
Games as Ontology Engines: AI and LLMs Invoke
Spatiotemporal and Metaphysical Realities in Virtual

Worlds

Jasmine Roberts∗
Microsoft & UC San Diego

jar053@ucsd.edu

Andrzej Banburski-Fahey∗
Microsoft

abanburski@microsoft.com

Jaron Lanier
Microsoft

jalani@microsoft.com

Abstract

Contrary to common perception, games are not solely sources of entertainment; they
are powerful mediums for modeling and communicating complex relationships.
By design, games are composable systems for representing and manipulating
interactions, especially the spatiotemporal. Historically, these interactions have
been based around causal chains, which determine the sequencing of player actions
and outcomes. In this paper, we repurpose games as ‘ontology engines,’ generating
new metaphysical relationships and providing tools for experimenting with them.
We explore how virtual worlds supported by large language models (LLMs) and
real-time object-transformation systems can serve as frameworks for examining
both culturally situated and universally recognizable ontologies.

1 Introduction

Previously, we investigated the level-editing and creative opportunities for games as generative and
interactive systems for dynamically creating, manipulating and reconfiguring virtual worlds. As we
explored how humans and AI could creatively generate and shape game spaces, we also showcased
the potential for games to become much more than entertainment — interactive storytelling tools and
world-building tools in real time. [1]

1.1 Ontological Modeling in Games

An ontology, in its simplest form, represents the structure of knowledge—how entities relate to each
other and the meanings they convey [2]. Games, as rule-bound environments with explicit object
interactions, naturally lend themselves to ontological modeling. However, the inclusion of generative
language models like OpenAI’s GPT [3] enables games to go beyond predefined interactions. Instead,
they can dynamically generate, evaluate, and modify ontological rules based on player input, reflecting
not just what is but what could be.

• Spatiotemporal Relations: Represented by physical movements, spatial arrangements, and
cause-and-effect sequences.

• Metaphysical Relations: Expressed through symbolic meanings, metaphorical transforma-
tions, and emergent properties (e.g., turning a “knife” and a “fish” into “sushi”).

∗Both authors contributed equally to this work.



• Cultural Grounding: Generated ontologies often reflect inherent biases and cultural
narratives within the language models, making games a testbed for these embedded structures.
[4, 5]

1.2 Dynamic Ontology Generation and Exploration

Traditional ontologies are static, representing a fixed structure of knowledge. In contrast, games can
be used to generate ontologies dynamically, transforming the act of playing into a form of ontological
exploration. For instance, a game could take a basic object like a “ball” and allow players to redefine
its properties and relationships, turning it into a “planet” with its own gravity or a “thought” with
semantic implications. This dynamic nature is achieved through a combination of AI-driven content
generation, real-time rule construction, and player-driven interactions. Thus, games become not only
worlds to be explored but systems for discovering new ontological truths.

2 Example Scenario and Use Cases

2.1 Sandbox Environments for Ontological Experimentation

Our game is designed as a sandbox-style environment that explores ontological relationships through
object transformations, similar to titles like Little Alchemy. [6] Players are encouraged to experiment
by combining, transforming, and modifying these entities. As players explore, the system generates a
dynamic ontology that maps out discovered relationships (e.g., “fire + water = steam”).

Table 1: Gameplay Overview Object Transformations and Interaction

(a) The system responds to “Change ball!”
by altering the ball’s form, initiating a
transformation in the virtual environment.

(b) Following the “Apple!” command, the
original ball is replaced by an apple,
showcasing dynamic object switching.

(c) The paddle changes into a tennis racket,
demonstrating the impact of commands
that modify tools within the scene.

(d) Combining the apple and racket results
in a metaphorical “Apple Pie”, illustrating
abstract reasoning and creative
recombination.

(e) The apple moves closer to the paddle in
response to the “Pull!” command,
highlighting object manipulation through
interaction.

(f) With the “Place” command, the apple
is set down at a new location, showing
precise spatial control.

2.2 System Architecture Overview

The architecture for LLM VR Pong is a modular integration of natural language processing (NLP),
runtime code generation, and real-time scene manipulation inside the Unity game engine. The core
implementation is based on the OpenAI GPT models [3], where the players’ verbal instructions are
interpreted and, in turn, used to generate C# code at runtime that can then be compiled and executed
by Unity using the Roslyn compiler. For instance, when a player enters the command ‘transform the
ball to an egg’, the GPT model generates and replace the existing ball visual using a 3D egg model
found from the public API of Sketchfab [7]. The architecture maintains a loose coupling between the
semantic understanding of the command, the code generation, and the scene management, which
works and is flexible enough to add new objects or behaviours without predefined interactions for
each.

2



Multiplayer capability is provided through Photon Unity Networking (PUN) [8], which synchronises
gamestate across clients such that any transforms or object manipulations triggered by one player are
reflected in another player’s scene. This is accomplished via a shared state machine and networked
object-identifiers, whilst allowing the system to handle multiple concurrent updates in a conflict-free
manner. Real-time hand-tracking is provided by the Ultraleap Stereo IR 170 camera, by which
a hand-gesture mapping is defined for each allowed transformation in the scene. Finally, voice
commands are provided by Azure Cognitive Services [9], where speech is transcribed into text that
is provided to Codex for further parsing. Collectively, these create an ‘overhead’ of software that
separates user input from code generation and real-time object manipulation – making the whole
system highly extensible with additional interactive behavior and dynamic content generation in a
VR context.

2.3 Object Interaction Mechanics

The game’s physics engine detects collisions and triggers a custom interaction logic system to
determine the outcome based on object properties. For example, if a paddle (transformed into a frying
pan) collides with a ball (transformed into an egg), the logic generates a new resultant object (e.g., a
fried egg) based on predefined interaction rules.

Players can issue commands such as “Change ball” or “Change paddle” to dynamically alter in-game
models, while additional commands like “place” (activating a head beam for precise placement) and

“pull” (drawing objects toward the paddle) allow for more granular control during gameplay.

Table 2: Comparison of Objects and Transformations by GPT Models

Object 1 Object 2 GPT-3.5 GPT-4.0 GPT-4o

Frying Pan Egg Fried Egg Omelet Sunnyside Egg
Pot Fire Boiling Water Steam Vapor
Glass Sand Sand Timer Hourglass Hourglass
Sun Ice Puddle Steam Rainbow
Scissors Paper Confetti Paper Shreds Paper Shreds
Whisk Egg Omelet Scrambled Egg Meringue
Blender Milk Milk Milk Frothy Milk
Sponge Soap Bubbles Soap Bubbles Foam
Knife Fish Sushi Sushi Sashimi
Tennis Racket Apple Apple Pie Apple Pie Apple Pie
Water Rubber Duck Bath Bubble Bath Bubble Bath
Clock Egg Chicken Hatched Chick Phoenix
Toaster Bread Toast Toast Toast

3 Discussion and Analysis

4 Analysis of GPT Models and Ontological Transformations

The table comparing object transformations by GPT models and the performance graph of different
similarity metrics (Figure 1) illustrate how these models act as dynamic engines for creating and
modifying ontological structures—mirroring the way games operate as ontology engines. In games,
entities are defined not just by their static attributes but by how they interact and transform in response
to in-game actions, much like the object pairings in the table (e.g., Egg + Frying Pan = Fried Egg,
Omelet, or Sunnyside Egg). Each GPT model interprets these interactions differently, producing
varying ontological states depending on its internal representation.

Figure 1 highlights the accuracy of GPT-3.5, GPT-4.0, and GPT-4o models under three different simi-
larity metrics: Cosine Similarity [10], Euclidean Distance [10], and Alternative Cosine Similarity
[11]. The graph reveals that while GPT-3.5 and GPT-4o perform strongly under specific metrics,
GPT-4.0 shows a more balanced performance across all metrics, indicating that it captures a wider

3



Figure 1: Most Accurate Model Count by Different Metrics

range of transformation patterns. This suggests that GPT-4.0 has more versatile embeddings capable
of handling both literal state changes and nuanced, context-based transformations. For example, the
table shows that for the transformation Egg + Frying Pan, GPT-3.5 produces the straightforward
result of a “Fried Egg,” while GPT-4o outputs a more specialized result like “Sunnyside Egg.” This
difference in representation is reflected in Figure 1, where the high count for GPT-4o using Alternative
Cosine Similarity indicates its strength in capturing more abstract or context-sensitive changes.

Moreover, the graph shows that Alternative Cosine Similarity favors more complex and contextually
rich transformations, as GPT-4o achieves its highest performance under this metric. This is particularly
evident when comparing outputs like Clock + Egg transforming into a "Phoenix," which would be
challenging to capture using basic spatial similarity metrics. In contrast, Euclidean Distance, which
performs best for GPT-4.0, is more effective at modeling transformations that involve straightforward
state changes, such as Ice → Steam or Water → Vapor. This variation across metrics underscores
the importance of selecting the right similarity measure depending on whether the goal is to capture
physical state transitions or conceptual context shifts.

4.1 Conceptual Depth and Symbolic Understanding

The development of conceptual depth across these object transformations can also be seen in the way
that derivation moves from being rather literal (e.g., Whisk + Egg = Omelet) to being more nuanced
or specialised (e.g., Meringue), as shown in Figure 1.For GPT-3.5, note that we see higher numbers
of generations that follow a type of schematic recipe, while the higher numbers of generations under
Alternative Cosine Similarity seen for GPT-4o correspond to more abstract and symbolic outputs.

Completions that stay consistent – such as the Toast result – imply that some base-ontological
associations are robust and well-structured. Those that change – as in Puddle to Rainbow – reveal
how the models progress from natural responses to environmental stimuli to integrative models of
complex phenomena that increase in internal complexity (quantitatively described by the metrics
shown in Figure 1).

5 Conclusion

Games, when combined with LLM’s and dynamic object transformation systems, become ontology
engines—structures capable of rendering more than fun. They become mediums for discovering,
modeling, and communicating complex metaphysical relations and cultural narratives.Figure 1,
supplemented with the table of object transformations, shows that the efficiency of these systems
is dependent on the proper selection of similarity measures useful and necessary for encoding and
changing semantic structures in a dynamic way.

4



References
[1] Roberts, J., Banburski-Fahey, A., & Lanier, J. (2022) Steps towards prompt-based creation of

virtual worlds. arXiv preprint arXiv:2211.05875.

[2] Gruber, T.R. (1993) A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2):199–220. https://doi.org/10.1006/knac.1993.1008.

[3] OpenAI. (n.d.) OpenAI models documentation. Retrieved September 30, 2024, from https:
//platform.openai.com/docs/models.

[4] Harrell, D.F. (2013) Phantasmal Media: An Approach to Imagination, Computation, and
Expression. Cambridge, MA: MIT Press.

[5] Lanier, J. (2010) You Are Not a Gadget: A Manifesto. New York, NY: Alfred A. Knopf.

[6] Jakubowski, R., & Wojciechowski, M. (2010) Little Alchemy [Game]. Recloak. Retrieved
September 30, 2024, from https://littlealchemy.com.

[7] Sketchfab. (n.d.) Sketchfab: Discover, share, and buy 3D models. Retrieved September 30, 2024,
from https://sketchfab.com.

[8] Exit Games. (n.d.) Photon: Real-time multiplayer game development framework. Retrieved
September 30, 2024, from https://www.photonengine.com.

[9] Microsoft. (2024). Azure Cognitive Services. https://azure.microsoft.com/en-us/
services/cognitive-services/.

[10] Salton, G., Wong, A., & Yang, C.S. (1975). A vector space model for automatic indexing. Com-
munications of the ACM, 18(11):613–620. https://doi.org/10.1145/361219.361220.

[11] Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., & Chanona-Hernández, L. (2014).
Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model.
Computación y Sistemas, 18(3):491-504. https://www.cys.cic.ipn.mx/ojs/index.php/
CyS/article/view/2043.

A Context for prompts

Here we collect the context appended to prompts for our experiments. Codex and GPT-3 are highly
capable in the few-shot regime, in which we provide a few examples of desired operation.

A.1 Prompt to GPT-3 for creative collisions

This is a magical game like ping pong, in which the players can change both the ball and their paddles,
when the transformed ball object hits the transformed paddle, it changes the ball according to how
you’d expect those two objects to interact.

When a spawned loaf of bread collides with spawned cheese it spawns A sandwich object.

When a spawned pen collides with spawned paper it spawns a notebook object.

When spawned meat collides with a spawned clock it spawns a bacteria object.

When a music note object collides with a cube object it spawns an instrument.

When water object collides with air object it spawns ice.

When a tree collides with a clock, it spawns a dead tree.

When an egg collides with a clock, it spawns a chicken.

When a cube collides with a wheel, it spawns a car.

When an egg collides with a frying pan, it spawns a fried egg.

When a balloon collides with a pin, it spawns a popped balloon.

5

https://doi.org/10.1006/knac.1993.1008
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://littlealchemy.com
https://sketchfab.com
https://www.photonengine.com
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://doi.org/10.1145/361219.361220
https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/2043
https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/2043


When a bread collides with a clock, it spawns a moldy bread.

When a caterpillar collides with a clock, it spawns a butterfly.

When water collides with fire, it spawns steam.

When seed collides with water, it spawns a plant.

When egg collides with clock, it spawns

6


	Introduction
	Ontological Modeling in Games
	Dynamic Ontology Generation and Exploration

	Example Scenario and Use Cases
	Sandbox Environments for Ontological Experimentation
	System Architecture Overview
	Object Interaction Mechanics

	Discussion and Analysis
	Analysis of GPT Models and Ontological Transformations
	Conceptual Depth and Symbolic Understanding

	Conclusion
	Context for prompts
	Prompt to GPT-3 for creative collisions


