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Abstract

Deep Reinforcement Learning (DRL) has shown breakthroughs in solving challeng-
ing problems, such as pixel-based games and continuous control tasks. In complex
environments, infusing prior domain knowledge is essential to achieve sample
efficiency and generalization. Neuro-symbolic AI seeks systematic domain knowl-
edge infusion into neural network-based learning, and existing neuro-symbolic
approaches for sequential decision-making leverage hierarchical reinforcement
learning (HRL) by infusing symbolically specified prior knowledge on desired
trajectories. However, this requires finding symbolic solutions in RL environments
before learning, and it is difficult to handle the divergence between unknown RL
dynamics and prior knowledge. Such shortcomings result in loose and manual
neuro-symbolic integration and degrade the generalization capability. In this pa-
per, we integrate the options framework in HRL with an AI planning model to
resolve the shortcomings in earlier approaches and generalize beyond RL envi-
ronments where pre-specified partial solutions are valid. Our approach defines
options from AI planning operators by establishing the connection between the two
transition systems in the options framework and the AI planning task. Then, we
show an option policy learning method that integrates an AI planner and model-free
DRL algorithms with intrinsic rewards, encouraging consistency between the two
transition systems. We design a suite of MiniGrid environments that cover the in-
creasing levels of difficulties in exploration, where our empirical evaluation clearly
shows the advantage of HRL with AI planning models. The code is available at
https://github.com/IBM/parl_agents and https://github.com/IBM/parl_annotations.

1 Introduction

Neuro-symbolic AI [1] combines neural network-based learning and symbolic reasoning in a princi-
pled manner [2] to leverage deep learning with data efficiency and trustworthiness. Deep reinforce-
ment learning (DRL) has shown remarkable achievements in solving sequential decision-making
problems in high-dimensional feature space or complex continuous control problems, reaching the
super-human level performance [3, 4]. DRL is agnostic to the domain knowledge, but it learns
non-interpretable and brittle policies sensitive to delicate changes in the input features. Advances in
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hardware won’t resolve the data inefficiency since many real-world problems violate ideal assump-
tions in deep reinforcement learning. A remedy would be injecting prior knowledge as inductive bias
[5] to neural architectures or optimization formulation, which heavily relies on human design.

Neuro-symbolic approaches address how to infuse prior domain knowledge systematically to augment
deep learning methods with robustness and reusability [6, 7, 8]. A widely accepted neuro-symbolic
architecture integrates a low-level neural perception layer and a high-level symbolic reasoning layer,
reflecting cognitive theory Thinking Fast and Slow [9]. In this paper, we focus on neuro-symbolic
approaches that integrate symbolic reasoning and hierarchical reinforcement learning (HRL). HRL
[10] improves sample efficiency by decomposing the inherent task structures in abstract states and
action spaces [11]. Notable earlier frameworks, such as options framework [12] and MAXQ [13],
rely on precise domain knowledge to define options or value function decomposition. Recent work
extend these frameworks with deep neural networks. Learning-only approaches [14], however, do
not work well for RL environments with complex task structure, where the main challenges are both
handling the state space dimensionality and exploration issues due to sparse rewards or dead-end
states. Thus, recent years have seen growing interest in integrating symbolic methods into DRL.

In reward machines (RM) [15], temporal relations between symbolic events detected in RL environ-
ments are specified in linear temporal logic (LTL), and translated into finite state machines (FSM).
Hierarchical RMs (HRM) map state transitions over the FSM to options [16, 17, 18, 19]. Similar to
RM, taskable RL [20] infuses temporal relations between AI planning operators to define options.
Symbolic DRL (SDRL) integrates action language and answer set programming into HRL [21].

Although existing neuro-symbolic approaches improved the sample efficiency in goal-oriented RL
environments, they still have significant room for improvement. First, HRM lacks a symbolic
reasoning layer, and it directly infuses abstract state trajectory in an ad-hoc manner, mapping a
single transition or multiple state transitions in FSM to an option. Furthermore, RMs assume that RL
transitions strictly follow the LTL formula. SDRL maps each abstract state transition to an option,
resulting in a large number of options O(|S|2), where |S| denotes the total number of symbolic states.

To overcome the shortcomings in earlier approaches, we integrate AI planning and options framework
[12]. Infusing AI planning models for decomposing the task structure in HRL has several advantages.
Symbolic reasoning is tightly combined in HRL and generates symbolic plans on the fly, allowing us
to systematically generalize to multi-task RL environments that share the abstract transition model.
We can relax the earlier assumption that prior knowledge should capture the precise behavior in
unknown RL dynamics, and offer a mechanism for handling the divergence between an AI planning
task and unknown RL dynamics. We designed a suite of MiniGrid environments [22, 23] associated
with AI planning models and empirically show the advantage of HRL with AI planning models.

2 Background

Goal-oriented Environments In this paper, we focus on a Markov Decision Process (MDP)
in the context of generalized stochastic shortest-path MDPs [24], where MDP is a tuple M =
⟨S,A, P, r, s0, G, γ⟩ with states S, actions A, a state transition function P : S ×A× S → [0, 1], a
reward function r : S ×A → R, an initial state s0 ∈ S , a set of goal states G ⊂ S , and a discounting
factor γ ∈ (0, 1) for the rewards. Unlike usual assumptions on MDP environments, we don’t assume
the goal to be reachable from any state, allowing dead-end states. Additionally, we simplify a sparse
reward function to return a positive reward upon reaching the goal G and 0 otherwise, allowing
0-reward cycles. Note that value iteration is not guaranteed to converge to the optimal value in
generalized stochastic shortest-path MDPs [24]. In this goal-oriented environment, our objective is to
learn a stationary policy π∗

M that maximizes the expected reward starting from the initial state s0,
π∗
M = argmaxπ Eπ

[∑∞
t=0 γ

trt|s0
]
, where π(a|s) is a stochastic policy π : S ×A → [0, 1].

Multi-task Environments In real-world applications, a collection of MDPs may share a common
task structure or a meta-model, where muti-task reinforcement learning (MTRL) aims to improve
the sample efficiency and, more importantly, generalize to solve unseen tasks [25, 26, 27]. In
multi-task environments, the objective is to learn a policy π∗ that maximizes the expected reward
over the distribution of tasks, π∗ = argmaxπ EMi∼p(M)

[
Eπ

[∑∞
t=0 γ

trit|si0
]]

, where each MDP

Mi=⟨S,A, P i, ri, si0, G
i, γ⟩ is sampled from p

(
M

)
. Some common choices for the task generation

process p
(
M

)
are parameterizing Mi with contexts [27], or incorporating a task prior [25].
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Options Framework in HRL In options framework [28], a set of options O∗ formalizes the
temporally extended actions that defines a semi-MDP (SMDP) over the original MDP M. A
Markovian option O∗ ∈ O∗ is a triple ⟨IO∗ , πO∗ , βO∗⟩, where IO∗ is the initiation set where O∗

begins, πO∗ is an option policy πO∗ : S × A → [0, 1], and βO∗ is a termination set where O∗

terminates. Following the call-and-return option execution model, an agent selects an option O∗

in state s at time t if s ∈ IO∗ , and generates a sequence of actions according to the option policy
πO∗(a|s) until it reaches βO∗ .

AI Planning We follow the SAS+ formalism for representing planning tasks [29]. A planning task Π
is a tuple ⟨V,O, S′

0, S∗⟩ of multi-valued state variables V and operators O. Each state variable v ∈ V
has a finite domain dom(v) of values. A (partial) assignment to V is called a (partial) state, with the
full state S′

0 being the initial state and the partial state S∗ being the goal. A fact is a pair ⟨v, ϑ⟩ that
assigns a value ϑ ∈ dom(v) to a variable v, and we denote the variables in a partial assignment p by
V(p), and the value ϑ assigned to v in p by p[v] = ϑ. It is convenient to view a partial state p as a set
of facts with ⟨v, ϑ⟩ ∈ p if and only if p[v] = ϑ. A partial state p is consistent with state s if p ⊆ s.
We denote the set of states of Π by S ′. Each operator o∈O is a pair ⟨pre(o), eff (o)⟩ of partial states
called preconditions and effects. The (possibly empty) subset of preconditions that do not involve
variables from the effect is called prevail condition, prv(o)={⟨v, ϑ⟩ | ⟨v, ϑ⟩∈pre(o), v ̸∈ V(eff (o))}.
An operator o is applicable in a state s ∈ S ′ if and only if pre(o) is consistent with s (pre(o) ⊆ s).
Applying o changes the value of v to eff (o)[v], if defined. The resulting state is denoted by sJoK.
An operator sequence π = ⟨o1, . . . , ok⟩ is applicable in s if there exist states s0, · · · , sk such that
(1) s0 = s, and (2) for each 1 ≤ i ≤ k, pre(oi) ⊂ si-1 and si = si-1JoiK. We denote the state sk by
sJπK. π is a plan for s iff π is applicable in s and S∗ ⊆ sJπK.

A transition graph of a planning task Π = ⟨V,O, S′
0, S∗⟩ is a triple TΠ = ⟨S, TΠ, S∗⟩, where S are

the states of Π, TΠ ⊆ S ×O × S is a set of labeled transitions, and S∗ ⊆ S is the set of goal states.
An abstraction of the transition graph T is a pair ⟨T ′, α⟩, where T ′ = ⟨S ′, T ′, S′

∗⟩ is an abstract
transition graph and α : S 7→ S ′ is an abstraction mapping, such that ⟨α(s), o, α(s′)⟩ ∈ T ′ for all
⟨s, o, s′⟩ ∈ T , and α(s) ∈ S′

∗ for all s ∈ S∗.

3 Symbolic Abstraction of RL Environments

We first formulate an AI planning task as a symbolic abstraction of goal-oriented RL environments.
Then, we define plan options derived from planning operators and introduce implicit frame constraints
to the options framework, with intrinsic rewards that enforce consistency between the two models.

3.1 Options from Planning Operators

Neuro-symbolic methods integrate the neural and symbolic layers via mapping representation of the
two. Various approaches were proposed, such as semantic parsing for the text-based game environ-
ments [30, 31], training neural predicates [32, 6], or geometric mapping in robotics environments
[33, 34]. To integrate AI planning and HRL, we define a state mapping function as follows.

Definition 1 (state mapping function) Given a planning task Π := ⟨V,O, S′
0, S∗⟩ and a goal-

oriented MDP M := ⟨S,A, P, r, s0, G, γ⟩, we define a state mapping function L : S 7→ S ′ as
a surjective mapping from the MDP states S to symbolic states S ′ such that s′0 = L(s0) and s∗ is
consistent with L(s) for all s∈G. L−1(s′) denotes the pre-image of s′∈S ′, namely, a subset of MDP
states {s∈S|L(s)=s′}.

Definition 2 (proper abstraction) Let TΠ := ⟨S ′, TΠ, S∗⟩ be a transition graph of Π and TM :=
⟨S, TM, G⟩ be a transition graph of M. We say ⟨TΠ, L⟩ is a proper abstraction of TM if for all state
transitions ⟨s, a, s′⟩ ∈ TM, we have P (s′|s, a) > 0, iff ⟨L(s), o, L(s′)⟩ ∈ TΠ for some o ∈ O or
L(s) = L(s′).

In words, state mapping functions partition the state space of a goal-oriented MDP M into planning
task Π states while preserving the initial state and the goal states, and a proper abstraction ensures
that every state transition ⟨s, a, s′⟩ ∈ M maps to either a symbolic state transition in Π or s′ remains
in the same symbolic state L(s). Next, we define options in HRL from operators in a planning task.
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Definition 3 (plan options) Given a planning task Π, a goal-oriented MDP task M, and a state
mapping function L, we define plan options as follows.
For each planning operator o∈O, an operator option is a tuple O∗

o :=⟨IO∗
o
,πO∗

o
,βO∗

o
⟩, where

IO∗
o
:= {s∈S |pre(o) ⊆ L(s)} and βO∗

o
:= {s ∈ S | (prv(o) ∪ eff (o)) ⊆ L(s)}.

For a goal G in M, a goal option is a tuple O∗
∗ := ⟨IO∗∗ , πO∗∗ , βO∗∗⟩, where

IO∗∗ := {s ∈ S | s∗ ⊂ L(s)} and βO∗∗ := G.

We denote a set of plan options by O∗
M.

In words, we declare options from planning operators by mapping the precondition of a planning
operator to the initiation set and the postcondition to the termination set. Earlier works also have
suggested using symbolic transitions to define options: [20] assumes additional manual mapping and
[21] maps every symbolic transition to a separate option, both without specifying the initiation sets.

A set of plan options induces an SMDP M′ := ⟨S,O∗
M, P, r, s0, G, γ⟩, where we replaced the

primitive actions A in M with O∗
M. Next, we define a transition graph TM′ of M′, where a multi-

step state transitions during the execution of an option O∗
o is collapsed to a single labeled transition

that connects each a state s ∈ IO∗
o

to the states s′ ∈ βO∗
o

.

Definition 4 (SMDP transition graph) A transition graph of an SMDP M′ :=
⟨S,O∗

M, P, r, s0, G, γ⟩ is a tuple TM′ := ⟨S, TM′ , G⟩, where S is the states of M, TM′ is
a set of non-deterministic labeled transitions {⟨s, o, s′⟩ | s ∈ IO∗

o
, s′ ∈ βO∗

o
, P (s′|s,O∗

o ) > 0}, and
G is the goal states in M.

3.2 Frame Constraints in Plan Options

Although we do not assume to have an exact model of M, it is desirable to have a planning task Π
that behaves similarly to M. To characterize the similarity between the two tasks, we introduce the
context and frame of an option O∗

o in an MDP state s to capture the subset of symbolic facts in the
planning task that prevail after applying a planning operator o to the planning state L(s).

Definition 5 (context and frame of an option) Given a planning operator o and the operator option
O∗
o , we define the context of O∗

o in an MDP state s ∈ S by CO∗
o
(s) := L(s) \ (pre(o) ∪ eff (o)), and

the frame of O∗
o in an MDP state s ∈ S by FO∗

o
(s) := prv(o) ∪ CO∗

o
(s). We call a subset of a frame

FO∗
o
(s) in an MDP state s as a partial frame, and denote it by Fp

O∗
o
(s).

Intuitively, the context and frame of an operator option reflects the implicit constraints, a planning
operator only modifies the facts that appear in the operator effect. We say an SMDP transition due
to a plan operator option O∗

o is frame preserving if FO∗
o
(s) = FO∗

o
(s′) for every ⟨s, o, s′⟩ ∈ TM′ ,

and TM′ is frame preserving if it holds for all operator options in O∗
M. We can formally state the

similarity between the two transition systems under plan options as follows.

Theorem 1 If TM′ is frame preserving under the operator options O∗
M derived from a planning task

Π, then TΠ and TM′ are bisimilar.

Proof: Consider a binary relation {⟨s, t⟩∈S×S |L(s)=L(t)}. For a pair of a planning operator o
and the operator option O∗

o, every ⟨s,O∗
o, t⟩ ∈ TM′ satisfies L(t)=

[
L(s) \

(
pre(o)∪FO∗

o
(s)

)]
∪(

eff (o)∪FO∗
o
(s)

)
= L(s)JoK. For a transition ⟨t, o, t′⟩ ∈ TM′ such that L(t) = L(s), L(t′) =

L(t)JoK = L(s)JoK.

The desiderata in HRL is that a task hierarchy captures the decomposition of M into sub-MDPs that
are easier to solve in a local state space, and those sub-tasks are reusable. A sub-problem analysis by
[35] shows that HRL methods can improve the sample efficiency if the total sum of the size of each
partitioned state space is smaller than the size of the original state space. Following this intuition
behind the MDP decomposition in HRL, we now characterize the sub-problem decomposition
imposed by the frame-constrained option MDPs.
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Algorithm 1 Online Option Learning
Require: Planning task Π, Goal-oriented MDPM, State mapping function L
Ensure: Option policies πO∗

o(a|s).
1: Initialize trajectory buffer B
2: Initialize a set D for storing options
3: while iter < N do

// rollout samples from the current option policy
4: while iterrollout < Nrollout do
5: s← current state
6: Select an option O∗

o where o is the first planning operator of a plan starting in L(s), found by AI
planner

7: if O∗
o ̸∈ D then

8: Create plan option O∗
o

9: Initialize πO∗
o and Add O∗

o to D

10: while s ̸∈ βO∗
o do

11: Sample (s, a, re, u) from RL environment
12: Compute intrinsic reward ri
13: Store (O∗

o, s, a, re, ri) to buffer B
14: s← u

// train option policies with model-free algorithms
15: for each option O∗

o ∈ D do
16: Train option policy function πO∗

o with RL

Definition 6 (frame constrained option sub-MDP) Given a goal-oriented MDP M and an opera-
tor option derived from a planning task O∗

o :=⟨IO∗
o
,πO∗

o
,βO∗

o
⟩, a frame constrained option sub-MDP

is a sub-MDP of M, Mo,s0 := ⟨SFo(s0),A, PFo(s0), r, s0, βO∗
o
, γ,DFo(s0)⟩, where SFo(s0) is the

local state space, PFo(s0) is a frame constrained state transition probability, s0 ∈ IO∗
o

is an initial
state, βO∗

o
is the goal, and DFo(s0) is a set of constraints enforcing the state transitions to preserve

Fo(s0), {FO∗
o
(s′) = FO∗

o
(s0) | ∀⟨s, a, s′⟩ ∈ TMo,s0

, πO∗
o
(a|s) > 0}.

We can see that introducing frame constraints to each option MDP reduces the size of the state space
subject to the number of facts in the frame of the option.

Theorem 2 For frame-constrained option sub-MDPs Mp
o,s0 and Mq

o,s0 induced by partial frames
Fp

O∗
o
(s0) and Fq

O∗
o
(s0), if Fp

O∗
o
(s0)⊂Fq

O∗
o
(s0), the state space of Mp

o,s0 is a super-set of Mq
o,s0 .

Proof: Let Sp and Sq denote the states of the Mp
o,s0 and Mq

o,s0 . For every s ∈ Sq, we can see that
s ∈ Sp since Fp

O∗
o
(s0) ⊂ Fq

O∗
o
(s0) ⊂ L(s).

If all option MDPs are frame-constrained, we have two advantages: (1) improved sample efficiency
due to the reduction in the state space, and (2) options re-usability by composition, relying solely on
symbolic knowledge.

3.3 Intrinsic Rewards for Learning Plan Options

In practice, we don’t assume that a planning task Π exactly simulates the underlying M. Therefore,
we relax the constraints in the frame-constrained option sub-MDPs and reformulate optimization
objective function with a penalty imposed per violation of frame constraints, resulting in negative
intrinsic rewards for option learning.

Definition 7 (frame penalized option sub-MDP) Given a goal-oriented MDP M and an operator
option derived from a planning task O∗

o :=⟨IO∗
o
,πO∗

o
,βO∗

o
⟩, a frame penalized option sub-MDP is a

sub-MDP of M. Mo,s0 := {S,A, P, r, s0, βO∗
o
, γ}, where we replace the reward function in M

with an intrinsic reward r := S × S → R,

r(s, s′) =
∑

v∈V
(
FO∗

o
(s)

)c1 · I
(
L(s′)[v] ̸= FO∗

o
[v]

)
+ c2 · I

(
s′ ̸∈ βO∗

o

)
, (1)

where I is an indicator function, c1 and c2 are negative rewards, and the initial state and the goal with
a s0 ∈ IO∗

o
, and βO∗

o
, respectively.
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(a) MiniGrid Door Key (b) 2x2 Locked Door (c) 2x2 Two Keys (d) 2x2 One-Use Key

Figure 1: Example of MiniGrid environments: From left to right, we show a sample MDP M paired
with a planning task. A symbolic state of the planning task is an abstract state of M. The prior
domain knowledge encoded in a symbolic planning model is the room layouts, the location of objects
known up to the room, and the state of doors, locked or not. Each M varies the location of objects
within the room, or the location of doors or balls, and the additional state of doors, closed or open,

In the above definition, r(s, s′) is Markovian since the first term is a frame-based penalty depending
on two consecutive states, and the second term is a penalty for the current state s′ being outside of the
termination set. Note that the state space of the frame penalized option MDP can be as large as the
original state space in the worst case. However, if prior knowledge correctly captures the high-level
structure of M, the state space per option sub-MDPs will be localized and empirical results show
improvement in the sample efficiency.

4 Online Learning Plan Options

In this section, we present HRL algorithms that learn plan options. For any pair of initial state s0 ∈ S
and a goal sg ∈ G in M, we can generate a sequence of options {O∗

o1 , O
∗
o2 , . . . , O

∗
ok} from a plan

in Π that reaches the goal state L(sg) ∈ S ′ from the initial state L(s0) ∈ S ′. Therefore, we can
integrate AI planners in two ways, either pre-compute option-level plans offline or generate plans
online while training option policies. In this paper, we focus on the online approach that integrates AI
planner as a higher-level symbolic reasoning agent and model-free RL as a lower-level neural network
learning agent in the neuro-symbolic architecture. Algorithm 1 shows the outline of the HRL agent
that learns plan options online. The algorithm alternates the rollout and training phases until the limit
on the number of iterations is reached. During the rollout phase, HRL agent selects an option O∗

o
by solving a planning task Π with the initial planning state s′0 being the current planning state L(s)
and returning the applicable planning operator in s′0 (line 6). Note that this re-planning step at every
option selection is similar to the action selection in online planning [36], and empirical results show
that it is much more efficient than learning-based approaches. If O∗

o was not created before, we create
the option and initialize the policy πO∗

o
and add it to a set D (lines 7-9). Next, sample trajectories are

generated by using πO∗
o

until it terminates, and for each state transition, we compute the intrinsic
reward following Definition 7 (lines 10-14). Then, HRL agent updates the option policy using the
samples stored in the buffer during the training phase by any model-RL algorithm (line 15). In our
experiments, we integrated A∗ search algorithm implemented in Pyperplan [40] with Proximal
Policy Optimization PPO [41] for option policy training algorithm, which we call HplanPPO. Since
PPO is an on-policy algorithm, option training phases do not share samples across options.

5 Experiment

All experiments are conducted in a cluster computing environment equipped with Intel (R) Xeon(R)
Gold 6258R CPUs and NVIDIA A-100/V-100 GPUs. For each run, we limited computational
resources to utilize up to 16 GB of memory with 2 CPUs and 1 GPU.

5.1 Benchmark Domains

For HRL experiments, we extended MiniGrid environments with task structures captured by AI
planning tasks 1. All those environments are grid navigation domains, where an agent uses keys to

1The code is available at https://github.com/IBM/parl_minigrid.
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(a) Door Key (b) 2x2 Locked Door (c) Door Key (d) 2x2 Locked Door

Figure 2: Baseline Comparison in Door Key and 2x2 Locked Door: Each figure shows the average
reward and the success rate of four algorithms evaluated on the evaluation tasks. The x-axis is the
number of sample steps, and the y-axis is the reward or success rate. The success rate only counts on
whether an episode reached the goal within the maximum episode length, 2048.

open locked doors to move from the initial locations to the desired location. To study the impact
of sparse rewards and dead-end states on training HRL agents, we designed benchmark problems
considering the following aspects.

• In grid navigation environments, random restarting at the initial location helps exploration
in relatively small 2D grids. Therefore, we only allow random variations on the initial and
goal locations within pre-specified rooms.

• We used the sparse reward in the original MiniGrid environment without any reward
shaping, namely, the reward is all zero but

(
1 − 0.9 · (S/L)

)
when the agent reaches the

goal location after S steps. L is the maximum episode length.
• To introduce dead-end states, we introduce RL environments, where a key can only be used

once.
• During training and evaluation, we sample a goal-oriented MDP M ∼ p

(
M

)
in multi-task

environments, where each M shares a common structure captured by an AI planning task,
such as the connectivity of rooms, and the state of the keys or doors. However, all MDP
tasks vary on the location of the doors, distribution of distracting balls, location of the goal
tiles, location of the keys, etc.

Figure 1 shows four selected MiniGrid MDP instances:

• Door Key environment in Figure 1a is the one already existing in the standard MiniGrid
environment,

• 2x2 Locked Door environment in Figure 1b can vary the initial location from any of the
two rooms on the left, and randomly distributed blue balls, which are not visible in symbolic
planning state space, must be removed if it blocks the way.

• 2x2 Two Keys environment in Figure 1c requires an agent to navigate rooms back and
forth to unlock the doors, and

• 2x2 One-Use Key environment in Figure 1d may encounter a dead-end state if the key
was used to unlock the wrong door.

In the following experiments, we controlled the environment to generate 1 million MDP instances for
training and 1 thousand MDP instances for evaluation. In addition, we also created pure symbolic
environments that generates trajectories of symbolic states to evaluate the performance of option-level
policy learning.

5.2 Algorithms

We evaluated HplanPPO and several baseline algorithms. For model-free DRL, we selected PPO,
DDQN, PPO with curiosity module, and RAINBOW. For HRL baseline, we modified open-sourced
version of Deep Hierarchical Reward Machines (HRM) [17]. We utilized existing RL libraries
stable-baselines3 [37] for HplanPPO, PPO, and DDQN, rllib [38] for PPO with curiosity mod-
ule, and RAINBOW. Due to the space limit, we will provide details on general experiment setups
and implementation of deep neural network architectures and hyper-parameter choices in Appendix.
For all experiments, we evaluated each algorithm 10 to 20 times and sampled up to 10 million
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(a) Door Key Environment
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(b) 2x2 Locked Door Environment

Figure 3: Reward Machines for HRM: A state transition in the FSM can be triggered by the occurrence
of an event, where di, ki, and g represent the predicates for the i-th door unlocked, holding the i-th
key, and the goal room was reached. The numbers next to an event predicate are rewards.

frames. We measured the moving average of episode lengths, success rates, and rewards over one
hundred randomly selected evaluation tasks, and summarized them by the average, the minimum,
and maximum range, and 95 percent confidence intervals over 10 to 20 trials.

5.3 Comparison against Baselines

Average Rewards and Success Rates Figure 2 shows the average rewards and success rates evaluated
on the unseen evaluation tasks during training. The results from Door Key environment in Figure 2a
and 2c show that two HRL algorithms, HplanPPO and HRM, were able to train policies that generalize
to unseen evaluation tasks with the average reward and success rate close to 1.0. On the other hand,
the average of rewards and success rates of PPO and DDQN are less than 0.2 with high variance,
RAINBOW achieved the average and the maximum rewards 0.310 and 0.667, respectively, and PPO
with curiosity [39] achieved 0.29 and 0.884, respectively. The evaluation result from 2x2 Locked
Door environment in Figure 2b and 2d show that all but HplanPPO failed. RAINBOW achieved the
average and the maximum rewards 0.094 and 0.376, and PPO with curiosity [39] achieved 0.042 and
0.677.

RMs Figure 3 shows the reward machines [17] of the two environments. Since reward machines
infuse symbolic solutions, FSM is a chain with guard conditions on symbolic events that trigger state
transitions.

Number of Options When we examine the number of options trained, an agent can solve problems
by training only three options, pick up a key, unlock the door, and move to the adjacent room, in
Door Key environments. However, in 2x2 Locked Door, the starting location can be any of the
two rooms on the left, meaning that sometimes the door between the two rooms on the left should be
opened, and sometimes not. HplanPPO was able to successfully solve the environment by training 9
plan options and 1 goal option on 20 trials 2.

5.4 Impact of Intrinsic Rewards

Figure 4 shows the impact of intrinsic rewards in 2x2 Two Keys, 2x2 One-Use Key, and 2x2 Two
One-Use Keys environments. Note that all other baseline algorithms failed to learn a policy. We can
see that intrinsic rewards play an important role in option training. In 2x2 Two Keys, HplanPPO
without intrinsic rewards consistently failed on all trials. The shortest plan length is 11 for solving
2x2 Two Keys, but HplanPPO trained 16 options. Ideally, the agent would pick up the purple key in
the upper right room and directly move to unlock the purple door. However, the agent could drop the
key before using the key. Therefore, we see that HplanPPO trained option to pick up the purple key
in the upper left corner.

In the next two environments, the agent may encounter dead-end states due to the one-use keys.
Although the shortest plan length for 2x2 One-Use Key and 2x2 Two One-Use Keys are 4 and
7, which are shorter than the plans in 2x2 Two Keys, we see the performance is worse due to the
dead-end states.

5.5 Training Option Level Policy

Existing integrated approaches such as Symbolic DRL (SDRL) [21] learn the value function or policy
networks for the symbolic states. In this experiment, we trained PPO agent directly on the symbolic

2For the full option sequence as well as results from other environments, please see Appendix.
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(a) 2x2 Two Keys (b) 2x2 One-Use Key (c) 2x2 Two One-Use Keys

(d) 2x2 Two Keys (e) 2x2 One-Use Key (f) 2x2 Two One-Use Keys

Figure 4: Impact of Intrinsic Rewards: 4 different configurations for defining Markovian intrinsic
rewards as shown in Definition 7. Frame and Termination configuration uses both penalty terms
subject to the frame and the termination set, Frame uses penalty terms subject to the frame only,
Termination uses penalty terms subject to the termination set only, and No IR does not utilize
intrinsic rewards. The average rewards are shown in (a,b,c), the success rates in (d,e,f).

RL environments that generates symbolic trajectories 3. This case is akin to training high-level policy
in an ideal situation, where all options are perfectly trained. In this experiment, we made the RL task
easier than earlier multi-task settings by fixing the initial state and the goal. In 2x2 Locked, PPO
achieved a success rate close to 0.5 after 40,000 sample steps and the average plan length is roughly
500. If we combined this high-level policy learning with options training, a single trajectory should
have unrolled 500 options with the probability of reaching a goal being around 0.5. More importantly,
we observed that the variance in training performance is very large. For example, 95 % confidence
interval of the average episode length from the 2x2 Two One-Use Keys environment ranges up to
500. From this experiment, we can see that learning high-level policy quickly starts to fail when tasks
get more complicated. On the other hand, the same planning tasks can be solved optimally using
a symbolic planner. Even a simple planner such as Pyperplan [40] found the shortest plan with
length 4 in 0.0007 seconds for 2x2 Locked, with length 11 in 0.0028 seconds for 2x2 Two Keys,
with length 4 in 0.0008 seconds for 2x2 One-Use Keys, and with length 7 in 0.002 seconds for 2x2
Two One-Use Keys.

6 Conclusion

We have presented a neuro-symbolic sequential decision-making framework that integrates hierar-
chical reinforcement learning and AI planning following a systematic approach for infusing prior
domain knowledge into deep learning agents to solve goal-oriented multi-task reinforcement learning
environments. Namely, we formulate AI planning tasks as a symbolic abstraction of underlying RL
environments and declare options using the operators in the planning task. In addition, we enforce
the behavior of option policies to follow implicit frame constraints in planning operators, which
results in improved sample efficiency and reusability of option policies. Empirical evaluation results
on various mini-grid environments show that the proposed framework resolves the shortcomings of
earlier approaches and benefits of the neuro-symbolic method for solving complex goal-oriented
multi-task reinforcement learning environments.

3Please see Appendix for the plots summarizing the experiment
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A Planning Tasks and Plan for MiniGrid RL Environments

This section summarizes the planning tasks for MiniGrid domains that we evaluated in the experiment section.
The RL environment maintains rooms over an N × N grid, blue balls, a green goal tile, the agent location
and orientation, and doors with states, open, closed, locked, and unlocked. In planning tasks, we abstract away
information relevant to each cell in the grid. Namely, the exact location and orientation of the agent, the exact
location of the key, blue balls, and a green goal tile are all ignored. In addition, the states of a door is simplified
to two states, locked or unlocked.

On resetting the RL environment, we implemented gym environments such that objects that are only visible to
RL environments are randomized, as usual in the standard MiniGrid gym environment. However, we restricted
the information relevant to the planning task remains the same. For example, the agent’s initial location will
be randomized within a predefined room (the room at the upper left corner), and the goal location will also be
randomized within a room at the lower right corner. A key will appear in the same room, and the initial state
of the door, whether it is locked or unlocked, will remain the same. This choice doesn’t limit algorithms but it
simplifies the experiment to start with a single PDDL instance to annotate the environment, although the agent
will generate additional PDDL instances when it solves planning tasks with a new initial planning state while
selecting options online.

A.1 PDDL domain

PDDL domain file was manually generated by modifying existing similar PDDL domains.

A.1.1 MazeRooms

This domain can be used to all except for the domains with one-use keys.

(define (domain MazeRooms)
(:requirements :strips :typing)

(:types
room - object
key - object
door - object

)
(:predicates

(at-agent ?r - room)
(at ?k - key ?r - room)
(carry ?k - key)
(empty-hand)
(KEYMATCH ?k - key ?d - door)
(LINK ?d - door ?r1 - room ?r2 - room)
(locked ?d - door)
(unlocked ?d - door)
(CONNECTED-ROOMS ?r1 - room ?r2 - room)

)
(:action move-room

:parameters (?d - door ?r1 - room ?r2 - room)
:precondition (and

(CONNECTED-ROOMS ?r1 ?r2)
(at-agent ?r1)
(LINK ?d ?r1 ?r2)
(unlocked ?d)

)
:effect (and

(not (at-agent ?r1))
(at-agent ?r2)

)
)
(:action pickup

:parameters (?k - key ?r - room)
:precondition (and

(at ?k ?r)
(at-agent ?r)
(empty-hand)

)
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:effect (and
(not (at ?k ?r))
(not (empty-hand))
(carry ?k)

)
)
(:action drop

:parameters (?k - key ?r - room)
:precondition (and

(carry ?k)
(at-agent ?r)

)
:effect (and

(at ?k ?r)
(empty-hand)
(not (carry ?k))

)
)
(:action unlock

:parameters (?k - key ?d - door ?r1 - room ?r2 - room)
:precondition (and

(CONNECTED-ROOMS ?r1 ?r2)
(at-agent ?r1)
(LINK ?d ?r1 ?r2)
(carry ?k)
(locked ?d)
(KEYMATCH ?k ?d)

)
:effect (and

(not (locked ?d))
(unlocked ?d)

)
)

)

A.1.2 MazeRoomsOneUseKeys

This domain introduces one-use keys.

(define (domain MazeRoomsDisposableKeys)
(:requirements :strips :typing)

(:types
room - object
key - object
door - object

)
(:predicates

(at-agent ?r - room)
(at ?k - key ?r - room)
(carry ?k - key)
(empty-hand)
(KEYMATCH ?k - key ?d - door)
(LINK ?d - door ?r1 - room ?r2 - room)
(locked ?d - door)
(unlocked ?d - door)
(CONNECTED-ROOMS ?r1 - room ?r2 - room)
(key-unused ?k - key)

)
(:action move-room

:parameters (?d - door ?r1 - room ?r2 - room)
:precondition (and

(CONNECTED-ROOMS ?r1 ?r2)
(at-agent ?r1)
(LINK ?d ?r1 ?r2)
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(unlocked ?d)
)
:effect (and

(not (at-agent ?r1))
(at-agent ?r2)

)
)
(:action pickup

:parameters (?k - key ?r - room)
:precondition (and

(at ?k ?r)
(at-agent ?r)
(empty-hand)

)
:effect (and

(not (at ?k ?r))
(not (empty-hand))
(carry ?k)

)
)
(:action drop

:parameters (?k - key ?r - room)
:precondition (and

(carry ?k)
(at-agent ?r)

)
:effect (and

(at ?k ?r)
(empty-hand)
(not (carry ?k))

)
)
(:action unlock

:parameters (?k - key ?d - door ?r1 - room ?r2 - room)
:precondition (and

(CONNECTED-ROOMS ?r1 ?r2)
(at-agent ?r1)
(LINK ?d ?r1 ?r2)
(carry ?k)
(locked ?d)
(KEYMATCH ?k ?d)
(key-unused ?k)

)
:effect (and

(not (locked ?d))
(unlocked ?d)
(not (key-unused ?k))

)
)

)

A.2 PDDL instance

All PDDL problem instances were generated by our benchmark script code by processing internal state informa-
tion available in MiniGrid gym environments.

A.2.1 DoorKey PDDL instance

We show PDDL instance, and the shortest plan. Note that option sequence can diverge from the shorest plan
when side-effect occurs.

(define (problem MazeRooms-8by8-DoorKey)
(:domain MazeRooms)
(:objects

R-0-0 R-1-0 - room
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Figure 5: DoorKey

K-yellow-0 - key
D-yellow-0-0-1-0 - door

)
(:init

(LINK D-yellow-0-0-1-0 R-0-0 R-1-0)
(LINK D-yellow-0-0-1-0 R-1-0 R-0-0)
(KEYMATCH K-yellow-0 D-yellow-0-0-1-0)
(at-agent R-0-0)
(at K-yellow-0 R-0-0)
(locked D-yellow-0-0-1-0)
(empty-hand)

)
(:goal (and

(at-agent R-1-0))
)

)

The shortest plan

state:0
(at-agent r-0-0)
(at k-yellow-0 r-0-0)
(locked d-yellow-0-0-1-0)
(empty-hand)

action:0
(pickup k-yellow-0 r-0-0)

PRE: (at-agent r-0-0)
PRE: (at k-yellow-0 r-0-0)
PRE: (empty-hand)
ADD: (carry k-yellow-0)
DEL: (at k-yellow-0 r-0-0)
DEL: (empty-hand)

state:1
(at-agent r-0-0)
(carry k-yellow-0)
(locked d-yellow-0-0-1-0)

action:1
(unlock k-yellow-0 d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (carry k-yellow-0)
PRE: (locked d-yellow-0-0-1-0)
ADD: (unlocked d-yellow-0-0-1-0)
DEL: (locked d-yellow-0-0-1-0)

state:2
(at-agent r-0-0)
(carry k-yellow-0)
(unlocked d-yellow-0-0-1-0)
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action:2
(move-room d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (unlocked d-yellow-0-0-1-0)
ADD: (at-agent r-1-0)
DEL: (at-agent r-0-0)

A.2.2 2x2 Locked Door PDDL instance

We show PDDL instance, and the shortest plan. Note that option sequence can diverge from the shorest plan
when side-effect occurs.

Figure 6: 2x2 Locked Door

(define (problem MazeRooms-2by2-LockedSmall)
(:domain MazeRooms)
(:objects

R-0-0 R-0-1 R-1-0 R-1-1 - room
K-yellow-0 - key
D-yellow-0-0-1-0 D-yellow-1-0-1-1 D-yellow-0-0-0-1 - door

)
(:init

(CONNECTED-ROOMS R-0-0 R-0-1)
(CONNECTED-ROOMS R-0-0 R-1-0)
(CONNECTED-ROOMS R-0-1 R-0-0)
(CONNECTED-ROOMS R-1-0 R-0-0)
(CONNECTED-ROOMS R-1-0 R-1-1)
(CONNECTED-ROOMS R-1-1 R-1-0)
(LINK D-yellow-0-0-0-1 R-0-0 R-0-1)
(LINK D-yellow-0-0-0-1 R-0-1 R-0-0)
(LINK D-yellow-0-0-1-0 R-0-0 R-1-0)
(LINK D-yellow-0-0-1-0 R-1-0 R-0-0)
(LINK D-yellow-1-0-1-1 R-1-0 R-1-1)
(LINK D-yellow-1-0-1-1 R-1-1 R-1-0)
(KEYMATCH K-yellow-0 D-yellow-0-0-0-1)
(KEYMATCH K-yellow-0 D-yellow-0-0-1-0)
(KEYMATCH K-yellow-0 D-yellow-1-0-1-1)
(at-agent R-0-0)
(at K-yellow-0 R-1-0)
(locked D-yellow-1-0-1-1)
(unlocked D-yellow-0-0-0-1)
(unlocked D-yellow-0-0-1-0)
(empty-hand)

)
(:goal

(and
(at-agent R-1-1)

)
)

)

The shortest plan
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state:0
(unlocked d-yellow-0-0-0-1)
(unlocked d-yellow-0-0-1-0)
(locked d-yellow-1-0-1-1)
(empty-hand)
(at-agent r-0-0)
(at k-yellow-0 r-1-0)

action:0
(move-room d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (unlocked d-yellow-0-0-1-0)
ADD: (at-agent r-1-0)
DEL: (at-agent r-0-0)

state:1
(unlocked d-yellow-0-0-0-1)
(empty-hand)
(at k-yellow-0 r-1-0)
(unlocked d-yellow-0-0-1-0)
(at-agent r-1-0)
(locked d-yellow-1-0-1-1)

action:1
(pickup k-yellow-0 r-1-0)

PRE: (at k-yellow-0 r-1-0)
PRE: (empty-hand)
PRE: (at-agent r-1-0)
ADD: (carry k-yellow-0)
DEL: (at k-yellow-0 r-1-0)
DEL: (empty-hand)

state:2
(unlocked d-yellow-0-0-0-1)
(carry k-yellow-0)
(unlocked d-yellow-0-0-1-0)
(at-agent r-1-0)
(locked d-yellow-1-0-1-1)

action:2
(unlock k-yellow-0 d-yellow-1-0-1-1 r-1-0 r-1-1)

PRE: (carry k-yellow-0)
PRE: (locked d-yellow-1-0-1-1)
PRE: (at-agent r-1-0)
ADD: (unlocked d-yellow-1-0-1-1)
DEL: (locked d-yellow-1-0-1-1)

state:3
(unlocked d-yellow-0-0-0-1)
(carry k-yellow-0)
(unlocked d-yellow-1-0-1-1)
(unlocked d-yellow-0-0-1-0)
(at-agent r-1-0)

action:3
(move-room d-yellow-1-0-1-1 r-1-0 r-1-1)

PRE: (unlocked d-yellow-1-0-1-1)
PRE: (at-agent r-1-0)
ADD: (at-agent r-1-1)
DEL: (at-agent r-1-0)
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A.2.3 2x2 Two Keys PDDL instance

We show PDDL instance, and the shortest plan. Note that option sequence can diverge from the shorest plan
when side-effect occurs.

Figure 7: 2x2 Two Keys

(define (problem MazeRooms-2by2-TwoKeysSmall)
(:domain MazeRooms)
(:objects

R-0-0 R-0-1 R-1-0 R-1-1 - room
K-purple-0 K-yellow-1 - key
D-yellow-1-0-1-1 D-purple-0-0-0-1 D-yellow-0-0-1-0 - door

)
(:init

(CONNECTED-ROOMS R-0-0 R-0-1)
(CONNECTED-ROOMS R-0-0 R-1-0)
(CONNECTED-ROOMS R-0-1 R-0-0)
(CONNECTED-ROOMS R-1-0 R-0-0)
(CONNECTED-ROOMS R-1-0 R-1-1)
(CONNECTED-ROOMS R-1-1 R-1-0)
(LINK D-purple-0-0-0-1 R-0-0 R-0-1)
(LINK D-purple-0-0-0-1 R-0-1 R-0-0)
(LINK D-yellow-0-0-1-0 R-0-0 R-1-0)
(LINK D-yellow-0-0-1-0 R-1-0 R-0-0)
(LINK D-yellow-1-0-1-1 R-1-0 R-1-1)
(LINK D-yellow-1-0-1-1 R-1-1 R-1-0)
(KEYMATCH K-purple-0 D-purple-0-0-0-1)
(KEYMATCH K-yellow-1 D-yellow-0-0-1-0)
(KEYMATCH K-yellow-1 D-yellow-1-0-1-1)
(at-agent R-0-0)
(at K-purple-0 R-1-0)
(at K-yellow-1 R-0-1)
(locked D-purple-0-0-0-1)
(locked D-yellow-1-0-1-1)
(unlocked D-yellow-0-0-1-0)
(empty-hand)

)
(:goal

(and
(at-agent R-1-1)

)
)

)

The shortest plan

state:0
(at k-purple-0 r-1-0)
(locked d-purple-0-0-0-1)
(unlocked d-yellow-0-0-1-0)
(locked d-yellow-1-0-1-1)
(at k-yellow-1 r-0-1)
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(empty-hand)
(at-agent r-0-0)

action:0
(move-room d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (unlocked d-yellow-0-0-1-0)
ADD: (at-agent r-1-0)
DEL: (at-agent r-0-0)

state:1
(at k-purple-0 r-1-0)
(at k-yellow-1 r-0-1)
(empty-hand)
(locked d-purple-0-0-0-1)
(unlocked d-yellow-0-0-1-0)
(at-agent r-1-0)
(locked d-yellow-1-0-1-1)

action:1
(pickup k-purple-0 r-1-0)

PRE: (at k-purple-0 r-1-0)
PRE: (empty-hand)
PRE: (at-agent r-1-0)
ADD: (carry k-purple-0)
DEL: (at k-purple-0 r-1-0)
DEL: (empty-hand)

state:2
(carry k-purple-0)
(at k-yellow-1 r-0-1)
(locked d-purple-0-0-0-1)
(unlocked d-yellow-0-0-1-0)
(at-agent r-1-0)
(locked d-yellow-1-0-1-1)

action:2
(move-room d-yellow-0-0-1-0 r-1-0 r-0-0)

PRE: (unlocked d-yellow-0-0-1-0)
PRE: (at-agent r-1-0)
ADD: (at-agent r-0-0)
DEL: (at-agent r-1-0)

state:3
(carry k-purple-0)
(at k-yellow-1 r-0-1)
(at-agent r-0-0)
(locked d-purple-0-0-0-1)
(unlocked d-yellow-0-0-1-0)
(locked d-yellow-1-0-1-1)

action:3
(unlock k-purple-0 d-purple-0-0-0-1 r-0-0 r-0-1)

PRE: (at-agent r-0-0)
PRE: (carry k-purple-0)
PRE: (locked d-purple-0-0-0-1)
ADD: (unlocked d-purple-0-0-0-1)
DEL: (locked d-purple-0-0-0-1)

state:4
(carry k-purple-0)
(at k-yellow-1 r-0-1)
(unlocked d-purple-0-0-0-1)
(at-agent r-0-0)
(unlocked d-yellow-0-0-1-0)

20



(locked d-yellow-1-0-1-1)

action:4
(drop k-purple-0 r-0-0)

PRE: (at-agent r-0-0)
PRE: (carry k-purple-0)
ADD: (at k-purple-0 r-0-0)
ADD: (empty-hand)
DEL: (carry k-purple-0)

state:5
(at k-purple-0 r-0-0)
(at k-yellow-1 r-0-1)
(unlocked d-purple-0-0-0-1)
(empty-hand)
(at-agent r-0-0)
(unlocked d-yellow-0-0-1-0)
(locked d-yellow-1-0-1-1)

action:5
(move-room d-purple-0-0-0-1 r-0-0 r-0-1)

PRE: (at-agent r-0-0)
PRE: (unlocked d-purple-0-0-0-1)
ADD: (at-agent r-0-1)
DEL: (at-agent r-0-0)

state:6
(at k-purple-0 r-0-0)
(at k-yellow-1 r-0-1)
(empty-hand)
(unlocked d-purple-0-0-0-1)
(at-agent r-0-1)
(locked d-yellow-1-0-1-1)
(unlocked d-yellow-0-0-1-0)

action:6
(pickup k-yellow-1 r-0-1)

PRE: (at-agent r-0-1)
PRE: (at k-yellow-1 r-0-1)
PRE: (empty-hand)
ADD: (carry k-yellow-1)
DEL: (at k-yellow-1 r-0-1)
DEL: (empty-hand)

state:7
(at k-purple-0 r-0-0)
(carry k-yellow-1)
(unlocked d-purple-0-0-0-1)
(at-agent r-0-1)
(locked d-yellow-1-0-1-1)
(unlocked d-yellow-0-0-1-0)

action:7
(move-room d-purple-0-0-0-1 r-0-1 r-0-0)

PRE: (at-agent r-0-1)
PRE: (unlocked d-purple-0-0-0-1)
ADD: (at-agent r-0-0)
DEL: (at-agent r-0-1)

state:8
(at k-purple-0 r-0-0)
(carry k-yellow-1)
(unlocked d-purple-0-0-0-1)
(at-agent r-0-0)
(locked d-yellow-1-0-1-1)
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(unlocked d-yellow-0-0-1-0)

action:8
(move-room d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (unlocked d-yellow-0-0-1-0)
ADD: (at-agent r-1-0)
DEL: (at-agent r-0-0)

state:9
(at-agent r-1-0)
(at k-purple-0 r-0-0)
(carry k-yellow-1)
(unlocked d-purple-0-0-0-1)
(locked d-yellow-1-0-1-1)
(unlocked d-yellow-0-0-1-0)

action:9
(unlock k-yellow-1 d-yellow-1-0-1-1 r-1-0 r-1-1)

PRE: (locked d-yellow-1-0-1-1)
PRE: (carry k-yellow-1)
PRE: (at-agent r-1-0)
ADD: (unlocked d-yellow-1-0-1-1)
DEL: (locked d-yellow-1-0-1-1)

state:10
(at k-purple-0 r-0-0)
(carry k-yellow-1)
(unlocked d-purple-0-0-0-1)
(unlocked d-yellow-1-0-1-1)
(at-agent r-1-0)
(unlocked d-yellow-0-0-1-0)

action:10
(move-room d-yellow-1-0-1-1 r-1-0 r-1-1)

PRE: (unlocked d-yellow-1-0-1-1)
PRE: (at-agent r-1-0)
ADD: (at-agent r-1-1)
DEL: (at-agent r-1-0)

A.2.4 2x2 One-Use Key PDDL instance

We show PDDL instance, and the shortest plan. Note that option sequence can diverge from the shortest plan
when side-effect occurs.

Figure 8: 2x2 One-Use Key

(define (problem MazeRooms-2by2-OneDisposableKey)
(:domain MazeRoomsDisposableKeys)
(:objects

R-0-0 R-0-1 R-1-0 R-1-1 - room
K-yellow-0 - key
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D-yellow-1-0-1-1 D-yellow-0-0-0-1 D-yellow-0-0-1-0 - door
)
(:init

(CONNECTED-ROOMS R-0-0 R-0-1)
(CONNECTED-ROOMS R-0-0 R-1-0)
(CONNECTED-ROOMS R-0-1 R-0-0)
(CONNECTED-ROOMS R-1-0 R-0-0)
(CONNECTED-ROOMS R-1-0 R-1-1)
(CONNECTED-ROOMS R-1-1 R-1-0)
(LINK D-yellow-0-0-0-1 R-0-0 R-0-1)
(LINK D-yellow-0-0-0-1 R-0-1 R-0-0)
(LINK D-yellow-0-0-1-0 R-0-0 R-1-0)
(LINK D-yellow-0-0-1-0 R-1-0 R-0-0)
(LINK D-yellow-1-0-1-1 R-1-0 R-1-1)
(LINK D-yellow-1-0-1-1 R-1-1 R-1-0)
(KEYMATCH K-yellow-0 D-yellow-0-0-0-1)
(KEYMATCH K-yellow-0 D-yellow-0-0-1-0)
(KEYMATCH K-yellow-0 D-yellow-1-0-1-1)
(at-agent R-0-0)
(at K-yellow-0 R-0-0)
(locked D-yellow-0-0-0-1)
(locked D-yellow-0-0-1-0)
(unlocked D-yellow-1-0-1-1)
(empty-hand)
(key-unused K-yellow-0)

)
(:goal

(and
(at-agent R-1-1)

)
)

)

The shortest plan

state:0
(locked d-yellow-0-0-0-1)
(key-unused k-yellow-0)
(at k-yellow-0 r-0-0)
(unlocked d-yellow-1-0-1-1)
(at-agent r-0-0)
(locked d-yellow-0-0-1-0)
(empty-hand)

action:0
(pickup k-yellow-0 r-0-0)

PRE: (at-agent r-0-0)
PRE: (at k-yellow-0 r-0-0)
PRE: (empty-hand)
ADD: (carry k-yellow-0)
DEL: (at k-yellow-0 r-0-0)
DEL: (empty-hand)

state:1
(unlocked d-yellow-1-0-1-1)
(locked d-yellow-0-0-0-1)
(at-agent r-0-0)
(key-unused k-yellow-0)
(locked d-yellow-0-0-1-0)
(carry k-yellow-0)

action:1
(unlock k-yellow-0 d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (locked d-yellow-0-0-1-0)
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PRE: (carry k-yellow-0)
PRE: (key-unused k-yellow-0)
ADD: (unlocked d-yellow-0-0-1-0)
DEL: (locked d-yellow-0-0-1-0)
DEL: (key-unused k-yellow-0)

state:2
(unlocked d-yellow-1-0-1-1)
(locked d-yellow-0-0-0-1)
(at-agent r-0-0)
(unlocked d-yellow-0-0-1-0)
(carry k-yellow-0)

action:2
(move-room d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (unlocked d-yellow-0-0-1-0)
ADD: (at-agent r-1-0)
DEL: (at-agent r-0-0)

state:3
(unlocked d-yellow-1-0-1-1)
(locked d-yellow-0-0-0-1)
(at-agent r-1-0)
(unlocked d-yellow-0-0-1-0)
(carry k-yellow-0)

action:3
(move-room d-yellow-1-0-1-1 r-1-0 r-1-1)

PRE: (unlocked d-yellow-1-0-1-1)
PRE: (at-agent r-1-0)
ADD: (at-agent r-1-1)
DEL: (at-agent r-1-0)

A.2.5 2x2 Two One-Use Keys PDDL instance

We show PDDL instance, and the shortest plan. Note that option sequence can diverge from the shortest plan
when side-effect occurs.

Figure 9: 2x2 Two One-Use Keys

(define (problem MazeRooms-2by2-TwoDisposableKeys)
(:domain MazeRoomsDisposableKeys)
(:objects

R-0-0 R-0-1 R-1-0 R-1-1 - room
K-yellow-0 K-yellow-1 - key
D-yellow-0-0-1-0 D-yellow-0-0-0-1 D-yellow-1-0-1-1 - door

)
(:init

(CONNECTED-ROOMS R-0-0 R-0-1)
(CONNECTED-ROOMS R-0-0 R-1-0)
(CONNECTED-ROOMS R-0-1 R-0-0)
(CONNECTED-ROOMS R-1-0 R-0-0)
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(CONNECTED-ROOMS R-1-0 R-1-1)
(CONNECTED-ROOMS R-1-1 R-1-0)
(LINK D-yellow-0-0-0-1 R-0-0 R-0-1)
(LINK D-yellow-0-0-0-1 R-0-1 R-0-0)
(LINK D-yellow-0-0-1-0 R-0-0 R-1-0)
(LINK D-yellow-0-0-1-0 R-1-0 R-0-0)
(LINK D-yellow-1-0-1-1 R-1-0 R-1-1)
(LINK D-yellow-1-0-1-1 R-1-1 R-1-0)
(KEYMATCH K-yellow-0 D-yellow-0-0-0-1)
(KEYMATCH K-yellow-0 D-yellow-0-0-1-0)
(KEYMATCH K-yellow-0 D-yellow-1-0-1-1)
(KEYMATCH K-yellow-1 D-yellow-0-0-0-1)
(KEYMATCH K-yellow-1 D-yellow-0-0-1-0)
(KEYMATCH K-yellow-1 D-yellow-1-0-1-1)
(at-agent R-0-0)
(at K-yellow-0 R-0-0)
(at K-yellow-1 R-1-0)
(locked D-yellow-0-0-0-1)
(locked D-yellow-0-0-1-0)
(locked D-yellow-1-0-1-1)
(empty-hand)
(key-unused K-yellow-0)
(key-unused K-yellow-1)

)
(:goal

(and
(at-agent R-1-1)

)
)

)

The shortest plan

state:0
(locked d-yellow-0-0-0-1)
(locked d-yellow-1-0-1-1)
(key-unused k-yellow-0)
(at k-yellow-0 r-0-0)
(at k-yellow-1 r-1-0)
(at-agent r-0-0)
(key-unused k-yellow-1)
(locked d-yellow-0-0-1-0)
(empty-hand)

action:0
(pickup k-yellow-0 r-0-0)

PRE: (at-agent r-0-0)
PRE: (at k-yellow-0 r-0-0)
PRE: (empty-hand)
ADD: (carry k-yellow-0)
DEL: (at k-yellow-0 r-0-0)
DEL: (empty-hand)

state:1
(locked d-yellow-0-0-0-1)
(locked d-yellow-1-0-1-1)
(at-agent r-0-0)
(key-unused k-yellow-0)
(key-unused k-yellow-1)
(at k-yellow-1 r-1-0)
(locked d-yellow-0-0-1-0)
(carry k-yellow-0)

action:1
(unlock k-yellow-0 d-yellow-0-0-1-0 r-0-0 r-1-0)
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PRE: (at-agent r-0-0)
PRE: (locked d-yellow-0-0-1-0)
PRE: (carry k-yellow-0)
PRE: (key-unused k-yellow-0)
ADD: (unlocked d-yellow-0-0-1-0)
DEL: (locked d-yellow-0-0-1-0)
DEL: (key-unused k-yellow-0)

state:2
(locked d-yellow-0-0-0-1)
(locked d-yellow-1-0-1-1)
(at-agent r-0-0)
(key-unused k-yellow-1)
(unlocked d-yellow-0-0-1-0)
(at k-yellow-1 r-1-0)
(carry k-yellow-0)

action:2
(move-room d-yellow-0-0-1-0 r-0-0 r-1-0)

PRE: (at-agent r-0-0)
PRE: (unlocked d-yellow-0-0-1-0)
ADD: (at-agent r-1-0)
DEL: (at-agent r-0-0)

state:3
(locked d-yellow-0-0-0-1)
(locked d-yellow-1-0-1-1)
(key-unused k-yellow-1)
(at-agent r-1-0)
(unlocked d-yellow-0-0-1-0)
(at k-yellow-1 r-1-0)
(carry k-yellow-0)

action:3
(drop k-yellow-0 r-1-0)

PRE: (carry k-yellow-0)
PRE: (at-agent r-1-0)
ADD: (at k-yellow-0 r-1-0)
ADD: (empty-hand)
DEL: (carry k-yellow-0)

state:4
(locked d-yellow-0-0-0-1)
(locked d-yellow-1-0-1-1)
(key-unused k-yellow-1)
(at k-yellow-0 r-1-0)
(at-agent r-1-0)
(unlocked d-yellow-0-0-1-0)
(at k-yellow-1 r-1-0)
(empty-hand)

action:4
(pickup k-yellow-1 r-1-0)

PRE: (at k-yellow-1 r-1-0)
PRE: (at-agent r-1-0)
PRE: (empty-hand)
ADD: (carry k-yellow-1)
DEL: (at k-yellow-1 r-1-0)
DEL: (empty-hand)

state:5
(locked d-yellow-0-0-0-1)
(locked d-yellow-1-0-1-1)
(key-unused k-yellow-1)
(at k-yellow-0 r-1-0)
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(at-agent r-1-0)
(unlocked d-yellow-0-0-1-0)
(carry k-yellow-1)

action:5
(unlock k-yellow-1 d-yellow-1-0-1-1 r-1-0 r-1-1)

PRE: (carry k-yellow-1)
PRE: (locked d-yellow-1-0-1-1)
PRE: (key-unused k-yellow-1)
PRE: (at-agent r-1-0)
ADD: (unlocked d-yellow-1-0-1-1)
DEL: (locked d-yellow-1-0-1-1)
DEL: (key-unused k-yellow-1)

state:6
(unlocked d-yellow-1-0-1-1)
(locked d-yellow-0-0-0-1)
(at k-yellow-0 r-1-0)
(at-agent r-1-0)
(unlocked d-yellow-0-0-1-0)
(carry k-yellow-1)

action:6
(move-room d-yellow-1-0-1-1 r-1-0 r-1-1)

PRE: (unlocked d-yellow-1-0-1-1)
PRE: (at-agent r-1-0)
ADD: (at-agent r-1-1)
DEL: (at-agent r-1-0)

B Hierarchical Reward Machines for MiniGrid Experiments

Hierarchical Reward Machine (HRM) needs a Finite State Machine (FSM) that describes the transitions between
symbolic states and events that trigger the transitions. It can either be written directly or translated from Linear
Temporal Logic (LTL) expressions. In this paper, we defined FSMs for MiniGrid environments following the
structures that commonly appear in papers based on reward machines. Note that FSMs in HRL algorithms based
on LTL/RM encode knowledge about the solution to the problem. FSMs are defined per instance basis, or a
human expert must know a partial solution that is general enough so that it can be applied to multiple instances.
As the problem domain gets more complicated, this manual task is not at all trivial. In this paper, we chose
hierarchical reward machines (HRM) [17] as a baseline HRL algorithm since it is very difficult to find a reliable
implementation that integrates deep RL agents. While extending the baseline for solving MiniGrid environments,
we defined FSMs similar to the ones in the baseline method.

B.1 MiniGrid - DoorKey

𝑢!start

(¬𝑘", −0.1)

(𝑘", 1) 𝑢# 𝑢$
t(𝑔, 1)(𝑑", 1)

(¬𝑑", −0.1) (¬𝑔,−0.1)

Figure 10: FSM of HRM - DoorKey

Nodes u0, u1, and u2 are FSM states. Upon resetting the RL environment, FSM enters the first node u0,
and events defined over the edges trigger the state transitions. This reward structure can be used for defining
rewards for the RL environment in a reward machine, or one could define options over FSMs that encapsulates
temporarily extended actions. The events are defined as follows: k1 entails true if the agent picked up the key at
the room, d1 entails true if the agent was able to unlock the door connecting two rooms, g entails true if the
agent arrived at the goal room. Finally, the FSM terminates when the agent arrives at the goal tile. The value
next to the event is the reward that the agent receives. For example, when the agent was in state u0 and did
not pick up the key, then the reward is −0.1. On the other hand, if the agent picked up the key, then the state
transition occurs, and the agent receives a reward of 1.
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B.2 MiniGrid - 2x2 Locked Door

𝑢!start 𝑢"

(¬𝑑", −0.1)

(𝑑", 1)
𝑢# 𝑢$

t(𝑔, 1)(𝑘", 1) (𝑑#, 1)

(¬𝑘", −0.1) (¬𝑑#, −0.1) (¬𝑔,−0.1)

Figure 11: FSM of HRM - 2x2 Locked Door

In this problem domain, the agent must use a key to unlock the goal room. Therefore, FSM encodes such
knowledge in the FSM; from state u1, the agent can transit to the next state if the agent picked up the key in the
room at the upper right corner (k1). As we can see, as the solution to the problem becomes more complex, the
FSM has to incorporate such knowledge in more complex diagrams, one per domain. It is worth noting that in
order to incorporate the knowledge of solutions in the FSM, one needs first to obtain such knowledge. While
for small problems humans can easily spot what a solution is, as problems become more complex, it becomes
harder.

B.3 MiniGrid - 2x2 Two Keys

𝑢!start 𝑢"

(¬𝑑", −0.1)

(𝑑", 1)
𝑢# 𝑢$ 𝑢% 𝑢&

t(𝑔, 1)(𝑘", 1) (𝑑#, 1) (𝑘#, 1) (𝑑$, 1)

(¬𝑘", −0.1) (¬𝑑#, −0.1) (¬𝑘#, −0.1) (¬𝑑$, −0.1) (¬𝑔,−0.1)

Figure 12: FSM of HRM - 2x2 Two Keys

In this problem domain, the agent must use two keys by moving rooms back and forth. It first picks up the purple
key to unlock a room at the lower left corner to pick up the yellow key. Then, the agent must navigate to the goal
room to unlock the goal room. The encode this behavior using events, we need to define a longer chain as shown
in the above figure.

C Implementation Notes on MiniGrid Experiments

In this section, we provide implementation details for HplanPPO, and HRM, and hyperparameter tunings. For
additional details, please refer to the python script code available in the code supplementary material.

C.1 Feature Extractors

For the problem domains generated by MiniGrid environment, we modified Convolutional Neural Network
(CNN) based architecture presented in BabyAI RL environment [23]. The main differences between BabyAI
and our MiniGrid-based gym environments are: (1) our experiments are fully-observable, (2) there’s no natural
language goal description available in our experiments.

C.1.1 CNN Feature Extractors for 4 Rooms Environments

The CNN feature extractors first process three-channel input grid into the embedding layer since the value at
each grid encodes symbolic state information in integers. Next, we pass 3-layer CNN, and finally we added the
last linear layer to the output the feature vector of size 128.

class BabyAIFullyObsCNN(BaseFeaturesExtractor):
def __init__(

self,
observation_space: gym.Space,
features_dim: int = 128,

):
super().__init__(observation_space, features_dim)
self.max_value = 147
self.embedding = nn.Embedding(3 * self.max_value, features_dim)
self.cnn = nn.Sequential(

nn.Conv2d(in_channels=features_dim, out_channels=features_dim,
kernel_size=(3, 3), stride=(2, 2), padding=1),
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nn.BatchNorm2d(features_dim),
nn.ReLU(),
nn.Conv2d(in_channels=features_dim, out_channels=features_dim,
kernel_size=(3, 3), stride=(2, 2), padding=1),
nn.BatchNorm2d(features_dim),
nn.ReLU(),
nn.Conv2d(in_channels=features_dim, out_channels=features_dim,
kernel_size=(3, 3), stride=(2, 2), padding=1),
nn.BatchNorm2d(features_dim),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
nn.Flatten()

)
self.linear = nn.Sequential(

nn.Linear(n_flatten, features_dim),
nn.ReLU()

)
self.apply(initialize_parameters)

def forward(self, observations: th.Tensor):
offsets = th.Tensor([0, self.max_value, 2 * self.max_value])
x = (observations + offsets[None, :, None, None]).long()
x = self.embedding(x).sum(1).permute(0, 3, 1, 2)
x = self.cnn(x)
x = self.linear(x)
return x

C.1.2 CNN Feature Extractors for Door Key environment

The architecture remains the same as above except for the CNN only has two layers when the input dimension
becomes smaller. In addition to processing the feature values in the grid, the following code snippet also shows
the option labels will also be concatenated with the feature vector after passing an embedding layer and one
additional linear layer. These option label features are necessary for implementing DDQN-based algorithms.

class BabyAIFullyObsSmallCNNDict(BaseFeaturesExtractor):
def __init__(

self,
observation_space: gym.Space,
features_dim: int = 128,

):
super().__init__(observation_space, features_dim)
image_observation_space = observation_space.spaces[’image’]

self.max_value = 147
self.embedding = nn.Embedding(3 * self.max_value, features_dim)
self.cnn = nn.Sequential(

nn.Conv2d(in_channels=features_dim, out_channels=features_dim,
kernel_size=(3, 3), stride=(2, 2), padding=1),
nn.BatchNorm2d(features_dim),
nn.ReLU(),
nn.Conv2d(in_channels=features_dim, out_channels=features_dim,
kernel_size=(3, 3), stride=(2, 2), padding=1),
nn.BatchNorm2d(features_dim),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0),
nn.Flatten()

)
self.linear = nn.Sequential(

nn.Linear(n_flatten, features_dim),
nn.ReLU()

)
label_observation_space = observation_space.spaces[’label’]
self.label_embedding = nn.Linear(label_observation_space.n, features_dim)
self.linear2 = nn.Sequential(

nn.Linear(features_dim * 2, features_dim),
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nn.ReLU()
)
self.apply(initialize_parameters) # Initialize parameters correctly

def forward(self, observations: th.Tensor) -> th.Tensor:
x = observations[’image’]
offsets = th.Tensor([0, self.max_value, 2 * self.max_value]).to(x.device)
x = (x + offsets[None, :, None, None]).long()
x = self.embedding(x).sum(1).permute(0, 3, 1, 2)
x = self.cnn(x)
x = self.linear(x)
y = observations[’label’]
y = th.squeeze(y)
y = self.label_embedding(y)
if y.ndim == 1:

y = y.reshape((1, -1))
z = th.cat((x,y), dim=1)
z = self.linear2(z)
return z

C.2 PPO Hyperparameters

Door Key

learning_rate=1.0206760062018722e-5,
n_steps=2048,
batch_size=128,
n_epochs=50,
gamma=0.9833047938219175,
gae_lambda=0.95,
ent_coef=0.004845529343815526,
vf_coef=0.6628235140402716,
max_grad_norm=9.807565080094877

2x2 Locked

learning_rate=8.63971021360162e-05,
n_steps=2048,
batch_size=128,
n_epochs=30,
gamma=0.9747508289308954,
gae_lambda=0.95,
ent_coef=0.006155835398338309,
vf_coef=0.6788881163701028,
max_grad_norm=3.959536653406463

C.3 PPO-ICM Hyperparameters

Door Key

gamma=0.9643644696068203,
lr=2.137424219745892e-05,
vf_loss_coeff=0.21801595987072098
entropy_coeff=0.0003088560129766813
sgd_minibatch_size=32,
num_sgd_iter=143,
clip_param=0.2,
vf_clip_param=10.0,
grad_clip=10.0,
train_batch_size=2048,
kl_coeff=0.0

2x2 Locked

gamma=0.9130324059140903,
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lr=0.00033384977161037265,
vf_loss_coeff=0.2612257420727645,
entropy_coeff=0.00044831677402583,
sgd_minibatch_size=512,
num_sgd_iter=15
clip_param=0.2,
vf_clip_param=10.0,
grad_clip=10.0,
train_batch_size=2048,
kl_coeff=0.0

C.4 DDQN Hyperparameters

Door Key

learning_rate=0.000681590954892754,
buffer_size=409600,
learning_starts=7876,
batch_size=128,
tau=1.0,
gamma=0.9514622035384503,
train_freq=(2862, ’step’),
gradient_steps=142,
target_update_interval=8230,
exploration_fraction=0.3312761633788077,
exploration_initial_eps=1.0,
exploration_final_eps=0.189177300078208,
max_grad_norm=10

2x2 Locked

learning_rate=3.948924019726062e-05,
buffer_size=409600,
learning_starts=40960,
batch_size=128,
tau=1.0,
gamma=0.96185178826382,
train_freq=(2048, ’step’),
gradient_steps=150,
target_update_interval=8192,
exploration_fraction=0.3017598585099074,
exploration_initial_eps=1.0,
exploration_final_eps=0.17251992085542112,
max_grad_norm=10

C.5 Rainbow Hyperparameters

Door Key

gamma=0.9849743584371063,
lr=1.1473370153687392e-05,
train_batch_size=512,
n_step=5,
sigma0=0.4434930536144698,
num_atoms=16,
target_network_update_freq=1979
arget_network_update_freq=41721
dueling=True,
hiddens=[256],
double_q=True,

2x2 Locked

gamma=0.9211595438968194,
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lr=0.00012196986271591993,
rain_batch_size=256,
n_step=5,
sigma0=0.35020035545149664,
num_atoms=9,
target_network_update_freq=41721
dueling=True,
hiddens=[256],
double_q=True,

C.6 HplanPPO Hyperparameters

Door Key

option_policy_learning_rate=5.338528208876637e-05,
max_episode_len=2048,
option_termination_reward=1.0,
option_step_cost=0.0,
option_penalty_cost=0.005253418767263643 if args.frame_ir == 1 else 0.0,
option_terminal_cost=0.6491480172177918 if args.term_ir == 1 else 0.0,
n_steps=2048,
batch_size=32,
n_epochs=20,
gamma=0.9280090211332641,
gae_lambda=0.95,
ent_coef=0.005526152849292115,
vf_coef=0.722641202436966,
max_grad_norm=4.450973669431999

2x2 Locked Door

option_policy_learning_rate=2.483713270605326e-05,
max_episode_len=2048,
option_termination_reward=1.0,
option_step_cost=0.0,
option_penalty_cost=0.005327486099747157 if args.frame_ir == 1 else 0.0,
option_terminal_cost=0.011665771575084822 if args.term_ir == 1 else 0.0,
n_steps=2048,
batch_size=128,
n_epochs=10,
gamma=0.9889237786929247,
gae_lambda=0.95,
ent_coef=0.005571793418295724,
vf_coef=0.7347714098789104,
max_grad_norm=10,

2x2 Two Keys

option_policy_learning_rate=1.3424328073531024e-05,
option_termination_reward=1.0,
option_step_cost=0.0,
option_penalty_cost=0.00911114780697196 if args.frame_ir == 1 else 0.0,
option_terminal_cost=0.016975392630852796 if args.term_ir == 1 else 0.0,
n_steps=2048,
batch_size=64,
n_epochs=40,
gamma=0.9363696925451804,
gae_lambda=0.95,
ent_coef=0.0008151389080119535,
vf_coef=0.3777478706019491,
max_grad_norm=10,

2x2 One-Use Key

option_policy_learning_rate=2.483713270605326e-05,
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max_episode_len=2048,
option_termination_reward=1.0,
option_step_cost=0.0,
option_penalty_cost=0.008634793137792446 if args.frame_ir == 1 else 0.0,
option_terminal_cost=0.010137896834674922 if args.term_ir == 1 else 0.0,
n_steps=2048,
batch_size=64,
n_epochs=20,
gamma=0.980977021289778,
gae_lambda=0.95,
ent_coef=0.006943688563757862,
vf_coef=0.5331594110889363,
max_grad_norm=10,

2x2 Two One-Use Keys

option_policy_learning_rate=1.2069618067476194e-05,
option_termination_reward=1.0,
option_step_cost=0.0,
option_penalty_cost=0.005155317730172398 if args.frame_ir == 1 else 0.0,
option_terminal_cost=0.00896013032359551 if args.term_ir == 1 else 0.0,
n_steps-2048,
batch_size=128,
n_epochs=60,
gamma=0.9762354297259361,
gae_lambda=0.95,
ent_coef=0.00012158162774537214,
vf_coef=0.16581733465315923,
max_grad_norm=10,

D Supplemental Python Scripts

In this section, we explain the supplemental python scripts used in the experiment.

D.1 HRL with AI Planning Model

We developed 3 python packages for implementing the proposed method. We recommend installing parl
annotations, parl minigird, and parl agents in a python virtual environment with version 3.7 or greater. We
also included other necessary open-source libraries together to avoid errors due to version mismatches.

• parl annotations package defines base classes for classes that define options from planning tasks.
It also defines basic interface to use AI planner inside the agent. The code is available at https:
//github.com/IBM/parl_annotations.

• parl minigrid extends MiniGird environment with planning models. We also developed additional
models used in the experiments. Under annotations folder we collected all planning tasks as well
as FSMs for reward machines. The code is available at https://github.com/IBM/parl_minigrid.

• parl agent implements HRL with AI Planning model. For DRL agents, we used stable-baselines3
and HRL agents also extend the base class of stable-baselines3. The code is available at https:
//github.com/IBM/parl_agents.

• for the usage, we provide test-scripts under the parl-agent package.

D.2 Baseline Algorithms

We also add open-source baseline algorithm codes. rllib and reward-machines contain the code used during the
experiment.

D.3 Code Examples from Earlier Approaches

In this section, we show code examples from earlier approaches that hard code abstract plan inside python
scripts. The hard-coded approaches cannot handle side effects or multi-task environments that we used during
the experiments. Furthermore, algorithms are combined with the experiment environment so it is very difficult
to use those algorithms as baselines we modify algorithms per environment.
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D.3.1 Taskable RL

This is an example from Taskable RL [20] for solving the office world problem, a grid navigation domain,
with tabular Q-learning as an RL agent. We can see that the symbolic states are hard coded with integers and
high-level actions are defined manually inside the algorithm.

(a) Symbolic State Representation in Taskble RL

(b) Infusing Plan to HRL Agent

The next code fragment also shows that options are also defined manually.

D.3.2 SDRL

For the Montezuma’s Revenge experiment for SDRL [21]. we can see that open-source code at

https://github.com/daomingAU/MontezumaRevenge_SDRL.

SDRL algorithm creates options per symbolic state transition. In this domain, we see that the problem domain
has a fixed number of symbolic state transitions. In practical domains, such an assumption is too restrictive that
it cannot handle side-effect state transitions.
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Figure 14: Options in Taskble RL

E MonteZuma’s Revenge Stage 1

E.1 State mapping function and results

The state mapping function in Montezuma’s revenge domain uses a mapping from an image to a symbolic state
representation. For the state mapping, we used the RL environment modified in [42] that captures the location of
the agent in the image by counting the different pixels in the selected bounding boxes and the pixels around the
agent as shown in Figure 15. The planning task guides the agent to move from the initial location to reach the
door after obtaining the key in the planning state space with the predicates, init, chain, lru, lrd, lld, llu, key, lcm,
and door.

Figure 15: The state mapping from image to planning state in Montezuma’s revenge domain.
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HplanPPO PPO HIRL+DDQN
samples 2,904,000 4,000,000 2,400,000
score 4̃00 42 4̃00

Table 1: Sample complexity and score results from HplanPPO, PPO, and HIRL+DDQN

Table 1 shows the number of sample interactions and the score achieved in the baseline algorithms reported by
[41] and [42]. Note that it is not fair to evaluate three algorithms based on the results shown in Table 1 since
PPO is a model-free on-policy algorithm, HIRL [42] is an imitation learning approach with the off-policy DQN,
and the online on-policy plan-HRL requires the planning task that annotates the RL task. Nevertheless, we can
observe that plan-HRL improves sample efficiency compared with its flat RL counter part PPO and used 20 %
more samples than HIRL, which uses the demonstrations and the samples stored in the replay buffer.

E.2 Planning Task for MonteZuma’s Revenge Stage 1

The RL environment maintains the images obtained from the arcade learning environment, and we selected
bounding boxes in the image to generate planning states from the RL state. Figure 15 shows the bounding boxes
we used. The PDDL domain file used for the planning task is desribed as follows.

(define (domain montezuma)
(:requirements :strips :typing)
(:types

location - object
)
(:predicates

(CONNECTED ?x ?y - location)
(at ?l - location)
(key-at ?l - location)
(holding-key)

)
(:action move

:parameters (?from ?to - location)
:precondition (and

(at ?from)
(CONNECTED ?from ?to)

)
:effect (and

(at ?to)
(not (at ?from))

)
)
(:action get-key

:parameters (?from)
:precondition (and

(at ?from)
(key-at ?from)

)
:effect (and

(at ?from)
(holding-key)

)
)

)

From each bounding box, we assign a location object and ground predicates by assigning objects to the variables
in the PDDL domain definition. The PDDL problem file used for the planning task is desribed as follows.

(define (problem montezuma-room1)
(:domain montezuma)
(:objects

INI LRD LCM LRU DOOR LLU LLD CHA - location
)
(:init

(CONNECTED INI CHA)
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(CONNECTED CHA LRU)
(CONNECTED LRU LRD)
(CONNECTED LRD LLD)
(CONNECTED LLD LLU)
(CONNECTED LLU LLD)
(CONNECTED LLD LRD)
(CONNECTED LRD LRU)
(CONNECTED LRU CHA)
(CONNECTED LRU CHA)
(CONNECTED CHA LCM)
(CONNECTED LCM DOOR)
(key-at LLU)
(at INI)

)
(:goal (and

(holding-key)
(at DOOR))

)
)

E.3 Montezuma’s revenge domain hyper-parameters for HplanPPO
• learning rate: 2.5e-4

• gae: 0.95

• clip: 0.1

• vf coeff: 1

• max episode length: 1024

• rollout length: 1024

• batch size: 64

• network dimension: CNN baed architecture as shown in (Minh, 2015).

• gamma: 0.99

• epochs: 4

• entropy coefficient: 0.01

• step cost: -0.01

• reward: +1
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