from any solution α, are indeed minimizers, rather than
maximizers, of the variance objective. Finally, since Var

[
Ĵ(πe,w;D)

]
is a convex functional in w

(by the characterization in Lemma 5.1), and the constraint
∑K

i=1 wi(ω) = 1 is convex, it follows that
w⋆ are global minimizers of the optimization problem (12).

Lemma A.1. Let T be the technique matrix given in (8). Under Assumption 5.1, N−1T is symmetric
and positive semi-definite.

Proof. Recall that

Tij := Eµπi

[
niπj(a|s)∑K

k=1 nkπk(a|s)

]
= Eµπe

[
niπi(a|s)πj(a|s)

πe(a|s)
∑K

k=1 nkπk(a|s)

]
,

where the latter equality holds under Assumption 5.1. Hence, N−1T has matrix elements

[N−1T]ij = Eµπe

[
πi(a|s)πj(a|s)

πe(a|s)
∑K

k=1 nkπk(a|s)

]
,

which is symmetric.

Next, we show that N−1T is positive definite. For any vector α ∈ RK ,

α⊤N−1Tα = Eµπe

[∑K
i=1 αiπi(a|s)
πe(a|s)

·
∑K

j=1 αiπj(a|s)∑K
j=1 njπj(a|s)

]

= Eµπe

 1

πe(a|s)
·

(∑K
i=1 αjπj(a|s)

)2
∑K

j=1 njπj(a|s)

 ≥ 0.

Lemma A.2. For any w⋆ of the form given in (7), let α be a solution to Tα = c, where T and c
are defined in (8), and let N := diag(n1, . . . , nK). Then,

Var[Ĵ(πe,w
⋆;D)] = −α⊤N−1Tα+ C,

where C is a constant that does not depend on α.

Proof of Lemma A.2. Recall from Lemma 5.1 that

Var[Ĵ(πe,w;D)] =

K∑
i=1

1

ni

(〈
w2

i ,
πeΠ

2
r

πi

〉
µπe

− ⟨wi,Πr⟩2µπe

)
,

=

K∑
i=1

1

ni

〈
w2

iΠ
2
r

πe

πi
, 1

〉
µπe

−
K∑
i=1

1

ni
⟨wi,Πr⟩2µπe

(18)
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and recall the expression for w⋆
i :

w⋆
i (ω) =

αiπi(a|s)
r πe(a|s)

+
ni πi(a|s)∑K
j=1 njπj(a|s)

(
1−

∑K
j=1 αjπj(a|s)
r πe(a|s)

)
,

where ω := (s, a, r).

We now plug the above expression for w⋆
i into (18). First, we expand the term (w⋆

i )
2Π2

rπe/πi as
follows:

(w⋆
i (ω))

2 ·Π2
r(ω) ·

πe(a|s)
πi(a|s)

= α2
i ·

πi(a|s)
πe(a|s)

+ 2rαi ·
niπi(a|s)∑K

j=1 njπj(a|s)
·

(
1−

∑K
j=1 αjπj(a|s)
rπe(a|s)

)

+

(
niπi(a|s)∑K

j=1 njπj(a|s)

)2

·

(
1−

∑K
j=1 αjπj(a|s)
rπe(a|s)

)2

· r
2πe(a|s)
πi(a|s)

.

By expanding and rearranging the above expression, we obtain:

(w⋆
i (ω))

2 ·Π2
r(ω) ·

πe(a|s)
πi(a|s)

= α2
i ·

πi(a|s)
πe(a|s)︸ ︷︷ ︸

”Term A”

−2αi ·

(∑K
j=1 αjπj(a|s)
πe(a|s)

· niπi(a|s)∑K
j=1 njπj(a|s)

)
︸ ︷︷ ︸

“Term B”

+
πe(a|s)
πi(a|s)

·

(∑K
j=1 αjπj(a|s)
πe(a|s)

· niπi(a|s)∑K
j=1 njπj(a|s)

)2

︸ ︷︷ ︸
“Term C”

+ 2rαi ·
niπi(a|s)∑K

j=1 njπj(a|s)︸ ︷︷ ︸
“Term D”

−2rπe(a|s)
πi(a|s)

·
∑K

j=1 αjπj(a|s)
πe(a|s)

·

(
niπi(a|s)∑K

j=1 njπj(a|s)

)2

︸ ︷︷ ︸
“Term E”

+ C,

(19)

where C is a constant that does not depend on α.

Next, we show that when evaluating
∑K

i=1
1
ni

〈
w2

iΠ
2
r
πe

πi
, 1
〉
µπe

, the contributions from the last two

non-constant terms (Term D and E) in the above expression cancel each other. To verify this, consider
the contribution from the last term (Term E):

−
K∑
i=1

1

ni

〈
2r πe(a|s)
πi(a|s)

∑K
j=1 αjπj(a|s)
πe(a|s)

·

(
niπi(a|s)∑K

j=1 njπj(a|s)

)2

, 1

〉
µπe

= −
K∑
i=1

〈
2r
∑K

j=1 αjπj(a|s)(∑K
j=1 njπj(a|s)

)2 · niπi(a|s), 1

〉
µπe

= −

〈
2r
∑K

j=1 αjπj(a|s)(∑K
j=1 njπj(a|s)

)2 ·
K∑
i=1

niπi(a|s), 1

〉
µπe

= −

〈
2r
∑K

j=1 αjπj(a|s)∑K
j=1 njπj(a|s)

, 1

〉
µπe

.
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This cancels out with the contribution from the fourth term (Term D), as shown below:
K∑
i=1

1

ni

〈
2rαi ·

niπi(a|s)∑K
j=1 njπj(a|s)

, 1

〉
µπe

=

〈
2r
∑K

j=1 αjπj(a|s)∑K
j=1 njπj(a|s)

, 1

〉
µπe

.

Now, we compute the contributions from the second and third terms (Term B and C) in (19). The
second term (Term B) contributes as follows:

−
K∑
i=1

1

ni

〈
2αi ·

(∑K
j=1 αjπj(a|s)
πe(a|s)

· niπi(a|s)∑K
j=1 njπj(a|s)

)
, 1

〉
µπe

= −2

〈∑K
j=1 αjπj(a|s)
πe(a|s)

·
∑K

i=1 αiπi(a|s)∑K
j=1 njπj(a|s)

, 1

〉
µπe

= −2Eµπe

[∑K
j=1 αjπj(a|s)
πe(a|s)

·
∑K

i=1 αiπi(a|s)∑K
j=1 njπj(a|s)

]
= −2α⊤N−1Tα,

Similarly, we compute the contribution from the third term (Term C) as follows:
K∑
i=1

1

ni

〈
πe(a|s)
πi(a|s)

·

(∑K
j=1 αjπj(a|s)
πe(a|s)

· niπi(a|s)∑K
j=1 njπj(a|s)

)2

, 1

〉
µπe

= Eµπe

 1

πe(a|s)
·

(∑K
i=1 αjπj(a|s)

)2
∑K

j=1 njπj(a|s)


= α⊤N−1Tα.

Finally, we verify that the contribution from the first term (Term A) cancels with the second term
of (18), −

∑K
i=1

1
ni

⟨wi,Πr⟩2µπe
. The contribution from the first term (Term A) of (19) in evaluating∑K

i=1
1
ni

〈
w2

iΠ
2
r
πe

πi
, 1
〉
µπe

is

K∑
i=1

α2
i

ni

〈
πi

πe
, 1

〉
µπe

=

K∑
i=1

α2
i

ni

∫
supp(µπe )

πi(ω)

πe(ω)
dµπe(ω)

=

K∑
i=1

α2
i

ni

∫
supp(µπe )

πi(a|s)
πe(a|s)

· r · pr(r|s, a) · πe(a|s) · ps(s)dµ(ω)

=

K∑
i=1

α2
i

ni

∫
supp(µπe )

r · pr(r|s, a) · πi(a|s) · ps(s)dµ(ω)

=

K∑
i=1

α2
i

ni

∫
supp(µπe )

dµπi
(ω)

=

K∑
i=1

α2
i

ni

∫
supp(µπi

)

dµπi
(ω) (by Assumption 5.1)

=

K∑
i=1

α2
i

ni
=

K∑
i=1

1

ni
⟨wi,Πr⟩2µπe

, (as αi := ⟨wi,Πr⟩µπe
)

which is the same as the second term in (18).

Therefore, we have:

Var[Ĵ(πe,w
⋆;D)] = −α⊤N−1Tα+ C.
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Theorem 5.2. Let N ′ :=
∑K

i=1 n
′
i with n′

i = mn′
i. Then, ĴoIPS is unbiased and

√
N ′
(
ĴoIPS(πe;D)− J(πe)

)
d→ N

(
0, N Var[Ĵ(πe,w

⋆;D)]
)

as m → ∞, where N :=
∑K

i=1 ni.

Proof of Theorem 5.2. By Theorem 4.1, ĴoIPS is unbiased. To prove its asymptotic efficiency, it
suffices to establish

ĴoIPS(πe;D) :=
1

N

∑
z∈[Z]

N (z)Ĵ (z) =
1

N

∑
z∈[Z]

N (z)Ĵ(πe,w
⋆;D(z)) + op(N

−1/2), (20)

from which the theorem follows immediately by the central limit theorem for stratified sampling.

To this end, decompose each stratum-level estimator as

Ĵ (z) = Ĵ(πe,w
⋆;D(z)) +

(
Ĵ (z) − Ĵ(πe,w

⋆;D(z))
)
.

The second term’s expectation conditioned on D(−z) is zero as

E
[
Ĵ (z) − Ĵ(πe,w

⋆;D(z))
∣∣∣D(−z)

]
= E

[
Ĵ (z)

∣∣∣D(−z)
]
− E

[
Ĵ(πe,w

⋆;D(z))
∣∣∣D(−z)

]
= J(πe)− J(πe) = 0,

as both Ĵ (z) are Ĵ(πe,w
⋆;D(z)) unbiased estimators of J(πe) conditioned on D(−z).

Thus, to conclude (20), it remains to show that the conditional variance of the second term is op(N−1),
which implies the result by conditional Chebyshev. A direct calculation shows that:

Var
[
Ĵ (z) − Ĵ(πe,w

⋆;D(z))
∣∣∣D(−z)

]
=

K∑
i=1

1

n
(z)
i

Var(s,a,r)∼µπi

[(
ŵ

(z)
i (s, a, r)− w⋆

i (s, a, r)
) rπe(a|s)

πi(a|s)

∣∣∣∣D(−z)

]
,

(21)

where ŵ
(z)
i (s, a, r) := πi(a|s)ρ(z)i (s, a, r) which is explicitly given by

ŵ
(z)
i (s, a, r) =

α̂
(z)
i πi(a|s)
r πe(a|s)

+
n
(z)
i πi(a|s)∑K

k=1 n
(z)
k πk(a|s)

(
1−

∑K
k=1 α̂

(z)
k πk(a|s)

r πe(a|s)

)
,

where α̂(z) = (α̂
(z)
i )i∈[K] is the OLS estimator, given by α̂(z) := (T̂(z)⊤T̂(z))−1T̂(z)⊤ĉ(z).

And the optimal weight w⋆
i (s, a, r) (7) is

w⋆
i (s, a, r) =

αiπi(a|s)
r πe(a|s)

+
n
(z)
i πi(a|s)∑K

k=1 n
(z)
k πk(a|s)

(
1−

∑K
k=1 αkπk(a|s)
r πe(a|s)

)
,

where α = (α
(z)
i )i∈[K] is defined as the solution to Tα = c. Since T̂(z) and ĉ(z) are consistent

estimators of T and c, it follows that α̂(z) is a consistent estimator of α, i.e.,

∥α̂(z) −α∥ = op(1).

Consequently, the conditional variance in (21)) is op(N−1, and thus the theorem follows.
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B EMPIRICAL RESULTS WITH K > 2 LOGGING POLICIES

We extend the two-logger experiment to heterogeneous mixtures with K ∈ {3, 5} logging policies.
As before, we train a multinomial logistic regression model on a training split to obtain a base
deterministic policy πdet and set the evaluation policy to πe = πdet. The reward is deterministic,
defined as r(s, a) := 1 [y(s) = a], where y(s) is the label of data s ∈ Rd. The ground-truth policy
value is therefore the classification accuracy of πe on the OPE sample.

J(πe) = Ea∼πe(·|s),ps(s)

[
1 [y(s) = a]

]
.

We construct K ∈ {3, 5} logging policies, by combining πdet with the uniform policy πu

(which ignores context and selects actions uniformly at random). For the K = 5 case, let
αk ∈ {0.05, 0.15, 0.30, 0.70, 0.95}, and for i = 1, . . . ,K define

πi(a|s) := (1− αi)πdet(a|s) +
αi

|A|
.

The OPE sample is generated as an equal-weight mixture over these loggers, with stratum weights
wi = 0.2 for K = 5 and wi =

1
3 for K = 3 (so that ni/n = wi). For each example, we first draw

i ∼ Categorical(w), then sample a ∼ πi(· | s), and finally assign the reward r(s, a) := 1[y(s) = a].
For the K = 3 case, we set αi ∈ {0.05, 0.5, 0.95}.

Results. Across the five-logger mixtures (Figure 3 and Figure 4), our optimal IPS estimator, ĴoIPS,
is consistently the most accurate. With known logging policies, it achieves Rel-RMSEs of 0.006
(SatImage), 0.004 (Letter), and 0.003 on both OptDigits and PenDigits, improving over the next-best
ĴwIPS/ĴbIPS and far outperforming ĴIPS. When propensities are estimated, ĴoIPS remains the most
accurate and stable, outperforming ĴbIPS, while ĴIPS and ĴwIPS can blow up (e.g., ≈ 30.8 and ≈ 14.2
Rel-RMSEs on OptDigits). This instability arises from near-zero or misestimated propensities in
some strata, which induce extreme 1/π̂i(a|s) weights and heavy-tailed variance. By contrast, the
sample-dependent weights of ĴoIPS effectively control variance, yielding the most stable and accurate
estimates. The same qualitative pattern holds with three logging policies (Figure 5 and Figure 6).

C SENSITIVITY TO THE ADDITIVE MIXTURE OF LOGGING POLICIES

We repeat the main experiments using alternative mixture ratios between the deterministic classifier
policy πdet and the uniform policy πu. For α ∈ {0.90, 0.75}, we define

π
(α)
1 = απdet + (1− α)πu, π

(α)
2 = (1− α)πdet + απu.

All other settings—evaluation policy πe = πdet, datasets, train/evaluation split ratio, stratum-size
ratios n1/n2, number of repeats M = 200, and cross-fitting folds Z = 5—follow the main-text
protocol.

Results. Across both additive mixtures (α = 0.90 and α = 0.75), the qualitative trends of the
results (Figures 3, 4, 5, and 6) remain consistent with the main-text results. Our optimal IPS estimator
(ĴoIPS) achieves the lowest Relative-RMSE across almost all datasets and stratum-size ratios, in
both the known- and estimated-logging-policy settings. The improvements are most pronounced
in low-overlap regimes (smaller n1/n2), while the gaps narrow as overlap increases, though ĴoIPS
remains the best or tied for best throughout. Using estimated propensities increases errors uniformly
but preserves the same ranking, confirming that our method is robust to mixture ratio and aligns with
the tendencies observed in the main experiments.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 3: Rel-RMSE across five heterogeneous logging policies where they are known. Lower is
better.

Figure 4: Rel-RMSE across five heterogeneous logging policies where they are estimated. Lower is
better.
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Figure 5: Rel-RMSE across three heterogeneous logging policies where they are known. Lower is
better.

Figure 6: Rel-RMSE across three heterogeneous logging policies where they are estimated. Lower is
better.
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Figure 7: Mixture α = 0.90. Relative-RMSEs, computed over M = 200 independent experiments,
are reported across different datasets and estimators under the setting where the logging policies are
known.

Figure 8: Mixture α = 0.90. Relative-RMSEs, computed over M = 200 independent experiments,
are reported across different datasets and estimators under the setting where the logging policies are
estimated.

Figure 9: Mixture α = 0.75. Relative-RMSEs, computed over M = 200 independent experiments,
are reported across different datasets and estimators under the setting where the logging policies are
known.

Figure 10: Mixture α = 0.75. Relative-RMSEs, computed over M = 200 independent experiments,
are reported across different datasets and estimators under the setting where the logging policies are
estimated.
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