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ABSTRACT

Probabilistic forecasting of multivariate time series is challenging due to non-
stationarity, inter-variable dependencies, and distribution shifts. While recent dif-
fusion and flow matching models have shown promise, they often ignore informa-
tive priors such as conditional means and covariances. In this work, we propose
Conditionally Whitened Generative Models (CW-Gen), a framework that incorpo-
rates prior information through conditional whitening. Theoretically, we establish
sufficient conditions under which replacing the traditional terminal distribution
of diffusion models, namely the standard multivariate normal, with a multivari-
ate normal distribution parameterized by estimators of the conditional mean and
covariance improves sample quality. Guided by this analysis, we design a novel
Joint Mean-Covariance Estimator (JMCE) that simultaneously learns the condi-
tional mean and sliding-window covariance. Building on JMCE, we introduce
Conditionally Whitened Diffusion Models (CW-Diff) and extend them to Con-
ditionally Whitened Flow Matching (CW-Flow). Experiments on five real-world
datasets with six state-of-the-art generative models demonstrate that CW-Gen con-
sistently enhances predictive performance, capturing non-stationary dynamics and
inter-variable correlations more effectively than prior-free approaches. Empirical
results further demonstrate that CW-Gen can effectively mitigate the effects of
distribution shift.

1 INTRODUCTION

Time series analysis has a long history, with classical approaches such as ARIMA, state-space
models, and vector autoregressions (VAR) (Box & Jenkins, 1976; Durbin & Koopman, 2012;
Lütkepohl, 2007). Although these methods have been widely applied, they often struggle with
high-dimensionality and complex data structures that arise in modern applications. More recently,
neural architectures have demonstrated superior predictive accuracy, such as recurrent neural net-
works (RNN), Long Short-Term Memory (LSTM), and Transformers (Sherstinsky, 2020; Hochre-
iter & Schmidhuber, 1997; Vaswani et al., 2017). However, these neural models primarily focus on
forecasting the conditional mean of future sequences given historical observations, while providing
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little to uncertainty quantification. These limitations have motivated the development of probabilis-
tic forecasting, which seeks to model not only point predictions but also the associated uncertainty.

Multivariate time series probabilistic forecasting has recently emerged as a key methodology for
quantifying predictive uncertainty, enabling informed decision-making in numerous real-world ap-
plications in diverse domains such as finance, healthcare, environmental science, and transportation
(Lim & Zohren, 2021). Formally, the task involves learning the probability distribution PX|C of a
future time series X0 ∈ Rd×Tf of discrete time conditioned on its corresponding historical obser-
vations C ∈ Rd×Th , where the integers Tf and Th denote the lengths of future and historical time
series, respectively, and d represents the dimensionality of each time step. However, this task still
remains highly challenging, primarily due to (i) non-stationary characteristics, manifested through
long-term trends, seasonal effects, and heteroscedasticity (Li et al., 2024; Ye et al., 2025); (ii) com-
plex inter-variable dependency structures (Yuan & Qiao, 2024); (iii) inherent data uncertainty, such
as short-term fluctuations (Ye et al., 2025); and (iv) potential distribution shifts between training and
testing data (Kim et al., 2022).

In response to these challenges, recent advances in generative learning, especially diffusion mod-
els, focus on accurately estimating the conditional distribution PX|C. TimeGrad employs a RNN to
encode historical observations and generates forecasts autoregressively, but suffers from cumulative
errors and slow computation (Rasul et al., 2021). CSDI uses a 2D-Transformer for imputation and
forecasting (Tashiro et al., 2021), while SSSD employs a Structured State Space Model to reduce
computational cost and emphasize temporal dependence (Alcaraz & Strodthoff, 2023). Neverthe-
less, CSDI, SSSD, and TimeGrad all struggle with long-term forecasting (Shen & Kwok, 2023).
Diffusion-TS leverages a transformer to decompose time series into trend, seasonal, and residual
components for generation, whereas FlowTS accelerates generation using rectified flow (Yuan &
Qiao, 2024; Hu et al., 2025).

Although the aforementioned generative models have achieved promising performance, they ignore
informative priors. Such priors, derived from historical observations or auxiliary models, can sub-
stantially improve conditional generative modeling. To the best of our knowledge, CARD is the
first model to incorporate prior information into conditional diffusion models (Han et al., 2022). It
pretrains a regressor to estimate the conditional mean E [X0|C] and integrates this regressor into the
diffusion process, thereby enhancing conditional generation. In time series forecasting, regressing
the conditional mean and incorporating it into diffusion models as a prior has become a common
practice, as it alleviates the difficulty of modeling non-stationary distributions. TimeDiff adopts a
linear regressor to capture short-term patterns and employs a future mixup strategy during training
to mitigate boundary disharmony (Shen & Kwok, 2023). However, its linear design limits the ability
to capture complex trends and fluctuations. TMDM addresses this limitation by integrating a non-
linear regressor into the variational inference framework, enabling joint training of the regressor and
the diffusion model (Li et al., 2024). The regressor for E [X0|C] (hereafter referred to as the mean
regressor) can capture trends, seasonality, and fluctuations but is vulnerable to heteroscedasticity.
Building on this line, NsDiff addresses this by introducing two pretrained models: a mean regressor
and a variance regressor, the latter estimating the conditional variance of each variable within a slid-
ing window (Ye et al., 2025). By incorporating both regressors into the diffusion process, NsDiff
models heteroscedasticity more effectively. Despite these innovations, the method still suffers from
certain limitations, particularly the overly complex reverse process and the neglect of correlations
among variables. A detailed discussion of these limitations is provided in Appendix A.1. Beyond
diffusion models, S2DBM employs a diffusion bridge variant and incorporates the mean regressor in
the same manner as CARD (Yang et al., 2024), which limits its ability to handle heteroscedasticity.
TsFlow uses Gaussian Processes (GPs) as both the mean and variance regressors (Kollovieh et al.,
2025), but its design is restricted to univariate forecasting with short horizons and inherits the typical
drawbacks of GPs, including kernel sensitivity and cubic computational cost.

Building on the preceding literature, it is well established that carefully designed priors can sub-
stantially enhance generative models. Yet several key questions remain unresolved: How exactly do
priors contribute to these improvements, and how accurate must the mean and variance regressors
be to provide tangible benefits? How can such regressors be effectively trained, and are there theo-
retical guarantees supporting their impact? Most existing approaches incorporate mean and variance
regressors into diffusion models by following the designs of CARD and DDPM (Han et al., 2022;
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Ho et al., 2020). This raises a further question: is this mechanism redundant or inefficient, and could
it be simplified within more flexible diffusion frameworks?

Motivated by these questions, we introduce the Conditional Whitened Generative Models (CW-
Gen). Our main contributions are:

• We develop a unified framework for conditional generation, CW-Gen, with two instantiations:
the Conditional Whitened Diffusion Model (CW-Diff) and the Conditional Whitened Flow
Matching (CW-Flow). Several prior methods (Han et al., 2022; Li et al., 2024; Ye et al., 2025) can
be viewed as special cases of this framework. Furthermore, CW-Gen allows seamless integration
with diverse diffusion models.

• We provide theoretical analysis that establishes sufficient conditions under which CW-Gen im-
proves sample quality, as stated in Theorem 1 and Theorem 2 in Appendix C.

• Motivated by Theorems 1 and 2, we propose a novel joint estimation procedure for the condi-
tional mean and sliding-window covariance of time series. Empirically, it achieves high accuracy
while effectively controlling covariance eigenvalues, ensuring stability and robustness in genera-
tive modeling.

• We integrate CW-Gen with six state-of-the-art generative models and evaluate them on five real-
world datasets. Empirical results show consistent improvements in capturing non-stationarity,
inter-variable dependencies, and overall sample quality, while also mitigating distribution shift.

2 PRELIMINARIES

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

Most of the diffusion models discussed in Section 1 follow the DDPM framework (Ho et al., 2020),
which we review below in a general conditional setting. Let (X0, C) be a random vector with the
joint distribution PX,C , where X0 ∈ Rdx and C ∈ Rdc . The (conditional) DDPM aims to learn the
conditional distribution PX|C and generate samples that match this distribution through a forward
and a reverse process. In the forward process, Gaussian noises are gradually added into X0 by a
stochastic differential equation (SDE):

dXτ = − 1
2βτXτdτ +

√
βτdWτ , τ ∈ [0, 1], X0 ∼ PX|C ,

where βτ > 0 and Wτ is a Brownian motion in Rdx . We use τ for the time of diffusion throughout
this paper, while t is the index for time series. From the properties of Ornstein–Uhlenbeck-process
(OU-process), we derive the marginal distribution of Xτ :

Xτ
d
= ατX0 + στ ϵ, ϵ ∼ N(0, Idx),

where ατ := exp
{
−
∫ τ
0
βsds/2

}
, σ2

τ := 1− α2
τ , d= denotes equality in distribution, and Idx is the

dx-dimensional identity matrix. By construction of βτ , the integral
∫ 1

0
βsds is sufficiently large, so

the distribution of X1 (the terminal distribution) is well-approximated by N(0, Idx). In the reverse

process, a standard Gaussian noise
←
X1 is gradually denoised by an SDE:

d
←
Xτ =

[
− 1

2βτ
←
Xτ − βτ∇x log pτ (

←
Xτ |C)

]
dτ +

√
βτd

←
W τ , (1)

where τ starts from τ = 1 and ends at τ = τmin, with τmin being an early stopping time close

to 0, and
←
W τ is a Brownian motion. In (1), pτ (·|C) and ∇x log pτ (·|C) denote the conditional

density and score function of Xτ given C, respectively. Since the conditional score function is
intractable, Ho et al. (2020) and Song et al. (2021) proposed approximating it with a neural network
sθ parameterized by θ, trained by minimizing:

E(X0,C),τ,ϵ ∥sθ (ατX0 + στ ϵ, C, τ) + ϵ/στ∥2 ,

where τ ∼ U(0, 1] and ϵ ∼ N(0, Idx). Finally, substituting ∇x log pτ (
←
Xτ |C) in (1) with

sθ(
←
Xτ , C, τ) yields the reverse process:

d
←
Xτ =

[
− 1

2βτ
←
Xτ − βτsθ(

←
Xτ , C, τ)

]
dτ +

√
βτd

←
W τ , τ ∈ [τmin, 1].
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2.2 FLOW MATCHING

Unlike diffusion models based on SDEs, Flow Matching (FM) employs an ordinary differential
equation (ODE) to connect Gaussian noise ϵ ∼ N(0, Idx) with the data X0 ∼ PX|C (Lipman et al.,
2023):

dXτ = (ϵ−X0)dτ, τ ∈ [0, 1]. (2)
A neural network vψ , parameterized by ψ, learns the vector field of (2) by minimizing:

E(X0,C),τ,ϵ∥ϵ−X0 − vψ(X0 + τ(ϵ−X0), C, τ)∥2.
Given the learned vector field, FM generates samples by solving the ODE:

d
←
Xτ = −vψ(

←
Xτ , C, τ)dτ

from τ = 1 to τ = τmin, where
←
X1 is Gaussian noise. The final state

←
Xτmin is the generated sample.

3 THEORY AND JOINT MEAN–COVARIANCE ESTIMATOR (JMCE)

3.1 THEORETICAL FOUNDATION

A key question addressed in this subsection is how modifying the terminal distribution N(0, Idx)
can enhance generation quality. The total variation distance between the generated distribution of
a diffusion model and the true distribution grows as the convergence error of the forward process
increases, where the latter involves the Kullback–Leibler divergence (KLD) between PX|C and the
terminal distribution DKL

(
PX|C ∥N(0, Idx)

)
as a factor in the error (Oko et al., 2023; Chen et al.,

2023; Fu et al., 2024). Hence, a smaller value of this KLD leads to samples that better match PX|C .
This insight motivates replacing the standard terminal distribution N(0, Idx) with N(µX|C ,ΣX|C),
where µX|C and ΣX|C are the true conditional mean and covariance of X given C. Since these
quantities are unknown in practice, they must be estimated by µ̂X|C and Σ̂X|C . The advantage of
this replacement can then be measured by the reduction in

DKL

(
PX|C ∥N(µ̂X|C , Σ̂X|C)

)
relative to DKL

(
PX|C ∥N(0, Idx)

)
.

This raises the fundamental question of when replacing the terminal distribution N(0, Idx) with
N(µ̂X|C , Σ̂X|C) improves generation quality, which the following theorem addresses.

Theorem 1 Let PX|C denote the true conditional distribution ofX ∈ Rdx givenC, with conditional
mean µX|C and positive-definite conditional covariance ΣX|C . Define Q0 := N(0, Idx) and Q̂ :=

N(µ̂X|C , Σ̂X|C), where µ̂X|C and Σ̂X|C are estimators of µX|C and ΣX|C , respectively. Let λ̂X|C,i
denote the i-th eigenvalues of Σ̂X|C , for i = 1, 2, . . . , dx. A sufficient condition ensuring that
DKL(PX|C ∥ Q̂) ≤ DKL(PX|C ∥Q0) is:(

min
i∈{1,...,dx}

λ̂X|C,i

)−1 (
∥µX|C − µ̂X|C∥22 + ∥ΣX|C − Σ̂X|C∥N

)
+
√
dx ∥ΣX|C − Σ̂X|C∥F ≤ ∥µX|C∥22.

(3)

where
∥∥∥ΣX|C − Σ̂X|C

∥∥∥
N

=
∑dx
i=1 s̃i and s̃i is the i-th singular value of ΣX|C − Σ̂X|C .

Theorem 1 states that when (3) holds, replacing Q0 with Q̂ reduces the KLD between PX|C and the
terminal distribution, thereby improving generation quality. Importantly, it provides a foundation for
designing loss functions to estimate µX|C and ΣX|C, as detailed in Equation (4) below. We emphasize
that the estimators of µX|C and ΣX|C are obtained by minimizing the sample counterpart of the left-
hand side of (3), as detailed in the next subsection.

In order for (3) to hold, it is necessary to obtain accurate estimators of both µX|C and ΣX|C .
The estimation accuracy of ΣX|C is measured in terms of both the Frobenius norm and the nu-
clear norm, with the latter characterized by

∑dx
i=1 s̃i. We employ a Cholesky decomposition
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and introduce a penalty term into the loss function (4) to enforce that the smallest eigenvalue,
mini∈{1,...,dx}{λ̂X|C,i}, remains strictly positive and bounded away from zero, as detailed in the
next subsection. Furthermore, in non-stationary time series, µX|C often exhibits sharp variations
and thus deviates from zero. Consequently, (3) is more likely to hold when accurate estimators of
both µX|C and ΣX|C are available. Conversely, (3) may fail to hold in unfavorable regimes—for
example, when the signal magnitude ∥µX|C∥22 is small, the estimators of µX|C and ΣX|C are in-
accurate, or the inverse of the smallest eigenvalue becomes large. In such cases, incorporating the
corresponding prior models can potentially degrade performance. In the next subsection, we design
a novel loss function to mitigate this risk. A detailed discussion can be found in Appendix D.

We further identify the scenarios in which our proposed replacement outperforms TMDM and Ns-
Diff (Li et al., 2024; Ye et al., 2025), as formally established in Theorem 2 in Appendix C.

3.2 JOINT MEAN–COVARIANCE ESTIMATOR (JMCE)

Theorem 1 establishes that accurate estimators of both the conditional mean and covariance can
improve the quality of samples generated by diffusion models. Guided by the sufficient conditions
(3), we design a novel Joint Mean–Covariance Estimator (JMCE).

In terms of time series, directly estimating the true conditional covariance is extremely challenging,
as it is often highly complex and non-smooth, which makes consistent estimation difficult. Instead,
the sliding-window covariance is preferable, as it not only offers more accurate approximations but
also improves computational efficiency (Iwakura et al., 2008; Chen et al., 2024). Motivated by this,
we estimate the sliding-window conditional covariance, rather than the true conditional covariance.
Let Σ̃X0,t ∈ Rd×d denote the sliding-window covariance at time t, and let Σ̂X0,t|C ∈ Rd×d be an
estimator of Σ̃X0,t for t = 1, . . . , Tf . We design a non-autoregressive model to simultaneously
output:

µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)

with Σ̂X0,t|C := L̂t|CL̂
⊤
t|C, for t = 1, . . . , Tf and all L̂t|C are lower-triangle matrices. This de-

sign, inspired by Cholesky decomposition, guarantees that all Σ̂X0,t|C are positive semi-definite
(PSD). The detailed algorithm of JMCE(C) can be found in Appendix B. In our implementa-
tion, we use a Non-stationary Transformer (Liu et al., 2022) as the backbone of JMCE. Based
on (3) in Theorem 1, we construct the trainning loss in JMCE by combining three compo-
nents: L2 := E(X0,C)

∥∥X0 − µ̂X|C
∥∥2
2
,LF := E(X0,C)

∑Tf

t=1

∥∥∥Σ̃X0,t − Σ̂X0,t|C

∥∥∥
F
, and LSVD :=

E(X0,C)

∑Tf

t=1

∥∥∥Σ̃X0,t − Σ̂X0,t|C

∥∥∥
N

. The smallest eigenvalues of Σ̂X0,t|C have a crucial impact on
the magnitude of the left-hand side of inequality (3). We thus introduce a regularization term that
enforces the smallest eigenvalues of Σ̂X0,t|C to remain strictly positive and bounded away from zero,
thereby avoiding numerical instability and rank deficiency. Let λmin be a tunable hyperparameter.
The penalty term is defined as:

Rλmin

(
Σ̂X0,t|C

)
:=

d∑
i=1

ReLU
(
λmin − λ̂Σ̂X0,t|C,i

)
,

where λ̂Σ̂X0,t|C,i
(i = 1, . . . , d) denote the eigenvalues of Σ̂X0,t|C, and ReLU(x) = max{x, 0}. It is

indicated that any eigenvalue smaller than λmin will be penalized. The overall training loss in JMCE
for the conditional mean and covariance is defined as:

LJMCE = L2 + LSVD + λmin
√
d · TfLF + wEigen ·

Tf∑
t=1

Rλmin

(
Σ̂X0,t|C

)
, (4)

where wEigen is a hyperparameter that controls the strength of the penalty. Empirically, we choose
wEigen ∼ O(λ−1min). It is important to note that (4) is specifically designed to ensure that (3) holds.

The algorithm of the joint estimator can be found in Appendix B. JMCE excels at estimating the
conditional mean and covariance while controlling the minimal eigenvalue. We conduct a substantial
ablation study to show the advantages, and discuss them in Appendix E.
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4 CONDITIONAL WHITENED GENERATIVE MODELS (CW-GEN)

In this section, we propose Conditionally whitened diffusion models (CW-Diff) and Conditionally
whitened flow matching (CW-Flow). Together, we call them Conditionally Whitened Generative
Models (CW-Gen).

4.1 CONDITIONALLY WHITENED DIFFUSION MODELS (CW-DIFF)

Our JMCE outputs µ̂X|C ∈ Rd×Tf and Σ̂X0|C := [Σ̂X0,1|C, . . . , Σ̂X0,Tf |C] ∈ Rd×d×Tf . Since all
Σ̂X0,t|C are positive definite, we can compute Σ̂kX0|C := [Σ̂kX0,1|C, . . . , Σ̂

k
X0,Tf |C] ∈ Rd×d×Tf for

k ∈ {−0.5, 0.5} via eigen-decomposition. Let ϵ := [ϵ1, . . . , ϵTf
] ∈ Rd×Tf , where each column

ϵt ∼ N(0, Id) and the columns ϵ1, . . . , ϵTf
are mutually independent. We define the tensor operation

Σ̂0.5
X0|C ◦ ϵ := [Σ̂0.5

X0,1|C · ϵ1, . . . , Σ̂0.5
X0,Tf |C · ϵTf

] ∈ Rd×Tf . (5)

Accordingly, we say that a tensor follows N (µ̂X|C, Σ̂X0|C) if it has the same distribution as Σ̂0.5
X0|C ◦

ϵ+ µ̂X|C. With this formulation, we define the forward process:

d
(
Xτ − µ̂X|C

)
= − 1

2βτ
(
Xτ − µ̂X|C

)
dτ +

√
βτ · Σ̂0.5

X0|C ◦ dWτ , τ ∈ [0, 1], X0 ∼ PX|C, (6)

where Wτ is a Brownian motion in Rd×Tf . By the property of the OU-process, the terminal dis-
tribution of X1 is close to N (µ̂X|C, Σ̂X0|C). A formal proof of the terminal distribution of (6) is
provided in Appendix C. Furthermore, the following SDE is equivalent to (6):

d Σ̂−0.5X0|C ◦
(
Xτ − µ̂X|C

)
= − 1

2βτ · Σ̂
−0.5
X0|C ◦

(
Xτ − µ̂X|C

)
dτ +

√
βτdWτ , τ ∈ [0, 1],

which implies that the diffusion processes can be directly performed on XCW
0 := Σ̂−0.5X0|C◦

(
X0−µ̂X|C

)
.

We call this operation conditional whitening (CW). Subtracting µ̂X|C removes the non-stationary
trends and seasonal effects in X0, while being operated by Σ̂−0.5X0|C addresses heteroscedasticity and
mitigates linear correlations among features. The CW operation thus renders the data as stationary as
possible and enables diffusion models to more effectively capture temporal and higher-order depen-
dencies. Moreover, since it is a full-rank linear transformation, CW is entirely invertible. Building
on these properties, we now formally write the forward process of the Conditional Whitened Diffu-
sion Model (CW-Diff) as follows:

dXCW
τ = − 1

2βτXCW
τ dτ +

√
βτdWτ , τ ∈ [0, 1], (7)

with the initial state XCW
0 satisfying

(
Σ̂0.5

X0|C ◦ XCW
0 + µ̂X|C

)
∼ PX|C. Correspondingly, we use a

neural network sCW
θ to learn the score function of XCW

τ given C by minimizing the following loss
function:

E(XCW
0 ,C),τ,ϵ∥sCW

θ

(
ατXCW

0 + στϵ,C, τ
)
+ ϵ/στ∥2.

Let
←
XCW

1 ∼ N (0, Id×d×Tf
), where Id×d×Tf

:= [Id, . . . , Id] ∈ Rd×d×Tf . Then, the reverse process
of CW-Diff is given by:

d
←
XCW
τ =

[
− 1

2βτ
←
XCW
τ − βτs

CW
θ (
←
XCW
τ ,C, τ)

]
dτ +

√
βτd

←
Wτ ,

where τ decreases from 1 to τmin, with τmin being an early stopping time close to 0. Finally, we
obtain

←
Xτmin = Σ̂0.5

X0|C ◦
←
XCW
τmin

+ µ̂X|C

by inverting the original CW operation.
←
Xτmin is the final sample generated by CW-Diff approximat-

ing PX|C.

The forward process in Equation (7) is consistent with that of DDPM. Furthermore, CW-Diff is
readily extendable to TMDM, NsDiff, and other diffusion models. This extension is accomplished
by replacing the initial variable X0 with its CW-transformed form XCW

0 . Within this framework,
the task of learning the mean and sliding-window covariance in XCW

0 may be interpreted as a form
of residual learning, analogous to the mechanisms used in GBDT and XGBoost (Chen & Guestrin,
2016).
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Conditionally Whitened Diffusion Model (CW-Diff)

Conditionally Whitened Flow Matching (CW-Flow)Train JMCE

𝐗0

𝐂

Figure 1: The flow chat of JMCE, CW-Diff and CW-Flow.

4.2 CONDITIONALLY WHITENED FLOW MATCHING (CW-FLOW)

In CW-Diff, the inverse matrices of Σ̂X0,t|C are computed via eigen-decomposition, which requires
a computational complexity of O(d3Tf ). To reduce this cost and improve efficiency, we transition
to the FM framework introduced in Section 2.2, where the estimated mean and covariance can be
incorporated in a more efficient way.

The Conditional Whitened Flow Matching (CW-Flow) model employs an ODE to connect X0 ∼
PX|C with a noise ϵCW ∼ N (µ̂X|C, Σ̂X0|C):

dXCW
τ =

(
ϵCW − X0

)
dτ, τ ∈ [0, 1].

Accordingly, the CW-Flow network vCW
ψ is trained by minimizing:

E(X0,C),τ,ϵCW

∥∥ϵCW − X0 − vCW
ψ (X0 + τ(ϵCW − X0),C, τ)

∥∥2 .
CW-Flow then generates samples by solving the following ODE:

d
←
XCW
τ = −vCW

ψ (
←
XCW
τ ,C, τ)dτ,

←
XCW

1 ∼ N (µ̂X|C, Σ̂X0|C),

where τ starts from τ = 1 and ends at τ = τmin.
←
XCW
τmin

is the final sample generated by CW-
Flow approximating PX|C. Compared with CW-Diff, CW-Flow does not require computing inverse

matrices or reversing the CW operation of the final sample
←
XCW
τmin

. The algorithms of CW-Diff and
CW-Flow are provided in Appendix B. The flow chart of CW-Diff and CW-Flow can be found in
Figure 1.

5 EXPERIMENTS

Datasets: We evaluate CW-Gen on five representative time series datasets—ETTh1, ETTh2, ILI,
Weather, and Solar Energy—spanning various domains and temporal resolutions. Further details
of the datasets can be found in Appendix E.1. For the ETT datasets, the training/validation/test
split follows a 3:1:1 ratio, while for the other datasets we adopt a 7:1:2 ratio. Table 1 presents the
dataset properties and the win rate of CW-Gen, computed as the proportion of cases where CW-Gen
outperforms competing methods, based on the results in Tables 2-6.

Baselines: We evaluate five diffusion models and one flow matching model for time series forecast-
ing (denoted as Raw), and further integrate all six generative models with our CW-Diff and CW-Flow
approaches (denoted as CW). Specifically, the baselines include TimeDiff (Shen & Kwok, 2023),
SSSD (Alcaraz & Strodthoff, 2023), Diffusion-TS (Yuan & Qiao, 2024), TMDM (Li et al., 2024),
NsDiff (Li et al., 2024), and FlowTS (Hu et al., 2025). Among them, TimeDiff, TMDM, and NsDiff
are prior-informed methods.
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Metrics: We evaluate the predictive performance with six metrics: Continuous Ranked Probability
Score (CRPS) (Matheson & Winkler, 1976), Quantile Interval Coverage Error (QICE) (Han et al.,
2022), Probabilistic Correlation score (ProbCorr), Conditional Context Fréchet Inception Distance
(Conditional FID) (Yue et al., 2022), Probabilistic mean square error (ProbMSE), and Probabilistic
mean average error (ProbMAE). Formal definitions can be found in Appendix E.2. We also provide
the results for ProbMSE and ProbMAE in Tables 7 and 8 in Appendix E.3.

Settings: During evaluation, X0 and C refers to non-overlapping subsequences drawn from the test
set, where C denotes the historical observations and X0 the corresponding future series. We adopt
the widely used long-term forecasting setting with a historical length of 168 and a future horizon
of 192 (Shen & Kwok, 2023; Ye et al., 2025). Inspired by NsDiff, The sliding-window covariance
is computed with a window size of 95, except for ILI, where it is set to 15 (Ye et al., 2025). In
the JMCE loss (4), λmin is fixed at 0.1, and the penalty weight wEigen is set to 50. All diffusion
models follow their default diffusion schedules, and the number of sampling steps is set to 50 (20
for NsDiff). We train JMCE and CW-Gen on the training set, select the model checkpoint with the
lowest loss on validation set, and then perform evaluation on the test set. Each model generates
100 samples for evaluation. On each dataset, we train every model 10 times with different random
seeds and report the mean and one standard deviation of the four metrics. We also conduct extensive
ablation studies on JMCE, which can be found in Appendix E.4. The other parameters are provided
in Appendix F.

Results: As shown in Tables 2-6, CW-Gen reduces CRPS and QICE in a substantial number of
cases, indicating improvements in predictive accuracy. Moreover, it consistently lowers ProbCorr
and Conditional FID, with only minor exceptions, showing that CW-Gen enables models to better
capture feature correlations in time series and to enhance overall sample quality. Moreover, as shown
in Tables 7 and 8, our CW-Gen method improves the ProbMSE metric in 76.67% and the ProbMAE
metric in 80.00% of the evaluated model–dataset combinations. This demonstrates that, in addi-
tion to enhancing probabilistic forecasting ability, CW-Gen also strengthens the point forecasting
performance of the models.

Illustrations: In Figure 2, we illustrate representative results of representative generative models
combined with CW-Gen. Among them, Diffusion-TS serves as a typical diffusion model, NsDiff
is a diffusion based model augmented by priors, and FlowTS is based on flow matching. Compar-
ing NsDiff and CW-Gen with the other models, we observe that generative models without priors
tend to generate sample with shifted means and variances, which we attribute to distribution shifts
between the training and test sets. This observation highlights the benefit of incorporating priors
in probabilistic time series forecasting, as they can effectively mitigate such distribution shifts. In
contrast, CW-Diffusion-TS and CW-FlowTS, which leverage JMCE as priors, exhibit no noticeable
mean shift compared to Diffusion-TS and FlowTS. Moreover, the individual samples generated by
CW-Diffusion-TS and CW-FlowTS achieve finer resolution and better capture the peaks in Dimen-
sion 1 than their non-CW counterparts. Compared with NsDiff, CW-NsDiff produces more accurate
sample means and smaller standard deviations in Dimension 1, which contributes to more reliable
uncertainty quantification. More illustrations can be found in Figure 3 in Appendix E.

Table 1: Dataset descriptions, including dimensions d, frequencies, total length of time series, length
of historical observations Th, length of future time series Tf , and win rates of our CW methods. Win
rate refers to the proportion that our CW method outperforms original method.

Dataset Dimension Frequency Total length Th Tf Win rate of CW-Gen

ETTh1 7 1 Hour 14,400 168 192 22/24 ≈ 91.67%
ETTh2 7 1 Hour 14,400 168 192 22/24 ≈ 91.67%
ILI 7 1 Week 966 52 36 20/24 ≈ 83.33%
Weather 21 10 Minutes 52,696 168 192 22/24 ≈ 91.67%
Solar Energy 137 10 Minutes 52,560 168 192 19/24 ≈ 79.17%

8



Published as a conference paper at ICLR 2026

Table 2: Metrics for models trained on original ETTh1 (Raw) and conditionally whitened ETTh1
(CW). Each experiment is repeated by 10 times, and standard deviations are provided in brackets.
The better results between Raw and CW are underlined. The win rates of every metric of Raw and
CW-Gen models are also provided.

Model CRPS (↓) QICE (↓) ProbCorr (↓) Conditional FID (↓)
(ETTh1) Raw CW Raw CW Raw CW Raw CW

TimeDiff 0.787 0.505 9.038 8.821 0.320 0.243 19.008 6.788
(2023) (0.051) (0.040) (0.946) (1.916) (0.012) (0.027) (6.088) (5.425)

SSSD 0.836 0.524 11.624 4.838 0.326 0.238 40.887 9.265
(2023) (0.153) (0.085) (1.312) (1.921) (0.032) (0.024) (17.601) (5.003)

Diffusion 0.626 0.445 3.002 2.963 0.401 0.266 81.563 7.686
-TS (2024) (0.027) (0.024) (0.838) (0.887) (0.017) (0.012) (60.905) (2.751)

TMDM 0.472 0.440 3.360 4.555 0.230 0.213 9.931 3.831
(2024) (0.031) (0.001) (1.055) (0.855) (0.014) (0.001) (4.439) (0.431)

NsDiff 0.407 0.431 1.792 1.249 0.214 0.206 35.261 8.820
(2025) (0.032) (0.029) (0.682) (0.228) (0.014) (0.010) (7.785) (1.541)

FlowTS 0.724 0.488 8.820 8.817 0.354 0.254 39.793 4.865
(2025) (0.135) (0.020) (2.631) (0.460) (0.060) (0.021) (24.853) (0.563)

Win rate 16.7% 83.3% 16.7% 83.3% 0.0% 100.0% 0.0% 100.0%
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Figure 2: Comparison of Diffusion-TS, NsDiff, FlowTS, and their CW variants on ETTh1 across
Dimensions 1 and 2. True ETTh1 means the real time series from ETTh1 dataset. Sample mean and
standrad deviation refer to the mean and standrad deviation of 100 samples generated by generative
models. One sample refers to a randomly chosen instance among the 100 generated samples.
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6 CONCLUSION

In this work, we establish for the first time a sufficient condition that reduces the KL divergence
between a conditional distribution and the terminal distribution of a diffusion model. By tightening
this KL divergence, we obtain a sharper bound on the total variation distance between the generated
distribution of the diffusion model and the true distribution. Building on this result, we design the
Joint Mean–Covariance Estimator (JMCE), which jointly estimates the conditional mean and the
conditional sliding-window covariance while controlling the behavior of the minimal eigenvalue.
We then use JMCE as a data-driven prior to conditionally whiten the original data, and train diffusion
models on the whitened space, yielding the Conditionally Whitened Diffusion Model (CW-Diff).
Similarly, by modifying the terminal distribution of flow matching, we introduce the Conditionally
Whitened Flow Model (CW-Flow). Together, we refer to these as CW-Gen. We evaluate CW-
Gen on five real-world time series datasets using six generative models and four evaluation metrics.
Experimental results demonstrate that CW-Gen consistently improves model performance in most
cases.

7 REPRODUCIBILITY STATEMENT

Our proposed CW-Gen models are presented in Section 4, and the corresponding algorithms are
provided in Section B. Theorem 1 can be found in Section 3, with its proof given in Appendix C.2.
In addition, we introduce Theorem 2 in Appendix C, and its proof is provided in Appendix C.3.
Detailed descriptions of the datasets, models, and evaluation metrics used in our experiments are
included in Section 5, Appendix E and Appendix F. The code is available at: https://github.
com/Yanfeng-Yang-0316/Conditionally_whitened_generative_models.
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A RELATED WORKS

A.1 TRANSFORMER-MODULATED DIFFUSION MODELS (TMDM) AND NON-STATIONARY
DIFFUSION MODELS (NSDIFF)

Han et al. (2022) incorporated an estimator of the conditional mean into the DDPM framework,
naming this approach CARD. TMDM later adopted this framework for time series forecasting (Li
et al., 2024). Recall µ̂X|C ∈ Rd×Tf is an estimator of X0 given C. The discrete forward process of
TMDM is:

X[n] =
√
1− β[n]X[n−1] +

(
1−

√
1− β[n]

)
µ̂X|C +

√
β[n]ϵ[n], n = 1, . . . , N,

where X[0] ∼ PX|C and ϵ[n]
i.i.d∼ N (0, Id×d×Tf

) for all n. N is a sufficient large index. By
incorporating µ̂X|C into the forward process, the model is able to more effectively handle the non-
stationary trends and seasonal effects.

To further mitigate heteroscedasticity, Ye et al. (2025) proposed NsDiff, which introduces estimators
for the sliding-window variance of the time series. Let σ̃2

X0,t
∈ Rd×d denote the diagonal sliding-

variance matrix at time t. We then define σ̃kX0
:=

[
σ̃kX0,1

, . . . , σ̃kX0,Tf

]
∈ Rd×d×Tf , for k ∈ {1, 2}.

We also introduce σ̂2
X0|C :=

[
σ̂2
X0,1|C, . . . , σ̂

2
X0,Tf |C

]
∈ Rd×d×Tf as an estimator of σ̃kX0

. The
discrete forward processes of NsDiff is:

X[n] =
√
1− β[n]X[n−1]+

(
1−

√
1− β[n]

)
µ̂X|C+

[
β[n]σ̃

2
X0

+ β2
[n]

(
σ̂2

X0|C − σ̃2
X0

)]0.5
◦ϵ[n]. (8)

In the reverse process, σ̃2
X0

is unknown; NsDiff estimates it by exploiting both X[n] and σ̂2
X0|C, rather

than relying solely on σ̂2
X0|C. This yields a more accurate estimate of σ̃2

X0
and improves performance.

However, NsDiff also has several limitations. First, as shown in Equation (8), the sliding-variance
plays a crucial role, yet its estimator is not effectively exploited. In the reverse process, estimation
is carried out by solving d univariate quadratic equations, rendering the sampling procedure unnec-
essarily complicated. When solving these equations, failures may occur. To mitigate this issue, the
sampling steps of reverse process should be set to a relatively small value (e.g., 20) in order to re-
duce the probability of failure. Second, although NsDiff incorporates the diagonal sliding-variance
σ̃2

X0
, it does not include the covariance, thereby ignoring correlations in multivariate time series.

Third, in the reverse process of NsDiff, it begins with a Gaussian noise with variance σ̂2
X0|C. This is

inconsistent with the terminal distribution whose variance is σ̃2
X0

.

B ALGORITHMS OF JMCE, CW-DIFF AND CW-FLOW

The training procedure of JMCE is summarized in Algorithm 1. The training and sampling routines
of CW-Diff are presented in Algorithms 2 and 3, respectively. Similarly, the corresponding training
and sampling procedures for CW-Flow are provided in Algorithms 4 and 5.

C THEOREMS AND PROOFS

C.1 THEOREMS

Theorem 2 Define the Bregman divergence (Harandi et al., 2014) between two matri-
ces M1,M2 of the same dimension as B(M1,M2) = DKL(N(0,M1) ∥N(0,M2)) =
0.5

(
Tr(M−12 M1 − Idx)− log

∣∣M−12 M1

∣∣). Let MX|C ∈ Rdx×dx be a positive-definite matrix and

M̂X|C be a positive-definite estimator of MX|C . Let M̃X|C ∈
{
M̂X|C ,MX|C

}
. A sufficient condi-

tion for the inequality DKL(PX|C ∥ Q̂) ≤ DKL(PX|C ∥N(µ̂X|C , M̃X|C)) to hold is∥∥µX|C − µ̂X|C
∥∥2
2

(∥∥∥Σ̂−1X|C − Σ−1X|C

∥∥∥
2
+

∥∥∥Σ−1X|C∥∥∥
2
+

∥∥∥M̃−1X|C∥∥∥
2

)
+ 2B(ΣX|C , Σ̂X|C) + dx

∥∥∥M̃−1X|C −M−1X|C

∥∥∥
2

∥∥ΣX|C +MX|C
∥∥
2
≤ 2B(ΣX|C ,MX|C)

(9)
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Algorithm 1 Joint Mean-Covariance Estimator (JMCE)
Input: (X0,C) in training set, hyperparameters λmin, wEigen.
Output: A joint mean-covariance estimator JMCE(·).

1: Calculate sliding-window covariances Σ̃X0,1, . . . , Σ̃X0,Tf
of X0

2: Initialize a non-autoregressive model JMCE(·)
3: while not converge do
4: Calculate µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)
5: for t = 1, . . . , Tf do
6: Let Σ̂X0,t|C = L̂t|CL̂

⊤
t|C

7: Perform eigen-decomposition of Σ̂X0,t|C and obtain eigenvalues λ̂Σ̂X0,t|C,i
, i = 1, . . . , d

8: Perform singular value decomposition (SVD) of Σ̃X0,t−Σ̂X0,t|C and obtain singular values
s̃i,t, i = 1, . . . , d

9: end for
10: Calculate L2 =

∥∥X0 − µ̂X|C
∥∥2, LF =

∑Tf

t=1

∥∥∥Σ̃X0,t − Σ̂X0,t|C

∥∥∥
F
, LSVD =

∑Tf

t=1

∑d
i=1 s̃i,t,

11: Rλmin =
∑Tf

t=1

∑d
i=1 ReLU(λmin − λ̂Σ̂X0,t|C,i

)

12: Calculate LJMCE = L2 + LSVD + λmin

√
d · TfLF + wEigenRλmin

13: Calculate ∇LJMCE and update the parameters of JMCE(·)
14: end while
15: return JMCE(·)

Algorithm 2 Train a Conditionally Whitened Diffusion model (CW-Diff)
Input: (X0,C) in training set, diffusion schedule βτ , τ ∈ [0, 1], a JMCE model JMCE(·).
Output: A trained neural network sCW

θ .

1: Calculate µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)

2: Calculate Σ̂X0|C = [L̂1|CL̂
⊤
1|C, . . . , L̂Tf |CL̂

⊤
Tf |C]

3: Calculate Σ̂−0.5X0|C = [(L̂1|CL̂
⊤
1|C)
−0.5, . . . , (L̂Tf |CL̂

⊤
Tf |C)

−0.5]

4: Calculate XCW
0 = Σ̂−0.5X0|C ◦ (X0 − µ̂X|C)

5: Initialize a neural network sCW
θ

6: while not converge do
7: Draw τ ∼ U(0, 1]
8: Draw ϵ ∼ N (0, Id×d×Tf

)

9: Calculate ατ = exp
{
−
∫ τ
0
βsds/2

}
and σ2

τ = 1− α2
τ

10: Calculate LDiff = ∥sCW
θ

(
ατXCW

0 + στϵ,C, τ
)
+ ϵ/στ∥2

11: Calculate ∇θLDiff and update the parameters of sCW
θ

12: end while
13: return sCW

θ

Theorem 2 characterizes when replacing the terminal distribution N(µ̂X|C , M̃X|C) with Q̂ leads to
a reduction in the KLD between PX|C and the terminal distribution. This reduction occurs when

• The estimator µ̂X|C closely approximates the true conditional mean µX|C .

• M̂X|C is a reliable estimator of MX|C , with the eigenvalues of MX|C bounded away from
both zero and infinity.

• The conditional covariance matrix ΣX|C has eigenvalues bounded away from zero and
infinity, deviates from MX|C , and is better approximated by a well-estimated Σ̂X|C than
by M̃X|C . This deviation is formally measured by the Bregman divergence.

Setting M̃X|C = MX|C = Idx and excluding M̂X|C in Theorem 2 delineates the scenarios where
our proposed replacement improves upon TMDM (Li et al., 2024). Similarly, takingMX|C = σ2

X|C ,
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Algorithm 3 Sampling from a trained CW-Diff model
Input: Historical observation C in test set, diffusion schedule βτ , τ ∈ [0, 1], a JMCE model
JMCE(·), a trained neural network sCW

θ , an early stopping time τmin.
Output: Samples approximate PX|C.

1: Calculate µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)

2: Calculate Σ̂X0|C = [L̂1|CL̂
⊤
1|C, . . . , L̂Tf |CL̂

⊤
Tf |C]

3: Calculate Σ̂0.5
X0|C = [(L̂1|CL̂

⊤
1|C)

0.5, . . . , (L̂Tf |CL̂
⊤
Tf |C)

0.5]

4: Draw
←
XCW

1 ∼ N (0, Id×d×Tf
)

5: Solve SDE d
←
XCW
τ =

[
− 1

2βτ
←
XCW
τ − βτs

CW
θ (
←
XCW
τ ,C, τ)

]
dτ +

√
βτd

←
Wτ from τ = 1 to τ =

τmin, and get
←
XCW
τmin

6: return Σ̂0.5
X0|C ◦

←
XCW
τmin

+ µ̂X|C

Algorithm 4 Train a Conditionally Whitened Flow Matching (CW-Flow)
Input: (X0,C) in training set, a JMCE model JMCE(·).
Output: A trained neural network vCW

ψ .

1: Calculate µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)

2: Calculate Σ̂X0|C = [L̂1|CL̂
⊤
1|C, . . . , L̂Tf |CL̂

⊤
Tf |C]

3: Calculate Σ̂0.5
X0|C = [(L̂1|CL̂

⊤
1|C)

0.5, . . . , (L̂Tf |CL̂
⊤
Tf |C)

0.5]

4: Initialize a neural network vCW
ψ

5: while not converge do
6: Draw τ ∼ U(0, 1]
7: Draw ϵCW ∼ N (0, Id×d×Tf

)

8: Calculate ϵCW = Σ̂0.5
X0|C ◦ ϵCW + µ̂X|C

9: Calculate LFlow = ∥ϵCW − X0 − vCW
ψ (X0 + τ(ϵCW − X0),C, τ)∥2

10: Calculate ∇ψLFlow and update the parameters of vCW
ψ

11: end while
12: return vCW

ψ

Algorithm 5 Sampling from a trained CW-Flow model
Input: Historical observation C in test set, a JMCE model JMCE(·), a trained neural network vCW

ψ ,
an early stopping time τmin.
Output: Samples approximate PX|C.

1: Calculate µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)

2: Calculate Σ̂X0|C = [L̂1|CL̂
⊤
1|C, . . . , L̂Tf |CL̂

⊤
Tf |C]

3: Calculate Σ̂0.5
X0|C = [(L̂1|CL̂

⊤
1|C)

0.5, . . . , (L̂Tf |CL̂
⊤
Tf |C)

0.5]

4: Draw
←
XCW

1 ∼ N (0, Id×d×Tf
)

5: Calculate
←
XCW

1 = Σ̂0.5
X0|C ◦

←
XCW

1 + µ̂X|C

6: Solve ODE d
←
XCW
τ = −vCW

ψ (
←
XCW
τ ,C, τ)dτ from τ = 1 to τ = τmin, and get

←
XCW
τmin

7: return
←
XCW
τmin

the matrix that contains only the main diagonal elements of ΣX|C , and M̃X|C = M̂X|C = σ̂2
X|C , a

positive-definite diagonal estimator of σ2
X|C , identifies cases where our method provides advantages

over NsDiff (Ye et al., 2025). In practice, ΣX|C rarely coincides with Idx or σ2
X|C , particularly in
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time series data, where non-stationary dynamics (Li et al., 2024; Ye et al., 2025) and inter-variable
dependencies (Yuan & Qiao, 2024) induce systematic departures from Idx or σ2

X|C .

C.2 THE PROOF OF THEOREM 1

In this section, we demonstrate how to establish the sufficient conditions for DKL(PX|C ∥ Q̂) ≤
DKL(PX|C ∥Q0). This sufficient condition is fundamentally based on the following lemma.

Lemma 1 (Cardoso, 2003) Let PX|C be a conditional distribution of X ∈ Rdx given C, with
conditional mean µX|C and conditional covariance ΣX|C . For any Gaussian distribution Q =
N(µ,Σ), DKL(PX|C ∥Q) is given by:

DKL

(
PX|C ∥Q

)
= DKL

(
PX|C ∥N

(
µX|C ,ΣX|C

))
+DKL

(
N

(
µX|C ,ΣX|C

)
∥Q

)
. (10)

This is a Pythagorean theorem for KLD. It tells us that the closest distribution to PX|C within
the Gaussian family is Q∗ := N(µX|C ,ΣX|C). Note that PX|C is not necessarily Gaussian.
This also lays the foundation for our subsequent theoretical analysis. With (10), we can rewrite
2
[
DKL(PX|C ∥ Q̂)−DKL(PX|C ∥Q0)

]
as:

2
[
DKL(PX|C ∥ Q̂)−DKL(PX|C ∥Q0)

]
= 2

[
DKL(Q∗ ∥ Q̂)−DKL(Q∗ ∥Q0)

]
=

∥∥∥Σ̂−0.5X|C
(
µX|C − µ̂X|C

)∥∥∥2
2
−

∥∥µX|C∥∥22 (a)

+ log
∣∣∣Σ̂X|C∣∣∣+Tr

(
Σ̂−1X|CΣX|C

)
− Tr

(
ΣX|C

)
. (b)

As a result, 2
[
DKL(PX|C ∥ Q̂)−DKL(PX|C ∥Q0)

]
is decomposed into two parts: (a) and (b). In

the following, we bound (a) and (b) separately. First, for (a), we have:∥∥∥Σ̂−0.5X|C
(
µX|C − µ̂X|C

)∥∥∥2
2
−

∥∥µX|C∥∥22
≤

∥∥∥Σ̂−0.5X|C

∥∥∥2
2

∥∥µX|C − µ̂X|C
∥∥2
2
−
∥∥µX|C∥∥22

≤
(

max
i=1,...,dx

{λ̂−0.5X|C,i}
)2 ∥∥µX|C − µ̂X|C

∥∥2
2
−

∥∥µX|C∥∥22
=

(
min

i=1,...,dx
{λ̂X|C,i}

)−1 ∥∥µX|C − µ̂X|C
∥∥2
2
−
∥∥µX|C∥∥22 .

Then, we derive an upper bound of (b):

log
∣∣∣Σ̂X|C∣∣∣+Tr

(
Σ̂−1X|CΣX|C

)
− Tr

(
ΣX|C

)
= log

∣∣∣Σ̂X|C∣∣∣+Tr (Idx)− Tr (Idx) + Tr
(
Σ̂−1X|CΣX|C

)
− Tr

(
ΣX|C

)
=

dx∑
i=1

(
1 + log λ̂X|C,i

)
− Tr

(
ΣX|C

)
+Tr

[
Σ̂−1X|C

(
ΣX|C − Σ̂X|C

)]
≤ Tr

(
Σ̂X|C − ΣX|C

)
+Tr

[
Σ̂−1X|C

(
ΣX|C − Σ̂X|C

)]
≤ Tr

[
Idx

(
Σ̂X|C − ΣX|C

)]
+

dx∑
i=1

λ̂−1X|C,(dx−i+1) · s̃(i)

≤ ∥Idx∥F ·
∥∥∥Σ̂X|C − ΣX|C

∥∥∥
F
+ max
i=1,...,dx

{λ̂−1X|C,i}
dx∑
i=1

s̃i

=
√
dx

∥∥∥Σ̂X|C − ΣX|C

∥∥∥
F
+

(
min

i=1,...,dx
{λ̂X|C,i}

)−1 dx∑
i=1

s̃i,
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where the first inequality comes from the bound 1 + log x ≤ x for all x > 0, the second inequality
applies Von Neumann’s trace inequality (Mirsky, 1975), and the third inequality uses the inequality
Tr (AB) ≤ ∥A∥F ∥B∥F , which holds for any multiplicable matrices A and B.

Then, we derive:

2
[
DKL(PX|C ∥ Q̂)−DKL(PX|C ∥Q0)

]
(11)

≤
(

min
i=1,...,dx

{λ̂X|C,i}
)−1 [∥∥µX|C − µ̂X|C

∥∥2
2
+

dx∑
i=1

s̃i

]
+

√
dx

∥∥∥ΣX|C − Σ̂X|C

∥∥∥
F
−

∥∥µX|C∥∥22 ,
which implies that as long as the right-hand side of (11) is non-positive (or equivalently, (3) is true),
we can have:

DKL(PX|C ∥ Q̂) ≤ DKL(PX|C ∥Q0).

□

C.3 THE PROOF OF THEOREM 2

By (10), we have

2
[
DKL(PX|C ∥ Q̂)−DKL(PX|C ∥N(µ̂X|C , M̃X|C))

]
= 2

[
DKL(Q∗ ∥ Q̂)−DKL(Q∗ ∥N(µ̂X|C , M̃X|C))

]
= Tr

(
Σ̂−1X|CΣX|C − Idx

)
+
(
µX|C − µ̂X|C

)⊤
Σ̂−1X|C

(
µX|C − µ̂X|C

)
− log

∣∣∣Σ̂−1X|CΣX|C∣∣∣− Tr
((
M̃−1X|C −M−1X|C

)
ΣX|C

)
− Tr

(
M−1X|CΣX|C − Idx

)
−
(
µX|C − µ̂X|C

)⊤
M̃−1X|C

(
µX|C − µ̂X|C

)
+ log

∣∣∣M̃−1X|CMX|C

∣∣∣+ log
∣∣∣M−1X|CΣX|C∣∣∣

≤
(
µX|C − µ̂X|C

)⊤ (
Σ̂−1X|C − M̃−1X|C

) (
µX|C − µ̂X|C

)
+ 2B(ΣX|C , Σ̂X|C)

+
∥∥∥M̃−1X|C −M−1X|C

∥∥∥
F

∥∥ΣX|C +MX|C
∥∥
F
− 2B(ΣX|C ,MX|C)

≤
∥∥µX|C − µ̂X|C

∥∥2
2

(∥∥∥Σ̂−1X|C − Σ−1X|C

∥∥∥
2
+

∥∥∥Σ−1X|C∥∥∥
2
+
∥∥∥M̃−1X|C∥∥∥

2

)
+ 2B(ΣX|CΣ̂X|C)

+ dx

∥∥∥M̃−1X|C −M−1X|C

∥∥∥
2

∥∥ΣX|C +MX|C
∥∥
2
− 2B(ΣX|C ,MX|C),

where the first inequality follows from the matrix inequality log |M | ≤ Tr(M − Idx), which holds
when all eigenvalues of M are positive real numbers. This implies that as long as (9) is true, we can
have:

DKL(PX|C ∥ Q̂) ≤ DKL(PX|C ∥N(µ̂X|C , M̃X|C)).

□

C.4 THE TERMINAL DISTRIBUTION OF (6)

In this section, we prove the terminal distribution of (6) is N (µ̂X|C, Σ̂X0|C). First, let Yτ :=

exp{
∫ τ
0
βsds/2} · (Xτ − µ̂X|C), then we can derive:

dYτ = d(Xτ − µ̂X|C) · e
∫ τ
0
βsds/2 + (Xτ − µ̂X|C) · de

∫ τ
0
βsds/2

=
[
− 1

2βτ
(
Xτ − µ̂X|C

)
dτ +

√
βτ · Σ̂0.5

X0|C ◦ dWτ

]
· e

∫ τ
0
βsds/2

+ (Xτ − µ̂X|C) · e
∫ τ
0
βsds/2 · 1

2βτdτ

= e
∫ τ
0
βsds/2 ·

√
βτ · Σ̂0.5

X0|C ◦ dWτ .
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Integrate dYτ from 0 to τ1 and we get:∫ τ1

0

dYτ = Yτ1 − Y0 =

∫ τ1

0

e
∫ τ
0
βsds/2 ·

√
βτ · Σ̂0.5

X0|C ◦ dWτ .

Via the property of Ito integral, we can derive:

Yτ1 − Y0 ∼ N
(
0,

∫ τ1

0

e
∫ τ
0
βsds · βτdτ · Σ̂X0|C

)
,

or equivalently:

e
∫ τ
0
βsds/2 · (Xτ − µ̂X|C) ∼ N

(
X0 − µ̂X|C, (e

∫ τ
0
βsds − 1) · Σ̂X0|C

)
.

Finally, we can derive:

Xτ ∼ N
(
µ̂X|C + e−

∫ τ
0
βsds/2(X0 − µ̂X|C), (1− e−

∫ τ
0
βsds) · Σ̂X0|C

)
.

Recall exp{
∫ τ
0
βsds} becomes sufficiently large when τ → 1, then we can derive that the terminal

distribution of Xτ is N (µ̂X|C, Σ̂X0|C).

D WHEN CAN INCORPORATING A PRIOR MODEL FAIL?

In this section, we discuss regimes in which Condition (3) may fail; in these regimes, incorporating
a prior model may degrade performance. We also describe how we mitigate these risks.

First, if µX|C = 0, then the right-hand side in (3), ∥µX|C∥22, equals zero, while the left-hand side
of (3) is dominated by estimation error. In this case, even small estimation errors can cause the
inequality in (3) to fail. In practice, however, for non-stationary time series, µX|C often exhibits
sharp variations and thus deviates from zero, so this scenario is unlikely to occur.

Second, When mini∈{1,...,dx} λ̂X|C,i is very small, the factor
(
mini∈{1,...,dx} λ̂X|C,i

)−1
in (3) can

blow up, so even modest deviations ∥µX|C − µ̂X|C∥22 and ∥ΣX|C − Σ̂X|C∥N may violate the con-
dition. This motivates the explicit eigenvalue regularization in our JMCE loss in (4), which enforces
strictly positive eigenvalues bounded away from zero.

Finally, Condition (3) explicitly involves the estimation errors ∥µX|C− µ̂X|C∥22, ∥ΣX|C−Σ̂X|C∥N ,
and ∥ΣX|C− Σ̂X|C∥F . If (µ̂X|C , Σ̂X|C) are not good estimators of (µX|C ,ΣX|C), then these terms
on the left-hand side of (3) become large and may easily exceed ∥µX|C∥22 on the right-hand side.
To mitigate this, we deliberately design JMCE as a joint conditional mean and covariance estimator
whose loss directly mirrors the left-hand side of (3). The experiments in Section E.4 show that JMCE
achieves small estimation error, providing empirical evidence that our estimator yields sufficiently
accurate (µ̂X|C , Σ̂X|C).

E EXTRA EXPERIMENTS

In this section, we first introduce the datasets and evaluation metrics, then report the performance
of CW-Gen versus the Raw method on the ETTh2, ILI, Weather, and Solar Energy datasets in
Tables 3–6. In addition, we present the ProbMSE and ProbMAE of our CW-Gen against the Raw
models in Table 7 and 8. We also conduct ablation studies to show the effectiveness of our JMCE,
as introduced in Section 3.2.

E.1 DATASETS

We selected five widely used public real-world time series datasets for our experiments. ETT (Elec-
tricity Transformer Temperature) dataset (Zhou et al., 2021) contains hourly oil temperature and
related external features (e.g., load, ambient temperature) collected from electricity transformers
between July 2016 and July 2018. We use two subsets, (1) ETTh1 and (2) ETTh2, which cover
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seven transformer-related factors. (3) ILI (Influenza-Like Illness): Collects the weekly proportion
of patients with ILI among all patients, which is reported weekly by the Centers for Disease Control
and Prevention of the United States from 2002 to 2021. (4) Weather: A meteorological time series
dataset collected from 21 weather stations in Germany, containing meteorological variables such as
temperature, humidity, and wind speed recorded every 10 minutes. (5) Solar Energy: Records solar
power generation data from 137 photovoltaic plants in Alabama, sampled every 10 minutes during
2006. The basic statistical information of these datasets are summarized in Table 1.

E.2 METRICS

We employ six metrics to evaluate probabilistic time series forecasting. Among them, CRPS (Math-
eson & Winkler, 1976) and QICE (Han et al., 2022) are widely used. Let Xgen,[k] ∈ Rd×Tf , k =

1, . . . ,K denote K generated samples. Denote Xi,tgen,[k] and Xi,t0 as the (i, t)-th elements of Xgen,[k]

and X0, respectively, for i = 1, . . . , d and t = 1, . . . , Tf . The defination of CRPS between the K
generated samples and X0 is given by:

CRPS({Xgen,[k]}Kk=1,X0) =
1

d · Tf

d∑
i=1

Tf∑
t=1

∫
R

(
F̂i,t(z)− I{Xi,t0 ≤ z}

)2
dz,

where F̂i,t(z) := 1
K

∑K
k=1 I{Xi,tgen,[k] ≤ z} and I{·} is the indicator function.

To calculate QICE, we first construct B equal quantile intervals from the generated samples (in our
application, we choose B = 10). In the ideal case, each interval should contain exactly 1/B of
the entries of X0. We then calculate the empirical frequency rb of X0’s entries falling into the b-th
interval for b = 1, . . . , B. Finally, the QICE is calculated as:

QICE =
1

B

B∑
b=1

∣∣∣∣rb − 1

B

∣∣∣∣ .
Correlation score (Ni et al., 2022) measures the discrepancy between the correlations among the
d dimensions of the generated and the true time series. The covariance between the i-th and j-th
features of X0 is defined as:

covi,j(X0) =
1

Tf

Tf∑
t=1

Xi,t0 Xj,t0 −

 1

Tf

Tf∑
t=1

Xi,t0

 1

Tf

Tf∑
t=1

Xj,t0

 .

The Correlation score between X0 and Xgen,[k] is defined as:

Correlation score(Xgen,[k],X0) =
1

d2

d∑
i,j

∣∣∣∣ covi,j(X0)

covi,i(X0)covj,j(X0)
−

covi,j(Xgen,[k])

covi,i(Xgen,[k])covj,j(Xgen,[k])

∣∣∣∣ .
The Probabilistic Correlation Score (ProbCorr) is defined as:

ProbCorr({Xgen,[k]}Kk=1,X0) =
1

K

K∑
k=1

Correlation score(Xgen,[k],X0).

ProbCorr measures the discrepancy between the correlation structure of each generated sample
Xgen,[k] and the ground-truth X0.

Nevertheless, it is important to recognize that CRPS, QICE, and ProbCorr do not effectively capture
temporal dependencies between the generated and true sequences. To address this, a TS2Vec model
(Yue et al., 2022) is trained on the real sequence [C,X0] and subsequently used to extract latent
representations for [C,X0] and [C,Xgen,[k]], k = 1, . . . ,K. The Fréchet Inception Distance (FID)
computed between these representations is referred to as the conditional FID. Since TS2Vec em-
ploys a dedicated network architecture to jointly capture temporal patterns and feature correlations,
conditional FID provides a more comprehensive assessment of generative quality.
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In addition to probabilistic metrics, we also employ ProbMSE and ProbMAE to evaluate forecasting
performance. ProbMSE and ProbMAE are used as point forecast metrics, and their definition is
given by:

ProbMSE({Xgen,[k]}Kk=1,X0) =
1

d · Tf

d∑
i=1

Tf∑
t=1

[
1

K

K∑
k=1

(
Xi,tgen,[k]

)
− Xi,t0

]2

,

ProbMAE({Xgen,[k]}Kk=1,X0) =
1

d · Tf

d∑
i=1

Tf∑
t=1

∣∣∣∣∣ 1K
K∑
k=1

(
Xi,tgen,[k]

)
− Xi,t0

∣∣∣∣∣ .
Traditional MSE and MAE measure the discrepancy between the mean of the generated samples and
the true time series. In contrast, ProbMSE and ProbMAE differ from these traditional metrics by
taking into account the MSE and MAE between each individual generated sample and the true time
series. Consequently, ProbMSE and ProbMAE provide a more stringent evaluation than standard
MSE and MAE.

E.3 CW-GEN ON MORE REAL DATASETS

Tables 3, 4, 5, and 6 present the results of different methods on the ETTh2, ILI, Weather, and Solar
Energy datasets across four metrics (CRPS, QICE, ProbCorr, and Conditional FID). In time series
forecasting tasks, ProbMSE and ProbMAE reflect the accuracy of point estimates. We report the
evaluation results on these two metrics for the five real-world datasets in Tables 7 and 8, respectively.

From Table 3 to 8, we can observe that CW-Gen achieves advantages on the majority of probabilistic
metrics, even on high-dimensional datasets such as Solar Energy. For point forecasting metrics, CW-
Gen outperforms the baselines on all datasets except Solar Energy.

Table 3: Metrics for models trained on original ETTh2 (Raw) and conditionally whitened ETTh2
(CW). Each experiment is repeated by 10 times, and standard deviations are provided in brackets.
The better results between Raw and CW are underlined. The win rates of every metric of Raw and
CW-Gen models are also provided.

Model CRPS (↓) QICE (↓) ProbCorr (↓) Conditional FID (↓)
(ETTh2) Raw CW Raw CW Raw CW Raw CW

TimeDiff 2.543 0.395 12.769 6.584 0.753 0.327 211.67 4.495
(2023) (0.910) (0.031) (1.726) (1.246) (0.252) (0.020) (55.976) (0.699)

SSSD 0.754 0.458 14.698 6.637 0.525 0.417 187.29 14.780
(2023) (0.260) (0.111) (0.955) (3.059) (0.040) (0.039) (147.33) (7.330)

Diffusion 1.107 0.381 8.605 4.147 0.691 0.438 99.509 15.383
-TS (2024) (0.077) (0.024) (0.792) (1.677) (0.022) (0.061) (64.135) (16.112)

TMDM 0.421 0.377 4.500 3.945 0.378 0.313 9.528 4.107
(2024) (0.043) (0.000) (0.689) (1.475) (0.027) (0.001) (1.779) (0.249)

NsDiff 0.370 0.369 2.334 2.579 0.323 0.351 19.957 14.842
(2025) (0.027) (0.014) (0.040) (0.345) (0.026) (0.018) (5.029) (2.783)

FlowTS 1.534 0.824 12.147 11.744 0.650 0.498 80.540 10.640
(2025) (0.252) (0.138) (1.356) (1.094) (0.044) (0.050) (69.867) (12.883)

Win rate 0.0% 100.0% 16.7% 83.3% 16.7% 83.3% 0.0% 100.0%

E.4 ABLATION STUDY FOR JMCE

In this subsection, we examine the impact of the two hyperparameters wEigen and λmin in (4) on esti-
mation accuracy of JMCE. Beside, we also investigate the influence different backbones on JMCE.
While the main text employs the Non-stationary Transformer (Liu et al., 2022), in this section we
adopt FED Former (Zhou et al., 2022) and Informer (Zhou et al., 2021) as the backbones of JMCE
and compare their performance.
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Table 4: Metrics for models trained on original ILI (Raw) and conditionally whitened ILI (CW).
Each experiment is repeated by 10 times, and standard deviations are provided in brackets. The
better results between Raw and CW are underlined. The win rates of every metric of Raw and CW-
Gen models are also provided.

Model CRPS (↓) QICE (↓) ProbCorr (↓) Conditional FID (↓)
(ILI) Raw CW Raw CW Raw CW Raw CW

TimeDiff 1.148 1.046 15.015 13.597 0.455 0.399 10.957 6.845
(2023) (0.134) (0.081) (0.430) (1.550) (0.016) (0.048) (3.483) (0.813)

SSSD 1.038 0.758 15.063 9.115 0.374 0.365 6.416 5.964
(2023) (0.126) (0.110) (1.802) (2.030) (0.071) (0.038) (0.335) (1.895)

Diffusion 1.222 0.769 6.588 8.883 0.381 0.373 20.513 5.969
-TS (2024) (0.271) (0.168) (2.479) (1.840) (0.038) (0.058) (27.582) (1.215)

TMDM 0.796 0.722 6.706 8.029 0.365 0.359 22.693 12.234
(2024) (0.045) (0.025) (0.821) (2.734) (0.020) (0.000) (12.420) (18.767)

NsDiff 0.738 0.645 5.930 6.173 0.352 0.307 73.379 14.852
(2025) (0.047) (0.059) (0.867) (0.970) (0.011) (0.058) (23.257) (3.843)

FlowTS 0.997 0.851 9.771 10.645 0.413 0.410 7.689 6.202
(2025) (0.055) (0.068) (0.728) (0.778) (0.010) (0.021) (1.098) (0.536)

Win rate 0.0% 100.0% 66.7% 33.3% 0.0% 100.0% 0.0% 100.0%

Table 5: Metrics for models trained on original Weather (Raw) and conditionally whitened Weather
(CW). Each experiment is repeated by 10 times, and standard deviations are provided in brackets.
The better results between Raw and CW are underlined. The win rates of every metric of Raw and
CW-Gen models are also provided.

Model CRPS (↓) QICE (↓) ProbCorr (↓) Conditional FID (↓)
(Weather) Raw CW Raw CW Raw CW Raw CW

TimeDiff 0.531 0.258 8.530 6.772 0.362 0.255 9.673 6.892
(2023) (0.032) (0.014) (0.693) (1.869) (0.010) (0.006) (3.095) (1.183)

SSSD 0.499 0.530 7.428 4.121 0.438 0.411 914.81 330.31
(2023) (0.145) (0.186) (0.790) (3.457) (0.012) (0.040) (260.690) (315.18)

Diffusion 0.495 0.319 3.957 3.047 0.503 0.414 278.60 90.739
-TS (2024) (0.114) (0.033) (7.789) (1.049) (0.033) (0.047) (566.85) (59.186)

TMDM 0.231 0.254 3.468 3.127 0.264 0.247 6.978 5.941
(2024) (0.003) (0.016) (0.412) (0.733) (0.008) (0.010) (0.836) (0.860)

NsDiff 0.270 0.262 3.746 3.536 0.274 0.266 18.034 9.870
(2025) (0.003) (0.009) (0.201) (0.408) (0.007) (0.007) (0.887) (3.936)

FlowTS 0.348 0.244 6.901 6.598 0.334 0.262 8.447 6.948
(2025) (0.043) (0.017) (1.616) (0.371) (0.035) (0.011) (1.540) (2.887)

Win rate 33.3% 66.7% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0%

We adopt L2,LF ,LSVD in (4) as the metrics. In addition, we also compute the left-hand side (LHS)
of (3) as a metric, whose formulation is given by:

LHS =
(
min
i,t

λ̂Σ̂X0,t|C,i

)−1 · (L2 + LSVD) +
√
d · TfLF . (12)

Tables 9 and 10 report JMCE results under varying wEigen and λmin, respectively, and Table 21
presents CW-Gen results with separately trained models and different backbones.
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Table 6: Metrics for models trained on original Solar Energy (Raw) and conditionally whitened
Solar Energy (CW). Each experiment is repeated by 10 times, and standard deviations are provided
in brackets. The better results between Raw and CW are underlined. The win rates of every metric
of Raw and CW-Gen models are also provided.

Model CRPS (↓) QICE (↓) ProbCorr (↓) Conditional FID (↓)
(Solar) Raw CW Raw CW Raw CW Raw CW

TimeDiff 0.746 0.299 15.361 11.998 0.198 0.212 5.606 4.397
(2023) (0.017) (0.016) (0.617) (1.383) (0.004) (0.007) (0.357) (0.232)

SSSD 0.350 0.555 13.435 9.111 0.330 0.307 14.915 14.165
(2023) (0.042) (0.135) (1.966) (0.675) (0.020) (0.081) (0.622) (4.571)

Diffusion 0.349 0.289 2.857 2.843 0.229 0.221 5.796 5.007
-TS (2024) (0.030) (0.026) (1.326) (1.186) (0.008) (0.008) (0.665) (0.902)

TMDM 0.376 0.369 10.033 7.162 0.509 0.201 248.80 8.279
(2024) (0.004) (0.016) (0.076) (0.214) (0.008) (0.012) (16.384) (2.528)

NsDiff 0.304 0.328 6.861 2.198 0.366 0.206 106.83 4.299
(2025) (0.008) (0.012) (0.318) (0.318) (0.011) (0.009) (8.575) (0.239)

FlowTS 0.276 0.234 6.791 4.789 0.284 0.214 28.464 5.684
(2025) (0.029) (0.009) (0.687) (0.326) (0.025) (0.009) (5.609) (0.734)

Win rate 33.3% 66.7% 0.0% 100.0% 16.7% 83.3% 0.0% 100.0%

Table 7: ProbMSE for Raw and CW-Gen models. Each experiment is repeated by 10 times, and
standard deviations are provided in brackets. The better results between Raw and CW are underlined.
The win rates for all datasets are also provided.

Model Variant ETTh1 ETTh2 ILI Weather Solar

TimeDiff Raw 1.366(0.080) 0.793(0.983) 3.803(2.062) 0.803(0.062) 0.800(0.020)
(2023) CW 0.756(0.135) 0.496(0.064) 2.913(0.303) 0.267(0.014) 0.264(0.022)

SSSD Raw 1.493(0.390) 2.132(0.824) 2.953(0.419) 2.785(3.243) 0.349(0.079)
(2023) CW 0.908(0.219) 0.643(0.262) 2.169(0.467) 2.158(2.761) 1.053(0.508)

Diffusion Raw 1.177(0.094) 2.053(1.078) 2.224(0.497) 1.287(0.322) 0.391(0.029)
-TS(2024) CW 0.717(0.094) 0.503(0.071) 2.788(0.658) 0.345(0.085) 0.326(0.045)

TMDM Raw 0.767(0.070) 0.615(0.118) 2.417(0.189) 0.249(0.007) 0.243(0.014)
(2024) CW 0.681(0.010) 0.488(0.001) 1.984(0.113) 0.284(0.024) 0.418(0.065)

NsDiff Raw 0.637(0.075) 0.649(0.040) 2.424(0.163) 0.283(0.008) 0.277(0.021)
(2025) CW 0.729(0.132) 0.488(0.041) 1.759(0.324) 0.292(0.012) 0.413(0.030)

FlowTS Raw 1.006(0.153) 2.958(0.774) 2.960(0.250) 0.455(0.086) 0.262(0.065)
(2025) CW 0.698(0.059) 1.522(0.429) 2.369(0.254) 0.272(0.029) 0.242(0.017)

Win Rate 83.33% 83.33% 100.0% 66.67% 50.00%

Table 9 shows that as wEigen increases, the smallest eigenvalue moves further away from zero, which
aligns with the intended purpose of this parameter. Surprisingly, the estimation of both the condi-
tional mean and the sliding-window covariance also becomes more accurate with larger wEigen.

Table 10 shows that as λmin increases, the smallest eigenvalue moves further away from zero. A
larger λmin leads to poorer estimation of the sliding-window covariance, because the features of
real-world time series are typically highly correlated and thus the sliding-window covariances have
very small minimum eigenvalues. Penalizing the eigenvalues with a larger λmin alters the structure
of the estimation.

Table 21 shows that separately training the estimator of the conditional mean and that of the sliding-
window covariance does not effectively control the smallest eigenvalue, although this training strat-
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Table 8: ProbMAE for Raw and CW-Gen models. Each experiment is repeated by 10 times, and
standard deviations are provided in brackets. The better results between Raw and CW are underlined.
The win rates for all datasets are also provided.

Model Variant ETTh1 ETTh2 ILI Weather Solar

TimeDiff Raw 0.899(0.040) 0.480(0.055) 1.025(0.436) 0.670(0.034) 0.800(0.021)
(2023) CW 0.581(0.025) 0.489(0.033) 1.121(0.076) 0.307(0.009) 0.331(0.019)

SSSD Raw 0.959(0.150) 1.512(0.140) 1.201(0.090) 1.190(0.533) 0.294(0.038)
(2023) CW 0.704(0.069) 0.581(0.110) 0.941(0.157) 0.755(0.209) 0.685(0.164)

Diffusion Raw 0.801(0.037) 1.891(0.537) 1.018(0.135) 0.884(0.125) 0.451(0.028)
-TS (2024) CW 0.594(0.031) 0.508(0.045) 1.178(0.222) 0.381(0.066) 0.390(0.039)

TMDM Raw 0.627(0.039) 0.551(0.054) 0.990(0.044) 0.294(0.003) 0.303(0.006)
(2024) CW 0.503(0.047) 0.484(0.000) 0.899(0.011) 0.325(0.020) 0.430(0.021)

NsDiff Raw 0.557(0.032) 0.544(0.016) 1.005(0.063) 0.325(0.005) 0.345(0.013)
(2025) CW 0.553(0.022) 0.481(0.019) 0.812(0.068) 0.330(0.009) 0.433(0.014)

FlowTS Raw 0.742(0.079) 1.019(0.144) 1.039(0.084) 0.447(0.056) 0.324(0.031)
(2025) CW 0.598(0.021) 0.946(0.142) 0.961(0.066) 0.303(0.022) 0.287(0.010)

Win Rate 100.00% 83.33% 100.0% 66.67% 50.00%

egy offers a slight advantage in estimating the conditional mean. Different backbones also lead to
different outcomes. FED-Former performs well in estimating the conditional mean but is slightly
less effective in estimating the sliding-window covariance. In contrast, Informer achieves strong
performance in covariance estimation and eigenvalue control, yet performs the worst in estimating
the conditional mean.

In addition, we provide a comparison between the learning targets and the outputs of JMCE in Fig-
ure 4. As shown in the figure, JMCE is able to accurately predict both the future time series and most
components of the sliding-window covariance on training and test sets. For some diagonal compo-
nents of the sliding-window covariance (such as Cov Dim 8, 19, 26, and 28), JMCE intelligently
enlarges these values, which helps prevent the minimum eigenvalue from becoming too small.

Table 9: Metrics for JMCE trained on ETTh1, with different wEigen. The λmin is set to 0.1. Each
experiment is repeated 10 times and standard deviations are provided in brackets. The defination of
LHS can be found in (12).

Model L2 (↓) LF (↓) LSVD (↓)
(
mint,i λ̂Σ̃X0,t|C,i

)−1
(↓) LHS (↓)

JMCE 0.702 0.198 0.493 2.2 · 107 2.4 · 107
(wEigen = 0) (0.006) (0.000) (0.000) (4.4 · 1015) (5.5 · 1015)

JMCE 0.672 0.186 0.526 14.472 24.197
(wEigen = 10) (0.002) (0.000) (0.000) (4.540) (6.258)

JMCE 0.683 0.189 0.534 12.996 22.819
(wEigen = 20) (0.005) (0.000) (0.000) (1.438) (4.422)

JMCE 0.693 0.184 0.529 12.175 21.651
(wEigen = 40) (0.005) (0.000) (0.000) (6.609) (13.283)

JMCE 0.726 0.180 0.528 11.487 21.037
(wEigen = 50) (0.001) (0.000) (0.000) (3.286) (5.085)

E.5 INFLUENCE OF DIFFERENT JMCES ON CW-GEN

In this subsection, we investigate the impact of different JMCE models on CW-Gen. We first train
the JMCE with different hyperparameters, JMCE with different backbones, or separately trained
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Figure 3: Comparison of all models on ETTh1, ETTh2, ILI and Weather.

mean and covariance models. Then, these models are severed as the prior for the CW-Gen models.
The CW-Gen models are evaluated by the same metrics as in Section 5.

Table 12 and Table 13 indicate that the default parameters in our paper (wEigen = 50, λmin =
0.1) achieve slight advantages over other parameter combinations. Table 21 shows that CW-Gen
models using different JMCEs exhibit slight variations, but all CW-Gen models with JMCE priors
outperform those with separately trained prior models in most cases. Among the three backbones,
the Non-stationary Transformer achieves the best performance on 13 metrics, while FED-Former
achieves 8 and Informer achieves 1. Therefore, we adopt the Non-stationary Transformer as the
backbone of JMCE.

E.6 CONTRIBUTIONS OF INDIVIDUAL COMPONENTS OF THE PRIOR MODEL

In this section, we investigate how different components of JMCE contribute to the improvement.
Specifically, we use only the conditional mean (Mean), only the diagonal elements of the condi-
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Figure 4: Comparison between the learning targets and the predictions of JMCE (top: training set,
bottom: test set).

tional covariance (Var), only the full conditional covariance (Cov), as well as the combination of the
conditional mean and the conditional variance (Mean & Var) as prior information, and then evaluate
the performance of CW-Gen. Our default CW-Gen adopts the conditional mean together with the
full conditional covariance (Mean & Cov) as the prior.

According to Table 14, we can generally conclude that using only the conditional mean for center-
ing yields slightly inferior performance, compared to whitening using the conditional mean together
with conditional variance or covariance. This indicates that learning the conditional variance or
covariance of the time series provides beneficial prior information for the generative model. More-
over, if we compare the performance of CW-Gen when using the conditional mean together with
the conditional variance versus using the conditional mean together with the conditional covariance,
we observe that in most cases CW-Gen performs better with the full conditional covariance. This
suggests that incorporating the full conditional covariance, rather than only the variance, provides a
stronger and more informative prior for the generative model. In addition, using only the conditional
variance or only the full conditional covariance as the prior degrades the performance of CW-Gen.
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Table 10: Metrics for JMCE trained on ETTh1, with different λmin. The wEigen is set to 50. Each
experiment is repeated 10 times and standard deviations are provided in brackets. The defination of
LHS can be found in (12).

Model L2 (↓) LF (↓) LSVD (↓)
(
mint,i λ̂Σ̃X0,t|C,i

)−1
(↓) LHS (↓)

JMCE 0.665 0.193 0.484 2.3 · 103 2.7 · 103
(λmin = 10−3) (0.002) (0.000) (0.000) (1.2 · 106) (1.6 · 106)

JMCE 0.662 0.195 0.493 157.69 190.60
(λmin = 10−2) (0.007) (0.000) (0.000) (5.4 · 103) (8.0 · 103)

JMCE 0.680 0.195 0.509 23.573 35.213
(λmin = 0.05) (0.004) (0.000) (0.000) (3.423) (7.417)

JMCE 0.726 0.180 0.528 11.487 21.037
(λmin = 0.1) (0.001) (0.000) (0.000) (3.286) (5.085)

Table 11: Metrics for JMCE separately or jointly trained on ETTh1, with different backbones. The
λmin is set to 0.1 andwEigen is set to 50. Each experiment is repeated 10 times and standard deviations
are provided in brackets. The defination of LHS can be found in (12). NS, FED, and IN indicate that
the backbone of JMCE is the Non-stationary Transformer, FED-Former, and Informer, respectively.

Model L2 (↓) LF (↓) LSVD (↓)
(
mint,i λ̂Σ̃X0,t|C,i

)−1
(↓) LHS (↓)

Separate 0.721 0.421 0.797 1196 1824
(NS) (0.100) (0.164) (0.078) (764) (1184)

JMCE 0.726 0.180 0.528 11.487 21.037
(NS) (0.001) (0.000) (0.000) (3.286) (5.085)

JMCE 0.548 0.387 0.741 43.381 70.206
(FED) (0.026) (0.047) (0.030) (12.833) (16.962)

JMCE 1.224 0.260 0.609 10.481 28.821
(IN) (0.039) (0.015) (0.016) (1.605) (2.956)

However, the latter achieves a lower ProbCorr than the former, indicating that leveraging the full
conditional covariance makes CW-Gen better capture the inter-variable dependencies.

E.7 ABLATION STUDY OF THE LENGTH OF SLIDING WINDOW

In this section, we compare the effect of the length of the sliding window. In our main experiments,
we set the length of sliding window as 95, following NsDiff (Ye et al., 2025). In ETTh1 dataset, we
compare the performance of CW-Gen under four additional window lengths, namely 75, 85, 105,
and 115. In ILI dataset, we compare two additional window lengths, namely 11 and 19.

From Table 15, we observe that on ETTh1, the sliding window length does not introduce substantial
changes to the performance of CW-Gen. In contrast, Table 16 shows that the sliding window has a
somewhat larger impact on the ILI dataset. This is likely because the dataset is relatively short, and
changes in the sliding window length may alter the underlying dependence relationships.

E.8 CW-GEN COMPARED WITH OTHER UNIVARIATE PRIOR METHODS

We discuss the similarities and differences between CW-Gen and other univariate generative models
that incorporate prior information, like DSPD (Biloš et al., 2023) and TsFlow (Kollovieh et al.,
2025).

DSPD leverages kernel functions such as exp(−γ|ti−tj |) and exp(−γ(ti−tj)2), γ > 0, to help the
diffusion model better capture the temporal correlations restricted to the prediction window. How-
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Table 12: Metrics for CW-Gen models with different wEigen of JMCE. Each experiment is repeated
by 10 times, and standard deviations are provided in brackets. The better results between Raw and
CW are underlined. The win rates of every metric for different wEigen are also provided.

Model CRPS (↓) QICE (↓) ProbCorr (↓) Conditional FID (↓)
wEigen 40 50 40 50 40 50 40 50

TimeDiff 0.495 0.505 8.069 8.821 0.235 0.243 6.835 6.788
(2023) (0.038) (0.040) (2.310) (1.916) (0.035) (0.027) (7.952) (5.425)

SSSD 0.510 0.524 4.935 4.838 0.239 0.238 7.438 9.265
(2023) (0.099) (0.085) (2.544) (1.921) (0.026) (0.024) (2.538) (5.003)

Diffusion 0.447 0.445 2.333 2.963 0.276 0.266 11.913 7.686
-TS (2024) (0.014) (0.024) (0.831) (0.887) (0.027) (0.012) (9.911) (2.751)

TMDM 0.443 0.440 4.131 4.555 0.209 0.213 3.554 3.831
(2024) (0.000) (0.001) (1.128) (0.855) (0.000) (0.001) (0.283) (0.431)

NsDiff 0.422 0.431 1.264 1.249 0.200 0.206 8.160 8.820
(2025) (0.020) (0.029) (0.252) (0.228) (0.014) (0.010) (1.185) (1.541)

FlowTS 0.491 0.488 9.014 8.817 0.261 0.254 5.030 4.865
(2025) (0.033) (0.020) (0.313) (0.460) (0.020) (0.021) (0.871) (0.563)

Win rate 50.0% 50.0% 33.3% 66.7% 50.0% 50.0% 50.0% 50.0%

Table 13: Metrics for CW-Gen models with different λmin of JMCE. Each experiment is repeated
by 10 times, and standard deviations are provided in brackets. The better results between Raw and
CW are underlined. The win rates of every metric for different λmin are also provided.

Model CRPS (↓) QICE (↓) ProbCorr (↓) Conditional FID (↓)
λmin 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

TimeDiff 0.508 0.505 9.101 8.821 0.230 0.243 5.527 6.788
(2023) (0.035) (0.040) (1.753) (1.916) (0.027) (0.027) (3.326) (5.425)

SSSD 0.530 0.524 5.166 4.838 0.246 0.238 9.637 9.265
(2023) (0.104) (0.085) (2.257) (1.921) (0.038) (0.024) (4.358) (5.003)

Diffusion 0.453 0.445 2.760 2.963 0.271 0.266 10.553 7.686
-TS (2024) (0.024) (0.024) (1.093) (0.887) (0.031) (0.012) (5.914) (2.751)

TMDM 0.446 0.440 4.260 4.555 0.216 0.213 3.702 3.831
(2024) (0.001) (0.001) (0.785) (0.855) (0.001) (0.001) (0.475) (0.431)

NsDiff 0.416 0.431 1.369 1.249 0.199 0.206 8.477 8.820
(2025) (0.030) (0.029) (0.256) (0.228) (0.021) (0.010) (1.934) (1.541)

FlowTS 0.494 0.488 8.969 8.817 0.257 0.254 5.131 4.865
(2025) (0.038) (0.020) (0.557) (0.460) (0.026) (0.021) (0.717) (0.563)

Win rate 16.7% 83.3% 33.3% 66.7% 33.3% 66.7% 50.0% 50.0%

ever, such prior information does not incorporate the historical time series and conditional mean.
Therefore, DSPD does not provide stronger guidance for forecasting then JMCE. Our JMCE can
explicitly capture the correlations between variables by directly learning the sliding-window covari-
ance on the prediction window. Moreover, the architecture of the Non-stationary Transformer en-
ables JMCE to capture temporal correlations within the prediction window via masked self-attention.
It also captures correlations between the observed series and the prediction window through cross-
attention (Liu et al., 2022).

TsFlow employs Gaussian processes (GPs) to predict the conditional mean and variance within
the prediction window. However, GPs rely heavily on the choice of kernel functions, and modeling
non-stationary processes typically requires carefully designed kernels or kernels with varying length
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Table 14: Metrics for models trained on ETTh1 conditionally whitened by different priors. Each
experiment is repeated by 10 times, and standard deviations are provided in brackets. The best
results are underlined and the second-best results are dashed-underlined.

Model Prior CRPS QICE ProbCorr Conditional FID

TimeDiff Mean 0.503(0.037) 8.001(1.449) 0.245(0.034) 8.173(9.390)
(2023) Var 0.581(0.045) 9.153(1.232) 0.235(0.014) 7.385(2.153)

Cov 0.624(0.053) 9.133(1.557) 0.258(0.049) 25.858(50.988)
Mean & Var 0.512(0.032) 9.883(2.368) 0.246(0.023) 6.749(7.313)
Mean & Cov 0.505(0.040) 8.821(1.916) 0.243(0.027) 6.788(5.415)

SSSD Mean 0.554(0.116) 7.175(2.386) 0.242(0.028) 6.431(2.537)
(2023) Var 0.566(0.080) 5.738(1.911) 0.349(0.043) 18.689(11.482)

Cov 0.587(0.067) 5.190(1.410) 0.340(0.037) 18.903(13.821)
Mean & Var 0.530(0.087) 5.203(1.840) 0.237(0.015) 7.235(2.265)
Mean & Cov 0.524(0.085) 4.838(1.921) 0.238(0.024) 9.265(5.003)

Diffusion Mean 0.468(0.035) 2.544(0.897) 0.301(0.027) 8.535(2.208)
-TS (2024) Var 0.536(0.064) 4.616(0.990) 0.474(0.045) 68.466(43.107)

Cov 0.549(0.032) 5.360(1.176) 0.502(0.046) 95.769(50.600)
Mean & Var 0.465(0.027) 2.539(1.182) 0.288(0.026) 8.558(3.331)
Mean & Cov 0.445(0.024) 2.963(0.887) 0.266(0.012) 7.686(2.751)

TMDM Mean 0.446(0.000) 3.760(1.201) 0.215(0.000) 4.687(1.447)
(2024) Var 0.644(0.002) 7.372(1.263) 0.291(0.000) 14.107(9.783)

Cov 0.676(0.001) 6.377(1.237) 0.303(0.000) 31.748(190.543)
Mean & Var 0.440(0.000) 4.952(0.911) 0.213(0.000) 3.840(0.459)
Mean & Cov 0.440(0.001) 4.555(0.855) 0.213(0.001) 3.831(0.431)

NsDiff Mean 0.455(0.023) 4.647(0.500) 0.238(0.006) 71.683(9.262)
(2025) Var 0.623(0.011) 4.132(0.450) 0.209(0.011) 23.738(3.654)

Cov 0.409(0.022) 1.857(0.290) 0.199(0.013) 11.540(2.200)
Mean & Var 0.408(0.024) 1.447(0.259) 0.209(0.012) 21.288(3.456)
Mean & Cov 0.431(0.029) 1.249(0.228) 0.206(0.010) 8.820(1.541)

FlowTS Mean 0.477(0.024) 8.778(0.798) 0.231(0.010) 4.850(0.485)
(2025) Var 0.653(0.021) 8.328(0.701) 0.316(0.010) 10.459(2.206)

Cov 0.643(0.020) 8.064(0.634) 0.315(0.005) 10.344(2.642)
Mean & Var 0.489(0.022) 9.240(0.477) 0.260(0.027) 5.090(0.250)
Mean & Cov 0.488(0.743) 8.817(0.460) 0.254(0.021) 4.865(0.563)

scales, making the approach less straightforward in practice. Moreover, computing the GP mean and
variance requires inverting a matrix whose size equals the length of the historical observations. In
our setting, the GP requires inverting a matrix in RTh×Th , which incurs a computational complexity
of O(T 3

h ) which is higher than our JMCE when Th > d.

In addition, we apply DSPD and TsFlow to each individual dimension of ETTh1 and generate sam-
ples accordingly. We then aggregate the generated samples and evaluate them using the four metrics
introduced in Appendix E.2. In Table 17, we report the performance of DSPD and TsFlow. Com-
pared with CW-TimeDiff and CW-SSSD from the same year (2023), DSPD exhibits worse CRPS
and a high QICE. ProbCorr of DSPD is also lower than both models, while its Conditional FID lies
at an intermediate level. Besides, compared with CW-NsDiff and CW-FlowTS proposed in 2025,
TsFlow shows worse CRPS, QICE, and ProbCorr, while its Conditional FID lies between the two.
Their performance on the first dimension of ETTh1 is further illustrated in Figure 5. As observed,
DSPD lacks the prior information provided by the conditional mean and therefore fails to effec-
tively capture highly nonlinear patterns. On the other hand, TsFlow produces results that are less
stable near the end of the prediction window, indicating that its effectiveness is limited in long-term
forecasting settings.
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Table 15: Metrics for models trained on ETTh1, with different length of sliding window. Each
experiment is repeated by 10 times, and standard deviations are provided in brackets.

Model (ETTh1) Window CRPS QICE ProbCorr Conditional FID

TimeDiff 75 0.477(0.030) 8.039(2.242) 0.232(0.025) 4.858(1.156)
(2023) 85 0.511(0.036) 9.249(1.610) 0.249(0.044) 6.236(3.831)

95 0.505(0.040) 8.821(1.916) 0.243(0.027) 6.788(5.415)
105 0.518(0.044) 8.548(1.539) 0.249(0.021) 7.780(5.611)
115 0.502(0.043) 7.621(1.925) 0.251(0.037) 4.750(1.318)

SSSD 75 0.508(0.072) 4.525(2.263) 0.235(0.024) 7.531(2.885)
(2023) 85 0.520(0.070) 4.484(2.086) 0.235(0.021) 8.236(2.754)

95 0.524(0.085) 4.838(1.921) 0.238(0.024) 9.265(5.003)
105 0.540(0.140) 4.383(2.391) 0.248(0.018) 7.858(2.501)
115 0.519(0.069) 4.392(2.062) 0.249(0.021) 9.189(2.733)

Diffusion 75 0.425(0.012) 2.439(0.767) 0.248(0.023) 10.527(11.100)
-TS (2024) 85 0.431(0.020) 3.084(1.712) 0.247(0.022) 11.319(11.244)

95 0.445(0.024) 2.963(0.887) 0.266(0.012) 7.686(2.751)
105 0.452(0.030) 2.876(1.388) 0.256(0.022) 7.639(3.423)
115 0.450(0.024) 2.473(1.110) 0.268(0.029) 9.613(5.999)

TMDM 75 0.429(0.000) 4.307(0.593) 0.213(0.000) 3.789(0.031)
(2024) 85 0.435(0.000) 4.398(0.760) 0.212(0.000) 3.622(0.059)

95 0.440(0.001) 4.555(0.855) 0.213(0.001) 3.831(0.431)
105 0.464(0.001) 4.655(1.288) 0.231(0.000) 4.036(0.168)
115 0.442(0.000) 3.981(0.475) 0.225(0.001) 3.631(0.280)

NsDiff 75 0.429(0.023) 1.210(0.266) 0.203(0.013) 9.846(3.176)
(2025) 85 0.423(0.021) 1.193(0.203) 0.203(0.009) 9.025(1.011)

95 0.431(0.029) 1.249(0.228) 0.206(0.010) 8.820(1.541)
105 0.422(0.020) 1.281(0.212) 0.207(0.011) 9.707(1.354)
115 0.432(0.024) 1.376(0.228) 0.213(0.022) 10.030(2.669)

FlowTS 75 0.484(0.023) 8.965(0.388) 0.253(0.011) 4.886(0.426)
(2025) 85 0.476(0.015) 8.865(0.340) 0.251(0.015) 5.016(0.637)

95 0.488(0.020) 8.817(0.460) 0.254(0.021) 4.865(0.563)
105 0.483(0.024) 8.894(0.704) 0.256(0.010) 4.920(0.364)
115 0.475(0.020) 8.924(0.583) 0.253(0.015) 4.813(0.456)

E.9 ACCELERATING CW-GEN

Training a CW-Gen model consists of three steps: (1) training the JMCE model, (2) conditionally
whitening the time series using the trained JMCE model, and (3) training the generative model by
the conditionally whitened time series.

In step (1), the training algorithm of JMCE involves SVD and eigen-decomposition, both of which
have a computational complexity ofO(d3). Although these operations can be efficiently parallelized
on GPUs, they still pose challenges when implementing the model on high-dimensional time-series
datasets. Under high-dimensional cases, one possible approach is to omit the computation of LSVD
and the penalty term Rλmin in (4). In this case, to ensure that the minimum eigenvalue remains
bounded away from zero, we can add λmin · Id either to JMCE’s output L̂t|C or to Σ̂X0,t|C. Another
possible approach is to only learn the diagonal part of the sliding-window covariance. However, a
diagonal covariance matrix cannot approximate a general covariance matrix well in terms of the nu-
clear norm. Besides, diagonal covariance parameterizations lose the ability to control the minimum
eigenvalue of the conditional covariance matrix, and therefore the theoretical foundations of JMCE
no longer apply. Empirical evidence in Table 14 also indicates only using conditional variance leads
to inferior performance, especially for ProbCorr.
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Table 16: Metrics for models trained on ILI, with different length of sliding window. Each experi-
ment is repeated by 10 times, and standard deviations are provided in brackets.

Model (ILI) Window CRPS QICE ProbCorr Conditional FID

TimeDiff 11 0.668(0.980) 8.341(2.465) 0.314(0.027) 5.715(1.571)
(2023) 15 1.046(0.081) 13.597(1.550) 0.399(0.048) 6.845(0.813)

19 0.786(0.120) 10.722(5.149) 0.345(0.064) 5.162(0.701)

SSSD 11 0.792(0.140) 10.807(1.848) 0.376(0.045) 5.282(0.675)
(2023) 15 0.758(0.110) 9.115(2.030) 0.365(0.038) 5.964(1.895)

19 0.785(0.113) 9.228(1.892) 0.376(0.040) 5.452(1.367)

Diffusion 11 0.873(0.150) 4.230(1.403) 0.336(0.037) 9.619(2.963)
-TS (2024) 15 0.769(0.168) 8.883(1.840) 0.373(0.058) 5.969(1.215)

19 0.894(0.100) 5.504(1.291) 0.327(0.013) 8.325(2.539)

TMDM 11 0.689(0.013) 7.081(2.059) 0.342(0.002) 6.567(2.991)
(2024) 15 0.722(0.025) 8.029(2.734) 0.359(0.000) 12.234(18.767)

19 0.717(0.008) 7.297(1.610) 0.355(0.000) 7.954(5.131)

NsDiff 11 0.646(0.086) 5.802(1.316) 0.344(0.034) 12.466(5.457)
(2025) 15 0.645(0.059) 6.173(0.970) 0.307(0.058) 14.852(3.843)

19 0.706(0.045) 6.268(1.186) 0.364(0.029) 12.375(3.949)

FlowTS 11 0.898(0.106) 11.338(0.764) 0.425(0.069) 6.713(0.998)
(2025) 15 0.851(0.068) 10.645(0.778) 0.410(0.021) 6.202(0.536)

19 0.838(0.053) 10.721(0.865) 0.409(0.017) 6.391(0.951)

Table 17: Metrics for DSPD and TsFlow trained on ETTh1. Each experiment is repeated by 10
times, and standard deviations are provided in brackets.

Model (ETTh1) CRPS QICE ProbCorr Conditional FID

DSPD (2023) 0.741(0.090) 11.032(0.816) 0.288(0.039) 10.828(9.544)
TsFlow (2025) 0.568(0.040) 7.968(1.018) 0.257(0.026) 18.596(12.677)
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Figure 5: Comparison of DSPD, CW-SSSD, TsFlow and CW-FlowTS on the first dimension of
ETTh1.

In step (2) and (3), we by default compute Σ̂kX0|C, k = ±0.5 using eigen-decomposition. However,
this step can in fact be avoided. Recall that the output of JMCE includes the conditional mean
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µ̂X|C and a lower-triangular matrix L̂t|C for t = 1, . . . , Tf . By directly computing the inverse of
L̂t|C, we can whiten the time-series data without performing eigen-decomposition. We illustrate
the idea by the following simple case. Suppose X ∈ Rd is a random variable with covariance
Cov(X) = Σ = LL⊤, where L is a lower-triangular matrix. Then it is straightforward to verify that

Cov(L−1X) = L−1ΣL−1
⊤
= L−1LL⊤L⊤

−1

= Id.

Thus, we can replace (L̂t|CL̂
⊤
t|C)

−0.5 in line 3 of Algorithm 2 with L̂−1t|C, and similarly replace

(L̂1|CL̂
⊤
1|C)

0.5 in line 3 of Algorithm 3 with L̂t|C. This transforms the eigen-decomposition step
in the original algorithm into computing the inverse of a lower-triangular matrix. Since the inverse
of a lower-triangular matrix can be obtained efficiently using forward substitution, this modification
yields a substantial speedup compared to performing eigen-decomposition (Strang, 2022).

Moreover, on Weather and Solar Energy datasets, we verify that this substitution substantially re-
duces the computational cost, with the exact reduction reported in Table 19.

E.10 CW-GEN IN AN END2END FASHION

In the Section 3 and 4, our training pipeline first trains JMCE, then conditionally whitens the time
series data, and finally trains the generative model. However, with the accelerated algorithm intro-
duced in Appendix E.9, we are able to train JMCE and the generative model jointly in an end-to-end
(E2E) fashion, which further improves training efficiency.

In Table 18, we compare the setting without prior information (Raw), CW-Gen trained in the default
manner (CW), and CW-Gen trained in an E2E fashion (CW-E2E). The results show that CW-E2E
generally improves both ProbCorr and Conditional FID, while its QICE is slightly inferior to that
of CW. The algorithm of training CW-E2E can be found in Algorithm 6 and 7. We also carefully
compared the training time of CW-Gen and CW-E2E in Table 19.

Table 18: Metrics for models trained on ETTh1, including those trained on raw data (Raw), the
default CW-Gen pipeline (CW), and the end-to-end CW-Gen variant (CW-E2E). Each experiment is
repeated 10 times, and standard deviations are provided in brackets. The best results are underlined
and the second-best results are dashed-underlined.

Model (ETTh1) Variant CRPS QICE ProbCorr Conditional FID

TimeDiff Raw 0.787(0.051) 9.038(0.946) 0.320(0.012) 19.008(6.088)
(2023) CW 0.505(0.040) 8.821(1.916) 0.243(0.027) 6.788(5.425)

CW-E2E 0.514(0.039) 9.189(1.189) 0.218(0.016) 4.305(0.547)

SSSD Raw 0.836(0.153) 11.624(1.312) 0.326(0.032) 40.887(17.601)
(2023) CW 0.524(0.085) 4.838(1.921) 0.238(0.024) 9.265(5.003)

CW-E2E 0.489(0.054) 6.254(1.612) 0.229(0.017) 6.908(3.625)

Diffusion Raw 0.626(0.027) 3.002(0.838) 0.401(0.017) 81.563(60.905)
-TS (2024) CW 0.445(0.024) 2.963(0.887) 0.266(0.012) 7.686(2.751)

CW-E2E 0.474(0.031) 5.536(1.514) 0.271(0.014) 5.105(1.126)

TMDM Raw 0.472(0.031) 3.360(1.055) 0.230(0.014) 9.931(4.439)
(2024) CW 0.440(0.001) 4.555(0.855) 0.213(0.001) 3.831(0.431)

CW-E2E 0.433(0.027) 2.368(0.247) 0.205(0.010) 11.654(1.757)

NsDiff Raw 0.407(0.032) 1.792(0.682) 0.214(0.014) 35.261(7.785)
(2025) CW 0.431(0.029) 1.249(0.228) 0.206(0.010) 8.820(1.541)

CW-E2E 0.412(0.010) 1.484(0.479) 0.195(0.006) 7.827(1.264)

FlowTS Raw 0.724(0.135) 8.820(2.631) 0.354(0.060) 39.793(24.853)
(2025) CW 0.488(0.020) 8.817(0.460) 0.254(0.021) 4.865(0.563)

CW-E2E 0.481(0.023) 10.277(0.455) 0.220(0.017) 4.040(0.741)
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Algorithm 6 Training JMCE and CW-Diff in an end-to-end fashion
Input: (X0,C) in training set, hyperparameters λmin, wEigen, diffusion schedule βτ , τ ∈ [0, 1].
Output: A trained JMCE model JMCE(·) and a trained neural network
sCW
θ .

1: Calculate sliding-window covariances Σ̃X0,1, . . . , Σ̃X0,Tf
of X0

2: Initialize a non-autoregressive model JMCE(·) and neural network of diffusion model sCW
θ

3: while not converge do
4: Calculate µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)
5: for t = 1, . . . , Tf do
6: Let Σ̂X0,t|C = L̂t|CL̂

⊤
t|C

7: Perform eigen-decomposition of Σ̂X0,t|C and obtain eigenvalues λ̂Σ̂X0,t|C,i
, i = 1, . . . , d

8: Perform singular value decomposition (SVD) of Σ̃X0,t−Σ̂X0,t|C and obtain singular values
s̃i,t, i = 1, . . . , d

9: end for
10: Calculate L2 =

∥∥X0 − µ̂X|C
∥∥2, LF =

∑Tf

t=1

∥∥∥Σ̃X0,t − Σ̂X0,t|C

∥∥∥
F
, LSVD =

∑Tf

t=1

∑d
i=1 s̃i,t,

11: Rλmin =
∑Tf

t=1

∑d
i=1 ReLU(λmin − λ̂Σ̂X0,t|C,i

)

12: Calculate LJMCE = L2 + LSVD + λmin

√
d · TfLF + wEigenRλmin

13: Calculate L̂−1C = [L̂−11|C, . . . , L̂
−1
Tf |C]

14: Calculate XCW
0 = L̂−1C ◦ (X0 − µ̂X|C)

15: Draw τ ∼ U(0, 1]
16: Draw ϵ ∼ N (0, Id×d×Tf

)

17: Calculate ατ = exp
{
−
∫ τ
0
βsds/2

}
and σ2

τ = 1− α2
τ

18: Calculate LDiff = ∥sCW
θ

(
ατXCW

0 + στϵ,C, τ
)
+ ϵ/στ∥2

19: Calculate LE2E = LJMCE + LDiff
20: Calculate ∇LE2E and update the parameters of JMCE(·) and sCW

θ
21: end while
22: return JMCE(·), sCW

θ

F IMPLEMENTATION DETAILS

The evaluation setup, including the history length, prediction horizon, sliding window covariance,
and the basic configuration of the JMCE loss, has been described in Section 5. In this section, we
provide the detailed training parameters and implementation specifics for the proposed JMCE and
the baseline methods.

For our JMCE model, except for the Solar Energy dataset, the backbone is a Non-stationary Trans-
former with a model dimension of dmodel = 512, 8 attention heads, 2 encoder layers, 1 decoder layer,
a dropout rate of 0.1, and a feedforward layer dimension of 1024. For the Solar Energy dataset, dmodel
is set to 128 and the number of encoder layers is increased to 3. Training is performed using the
AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 1 × 10−4, a weight decay
of 5 × 10−4, a batch size of 64, and 20 epochs. We select the model with the lowest loss over 20
epochs as the final model.

For the baseline methods: TimeDiff uses the default parameters in (Shen & Kwok, 2023). SSSD uses
the default parameters of SSSDSA in (Alcaraz & Strodthoff, 2023). Diffusion-TS uses the parameters
for ETTh in (Yuan & Qiao, 2024). TMDM and NsDiff follow (Li et al., 2024; Ye et al., 2025), with
minor modifications to their own mean & variance estimators. FlowTS uses the parameters reported
in (Hu et al., 2025). Except for TMDM and NsDiff, all other methods are trained using the AdamW
optimizer (Loshchilov & Hutter, 2019) with a learning rate of 1×10−3, a weight decay of 5×10−4,
a batch size of 128, and 20 epochs. We select the model with the lowest loss over 20 epochs as the
final model.

All of the experiments are conducted on a single NVIDIA A6000, with a memory of 48GB.
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Algorithm 7 Training JMCE and CW-Flow in an end-to-end fashion
Input: (X0,C) in training set, hyperparameters λmin, wEigen.
Output: A trained JMCE model JMCE(·) and a trained neural network
vCW
ψ .

1: Calculate sliding-window covariances Σ̃X0,1, . . . , Σ̃X0,Tf
of X0

2: Initialize a non-autoregressive model JMCE(·) and neural network of flow matching vCW
ψ

3: while not converge do
4: Calculate µ̂X|C, L̂1|C, . . . , L̂Tf |C = JMCE(C)
5: for t = 1, . . . , Tf do
6: Let Σ̂X0,t|C = L̂t|CL̂

⊤
t|C

7: Perform eigen-decomposition of Σ̂X0,t|C and obtain eigenvalues λ̂Σ̂X0,t|C,i
, i = 1, . . . , d

8: Perform singular value decomposition (SVD) of Σ̃X0,t−Σ̂X0,t|C and obtain singular values
s̃i,t, i = 1, . . . , d

9: end for
10: Calculate L2 =

∥∥X0 − µ̂X|C
∥∥2, LF =

∑Tf

t=1

∥∥∥Σ̃X0,t − Σ̂X0,t|C

∥∥∥
F
, LSVD =

∑Tf

t=1

∑d
i=1 s̃i,t,

11: Rλmin =
∑Tf

t=1

∑d
i=1 ReLU(λmin − λ̂Σ̂X0,t|C,i

)

12: Calculate LJMCE = L2 + LSVD + λmin

√
d · TfLF + wEigenRλmin

13: Let L̂C = [L̂1|C, . . . , L̂Tf |C]
14: Draw τ ∼ U(0, 1]
15: Draw ϵCW ∼ N (0, Id×d×Tf

)

16: Calculate ϵCW = L̂C ◦ ϵCW + µ̂X|C
17: Calculate LFlow = ∥ϵCW − X0 − vCW

ψ (X0 + τ(ϵCW − X0),C, τ)∥2
18: Calculate LE2E = LJMCE + LFlow
19: Calculate ∇LE2E and update the parameters of JMCE(·) and vCW

ψ

20: end while
21: return JMCE(·), vCW

ψ

G COMPUTATIONAL EFFICIENCY

In CW-Diff, our algorithm first trains a JMCE model and then applies conditional whitening to
each batch in the training set. The whitened batches are subsequently fed into the diffusion model
for training. This final stage requires essentially the same amount of time as a standard diffusion
model; therefore, we refer readers to prior work for details on training and sampling times (Shen
& Kwok, 2023; Alcaraz & Strodthoff, 2023; Yuan & Qiao, 2024; Li et al., 2024; Ye et al., 2025;
Hu et al., 2025). In CW-Flow, however, additional multiplications and additions on white noise are
performed in each epoch, leading to extra computational overhead, as shown in line 8 of Algorithm
4. Consequently, the computation time we report includes the training time of JMCE, the time for
conditionally whitening all batches, and the extra training time of CW-Flow.

The variability in computation time is negligible, so we report results from a single run. The training
time of JMCE primarily depends on the dimensionality and length of the dataset, while the cost of
conditional whitening is also affected by dimensionality. Moreover, since we use a highly parallel
eigen-decomposition algorithm, the speed depends on the number of batches rather than the number
of samples per batch. Table 19 summarizes the training times on ETTh1, ETTh2, ILI, Weather, and
Solar Energy. Because ETTh1 and ETTh2 have identical dimensionality and length, their computa-
tional efficiency is the same.

For CW-Flow, the tensor operation in line 8 of Algorithm 4 must be performed in every epoch. Its
computational complexity is O(d2T 2

f ), which is not a negligible cost. Fortunately, with advances in
modern hardware and code packages, this operation can be executed in a highly parallelized manner.
The extra time is reported in Table 20.
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Table 19: The dimensions, total length, the training time of JMCE (Train JMCE), the time of condi-
tionally whiten all batches by eigen decomposition (CW eigen) and the time of conditionally whiten
all batches by calculate the inverse of triangle matrix L̂t|C (CW trig), the time of training a NsDiff
model (Train NsDiff), and the time of training a CW-NsDiff in an E2E style (CW-NsDiff-E2E). All
time are counted in second.
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Overall, for datasets with low to medium dimensionality, CW-Gen remains highly efficient. How-
ever, for high-dimensional datasets (such as Solar Energy), CW-Gen becomes slower, since it
requires performing numerous matrix eigen-decompositions, whose computational complexity is
O(d3).
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Table 20: The dimensions, total length, the time of training a FlowTS model (FlowTS), and time of
training a CW-FlowTS model (CW-FlowTS).

Dataset Dimension Total length FlowTS CW-FlowTS

ETTh1 7 14,400 147 152
ETTh2 7 14,400 147 152
ILI 7 966 11.4 12.2
Weather 21 52,696 720 740
Solar Energy 137 52,560 6580 10640

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the process of preparation and writing of this paper, we used ChatGPT 5.0 as the LLM tool for
text polishing. The specific application scope includes optimizing the language expression of the
abstract, introduction, experimental results, and discussion, improving the clarity and fluency of
academic language, and adjusting the logical connection between sentences and paragraphs.

All content polished by the LLM has undergone strict review and manual editing to ensure the accu-
racy of academic concepts, the rigor of logical reasoning, and the originality of research conclusions.
The authors bear full responsibility for the authenticity, integrity, and academic validity of the en-
tire content of the article. The LLM tool was only used for auxiliary text optimization and did not
participate in research ideas, experimental design, data analysis, or conclusion derivation, so it does
not meet the authorship criteria.
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Table 21: Metrics for CW-Gen models with different backbones of JMCE. Each experiment is re-
peated by 10 times, and standard deviations are provided in brackets. The better results are under-
lined. NS, FED, and IN indicate that the backbone of JMCE is the Non-stationary Transformer,
FED-Former, and Informer, respectively. SEP indicate the mean estimator and covariance estimator
are separately trained, whose backbones are Non-stationary Transformer.
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