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ABSTRACT

Multi-view clustering aims to improve the final performance by taking advan-
tages of complementary and consistent information of all views. In real world,
data samples with partially available information are common and the issue re-
garding the clustering for incomplete multi-view data is inevitably raised. To deal
with the partial data with large scales, some fast clustering approaches for incom-
plete multi-view data have been presented. Despite the significant success, few
of these methods pay attention to learning anchors with high quality in a unified
framework for incomplete multi-view clustering, while ensuring the scalability
for large-scale incomplete datasets. In addition, most existing approaches based
on incomplete multi-view clustering ignore to build the relation between anchor
graph and similarity matrix in symmetric nonnegative matrix factorization and
then directly conduct graph partition based on the anchor graph to reduce the space
and time consumption. In this paper, we propose a novel fast incomplete multi-
view clustering method for the data with large scales, termed Efficient Incomplete
Multi-view clustering via flexible anchor Learning (EIML), where graph construc-
tion, anchor learning and graph partition are simultaneously integrated into a uni-
fied framework for efficient incomplete multi-view clustering. To be specific, we
learn a shared anchor graph to guarantee the consistency among multiple views
and employ a adaptive weight coefficient to balance the impact for each view.
The relation between anchor graph and similarity matrix in symmetric nonnega-
tive matrix factorization can also be built, i.e., each entry in the anchor graph can
characterize the similarity between the anchor and original data sample. We then
adopt an alternative algorithm for solving the formulated problem. Experiments
conducted on different datasets confirm the superiority of EIML compared with
other clustering methods for incomplete multi-view data. paragraph.

1 INTRODUCTION

In real application, data are usually represented with different features from multiple views. This
kind of data is usually named multi-view data and integrating the various information for clustering
has shown to be a critical task in the unsupervised learning field. By investigating the complementary
and diverse information among different views, a large number of clustering methods for multi-view
data have been given Zhang et al. (2021a); Kumar et al. (2011); Qin et al. (2022); Chen et al. (2022);
Zhao et al. (2023); Wang et al. (2023); Yu et al. (2023); Jia et al. (2023) in recent years. For instance,
Kumar et al. Kumar et al. (2011) guaranteed that different representations are able to agree with each
other by co-regularizing the clustering hypotheses. Ye et al. Ye et al. (2016) maximized the sum
of weighted similarities among multiple clusterings to study the underlying clustering. Nie et al.
Nie et al. (2017) simultaneously learned the local structure as well as performed semi-supervised
classification or clustering. Luo et al. Luo et al. (2018) studied specificity and consistency in the
representations from different views. Chen et al. Chen et al. (2020) jointly explored the affinity
matrix as well as the low-rank representation tensor. Zhou et al. Zhou et al. (2020) utilized the
predefined kernels to learn a consistent representation or a shared kernel and then achieved the
unified clustering results. The vital part of clustering for multi-view data is to study the consistency
of different views by learning a unified representation. Most existing multi-view clustering works
make the assumption that data samples from different views are available Zhao et al. (2017); Zhang
et al. (2021b).
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Figure 1: Framework of EIML. It jointly models graph construction, anchor learning and graph par-
tition in a unified framework for efficient incomplete multi-view clustering. To be specific, X1 and
X2 are incomplete multi-view datasets as input, Bp denotes the projection as the anchor guidance,
Ap is the indicator representation for the missing data, Z refers to the shared anchor graph, G and
F denote the centroid matrix and cluster assignment, respectively.

However, data samples in most applications often lack the information for some views Xu et al.
(2023; 2019); Qin et al. (2023); Lv et al. (2022). Then the approaches based on integrity have diffi-
culty in dealing with incomplete data from multiple views. In order to handle such problem, several
methods of incomplete multi-view clustering have been presented Zhang et al. (2020). We can con-
clude these methods into three strategies including graph construction, matrix factorization and deep
learning. The methods based on graph construction aim to produce a similarity matrix shared by dif-
ferent views. For instance, Liu et al. Liu et al. (2017) simultaneously learned a representation and
filled in the blank value. The methods based on matrix factorization make full use of L1 constraint
and nonnegative matrix factorization to learn a consensus representation Li et al. (2014). Shao et al.
Shao et al. (2015) integrated weighted matrix factorization and L2,1 regularization to obtain better
clustering performance. The methods based on deep learning use a deep neural network to recover
the missing data and the feature representation. As a representative, Lin et al. Lin et al. (2021)
employed contrastive learning for integrating data recovery and feature learning. However, most
existing methods easily suffer from the high computation and space cost, which inevitably restricts
their availability on the datasets with large scales.

To cope with the above issue, many methods for the data with large scales have been proposed.
Wang et al. Wang et al. (2011) built a constrained factor matrix for exploring the cluster structure.
Kang et al. Kang et al. (2020) employed K-means to obtain the anchors and then collocated them for
a unified representation. Li et al. Li et al. (2022) adopted the consistent learned anchors for handling
the clustering problems of incomplete multi-view data. Nie et al. Nie et al. (2020) simultaneously
performed clustering on column and row of the original dataset. Wang et al. Wang et al. (2022b)
used the guidance of consensus anchors to study the anchor graph shared by different views. Sun et
al. Sun et al. (2021) exploited the underlying distribution of the data to construct the anchor graph.
Among these existing methods, the approaches based on anchor have achieved attention due to the
scalability and efficiency. This kind of methods usually employs the original data and the generated
anchors to build the corresponding anchor graph, resulting in more satisfied clustering performance.
Despite great success, the above methods neglect learning high-quality anchors in a unified frame-
work for incomplete multi-view clustering, while ensuring the scalability for incomplete datasets
with large scales. In addition, few of the existing approaches based on incomplete multi-view clus-
tering pay attention to building the relation between anchor graph and similarity matrix in symmetric
nonnegative matrix factorization and then directly performing graph partition based on the anchor
graph for reducing the space and computation consumption.

In this paper, we propose a novel fast incomplete multi-view clustering method for the data with
large scales, termed Efficient Incomplete Multi-view clustering via flexible anchor Learning (EIML),
where graph construction, anchor learning and graph partition are simultaneously considered in a
unified framework for efficient incomplete multi-view clustering as Fig. 1. These three parts can
boost each other, which promotes the quality of the clustering and improves the efficiency for large
scale datasets. To be specific, we learn a shared anchor graph to guarantee the consistency among
multiple views and adopt a adaptive weight coefficient to balance the impact for each view. The
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relation between anchor graph and similarity matrix in symmetric nonnegative matrix factorization
can also be built, i.e., each entry in the anchor graph can describe the similarity between the anchor
and original data sample. In particular, we constrain the factor matrix to be a cluster indicator
representation by introducing the orthogonal constraint on the actual bases. Furthermore, we adopt
the alternative algorithm for solving the optimization problem.

As a summary, the proposed EIML has the main contributions in the following:

• We give a new insight to the community of incomplete multi-view clustering for large
scale datasets, i.e., graph construction, anchor learning and graph partition in efficient in-
complete multi-view clustering can boost each other, which are able to be integrated into
a problem. The combination of these three issues is the focus in our work. While most
existing work treat graph construction, anchor learning and graph partition as separated
problems in incomplete multi-view clustering for the datasets with large scales.

• We propose a novel fast incomplete multi-view clustering method for large scale data
termed as EIML, where graph construction, anchor learning and graph partition are simul-
taneously considered in a unified framework for efficient incomplete multi-view clustering.
The relation between anchor graph and similarity matrix in symmetric nonnegative matrix
factorization is also built, i.e., each entry in the anchor graph is able to characterize the
similarity between the anchor and original data sample.

• Based on the relation between anchor graph and similarity matrix, we constrain the factor
matrix with rigorous interpretation to be cluster indicator representation by introducing the
orthogonal constraint on the actual bases and use the alternative algorithm for solving the
formulated problem. Extensive experiments are performed on different datasets to demon-
strate the superiority of EIML in terms of effectiveness and efficiency.

2 EFFICIENT INCOMPLETE MULTI-VIEW CLUSTERING VIA FLEXIBLE
ANCHOR LEARNING

This section begins with introducing the motivation and formulation of the proposed EIML, then
moves on to the detailed optimization process for EIML. We lastly conduct the analysis about the
computation complexity to demonstrate the efficiency of EIML.

Motivation: For large-scale incomplete data clustering, reducing the redundancy of the data is the
key to increase efficiency. Some existing works denote each data sample with a linear combination of
the others and the global relation can be well exploited in this manner. However, the relatively high
storage and computation time produced in this way inevitably limit the scalability of incomplete
multi-view clustering for large-scale dataset. Actually, relatively less data samples are enough to
reconstruct the latent space. Therefore, selecting some data samples from the original dataset as
anchors or landmarks for reconstructing the relation structure is commonly used in the existing
works.

Nevertheless, some existing incomplete multi-view clustering approaches usually conduct strategies
based on heuristic sampling, where the anchor selection and graph construction are separated. Then
the graph is constructed after selecting the anchors for different views. In this manner, the comple-
mentary information among different views is not able to be well explored and further algorithm is
needed to obtain a shared graph. Afterwards, the clustering algorithm (spectral clustering) is usually
needed to achieve the final clustering results. This multiple-stage process significantly affects the
quality of the anchors. Besides, few of the existing methods pay attention to building the relation
between anchor and similarity matrix in symmetric nonnegative matrix factorization. As is known,
each entry of a similarity matrix can describe the similarity between data samples in the dataset.
Performing symmetric nonnegative matrix factorization for the similarity matrix can directly lead
to the final partition. Then building the relation between anchor and similarity matrix can take ad-
vantages of directly obtaining the final clustering results in incomplete multi-view clustering. How
to learn anchors with high quality in a unified framework and build the relation between anchor
graph and similarity matrix in symmetric nonnegative matrix factorization to ensure the scalabil-
ity on large-scale dataset for incomplete multi-view clustering remains a considerably challenging
issue.
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Formulation: Different from most existing works for incomplete multi-view clustering, we learn
anchors instead of selecting them based on the available data samples in the dataset. The proposed
EIML integrates graph construction, anchor learning and graph partition into a unified framework
for efficient incomplete multi-view clustering. Then the discriminative anchors are automatically
learned and the final partition can be achieved in this manner. Based on the assumption that multiple
views are sampled from a latent space, the anchors from multiple views are expected to be consistent
in this space. Given multi-view dataset {Xp}vp=1, we construct the projection Bp ∈ Rdp×m as the
consensus anchor guidance to integrate complementary information from different views into the
shared anchor graph Z ∈ Rm×n, where dp and m are the dimension of the data and the total
number of anchors for the p-th view, respectively. The indicator representation Ap ∈ {0, 1}n×np is
adopted to mark the unavailable data samples. The above process can be formulated as follows:

min
α,Z,{Bp}v

p=1

v∑
p=1

α2
p∥XpAp −BpZAp∥2F , s.t. αT 1 = 1, BT

p Bp = I, Z ≥ 0, ZT 1 = 1, (1)

where α2
p is the coefficient of each view. It can be learned based on the contribution to the shared

anchor graph. XpAp denotes the available data samples for the p-th view. Since the space complex-
ity of anchor graph Z is O(m×n), we can relate Z with similarity matrix in symmetric nonnegative
matrix factorization for directly obtaining the final partition. As is known, symmetric nonnegative
similarity matrix with the space complexity O(n× n) can be adopted to achieve the final clustering
results based on factorization. Each entry in the anchor graph Z describes the similarity between
data sample and anchor. Since the symmetric constraint on Z ∈ Rm×n are not guaranteed in factor-
ization with m ≪ n, we remove such constraint on anchor graph Z and this is the main difference
between anchor graph and similarity matrix in symmetric nonnegative matrix factorization. We then
introduce the centroid matrix G ∈ Rm×k and the cluster assignment F ∈ Rk×n with k being the
total number of clusters in the dataset as follows:

min
G,F

∥Z −GF∥2F , s.t. GTG = I, Fij ∈ {0, 1}, ∀j = 1, 2, · · · , n,
k∑

i=1

Fij = 1, (2)

where Fij = 0 if the j-th data sample is not belonged to the i-th cluster and 1 otherwise. Note
that imposing the orthogonal constraint on the actual bases can guide learning the factor matrix with
rigorous clustering interpretation. To combine the partition information into the unified model, we
formulate the total objective function as:

min
G,F,α,Z,{Bp}v

p=1

v∑
p=1

α2
p∥XpAp −BpZAp∥2F + λ∥Z −GF∥2F , s.t. GTG = I,

k∑
i=1

Fij = 1, Fij ∈ {0, 1}, ∀j = 1, 2, · · · , n, αT 1 = 1, BT
p Bp = I, Z ≥ 0, ZT 1 = 1,

(3)

where λ > 0 denotes the parameter for balancing different terms. Then graph construction, anchor
learning and graph partition are jointly integrated into a unified framework for incomplete multi-
view clustering in this manner, where these three parts can boost each other to achieve effective and
efficient clustering results for incomplete large-scale multi-view dataset.

Optimization: We then design an alternating algorithm for optimizing each variable in Eq. (3) by
fixing the others.

(1) Optimize {Bp}v
p=1: With other variables being fixed, the objective function for {Bp}vp=1 can

be rewritten as

min
{Bp}v

p=1

v∑
p=1

α2
p∥XpAp −BpZAp∥2F , s.t. BT

p Bp = I. (4)

We can remove the irrelevant items and transform Eq. (4) into the form as follows:

max
Bp

Tr(BpΛp), s.t. BT
p Bp = I, (5)

where Λp = (Xp⊗Hp)Z
T , ⊗ denotes the Hadamard product, Hp = 1dp

ap, ap = [ap,1, · · · , ap,n]T
and ap,j =

∑np

l=1 Ap,l,j . After conducting the singular value decomposition on Λp, the optimal

4
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solution of Bp can be derived as ΞmΨT
m, where Ξm and Ψm represent the matrices with the first m

singular vectors of Λp in the left and right, respectively.

(2) Optimize Z : With others being fixed, the objective for Z turns to solve the problem as:

min
Z

v∑
p=1

α2
p∥XpAp −BpZAp∥2F + λ∥Z −GF∥2F , s.t. Z ≥ 0, ZT 1 = 1. (6)

We then remove the irrelevant items and rewrite Eq. (6) as follows:

min
Z

v∑
p=1

α2
pTr(Z

TZ(Qp +
λ

α2
p

I)− 2XT
p BpZQp − 2

λ

α2
p

ZTGF ), s.t. Z ≥ 0, ZT 1 = 1, (7)

where Qp = ApA
T
p . Since zi can be denoted as a vector with zj,i being the j-th entry, we can solve

Eq. (7) by column as follows:
min
zi

∥zi − yi∥2F , s.t. zi ≥ 0, zTi 1 = 1, (8)

where yTi =
∑v

p=1 α
2
pHp,i,jX

T
p,:,iBp/λ+

∑v
p=1 α

2
pHp,i,j . We then rewrite the Lagrangian function

of Eq. (8) as:
L(zi, σi, γi) = ∥zi − yi∥2F − γT

i zi − σi(z
T
i 1− 1), (9)

where σi and γi correspond to Lagrangian multipliers. With KKT conditions, we have the equation:{
zi − yi − σi1− γi = 0

γi ⊗ zi = 0.
(10)

Combining the constraint zTi 1 = 1, we can obtain the equation as follows:

zi = max(yi + σi1, 0), σi =
1 + yTi 1

m
. (11)

(3) Optimize G: With other variables being fixed, the objective function for G is transformed into
the problem as follows:

min
G

λ∥Z −GF∥2F , s.t. GTG = I. (12)

The optimization for G can be written as
max
G

Tr(GTJ), s.t. GTG = I, (13)

where J = ZFT . Then the optimal solution for G is UJV
T
J with J = UJΣJV

T
J based on singular

value decomposition (SVD).

(4) OptimizeF : With other variables being fixed, the objective function for F can be formulated as
the minimization problem as:

min
F

λ∥Z −GF∥2F , s.t. Fij ∈ {0, 1}, ∀j = 1, 2, · · · , n,
k∑

i=1

Fij = 1, (14)

We then have the minimization problem as
min
F:,j

λ∥Z:,j −GF:,j∥2, s.t. F:,j ∈ {0, 1}k, ∥F:,j∥1 = 1. (15)

Then the optimal row can be achieved by
i∗ = argmin

i
∥S:,j −G:,i∥2. (16)

According to Eq. (16), we can find that the optimal cluster assignment is achieved by the cluster
centroid and the object.

(5) Optimize αv
p: With other variables being fixed, the objective function for αv

p is:

min
α

v∑
p=1

α2
pκp, s.t. αT 1 = 1, α ≥ 0, (17)

where κp = ∥XpAp−BpZAp∥2F . We can obtain the optimal α based on Cauchy-Schwarz inequality
as:

α =
δ∑v

p=1 δp
, (18)

where δ = [δ1, ..., δv] with δp = 1/κp.

5
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2.1 COMPLEXITY ANALYSIS

The computation burden of EIML consists of the optimization cost of each variable. To be specific,
the time complexity for optimizing Bp is O(m2d +mnd) at each iteration. Optimizing the weight
α of each view costs O(mnd). The time cost to learn the shared anchor graph Z is O(mnd). For
optimizing F , the time cost is O(mnk). The time cost to update G is O(mk2). Then the total time
complexity of the proposed EIML is O((m2d+mnd+mnk+mk2)t), where t denotes the number
of iterations for these parts. Due to n ≫ m and n ≫ k, the computation cost of EIML is nearly
linear to the size of the dataset O(n).

Algorithm 1: Algorithm of EIML
Input: Incomplete multi-view dataset {Xp}v

p=1, the total number of clusters k and the missing indicator {Hp}v
p=1.

Output: The final cluster assignment F .
Initialize: Initialize Z, {Bp}v

p=1 and {αp}v
p=1.

repeat
Update Z by solving the problem in Eq. (6);
Update {Bp}v

p=1 by solving the problem in Eq. (4);
Update G by solving the problem in Eq. (12);
Update F by solving the problem in Eq. (14);
Update α by solving the problem in Eq. (17);

until convergence;
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Figure 2: Parameter Study of m and λ on NGs in terms of four metrics.
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Figure 3: Parameter Study of m and λ on ORL in terms of four metrics.
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Figure 4: Clustering Performance in terms of ACC on datasets with different missing ratios.
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Table 1: Clustering Performance based on ACC (%) on datasets. “N/A ” denotes out of memory.

Dataset BSV MIC MKKM-IK DAIMC APMC PIC EEIMVC V 3 IMVC-CBG FIMVC-VIA Ours

ORL 24.30±0.50 37.60±1.50 59.90±2.00 68.00±2.30 65.50±1.60 69.00±1.50 73.20±2.40 67.00±1.30 69.50±2.00 76.30±2.70 78.84±0.50
NGs 41.20±2.00 21.20±0.50 80.20±0.00 89.50±0.05 89.40±0.05 82.00±0.20 77.90±0.15 79.90±0.40 88.90±0.15 89.70±0.05 91.40±0.40

WebKB 57.00±2.20 63.80±0.50 68.00±0.00 N/A 85.30±0.05 71.60±0.00 61.80±3.40 75.20±0.50 84.50±0.50 91.50±0.50 93.00±0.26
STL10 11.20±0.10 N/A 75.80±0.30 23.00±1.50 27.00±0.50 28.80±0.20 46.70±2.30 18.50±0.50 55.60±0.80 76.00±0.30 78.30±0.60
MNIST N/A N/A N/A 97.60±0.50 N/A N/A N/A N/A 98.20±0.05 98.75±0.30 98.90±0.00
Cifar100 N/A N/A N/A 89.68±0.50 N/A N/A N/A N/A 93.00±1.20 98.90±0.60 99.50±0.26

Table 2: Clustering Performance based on NMI (%) on datasets. “N/A ” denotes out of memory.

Dataset BSV MIC MKKM-IK DAIMC APMC PIC EEIMVC V 3 IMVC-CBG FIMVC-VIA Ours

ORL 48.52±0.80 56.50±0.80 76.20±1.00 83.00±1.10 80.30±0.80 83.20±0.50 85.40±1.30 81.00±0.50 81.20±1.50 88.00±1.30 90.15±0.60
NGs 20.20±1.30 2.30±0.50 63.10±0.10 73.40±0.05 73.41±0.20 65.60±0.10 57.20±0.20 59.00±0.40 73.00±0.05 75.50±0.05 77.00±0.18

WebKB 1.85±0.80 3.30±0.50 4.00±0.10 N/A 47.90±0.20 1.70±0.00 3.50±0.50 23.60±1.00 37.20±0.15 48.90±0.20 51.20±0.50
STL10 0.16±0.20 N/A 60.30±0.40 5.00±1.20 11.00±0.90 14.20±0.15 29.80±3.00 5.90±0.50 27.20±0.20 57.35±0.20 59.80±0.50
MNIST N/A N/A N/A 93.90±0.50 N/A N/A N/A N/A 94.90±0.10 96.20±0.30 97.30±0.10
Cifar100 N/A N/A N/A 98.20±0.20 N/A N/A N/A N/A 98.60±0.30 99.70±0.10 99.80±0.20
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Figure 5: Clustering Performance in terms of NMI on datasets with different missing ratios.
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Figure 6: Clustering Performance in terms of F1-score on datasets with different missing ratios.

3 EXPERIMENTS

In this section, we perform experiments to validate the effectiveness and efficiency of EIML on
several widely used multi-view datasets. Among these datasets, there are some large-scale datasets
for better verifying the clustering performance and running time of EIML.

3.1 DATASETS AND COMPARED METHODS

The experiments are conducted on several widely adopted datasets including news groups (NGs),
WebKB, ORL, STL10, MNIST and Cifar100. NGs has total three preprocessings including parti-
tioning around medoids, supervised mutual information and unsupervised mutual information. We-
bKB has two views. It is a dataset of web page including the content and citations collected from
different universities’ websites. ORL has total 40 objects. It consists of frontal images in ten sce-
narios. Different facial details and lighting settings of an object produce differences among data
samples. STL10 has different types of transport and animal images. Features of images in this
dataset are extracted based on three different ResNets as different views. MNIST contains total ten
numbers from 0 to 9. It is a handwritten dataset provided by NIST. Cifar100 has total three views
and 5000 tiny images. The images of this dataset are tagged with 100 labels.
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Table 3: Clustering Performance based on F1-score (%) on datasets. “N/A ” denotes out of memory.

Dataset BSV MIC MKKM-IK DAIMC APMC PIC EEIMVC V 3 IMVC-CBG FIMVC-VIA Ours

ORL 9.00±0.50 17.50±1.00 46.30±2.30 56.80±2.60 50.50±2.40 57.70±1.30 63.50±2.90 55.00±1.50 46.30±3.00 68.20±3.00 71.20±0.50
NGs 32.30±1.00 32.80±0.20 68.70±0.00 80.30±0.05 80.40±0.60 72.80±0.20 64.00±0.20 65.60±0.40 79.50±0.05 80.80±0.00 83.20±0.70

WebKB 60.50±1.50 62.00±0.50 64.60±0.30 N/A 85.00±0.05 73.60±0.00 62.80±0.20 71.90±0.40 83.00±0.07 88.70±0.05 90.50±0.05
STL10 11.70±0.05 N/A 57.80±0.30 13.20±1.80 18.60±1.20 21.40±0.10 29.90±2.00 17.05±0.50 34.60±0.07 59.90±0.00 62.50±0.50
MNIST N/A N/A N/A 95.50±0.30 N/A N/A N/A N/A 96.20±0.10 97.50±0.50 99.20±0.10
Cifar100 N/A N/A N/A 90.50±0.50 N/A N/A N/A N/A 91.90±0.50 99.00±0.50 99.60±0.20

Table 4: Clustering Performance based on Purity (%) on datasets. “N/A ” denotes out of memory.

Dataset BSV MIC MKKM-IK DAIMC APMC PIC EEIMVC V 3 IMVC-CBG FIMVC-VIA Ours

ORL 26.90±0.90 40.50±1.50 63.00±2.00 71.90±1.60 69.30±1.20 72.30±1.00 76.00±2.10 70.20±1.00 69.30±1.80 79.10±2.00 82.50±0.29
NGs 43.10±1.50 21.50±0.50 79.60±0.05 89.50±0.05 89.42±0.05 82.40±0.20 77.80±0.10 79.80±0.40 88.70±0.05 90.00±0.06 93.12±0.05

WebKB 78.20±0.20 78.24±0.60 78.40±0.05 N/A 90.15±0.08 78.20±0.40 78.18±0.30 91.70±3.00 84.60±0.05 91.60±0.20 94.10±0.20
STL10 11.30±0.05 N/A 75.80±0.30 23.20±1.80 27.60±1.20 29.30±0.15 46.90±2.00 18.60±0.50 55.60±0.08 76.00±0.20 78.90±0.55
MNIST N/A N/A N/A 97.50±0.30 N/A N/A N/A N/A 98.00±0.10 98.50±0.50 99.20±0.10
Cifar100 N/A N/A N/A 92.50±0.50 N/A N/A N/A N/A 94.90±0.50 99.00±0.50 99.55±0.20

We compare EIML with some representive incomplete multi-view clustering approaches in the fol-
lowing. BSV Ng et al. (2001) uses mean value filling to perform spectral clustering for each view
and then gives the best single view result. MIC Shao et al. (2015) learns latent subspaces from
different views and then performs optimization on a shared representation. MKKM-IK Ma et al.
(2021) simultaneously imputes the missing part and performs kernel K-means algorithm. DAIMIC
Hu & Chen (2018) deals with the problem of missing view by introducing a view-specific weight
representation and then aligns the basis representations. APMC Guo & Ye (2019) uses the presented
data samples from different views as anchors and achieves the final result by spectral clustering. PIC
Wang et al. (2019) pads the similarity matrix by solving the problem of missing view. EEIMVC
Liu et al. (2021) produces the base representations with low dimensions and then adopts a unified
framework to simultaneously impute these representations and optimize a shared representation fea-
ture. V 3H Fang et al. (2020) exploits the unique and consistent par among different incomplete
views, which is motivated by genetics. IMVC-CBG Wang et al. (2022a) adopts a scalable anchor
graph framework for the problem of incomplete multi-view clustering. FIMVC-VIA Liu et al.
(2022) learns view-specific anchors and builds a consensus anchor graph shared by different views
for incomplete multi-view clustering.

In the experiment, we use four metrics to evaluate the experimental results, which include accuracy
(ACC), NMI, F1-score and Purity. We repeat each algorithm for total 20 times and then report the
mean and standard deviation of the results. The parameters for the compared methods of incomplete
multi-view clustering are set as their recommended ones. We run all experiments on AMD Ryzen 5
Six-Core Processor 3.60 GHz.

3.2 PARAMETER SELECTION

There are total two parameters appeared in EIML, including the trade-off parameter λ and the
number of anchors m. We then perform experiments on different datasets to study how these
two parameters influence the final clustering performance. We set λ and m in the range of
[0.001, 0.1, 1, 10, 100, 1000] and [k, 2k, 3k, 5k, 7k], respectively. Here, k corresponds to the total
number of clusters in dataset. According to Figs. 2-3, we find that better performance is achieved
when λ = 1 under the same m on different datasets. Besides, the clustering result of EIML is rela-
tively stable over different parameter values on these datasets, which shows that EIML is generally
robust to the trade-off parameter λ. It can also be observed that different number of anchors m has
relatively little influence on the clustering performance under the same λ for these datasets.

3.3 EXPERIMENTAL RESULTS

We list the detailed clustering results of EIML and the compared approaches on different datasets
in terms of four metrics in Tables 1-4. Note that N/A is adopted to indicate that the method suffers
from the error due to out of memory. We also compare EIML with IMVC-CBG and FIMVC-VIA
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Table 5: Running time of all methods on different datasets. “N/A ” denotes out of memory.

Dataset BSV MIC MKKM-IK DAIMC APMC PIC EEIMVC V 3 IMVC-CBG FIMVC-VIA Ours

ORL 0.15 425.00 0.50 1200.00 0.50 0.30 0.55 90.00 3.00 1.70 0.30
NGs 0.05 145.00 0.50 0.20 0.28 0.25 0.15 14.50 1.50 0.30 0.25

WebKB 0.15 340.50 3.20 N/A 0.28 1.20 0.22 32.00 0.65 0.28 0.24
STL10 66.90 N/A 1666.00 590.00 72.00 3350.00 68.50 45290.00 18.50 6.20 5.50
MNIST N/A N/A N/A 5600.20 N/A N/A N/A N/A 552.00 20.20 18.40
Cifar100 N/A N/A N/A 25200.00 N/A N/A N/A N/A 815.00 47.00 35.00

Table 6: Ablation study based on separated or unified manner

Metrics Manner ORL NGs WebKB STL10 MNIST Cifar100

ACC Separated manner 70.60±0.20 82.45±0.30 82.00±0.70 71.40±0.55 84.60±0.00 90.40±0.45
Unified manner 78.84±0.50 91.40±0.40 93.00±0.26 78.30±0.60 98.90±0.00 99.50±0.26

NMI Separated manner 75.20±0.15 70.39±0.05 44.60±0.78 48.20±0.27 92.00±0.70 91.30±0.09
Unified manner 90.15±0.60 77.00±0.18 51.20±0.50 59.80±0.50 97.30±0.10 99.80±0.20

F1-score Separated manner 62.49±1.00 76.20±0.30 80.20±0.60 54.90±0.15 90.50±0.90 90.49±0.55
Unified manner 71.20±0.50 83.20±0.70 90.50±0.05 62.50±0.50 99.20±0.10 99.60±0.20

Purity Separated manner 70.85±0.39 84.20±0.64 82.70±0.20 69.40±0.90 88.50±0.05 82.40±0.19
Unified manner 82.50±0.29 93.12±0.05 94.10±0.20 78.90±0.55 99.20±0.10 99.55±0.20

under different missing ratios on several datasets under different metrics. According to Tables 1-4
and Figs. 4-7, we draw the following conclusions:

. The proposed EIML can provide better performance than other compared methods for in-
complete multi-view clustering in terms of different metrics. For instance, EIML gains a
better clustering performance of 9.84% than PIC in terms of ACC on ORL, which shows
that combining graph construction, anchor learning and graph partition in a unified frame-
work of incomplete multi-view clustering is able to boost each other and result in effective
clustering results.

. Compared with other methods for incomplete multi-view clustering, EIML shows better
clustering performance with different missing ratios on several datasets under four metrics,
which shows that the learned anchors for representing all data samples are relatively in-
formative for these datasets and methods based on kernel or graph do not show the same
satisfied performance.

. EILML produces more satisfied clustering performance than FIMVC-VIA on different
datasets, showing that using the unified framework integrated by graph construction, an-
chor learning and graph partition can help achieving better cluster assignment matrix and
this matrix can directly result in the final results.

0 0.2 0.4 0.6 0.8

Missing ratio

50

55

60

65

70

75

80

85

P
u

ri
ty

IMVC-CBG

FIMVC-VIA

Ours

(a) ORL

0 0.2 0.4 0.6 0.8

Missing ratio

70

75

80

85

90

95

P
u

ri
ty

IMVC-CBG

FIMVC-VIA

Ours

(b) NGs

0 0.2 0.4 0.6 0.8

Missing ratio

80

85

90

95

P
u

ri
ty

IMVC-CBG

FIMVC-VIA

Ours

(c) WebKB

0 0.2 0.4 0.6 0.8

Missing ratio

40

50

60

70

80

P
u

ri
ty

IMVC-CBG

FIMVC-VIA

Ours

(d) STL10

0 0.2 0.4 0.6 0.8

Missing ratio

90

92

94

96

98

100

P
u

ri
ty

IMVC-CBG

FIMVC-VIA

Ours

(e) Cifar100

Figure 7: Clustering Performance in terms of Purity on datasets with different missing ratios.

3.4 RUNNING TIME

In this part, we show the running time of EIML and the compared approaches on different benchmark
datasets. Based on Table 5, we have the observations as follows:

. Our EIML needs less running time than other methods for incomplete multi-view clustering
on different datasets in terms of ACC, which indicates its efficiency for computation cost.
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Figure 8: Convergence curve on different datasets. (a) ORL. (b) NGs. (c) WebKB.

Some other methods for comparison suffer from the memory issue on MNIST and Cifar100
based on the running time, which further shows the efficiency of our EIML.

. Some compared methods are able to consume less running time on some small dataset,
i.e., EEIMVC uses less computation cost than our EIML on some datasets. However,
these methods do not perform as well as ours when running on large-scale datasets. It can
be explained by the fact that using a unified framework integrated by graph construction,
anchor learning and graph partition can improve the efficiency for incomplete multi-view
clustering, especially on the datasets with large scales .

. The dataset with larger dimensions tends to need more running time when these datasets
are close in the size, i.e, IMVC-CBG needs more running time on Cifar100 than MNIST
and the latter dataset has smaller dimension than the former dataset. As the size of dataset
increases, our EIML and the compared methods usually consume more running time on
different datasets.

3.5 ABLATION STUDY

In this section, we perform ablation study to validate the superiority of adopting a unified framework
integrated by graph construction, anchor learning and graph partition. In comparative experiments,
we first learn anchors and construct the graph to obtain informative representation. Then the graph
partition is isolated from the above two processes in the designed experiment. According to Table
6, we can find that the clustering performance of the proposed EIML significantly outperforms than
the case in separated manner, demonstrating the necessarity of using a unified framework integrated
by graph construction, anchor learning and graph partition to directly achieve the final assignment.

3.6 CONVERGENCE ANALYSIS

We conduct convergence analysis of EIML on different datasets by showing the evolution process
of the objective function with iterations in terms of ACC. According to Fig. 8, we observe that
EIML monotonically decreases with iterations and tends to converge in about some iterations on
these datasets, which demonstrates the convergence of EIML.

4 CONCLUSION

we propose EIML in this work for efficient incomplete multi-view clustering. It simultaneously
considers graph construction, anchor learning and graph partition in a unified framework, in which
these parts boost each other for improving the effectiveness and efficiency for datasets with large
scales. To be specific, a shared anchor graph for guaranteeing the consistency among multiple views
is learned and the adaptive weight coefficient is adopted to balance the impact for each view. We
then adopt the alternative algorithm to solve the optimization problem. Extensive experiments on
several benchmark datasets show the effectiveness and efficiency of EIML under different metrics.
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