
Under review as a conference paper at ICLR 2023

URVOICE: AN AKL-TOUSSAINT/ GRAHAM-
SKLANSKY APPROACH TOWARDS CONVEX HULL
COMPUTATION FOR SIGN LANGUAGE INTERPRETA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present URVoice, a vocalizer for the communication impaired, based on the
Indian Sign Language Notations. Contemporary psychological theories consider
language and speech as devices to understand complex psychological processes
and deliver them as cultural products of ideas and communication. Sign and ges-
ture language, offering an intelligent co-ordination of eye-and-hand and ear-and-
mouth, has evolved as an intelligent manifestation of speech for the impaired.
However, they have very limited modality and iconicity in accommodating a
greater range of linguistically relevant meanings. URVoice is an Augmentative
and Alternative Communication (AAC) device, which currently features a pipeline
of forward communication from signer to collocutor with a novel approach shoul-
dered on convex hull using vision based approach. The solution achieves real time
translation of gesture to text/voice using convex hull as the computational geome-
try, which follows Akl-Toussaint heuristic and Graham-Sklansky scan algorithms.
The results are weighed against our other solutions based on conventional Ma-
chine Learning and Deep Learning approaches. A futuristic version of URVoice,
with voice translated to sign language gestures, will be a complete solution for
effectively bridging the cognitive and communication gap between the impaired
and the abled lot.

1 INTRODUCTION

The truism of language and scientific linguistics emerged from man’s reinforcing vocal behaviour
as a response to the evolving social and natural circumstances. The human species grew to evolve as
the singular evolutionary group with a unique neurological organization to support language. Speech
and language, that started off as a mapping of meanings to sounds, has now grown to mapping of
complex representational intelligence to complicated cognitive communication systems. They have
further succeeded in understanding the structural compositions of language in terms of underlying
mental expressions.

A communication disorder in human information processing system adversely affects a person’s
ability to talk, understand, read, and write. Individuals with speech and language impairments lack
sufficient representational and communication intelligence and leave them with very less choice to
express the forbiddingly abstract levels of subtilities in human communication. Speech and language
impairments are considered a high-incidence disability BrainFacts (2012) Francisco (2017) Yukiko
& Kiyoshi (2004).

Sign and gesture language, attributed to an intelligent co-ordination of eye-and-hand and ear-and-
mouth, evolved as an intelligent manifestation of speech for the impaired. There is no universal sign
language used around the world. There are about 138 to 300 different types of sign languages used
around the globe todayRichard (2018). A few most widely used sign languages are discussed in
detail in Table A1.

However, they have very limited modality and iconicity in accommodating a greater range of lin-
guistically relevant meanings. They also fail to cover the verbal spectrum of temporal and spacial

1

Under review as a conference paper at ICLR 2023

characteristics of communication. Bridging this gap shall strengthen their mental thoughts, avoid
reliance on interpreters, and shall also provide access to new technologies.

1.1 TECHNOLOGICAL/MEDICAL SOLUTIONS FOR THE IMPAIRED: STATE OF THE ART

The existing solution includes text-to-speech and sign-to-speech software enabling the speech im-
paired and the deaf and mute to "speak". These Augmentative and Alternative Communication
(AAC) devices (listed in Table A2) range from a simple picture board to a computer program that
synthesizes speech from text.

1.2 PRESENTING URVOICE, OUR SOLUTION

Considering the limitations of existing AACs, our study focused on designing a cheap, compact and
portable vocalizer involving vision-based approaches. We present URVoice, a vocalizer based on
the Indian Sign Language Notations. It provides simpler and more intuitive way of communication
and makes it possible for remote communication.

URVoice achieves real time translation of gesture to text/voice using convex hull as the compu-
tational geometry, which follows Akl-Toussaint heuristic and Graham-Sklansky scan algorithms.
The results are weighed against our other solutions based on conventional Machine Learning and
Deep Learning approaches. A futuristic version of URVoice, with voice translated to sign language
gestures, will be a complete solution for effectively bridging the cognitive and communication gap
between the impaired and the abled lot.

2 AN ARCHITECTURAL OVERVIEW

2.1 URVOICE: ARCHITECTURE

URVoice converts gestures as visual input into audio/ text output for a collocutor or relays as text
message to a computer. Similarly, it takes in audio as input from the collocutor/ computer and
converts it into gesture/ text as output for the signer. This duplex communication model shall run
on an accelerator hardware for optimal performance in real-time communication. A block diagram
of the functioning of the vocalizer is presented in the Fig. 1. This paper features a pipeline for one-
way communication in URVoice, i.e, visual input to audio/ text output. The gestures are captured in
real-time and processed to give audio/ text as output.

2.2 CONVEX HULL OPTIMIZATION: A NOVEL APPROACH IN URVOICE

The novelty of URVoice is the use of convex hull as the computational geometry method for recog-
nition of gestures involving use of threshold technique for image segmentation and extraction of
various mathematical features from the convex hull. The recognition is accomplished by a simple

Figure 1: Functional overview of the Vocalizer

2

Under review as a conference paper at ICLR 2023

Figure 2: Overview of the algorithm

and efficient rule-based classifier. An overview of the algorithm for hand gesture recognition is
described in Fig. 2. This algorithm predicts only static gestures of both single and double hands.

Table 1: Convex Hull Literature

Algorithm Proposed by Complexity Description
Graham’s method
(1972)

Graham O(nlogn) To compute the convex hull of n points on the plane based on polar
angles

Linear time algo-
rithm (1972)

Sklansky Sklansky
(1982)

O(n) It was short and elegant to find the convex hull of a simple polygon
in linear time.

Gift wrapping
method

Chand and Kapur Chand
& Kapur (1970), Jarvis
Jarvis (1973)

O(nh) It determines the left most point, which is a vertex of the convex
hull, and then searches for the point that lies on one side of the line
from the current vertex to it. All the vertices of the convex hull can
be found by repeating this procedure.

Graham scan Graham Graham (1972) O(nlogn) A modified version of Gift wrapping method. Starting from the
lowest point, all the points are sorted in increasing order of the
angle of the lowest point made with the x-axis, and then a more
efficient searching scheme can be performed.

Monotone chain
algorithm

Andrew Andrew (1979) O(nlogn) A variant of the Gram scan. It sorts points by their coordinates
instead of angles.

N-dimensional
Quickhull

Barber, Dobkin and
Huhdanpaa Barber
(1996) Hoare (1961)

O(nlogr) It uses a divide and conquer approach like that of quicksort.

Divide and con-
quer

Preparata and Hong
Preparata & Hong
(1977)

O(nlogn) This algorithm is applicable to 3D case.

Incremental con-
vex hull algorithm

Kallay Kallay (1984) O(nlogn) It is used to develop 3D convex hull algorithms.

Ultimate pla-
nar convex hull
algorithm

Kirkpatrick and Seidel
Kirkpatrick & Seidel
(1986)

O(nlogh) The first optimal output-sensitive algorithm. It is a modifica-
tion of the divide and conquer algorithm by using the technique
of marriage-before-conquest and low-dimensional linear program-
ming.

Chan’s algorithm Chan Chan (1996) O(nlogh) A simpler optimal output-sensitive algorithm. It combines gift
wrapping with the execution of an algorithm withO(nlogn) (such
as Graham scan) on small subsets of the input.

Akl-Toussaint
heuristic

Selim Akl and G. T. Tou-
ssaint Bhattacharya &
Toussaint (1983),Akl &
Toussaint (1978)

O(n) It is often used as the first step in implementations of convex hull
algorithm to improve the performance.

Graham-Sklansky
scan

Preparata & Shamos
(1985)

O(n) It is similar to the Sklansky algorithm. Often used after Akl-
Toussaint heuristic

3

Under review as a conference paper at ICLR 2023

(a) Captured image

(b) Cropped image with
histogram

(c) Blur image with his-
togram

(d) HSV image with his-
togram

(e) Masked image with his-
togram

(f) Dilated image with his-
togram

(g) Eroded image with his-
togram

(h) Blurred image with his-
togram

(i) Thresholded image with his-
togram

Figure 3: Image Progression in URVoice

3 AN ALGORITHMIC OVERVIEW

3.1 URVOICE CONVEX HULL OPTIMIZATION

URVoice’s central algorithm mainly features convex hull optimization as it provides the necessary
keypoints in gestures for their recognition. The computation of the convex hull is a central problem
in computational geometry. It has been vastly studied, not only because of its practical applications,
such as computer graphics and statistics, but also because other computational geometry problems
start with the computation of a convex hull. The various proposed convex hull algorithms are dis-
cussed in detail in the Table 1.

3.1.1 THE GRAHAM-SKLANSKY/AKL-TOUSSAINT HEURISTIC MODEL

The Graham-Sklansky scan is an important technique in computational geometry which was inde-
pendently proposed by Graham to compute the convex hull of a sorted set of points and by Sklansky
to compute the convex hull of a simple polygon. Whereas the Sklansky scan fails for simple poly-
gons, it succeeds for star-shaped polygons, a fact upon which the correctness of the Graham scan
relies. The idea of the Graham scan is to make a single scan through a sorted list of points. At
each step in the scan, either a point is deleted or retained based on the test. So, if there are n
points, a maximum of n points can be deleted. Thus, the algorithm takes O(n) time. Since its intro-
duction the Graham-Sklansky scan has found widespread application to other problems. The idea
of Akl-Toussaint heuristic is to quickly exclude many points that would not be part of the convex
hull.Xianshu et al. (2003)

Thus, the convex hull method follows Akl-Toussaint heuristic, which results in a monotone polygon,
followed by Graham-Sklansky scan to obtain the points of convex hull.

3.2 URVOICE COMPUTATIONAL PIPELINE

The pipeline presented consists of the following stages :-

4

Under review as a conference paper at ICLR 2023

1. Image Acquisition
2. Pre-processing
3. Feature Extraction
4. Gesture Prediction

It is discussed in detail in the following subsections. The mathematical model for the pipeline is
described in A.1.

3.3 IMAGE ACQUISITION

An RGB image of gesture is captured during run-time with the help of an external depth camera,
as shown in Fig. 3(a). The camera used in this research is Orbbec Astra Pro with a resolution of
1280*720 @30fps.

3.4 PRE-PROCESSING

The region of interest is cropped out of the captured image having a size of (200 × 200) pix-
els for number gestures and (400 × 200) pixels for alphabet and word gestures, and is stored as
crop_image, as shown in Fig. 3(b) along with its histogram. The image is pre-processed using the

Table 2: Pre-processing stages

Stage Name
of
filter

Description

1 Gaussian
Blur

Gaussian blur is applied first on crop_image to smoothen the pixel values of the hand so as to create
some amount of uniformity. Here, a Gaussian filter convolves over this image and thereby blurs it. The
workflow for obtaining the Gaussian filter is presented in Algorithm 1 in A.2. From this algorithm, the
value of σ is obtained as 0.8 and the Gaussian filter obtained is: 0.06292 0.124998 0.06292

0.124998 0.248326 0.124998

0.06292 0.124998 0.06292

After convolution, a blur image is obtained, as shown in Fig. 3(c), and is stored as blur with BGR pixel
format. The histogram of Fig. 3(c) shows minor changes in the peaks and valleys of the histogram. The
BGR format of the image is then converted to HSV format to mainly focus on the intensity component
of the image which helps in eliminating the background noise and shadows.

2 HSV HSV color space is most suitable for color-based image segmentation and it is and it is hence directly
applied on blur with BGR image format. The Algorithm 2 A.2 presents the workflow for obtaining
the hsv values. The bgr values of the blurred image are then replaced by the hsv values after applying
Algorithm 2 A.2 and is stored in hsv. The resultant image obtained is as shown in Fig. 3(d) along with
its histogram. It can be observed from the image that the region of interest, i.e., the hand, is now covered
with green pixels. Thus, a mask has to be applied on hsv to focus on the region of interest.

3 Mask A mask is applied on hsv to crop out the gesture within the image. The workflow for the same is
presented in Algorithm 3 A.2. A binary mask is returned and stored in mask. The resultant image
obtained is as shown in Fig. 3(e) along with its histogram which now has two peaks.

4 Dilation Dilation is applied on mask to overcome the disfigured regions and also assist in joining broken parts
of the image. It is observed that the thickness of the foreground object has increased. This operation
consists of convolving the image (mask) with a kernel (5 × 5 unit matrix). The kernel has a defined
anchor point which is at the center. As the kernel is scanned over the image, the maximal pixel value
overlapped by the kernel is computed and this replaces the image pixel at the anchor point position. This
process takes place once throughout the image. The final image obtained, as shown in Fig. 3(f) along
with its histogram, is stored in dilation.

5 Erosion Erosion is applied on dilation to eliminate noise if any. It is observed that the thickness of the fore-
ground object has decreased. This operation is similar to dilation. As the kernel [5x5 unit matrix] is
scanned over the image, it computes the minimal pixel value overlapped by the kernel and this minimal
value replaces the image pixel under the anchor point. This process takes place once throughout the
image. The final image obtained, as shown in Fig. 3(g) along with its histogram, is stored in erosion.
Now, the resultant image contains rough edges which has to be fixed by blurring it.

6 Gaussian
Blur

Gaussian blur is again applied on erosion to smoothen the image. This helps to remove the deformities
on the edges of the hand gesture formed due to erosion. The procedure followed is same as in Point 1
under Pre-processing and the resultant image obtained, as shown in Fig. 3(h), is stored in filtered. The
histogram in the Fig. 3(h) shows appearance of small new peaks between the earlier obtained peaks.
This is considered as noise and hence has to be removed by thresholding the image.

7 Threshold Thresholding is applied on filtered to ensure uniformity of higher-grade gray pixel values in the image.
The workflow for thresholding the image is presented in Algorithm 4 A.2. The resultant binary image
obtained, as shown in Fig. 3(i) is stored in thresh. The small peaks in the histogram of the blur image
(Fig. 3(h)) are erased in the histogram of the thresholded image (Fig. 3(i)).

5

Under review as a conference paper at ICLR 2023

Table 3: Gesture Features

Feature Description
Contours Contours algorithm processes the arbitrary binary image thresh and returns a vector of detected contour points. It

uses CV_RETR_TREE mode to retrieve all the contours and reconstruct a full hierarchy of nested contours along
with CV_CHAIN_APPROX_SIMPLE method to compress horizontal, vertical, and diagonal segments and leaves
only their end points. Contour retrieval follows Suzuki’s algorithm which is explained as follows: The function
f(x, y) denotes the value of the pixel at location (x, y). The uppermost row, the lowermost row, the rightmost
column, and the leftmost column of the picture composes the frame. Then, a unique number is assigned to every new
border and it is denoted by NBD. The criteria for checking the outer border or hole border is shown in Fig. 4(a). The
NBD of the frame is assumed to be 1. Other borders are numbered sequentially. The information of the parent of any
border is saved in LNBD or last NBD. The workflow to find the contour points is presented in Algorithm 5 A.2. The
retrieved tree of list of points are stored in contours. Using contours, the largest contour in terms of area is isolated
and stored as contour. Fig. 4(b) shows the contour line (as green line) joining all the points in contour. The area of
contour is calculated using the formula presented in Algorithm 6 A.2.

Convex
Hull and
Convexity
Defects

The smallest convex polygon, that encloses all the set of contour points in contour, is found by convex hull method
which follows Akl-Toussaint heuristic followed by Graham-Sklansky scan as presented in Algorithm 1. This algo-
rithm returns the sequence of stack of vertices of the convex hull and is stored in hull. Fig. 4(b) shows the convex
hull lines (as red lines) joining all the points in hull. Considering H[n] as convex hull points and C[n] as contour
points, for each pair of adjacent hull points (H[i], H[i+ 1]), defining one edge of the convex hull, the distance from
the edge for each point on the contour C[n] that lies between H[i] and H[i + 1] (excluding C[n] == H[i + 1]) is
calculated. The workflow for calculating the maximum distance is presented in Algorithm 7 A.2. If the distance is
greater than zero, then a defect is considered to be present. When a defect is present, the value of i, i + 1, the index
(n) of the contour point where the maximum is located and the maximum distance is recorded in defects as a list
containing: [start point, end point, farthest point, approximate distance to farthest point].

Length and
Angle

For each defect in defects, the coordinates of start point, end point and farthest point is stored in start, end and far
respectively. The workflow for calculating lengths of the sides of the triangle formed by joining these points and the
angle θ formed at the vertex of the farthest point is presented in Algorithm 8 A.2. A depiction of these distances and
angle with respect to fingers having convex defect is shown in Fig. 4(c). If the angle calculated is less than 90◦, then
a variable count_defects is incremented by one. The final image depicting the contours in green line and defects in
red dots is shown in Fig. 4(d).

(a) Outer and hole bor-
der check

(b) Contour and
Convex hull

(c) Sides
and angle
w.r.t to a
Convex
defect

(d) Final image

Figure 4: Convex Hull Optimization in URVoice

Table 4: Gesture prediction

Gesture Methodology
Number When a defect with its vertex angle less than 90◦ is encountered, a variable A is incremented with the value of the

distance a, else, a variable B is incremented with the value of the distance b. These variables A and B represents the
sum of distances between the fingers and the sum of lengths of the fingers. Finally, the predictions for the number
gestures are obtained by using the values of count_defects, A and B as presented in Algorithm 9 A.2.

Alphabet The alphabet gestures are predicted with the help of count_defects and area values as presented in Algorithm 10
A.2.

Word The word gestures are predicted with the help of count_defects and area values as presented in Algorithm 11 A.2.

OpenCV library in Python to extract the necessary features. The pre-processing stages are explained
in Table 2.

3.5 FEATURE EXTRACTION

By employing the fully segmented image thresh, required features are extracted and assembled for
prediction. The requisite features for prediction are presented in Table 3.

6

Under review as a conference paper at ICLR 2023

Algorithm 1 : Convex Hull(contour)
1: // Purpose: To find the coordinates of convex hull of the contour
2: // Input: (x, y) coordinates of contour
3: // Output: (x, y) coordinates of boundary points of convex hull
4: // Parameters: TopMost- point at the top of HullStack, TopLess- point just below TopMost
5: -
6: pminX = point with lowest X-coordinate
7: pmaxX = point with highest X-coordinate
8: pminY = point with lowest Y-coordinate
9: pmaxY = point with highest Y-coordinate

10: Define the bounding box and quadrant of pminX , pmaxX , pminY and pmaxY
11: if the points lie inside the quadrant then
12: Discard the points
13: else
14: Select the point lying in the regions between the bounding box and quadrant
15: end if
16: for each corner region do
17: p1 = min{f(X,Y) = X − Y }
18: Discard points lying inside the triangle (pminX , p1, ppmaxY)
19: end for
20: if the non-discarded points lie on and above the line L(pminX , pmaxX) then
21: Sort them in ascending order of their X-coordinates and stack in P
22: else
23: Sort them in descending order of their X-coordinates and stack in P
24: end if
25: Apply Graham-Sklansky procedure to the obtained monotone polygon:
26: Initialize empty HullStack
27: P [N + 1] := P [1]
28: Push (P [1], HullStack)
29: Push (P [2], HullStack)
30: for Ind := 3 to N + 1 do
31: while (HullStack stacks more than one element) and (P [Ind] is to the left of L(TopLess, TopMost) do
32: pop(HullStack) [discard TopMost]
33: end while
34: push(P [Ind], HullStack)
35: end for
36: pop(HullStack)

Table 5: Gestures studied

Gesture Names
Numbers 1, 2, 3, 4, 5, 6, 7, 8, 9
Alphabets B, C, L, P, R, W, T
Words Doctor, This, Your, Mine

Table 6: Time taken to process the code

Gesture Mid-range of time taken (in seconds)
Text output Audio output

Numbers 0.1221 1.1133
Alphabets 0.1103 1.1362
Words 0.0804 1.1457

(a) Number predictions displayed on screen

(b) Alphabet predictions displayed on screen

(c) Word predictions displayed on screen
Figure 5: Output

7

Under review as a conference paper at ICLR 2023

Table 7: Benchmarking Convex Hull Optimization with selected ML/DL Models

Model Classes
trained

Dataset Specifications Model Architecture Performance
Analysis

Support Vector
Classifier

0, 1, 2, 3,
4, 5, 7, 8,
9 [Total:9
classes]

RGB image dataset of static
single hand gestures of shape
[400x400x3].
300 images per class [Total: 2700
images].
Training set: 2518 images
Validation set: 169 images per
class
Testing set: 13 images per class

A pipeline with Randomized-
PCA for dimensionality reduc-
tion followed by SVC classi-
fier with "rbf" kernel and "bal-
anced" class_weight. Trained
data using GridSearchCV.

Testing accuracy:
95.86%
Testing loss:
4.14%
Validation accu-
racy: 93.68%
Validation loss:
6.32%

Artificial Neu-
ral Network
(only numbers)

1, 2, 3, 4,
5, 6, 7, 8,
9 [Total: 9
classes]

Numerical dataset of 8 extracted
features of hand gestures [nor-
malised data].
1000x8 features per class [Total:
9000x8 features].
Training set: 6300x8 features per
class
Testing set: 1800x8 features per
class

A Sequential Model with 3 hid-
den layers which uses relu ac-
tivation function. The out-
put layer uses softmax activa-
tion function, adam optimiser
and categorical crossentropy as
loss function.

Training accuracy:
94.59%
Training loss:
17.97%
Validation accu-
racy: 97.33%
Validation loss:
10.94%

Artificial Neu-
ral Network
(numbers, al-
phabets and
words)

1, 2, 3, 4,
5, 6, 7, 8,
9, B, C, L,
P, R, W,
T, Doctor,
This, Your,
Mine [Total:
20 classes]

Numerical dataset of extracted fea-
tures of hand gestures [normalised
data].
1000x8 features per class [Total:
20000x8 features].
Training set: 6300x8 features per
class
Testing set: 1800x8 features per
class

A Sequential Model with 4 hid-
den layers which uses relu ac-
tivation function. The out-
put layer uses softmax activa-
tion function, adam optimiser
and categorical crossentropy as
loss function.

Training accuracy:
93.70%
Training loss:
17.80%
Validation accu-
racy: 95.32%
Validation loss:
14.01%

Convolutional
Neural Network
(1)

0, 1, 2, 3,
4, 5, 7, 8,
9 [Total:9
classes]

RGB image dataset of static
single hand gestures of shape
[400x400x3].
60 images per class [Total: 540 im-
ages].
Training set: 40 images per class
Testing set: 20 images per class

A Sequential Model with 2
Convolution2D layers, 2 Max-
Pooling2D layers and 2 hid-
den layers of neural network
with relu as activation function.
The output layer uses softmax
activation function, adam opti-
miser and categorical crossen-
tropy as loss function.

Accuracy:
86.67%
Loss: 13.33%
Precision: 91%
Recall: 87%
F1-score: 87%

Convolutional
Neural Network
(2)

0, 1, 2, 3,
4, 5, 7, 8,
9 [Total:9
classes]

RGB image dataset of static
single hand gestures of shape
[400x400x3].
300 images per class [Total: 2700
images].
Training set: 250 images per class
Validation set: 30 images per class
Testing set: 20 images per class

A Sequential Model with 2
Convolution2D layers, 2 Max-
Pooling2D layers and 2 hid-
den layers of neural network
with relu as activation function.
The output layer uses softmax
activation function, adam opti-
miser and categorical crossen-
tropy as loss function.

Accuracy:
98.89%
Loss: 2.46%
Precision: 98%
Recall: 98%
F1-score: 98%

Convex Hull
Optimization
technique

1, 2, 3, 4, 5,
6, 7, 8, 9, B,
C, L, P, R,
W, T, Doc-
tor, This,
Your, Mine
[Total:20
classes]

Real-time RGB images in video
stream: [200x200] pixels for num-
ber gestures and [400x200] pixels
for alphabet and word gestures.

A rule based classifier as dis-
cussed in subsection 3.6

Refer Table 6

3.6 GESTURE PREDICTION

The gestures of the Indian sign language studied are mentioned in the Table 5. By employing
the extracted features along with additional values, predictions are made for gestures of numbers,
alphabets and words as described in Table 4.

4 RESULTS AND DISCUSSION

4.1 URVOICE RESULTS

The algorithm relays the prediction both in terms of text and audio. The algorithm with output as
text uses cv2 library of OpenCV to display the predictions on the screen. Fig. 5(a), 5(b), 5(c) shows
the text output of various gestures displayed on the screen. Likewise, the algorithm with audio as

8

Under review as a conference paper at ICLR 2023

output makes use of pyttsx3 library. Once the predictions are made, the text is instantaneously
converted to speech. One advantage of using Python’s pyttsx3 library is that it works offline and
hence it is convenient to use anywhere. The mid-range of the time taken to process the code to obtain
the output of prediction is provided in Table 6. The data in the table illustrates the fact that the time
required for audio output is greater than text output due to the text to speech conversion module and
also there is a small lag in the run-time due to the time spent to play the audio.

4.2 BENCHMARKING CONVEX HULL OPTIMIZATION WITH SELECTED ML/DL MODELS

We trained and deployed a few other Machine learning and Deep learning models for hand gesture
recognition, the details of which are listed in Table 7. For this, we created two different datasets:

1. Image Dataset: 2700 RGB images of 3 individuals were captured for 9 classes of number
gestures with different brightness levels.

2. Numerical Dataset: Extracted 8 real-time hand gesture features of 2 individuals which
includes: sum of distances between fingers, sum of lengths of fingers from tip to convex
defects on both sides, sum of distances from tip of fingers to the centroid of the palm, sum
of angles between the fingers, total area of hand gesture covered, total perimeter covered
by the convex points of the hand gesture and number of convex defects. These features
were extracted using the same algorithm discussed in this paper.

Although these models performed well, the convex hull optimization technique was preferred over
this based on the obtained performance and the type of system we wanted to implement. Using
a CNN model would result in designing a GPU based system for hand-held device which is not a
feasible solution due to factors like memory usage, size and cost. The experiments performed using
convex hull method deduces best results with the features under study and also was able to reliably
recognize the gestures in real-time, though there were some limitations imposed by the presence
of image noise. Thus, the convex hull optimization technique proves to have better static gesture
recognition rates.

5 CONCLUSION AND FUTURE WORK

This paper presents the architectural design of the vocalizer, URVoice for Indian sign language inter-
pretation. This device comes under the category of Augmentative and Alternative Communication
(AAC) Devices. We have described and evaluated the forward communication process of converting
static gesture input to text/ audio output. The novelty of this approach is the use of convex hull as
the computational geometry method for recognition of gestures. We have also trained a CNN model
for predicting gestures from images and ANN model for predicting gestures from numerical data.
We preferred convex hull over CNN due to its computational efficiency and architecture.

In our future work, we will build an algorithm to recognize the dynamic gestures and implement
the feedback channel of converting audio input from a collocutor/ computer to text/ gesture output
which will be displayed on the screen to complete the software part of our architecture. We will
also be developing a hardware prototype using accelerator hardware and embedded firmware. This
will serve to be a high-performance, low cost and portable infrastructure to be used as a gadget that
serves as the interpreter and translator for the communication impaired.

REFERENCES

S. Akl and G.T. Toussaint. A fast convex hull algorithm. Inform. Process. Lett., 7:219–222, 1978.

A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. InformationPro-
cessing Letters, 9:216–219, 1979.

C. B. Barber. D. p. dobkin, and h. huhdanpaa,the quickhull algorithm for convex hulls. ACM
Transactions on Mathematical Software, 22:469–483, 1996.

B. K. Bhattacharya and G. T. Toussaint. Time-and storage-efficient implementation of an optimal
planar convex hull algorithm. Image Vision Comput., 1:140–143, 1983.

9

Under review as a conference paper at ICLR 2023

BrainFacts. Language: An overview. https://www.brainfacts.org/thinking-sensing-and-
behaving/language/2012/language-an-overview, 2012.

T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete
and Computational Geometry, 16:361–368, 1996.

D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. Journal of the ACM(JACM), 17:
78–86, 1970.

Aboitiz. Francisco. A brain for speech. 2017.

R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Info.
Pro. Lett., 1:132–133, 1972.

C. A. R. Hoare. Algorithm 64: quicksort. Communications of the ACM, 4:321, 1961.

R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Information
processing letters, 2:18–21, 1973.

M. Kallay. The complexity of incremental convex hull algorithms in rd. Information Process-ing
Letters, 19:197, 1984.

D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM journalon
computing, 15:287–299, 1986.

Services NIL. The different types of sign language. https://nilservices.com/different-types-sign-
language/, 2017.

F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions.
Communications of the ACM, 20:87–93, 1977.

F. P. Preparata and M. I. Shamos. Computational geometry - an introduction. Springer, 1985.

Brooks. Richard. A guide to the different types of sign language around the world. https://k-
international.com/blog/different-types-of-sign-language-around-the-world/, 2018.

J. Sklansky. Finding the convex hull of a simple polygon. pp. 79–83, 1982.

Kong. Xianshu, Everett Hazel, and Toussaint Godfried. The graham scan triangulates simple poly-
gons. 2003.

Notaand. Yukiko and Honda. Kiyoshi. Brain regions involved in motor control of speech. 2004.

A APPENDIX

A.1 MATHEMATICAL MODEL

A discrete RGB image is defined as m × n × k hypermatrix I , where the mnkth entry represents
the mnth pixel in colour channel k. Consider (k = 1)th channel as B matrix, (k = 2)th channel as
G matrix and (k = 3)th channel as R matrix. A Gaussian function gt(x, y) is applied separately to
each kth matrix where,

gt(x, y) =
1

2πσ2
∗ e−

x2+y2

2σ2 //σ − Standard deviation (1)

Then bt, a Gaussian blur of image Ik, is achieved by convolving it with gt(x, y),

bt(x, y) = Ik(x, y) ∗ gt(x, y) =

∫ ∞
−∞

∫ ∞
−∞

gt(x − α, y − β)Ik(α, β)dαdβ (2)

The blur image B(i,j,k) from I matrix is obtained by:

Bk(i, j) =

∑m
p=1

∑n
l=1 gt(p, l) · Ik(i+ p− 1, j + l − 1)∑m

p=1

∑n
l=1 gt(p, l)

(3)

10

Under review as a conference paper at ICLR 2023

Bk(i, j) values are normalized and transformed into HSV matrix with hueH ∈ [0◦, 360◦], saturation
S ∈ [0, 1] and value V ∈ [0, 1]. The equations for conversion of BGR matrix into HSV matrix is
presented in algorithm 2 A.2. A new binary matrix with values 0 or 255 is created from HSV as
defined below:

M(i, j) =

255,

for (2 ≤ H(i, j) ≤ 20)∧
(0 ≤ S(i, j) ≤ 255)∧
(0 ≤ V (i, j) ≤ 255)

0, otherwise

(4)

The intensity of white pixel is intensified by dilation using a 5× 5 unit matrix K. Dilation of matrix
M by K is defined by:

D =M ⊕K =
⋃
k∈K

Mk = {x : K̂x ∩M 6= 0} (5)

where,
K̂ = {x : x = −k, for k ∈ K} (6a)
Kx = {c : c = a+ x, for a ∈ K} (6b)

In matrix transformation, dilation is implemented as:
D(i, j) = {x : max[K(p, l) ·M(i+ p− 1, j + l − 1)]} (7)

where, p ∈ (1,m) and l ∈ (1, n)
The intensity of white pixel is reduced by erosion using a 5× 5 unit matrix K. Erosion of matrix D
by K is defined by:

E = D 	K =
⋂
k∈K

D−k = {x : Kx ⊆ D} (8)

In matrix transformation, erosion is implemented as:
E(i, j) = {x : min[K(p, l) ·D(i+ p− 1, j + l − 1)]} (9)

where, p ∈ (1,m) and l ∈ (1, n)
Again, Gaussian function is applied to matrix E and is defined as:

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

gt(x− α, y − β)E(α, β)dαdβ (10a)

F (i, j) =

∑m
p=1

∑n
l=1 gt(p, l) · E(i+ p− 1, j + l − 1)∑m

p=1

∑n
l=1 gt(p, l)

(10b)

A threshold value is set to classify the values of matrix F to create a binary matrix of value 0 or 1.
The threshold value is defined by:

T =
µb + µo

2
(11)

where, µb and µo are the means of the distribution in the gray level values in matrix F . The matrix
obtained after thresholding F is defined by,

T (i, j) =

{
0, if F (i, j) ≤ T
1, otherwise

(12)

A curve joining points with equal intensities in the matrix T would represent contours. The (i, j)
coordinates of contours are obtained as presented in algorithm 5 A.2.
Let C(x, y) be the contour line joining all contour points, then the area covered by the line is given
by the Green’s theorem as:

Area =
1

2

∫
C

xdy − ydx (13)

In coordinate system,

Area =

n∑
k=0

(xk+1 + xk)(yk+1 − yk)
2

(14)

The convex hull of a set of points C in n dimensions is the intersection of all convex sets containing
C. For N points p1, ... pN , the convex hull H is given by the expression:

H = {
N∑
j=1

λjpj : λj ≥ 0 for all j and

N∑
j=1

λj = 1} (15)

11

Under review as a conference paper at ICLR 2023

Let the line joining the hull points be ~H and the perpendicular line from ~H to the contour line lying
within it be ~d. If ~H × ~d is maximum, then a defect is considered and the coordinates of the contour
point, hull points and the distance are recorded. The distances, angle and defects using these points
are calculated as in Algorithm 8 A.2 to make various predictions.

A.2 ALGORITHMS

Algorithm 1 : GaussianBlur(crop_image, (3,3), 0)
1: // Purpose: To obtain the Gaussian filter
2: // Input: crop_image, kernel_size, sigmaX value
3: // Output: Gaussian filter
4: // Parameters: x = distance from the origin in the horizontal axis
5: y = distance from the origin in the vertical axis
6: σ = the standard deviation of the Gaussian distribution
7: -
8: if sigmaX = 0 then
9: σ = 0.3 ∗ ((ksize− 1) ∗ 0.5− 1) + 0.8 // ksize = kernel_size(3)

10: end if
11: G(x, y) = 1

2πσ2 ∗ e−
x2+y2

2σ2

Algorithm 2 : HSV(blur)
1: // Purpose: To obtain the HSV image
2: // Input: blur with BGR values
3: // Output: HSV image
4: // Parameters: b,g,r = Coordinate pixel values of BGR image
5: -
6: for each coordinate pixel value (b,g,r) do
7: Divide b, g, r by 255
8: cmax = max(b, g, r)
9: cmin = min(b, g, r)

10: difference = cmax− cmin
11: if cmax = cmin = 0 then
12: h = 0
13: end if
14: if cmax = r then
15: h = (60 ∗ ((g − b)/difference) + 360)%360
16: end if
17: if cmax = g then
18: h = (60 ∗ ((b− r)/difference) + 120)%360
19: end if
20: if cmax = b then
21: h = (60 ∗ ((r − g)/difference) + 240)%360
22: end if
23: if cmax = 0 then
24: s = 0
25: end if
26: if cmax != 0 then
27: s = (diff/cmax) ∗ 100
28: end if
29: v = cmax ∗ 100
30: end for

12

Under review as a conference paper at ICLR 2023

Algorithm 3 : Mask(hsv, lower limit range, upper limit range)
1: // Purpose: To mask hsv
2: // Input: hsv, lower limit range(2, 0, 0), upper limit range(20, 255, 255)
3: // Output: Binary mask
4: // Parameters: lowerb = lower pixel limit range
5: upperb = upper pixel limit range
6: hsv(I) = hsv value
7: mask = destination image
8: -
9: for each coordinate hsv pixel value do

10: if (lowerb0 ≤ hsv(I)0 ≤ upperb0) ∧ (lowerb1 ≤ hsv(I)1 ≤ upperb1) ∧ (lowerb2 ≤ hsv(I)2 ≤
upperb2) then

11: mask = 255 (white)
12: else
13: mask = 0 (black)
14: end if
15: end for

Algorithm 4 : Threshold(filtered)
1: // Purpose: To obtain threshold of filtered
2: // Input: filtered
3: // Output: thresh
4: // Parameters: f (x, y) = Coordinate Pixel Value of filtered
5: T = Threshold Value(127)
6: g(x,y) = destination pixel value of thresh
7: -
8: for coordinate pixel value do
9: if f(x, y) ≤ T then

10: g(x, y) = 0
11: else
12: g(x, y) = 1
13: end if
14: end for

13

Under review as a conference paper at ICLR 2023

Algorithm 5 : Contours
1: // Purpose: To find contour points
2: // Input: thresh
3: // Output: contours
4: -
5: Scan the image from left to right till an object pixel is found
6: Check if the pixel is an outer border or hole border.
7: When a new row is scanned, reset LNBD to 1
8: if pixels > 0 then
9: if fxy = 1 and fx,y−1 = 0 [outer border] then

10: NBD+ = 1
11: Set (x2, y2) as (x, y − 1)
12: else if [hole border] then
13: NBD+ = 1
14: Set (x2, y2) as (x, y + 1)
15: if fxy > 1 then
16: LNBD = fxy
17: end if
18: else
19: Go to line 42
20: end if
21: From this starting point, trace the border
22: Starting from (x2, y2) check clockwise around the pixels in the neighbourhood of (x, y). When a

nonzero pixel is found, denote it as (x1, y1)
23: if no nonzero pixels are found then
24: Set fxy = −NBD
25: Go to line 29
26: end if
27: Set (x2, y2) = (x1, y1) and (x3, y3) = (x, y)
28: Starting from the next element of the pixel (x2, y2) in the counter-clockwise order, traverse the neigh-

bourhood of the (x3, y3) in the counter-clockwise direction to find the first nonzero pixel and set it to
(x4, y4).

29: if pixel at (x3, y3 + 1) is a 0-pixel belonging to the region outside the boundary then
30: The current pixel (x3, y3) = −NBD
31: else if the pixel at (x3, y3 + 1) is not a 0-pixel and the current pixel value is 1 then
32: The current pixel (x3, y3) = NBD
33: else
34: Do not change the current pixel value
35: end if
36: if In line 28, (x4, y4) = (x, y) and (x3, y3) = (x1, y1) [back to starting point] then
37: Go to line 42
38: else
39: Set (x2, y2) = (x3, y3) and (x3, y3) = (x4, y4)
40: Go back to line 28
41: end if
42: if fxy! = 1 then
43: Set LNBD = |fxy|
44: end if
45: Start scanning from the next pixel (x, y + 1)
46: Stop the process when the bottom right corner of the image is reached.
47: end if

14

Under review as a conference paper at ICLR 2023

Algorithm 6 : Area(contour)
1: // Purpose: To find the area enclosed by the contour
2: // Input: contours
3: // Output: Area
4: // Parameters: n = number of vertices
5: (xk, yk) = kth point when labelled in a counter-clockwise manner (the co-ordinates are stored in the

contour list)
6: (xn+1, yn+1) = (x0, y0): the starting vertex is found both at the start and end of the list of vertices.
7:
8: -
9: Area =

∑n
k=0

(x(k+1)+xk)(y(k+1)−yk)
2

Algorithm 7 : Max Distance(hull, contour)
1: // Purpose: To find the maximum distance between convex hull edge and contour
2: // Input: hull, contour
3: // Output: Maximum distance
4: // Parameters: H[n] = convex hull points
5: C[n] = contour points
6: -
7: for i = 0 to n do
8: dx0 = H[i+ 1]x −H[i]x
9: dy0 = H[i+ 1]y −H[i]y

10: if (dx0 = 0) ∧ (dy0 = 0) then
11: scale = 0
12: else
13: scale = 1√

dx0∗dx0+dy0∗dy0
14: end if
15: for j=0 to n do
16: dx = C[j]x −H[i]x
17: dy = C[j]y −H[i]y
18: distance =| (−dy0 ∗ dx+ dx0 ∗ dy) | ∗scale
19: end for
20: distance = max(distance)
21: end for

Algorithm 8 : Calculate lengths and angles
1: // Purpose: To calculate the lengths and angles
2: // Input: start, end and far
3: // Output: a, b, c and angle
4: -
5: a =

√
(end[0]− start[0])2 + (end[1]− start[1])2

6: b =
√

(far[0]− start[0])2 + (far[1]− start[1])2
7: c =

√
(end[0]− far[0])2 + (end[1]− far[1])2

8: angle = sin−1((b
2+c2−a2)∗180

2bc∗3.14)

15

Under review as a conference paper at ICLR 2023

Algorithm 9 : Number prediction
1: // Purpose: To predict the numbers
2: // Input: angle, A- sum of lengths of a and B- sum of lengths of b
3: // Output: Predicted number
4: -
5: if count_defects = 0 ∧ B ≤ 190 then
6: pred = "ONE"
7: else if count_defects = 0 ∧ B ≥ 190 then
8: pred = "SIX"
9: else if count_defects = 1 ∧ A ≤ 40 then
10: pred = "TWO"
11: else if count_defects = 1 ∧ A ≥ 40 then
12: pred = "SEVEN"
13: else if count_defects = 2 ∧ A ≤ 70 then
14: pred = "THREE"
15: else if count_defects = 2 ∧ A ≤ 80 then
16: pred = "EIGHT"
17: else if count_defects = 3 ∧ A ≤ 90 then
18: pred = "FOUR"
19: else if count_defects = 3 ∧ A ≤ 100 then
20: pred = "NINE"
21: else if count_defects = 4 then
22: pred = "FIVE"
23: end if

Algorithm 10 : Alphabet prediction
1: // Purpose: To predict the alphabets
2: // Input: count_defects and area
3: // Output: Predicted alphabet
4: -
5: area = area

10000

6: if count_defects = 3 ∧ 1.5 ≤area≤ 2.0 then
7: pred = "B"
8: else if count_defects = 1 ∧ 0.5 ≤area≤ 0.8 then
9: pred = "C"
10: else if count_defects = 0 ∧ 0.5 ≤area≤ 0.8 then
11: pred = "L"
12: else if count_defects = 0 ∧ 0.9 ≤area≤ 1.9 then
13: pred = "P"
14: else if count_defects = 4 ∧ 0.9 ≤area≤ 1.9 then
15: pred = "R"
16: else if count_defects = 0 ∧ 0.8 ≤area≤ 1.0 then
17: pred = "W"
18: else if count_defects = 1 ∧ 0.9 ≤area≤ 1.9 then
19: pred = "T"
20: end if

Algorithm 11 : Word prediction
1: // Purpose: To predict the words
2: // Input: count_defects, area
3: // Output: Predicted word
4: -
5: area = area

10000

6: if area ≥ 3.0 ∧ count_defects ≥ 4 then
7: pred = "DOCTOR"
8: else if 0.5 ≤area≤ 1.9 then
9: pred = "THIS"

10: else if 1.9 ≤area≤ 2.5 then
11: pred = "YOUR"
12: else if 1.9 ≤area≤ 3.5 then
13: pred = "MINE"
14: end if

16

Under review as a conference paper at ICLR 2023

A.3 TABLES

Table A1: Existing Sign Languages

Sign Language Region Influenced by Number of
signers

Significance

American Sign
Language
(ASL)NIL
(2017)

America,
Canada,
Southeast
Asia and
West Africa

French Sign Language,
Martha’s Vineyard Sign Lan-
guage and other local sign
languages

250,000-
500,000

It is one of the easiest languages to
learn because most of the signs were
developed to mimic the actual word
or phrase it is representing.

British Sign
Language
(BSL)Richard
(2018)

UK Evolved at Thomas Braid-
wood’s schools for the deaf in
the late 1700s and early 1800s

150,000 It spread to Australia and New
Zealand, thus resulting in similarity
of New Zealand Sign Language and
Auslan (Australian Sign Language)

French Sign
Language
(LSF)Richard
(2018)

France and
Switzerland

Developed from the Parisian
deaf community, and taught by
Charles Michel de

100,000 It is one of the earliest European
sign languages to gain acceptance
by educators, and it influenced other
sign languages like ASL, ISL, Rus-
sian Sign Language (RSL) and many
more.

Brazilian Sign
Language (Li-
bras)Richard
(2018)

Brazil French Sign Language 3 million It was given official status by the
Brazilian government in 2002.

Indo-Pakistani
Sign Language
(IPSL)Richard
(2018)

South Asia Hindi/Urdu, English, and BSL Between 1.8
million and
7 million

Unlike ASL and many of the signed
languages of Europe, IPSL does not
have Classifier handshapes

Table A2: Existing assistive technology for the speech impaired and the deaf and mute

Features Hand Talk Assistive
technology

Uni Tablet MotionSavvy GnoSys

Category AAC AAC AAC AAC
Physical
Appearance

Gloves Tablet Tablet App Phone App

Attributes Sign to Speech Sign to Speech, Speech
to Text

Sign to Speech, Speech
to Text

Sign to Speech

Hardware
Parts

Flex sensors, accelerom-
eters and gyroscope

Tablet, case, Leap mo-
tion sensor

- -

Software Parts Arduino technology Leap motion technology Leap’s 3D motion recog-
nition technology

Neural networks and
computer vision, cloud
computing

Cost Upto Rs. 10,000 Upto 800 USD 20 USD per month on
subscription basis

1 USD per day, 4 USD
per week and 11 USD
per month

Size Size of the hand 8" screen size Fits the tablet screen Fits the phone screen
Limitations Size of gloves would

vary, works only when
the gloves are worn

Bigger size, costly More storage space re-
quired, only for tablets

Only one way commu-
nication is possible, in-
ternet connection is re-
quired

17

	Introduction
	Technological/Medical solutions for the impaired: State of the Art
	Presenting URVoice, Our Solution

	An Architectural Overview
	URVoice: Architecture
	Convex Hull Optimization: A Novel Approach in URVoice

	An Algorithmic Overview
	URVoice Convex Hull Optimization
	The Graham-Sklansky/Akl-Toussaint heuristic model

	URVoice Computational Pipeline
	Image Acquisition
	Pre-processing
	Feature Extraction
	Gesture Prediction

	Results and Discussion
	URVoice Results
	Benchmarking Convex Hull Optimization with selected ML/DL Models

	Conclusion and Future work
	Appendix
	Mathematical model
	Algorithms
	Tables

