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Abstract

Retrieval-augmented generation (RAG) has be-001
come a fundamental paradigm for addressing002
the challenges faced by large language models003
in handling real-time information and domain-004
specific problems. Traditional RAG systems005
primarily rely on the in-context learning (ICL)006
capabilities of the large language model itself.007
Still, in-depth research on the specific capabil-008
ities needed by the RAG generation model is009
lacking, leading to challenges with inconsistent010
document quality and retrieval system imper-011
fections. Even the limited studies that fine-tune012
RAG generative models often lack a granular013
focus on RAG task or a deeper utilization of014
chain-of-thought processes. To address this, we015
propose that RAG models should possess three016
progressively hierarchical abilities (1) Filtering:017
the ability to select relevant information; (2)018
Combination: the ability to combine semantic019
information across paragraphs; and (3) RAG-020
specific reasoning: the ability to further pro-021
cess external knowledge using internal knowl-022
edge. Thus, we introduce our new RAG instruc-023
tion fine-tuning method, Hierarchical-Thought024
Instruction-Tuning Retrieval-Augmented Gen-025
eration (HIRAG) incorporates a "think before026
answering" strategy. This method enhances027
the model’s open-book examination capabil-028
ity by utilizing multi-level progressive chain-029
of-thought. Experiments show that the HI-030
RAG training strategy significantly improves031
the model’s performance on datasets such as032
RGB, PopQA, MuSiQue, HotpotQA, and Pub-033
medQA.034

1 Introduction035

Retrieval Augmentation Generation (hereafter re-036

ferred to as RAG) helps large language models037

(LLMs)(OpenAI et al., 2024) reduce hallucina-038

tions(Zhang et al., 2023) and access real-time data039

by incorporating an information retrieval compo-040

nent. While LLMs often use in-context learn-041

ing(Gao et al., 2024) for generation, practical issues042

such as low-quality or poorly ranked retrieved docu- 043

ments can hinder RAG’s effectiveness. These chal- 044

lenges emphasize the need for instruction-tuning 045

tailored to RAG tasks. Fine-tuning generative 046

models specifically for RAG improves their abil- 047

ity to integrate retrieved information(Zhang et al., 048

2024)(Yu et al., 2024), resulting in more accurate 049

and contextually relevant responses compared to 050

general-purpose models. 051

RAFT(Zhang et al., 2024) enhances model per- 052

formance in domain-specific RAG tasks by intro- 053

ducing distractor documents during training. Evi- 054

denceRAG(Schimanski et al., 2024) improves large 055

language models in evidence-based question an- 056

swering by incorporating an indexing task, enhanc- 057

ing their ability to accurately cite and reflect source 058

information. RankR AG(Yu et al., 2024) employs 059

a two-stage training process to simultaneously op- 060

timize the context ranking and answer generation 061

capabilities of large language models (LLMs) in 062

RAG tasks. 063

Despite significant research efforts on RAG- 064

specific generative models, several issues remain. 065

• Lack of Granular RAG Task Focus: Re- 066

searchers have primarily concentrated on fine- 067

tuning RAG models without enhancing their 068

capabilities through more granular RAG tasks, 069

limiting the potential to strengthen RAG abili- 070

ties effectively. 071

• Lack of Deep Utilization of CoT: Although 072

there have been proposals to integrate chain- 073

of-thought (CoT) reasoning into the train- 074

ing process to enhance model accuracy(Wei 075

et al., 2023), these methods are not specifi- 076

cally designed for RAG scenarios. Even in the 077

rare cases where RAG models do incorporate 078

CoT(Zhang et al., 2024), the integration is nei- 079

ther sufficiently deep nor granular, leaving the 080

model to utilize documents at its discretion. 081
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Figure 1: Traditional RAG methods have primarily focused on retrieving relevant information, with less emphasis
on its effective utilization. We propose a method that enhances model performance in complex RAG scenarios by
developing three progressive capabilities.

As a result, CoT has not yet fully realized its082

potential.083

Thus, We introduce a new RAG Instruction084

Tuning method: Hierarchical-Thought Instruction-085

Tuning Retrieval-Augmented Generation (HIRAG)086

adapting to complex RAG scenarios and propose087

that when fine-tuning RAG generation models, we088

focus on three progressively hierarchical abilities089

shown in Figure 1: Filtering: The ability that LLM090

filters out noise and selects the direct information.091

Combination: The ability of LLMs to merge, in-092

tegrate, and summarize multiple pieces of useful093

information. RAG-Specific Reasoning: The ca-094

pability refers to the ability to answer a question095

by making implicit or explicit inferences based on096

the information in the documents when the relevant097

information is not directly provided.098

To better achieve these three capabilities, a099

"think before answering" approach based on pro-100

gressively hierarchical thought has been intro-101

duced.102

The contributions of this work are summarized103

as follows:104

• We propose three progressive hierarchical ca-105

pabilities that a RAG model requires: filter-106

ing, combination, and RAG-specific reasoning107

to enhance the granularity and specificity of108

RAG tasks when dealing with complex sce-109

narios.110

• We introduce HIRAG, a fine-tuning strat-111

egy that utilizes different thoughts for various 112

tasks. This approach constructs a progressive 113

chain of thought, enabling the model to learn 114

from easier to more complex tasks, thereby 115

significantly enhancing its performance in 116

RAG scenarios. 117

• Extensive experiments were conducted on six 118

datasets, including the RAG-specific bench- 119

mark, single-hop open-domain data, multi- 120

hop open-domain data, and domain-specific 121

data. Our model significantly outperforms the 122

current state-of-the-art models. We also con- 123

ducted experiments on Chinese datasets, con- 124

firming the robustness of our approach. Fur- 125

thermore, ablation studies demonstrate that 126

the training tasks for the three capabilities con- 127

tribute to the performance of HIRAG, and we 128

explored the optimal data ratio. 129

2 Related Work 130

Retrieval-Augmented Generation (RAG). 131

Retrieval-Augmented Generation (RAG) (Guu 132

et al., 2020) has become a fundamental paradigm 133

for reducing hallucinations and improving per- 134

formance domain-specific problems(Asai et al., 135

2023a)(Lewis et al., 2021). The main problem 136

RAG faces is that low quality of article(Liu 137

et al., 2023) and the model is vulnerable to 138

noise interference in the context(Shi et al., 2023). 139

Correspondingly, the current mainstream solution 140

relies on the upgrading of retrieval modules(Shi 141
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et al., 2024) and the training of fixed-document142

generation models to improve its effect(Wang143

et al., 2024)(Gao et al., 2024)144

Upgrading of retrieval modules. From the per-145

spective of retrieval methods, some studies have en-146

hanced the quality of context by employing multi-147

stage retrieval reasoning (Asai et al., 2023b)(Gan148

et al., 2024), while others have designed adaptive149

retrieval modules that allow models to adjust re-150

trieval behavior according to different tasks (Jeong151

et al., 2024). In terms of question understand-152

ing, some studies have improved search queries by153

rewriting, decomposing, and disambiguating(Chan154

et al., 2024). After retrieving articles, incorporat-155

ing a ranking module can significantly enhance the156

final generation outcome (Glass et al., 2022)(Ram157

et al., 2023). RankRAG effectively integrates the158

ranking module with the generation module (Yu159

et al., 2024). These approaches have effectively160

improved the quality of retrieved articles in RAG161

systems. However, there is no such thing as a per-162

fect context, and the generative model needs to be163

capable of handling contexts in various situations.164

Training Methods for Generative Models.165

ChatQA(Liu et al., 2024)(Xu et al., 2024) enhances166

the model’s zero-shot dialogue capabilities through167

synthetic data and a two-stage instruction fine-168

tuning approach. In terms of identifying noisy169

documents, RAFT(Zhang et al., 2024) improves170

the model’s ability to recognize and disregard irrel-171

evant information by introducing distractor docu-172

ments and employing the Chain-of-Thought (COT)173

method. In contrast, InstructRAG(Wei et al., 2024)174

achieves this by explicitly learning the denoising175

process. EvidenceRAG(Schimanski et al., 2024) in-176

troduces an indexing task to enhance the reliability177

and traceability of large language models (LLMs)178

in evidence-based question answering. However,179

the context is complex and variable, merely filter-180

ing out noise and finding relevant documents is181

insufficient. Our work, starting from complex con-182

text scenarios, proposes three progressive model183

capabilities and effectively enhances these capabil-184

ities using the "think before answering" strategy.185

3 HIRAG186

In this section, we introduce our RAG-focused in-187

struction tuning methods: HIRAG (Hierarchical-188

Thought Instruction-Tuning Retrieval-Augmented189

Generation), which incorporates a "think before190

answering" strategy to enhance progressively RAG191

abilities: filtering, combination, and RAG-pecific 192

reasoning. 193

3.1 Progressively Hierarchical RAG Abilities 194

To address the complex and diverse scenarios in 195

RAG, we propose three progressive abilities re- 196

quired for generative models and enhance each of 197

these capabilities using the COT method. Below, 198

we provide a detailed description of these three 199

capabilities. 200

3.1.1 Filtering Abilities 201

Filtering is the ability of LLMs to filter out noise 202

and select the direct information that is helpful for 203

answering questions from multiple documents or 204

chunks of a single document. In the filtering capa- 205

bility, we focus on identifying relevant information 206

in response to a query. During training, we use 207

different types of noise and irrelevant information 208

to improve the model’s filtering skills. Noise infor- 209

mation includes data related to the main topic, such 210

as terms like "hospital" and "doctor" (which are 211

thematically linked), or "output value in 2024" and 212

"output value in January 2024" (which are about a 213

similar subject). On the other hand, irrelevant infor- 214

mation refers to data that is completely unrelated 215

to the question’s main point. 216

3.1.2 Combination Abilities 217

In addition to its filtering capabilities, the model 218

has developed the ability to identify individual in- 219

formation points. Taking this a step further, combi- 220

nation is the capability of synthesizing and amal- 221

gamating all pertinent information across multiple 222

documents to generate direct answers. This process 223

involves a comprehensive gathering and integration 224

of data to provide thorough responses. From the 225

perspective of entities and attributes, this can be 226

categorized into two primary types: one in which 227

a single entity possesses multiple qualifying at- 228

tribute values, and another where multiple entities 229

each have their own attribute values. For example, 230

"What are the hobbies of Tom" and "What does 231

Tom like and what does Anny hate" 232

In this context, the model’s ability to synthe- 233

size information represents a significant advance 234

in information retrieval and processing. It not only 235

underscores the model’s proficiency in pinpointing 236

discrete information but also highlights its potential 237

in constructing a cohesive narrative or answer from 238

disparate sources. 239
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Figure 2: Overview of the HIRAG strategy: We design three progressively challenging tasks while establishing an
incremental chain of thought to enhance the model’s capabilities in RAG scenarios. As shown in the "Thought"
section of the illustration, the thought processes differ across tasks of varying difficulty levels, ranging from basic
information filtering to document combination and, finally, to reason.

3.1.3 RAG-Specific Reasoning Abilities240

Once the model has developed both filtering and241

combination capabilities, it can identify all infor-242

mation relevant to a given question. If it still cannot243

provide an answer at this stage, it becomes neces-244

sary to engage in reasoning processes in conjunc-245

tion with the documents to arrive at a solution. This246

step-by-step reasoning chain can significantly en-247

hance the quality of responses generated by large248

language models when faced with complex reason-249

ing tasks (Wei et al., 2023). Within the RAG frame-250

work, the integration of filtering and combination251

techniques empowers language models to identify252

and compile all pertinent information within the253

flow of ideas. Consequently, the model is expected254

to leverage this aggregated information for logical255

reasoning to produce accurate answers. Therefore,256

enhancing RAG-related reasoning within the rea-257

soning chain is crucial.258

RAG-specific reasoning that primarily involves259

the utilization and processing of document content,260

which can be categorized into explicit and implicit261

document reasoning. Explicit document reasoning262

involves multi-hop reasoning, combining informa-263

tion from multiple or single documents to reach a264

conclusion. Implicit document reasoning, on the265

other hand, integrates information mentioned in266

documents with the model’s internal knowledge267

to infer the final result. For instance, if a docu-268

ment states that mammals possess a characteristic269

A, and the question is whether monkeys have char- 270

acteristic A, implicit reasoning is required: namely, 271

recognizing that monkeys are mammals. 272

From the perspective of reasoning categories, the 273

following types can be identified: 274

i. Comparative Reasoning. The question in- 275

volves comparing several items, and the documents 276

do not directly provide an answer but offer vari- 277

ous attributes or definitions of the items. Specific 278

example as Appendix Figure 7. 279

ii. Deductive Reasoning. The question inquires 280

about the attributes of A1, and the documents state 281

that A1 belongs to A (major premise) and provide 282

the attributes of A (minor premise). Through this 283

deductive reasoning, the attributes of A1 can be 284

inferred. Specific example as Appendix Figure 9. 285

iii. Causal Reasoning. This involves identifying 286

the implicit or explicit causal relationships within 287

the documents to find the cause or effect. Specific 288

example as Appendix Figure 8. 289

3.2 Training Data Construction 290

HIRAG proposes a novel and effective supervised 291

fine-tuning approach for enhancing generation abil- 292

ity in RAG 3.1. The main approach utilizes a pro- 293

gressive chain-of-thought (CoT) method and fol- 294

lows the previous work(Zhang et al., 2024) by us- 295

ing special tokens <|REASON|> and <|ANSWER|> 296

to control the generation of thought and answer. As 297

illustrated in Figure 2, the process of training and 298
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inference is depicted. The specific data construc-299

tion strategy and pipeline are outlined as follows:300

3.2.1 Strategies301

The effectiveness of a generative model in RAG sig-302

nificantly depends on the quality and composition303

of its training data with different documents. To304

enhance the model’s performance, especially in en-305

vironments where distinguishing relevant informa-306

tion from distractor documents is crucial, carefully307

curated training data is essential. Here, we outline308

three strategies for constructing such datasets:309

i. Progressive RAG Tasks. As detailed in Sec-310

tion 3.1, key RAG capabilities include filtering,311

combination, and document-related reasoning. To312

enhance these abilities, we designed training tasks313

in progressive stages: filtering, filtering with com-314

bination, and filtering with combination and RAG-315

Specific reasoning. This method helps the RAG316

model excel in selecting relevant information, inte-317

grating it, and reasoning about it within document318

contexts.319

ii. Distractor Documents. In practical RAG320

scenarios, not every retrieved document is useful.321

Introducing noisy documents in training is crucial322

for helping the model learn to distinguish relevant323

from irrelevant information, thereby improving its324

ability to handle noise and generate accurate re-325

sponses.326

iii. Chain-of-Thought for RAG. CoT reason-327

ing enhances the model’s ability to handle complex328

tasks by introducing intermediate reasoning steps,329

improving accuracy and interpretability(Wei et al.,330

2023). Training with Chain-of-thought also works331

within RAG instruction tuning process(Zhao et al.,332

2024), requiring thought processes specific to RAG,333

such as identifying relevant information from doc-334

uments. Direct quotations (<quote>) and source335

citations (<cite>) further enhance RAG model per-336

formance, aiding in the accurate retrieval and use337

of information(Bezerra and Weigang, 2025)(Schi-338

manski et al., 2024). If a document’s content to339

be quoted is extensive, the model should summa-340

rize key points and provide a citation (<cite>) for341

reference.342

3.2.2 Pipeline343

Based on these strategies, we construct a pipeline344

for training data generation.The specific algorithms345

used for data construction are provided in the Ap-346

pendix A.1.347

i. Source Data Acquisition For data acquisition,348

we utilized a range of datasets (training set) con- 349

taining RAG documents as our data source, without 350

incorporating their QA components, including Hot- 351

potQA and PubMedQA. Besides these, we also 352

acquired documents sourced from Wikipedia, and 353

those generated using GPT-4-turbo or Qwen-MAX 354

based on certain entity triples. The purpose of this 355

approach is to gather similar documents, which can 356

then be used to select both golden documents and 357

distractor documents. 358

ii. Query Generation When documents are 359

fixed, variations in the query can determine 360

which RAG task—filtering, combination, or rea- 361

soning—is being focused on. For instance, if a 362

document contains a person’s biography, asking 363

about their activities in a specific year is a filtering 364

task. However, asking about their activities at a 365

certain age involves reasoning, as it requires calcu- 366

lating the year based on the age since the document 367

may not provide this information directly. 368

To effectively address different RAG tasks, we 369

use various templates (as detailed in the Ap- 370

pendix B) to create queries with GPT-4-turbo or 371

Qwen-MAX tailored for different RAG tasks. 372

iii. Thought&Answer Generation Once the 373

documents and query are obtained, the next step is 374

to create a thought process and answer based on the 375

query and the key document. This involves using 376

the thought process to identify the key document 377

by applying certain rules (citing documents). It 378

is essential to guide the model through a logical 379

sequence, using different parts of the document 380

step by step to reach the answer. Although the 381

templates for generating thoughts and answers are 382

generally similar across tasks, a few specific guide- 383

lines should be followed: (1) Filtering: Identify a 384

specific piece of information within the document. 385

(2) Combination: Gather all pieces of information 386

within the document that meet the specified criteria. 387

(3) RAG-specific Reasoning: Construct a reason- 388

ing pathway based on the previous steps to aid in 389

forming a comprehensive thought. 390

iv. Validation After generating samples that 391

include a query, document, thought process, and 392

answer, it is crucial to perform a post-verification 393

process on each sample. This serves two primary 394

purposes: (1) Task Definition Compliance: En- 395

sure that each sample adheres to the specific task 396

definitions. This step helps identify and remove 397

any samples that do not meet the required crite- 398

ria, thereby preventing them from affecting future 399

experimental analyses. (2) Answer Accuracy: As- 400
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sess the correctness of the provided answer. This401

step is crucial for confirming that the answers are402

not only accurate but also consistently reproducible,403

thus ensuring the reliability of the sample data.404

v. Incorporating Noisy Documents. To im-405

prove the model’s ability to handle long texts and406

resist noise, it’s important to include extra inter-407

ference documents as noise. These challenge the408

model to differentiate between relevant and irrele-409

vant information. Additionally, shuffling the doc-410

uments (20%-30% of all samples) increases the411

model’s robustness by forcing it to rely on its abil-412

ity to identify patterns and key information, rather413

than on predetermined sequences.414

4 Experiments415

4.1 Experimental Setup416

Datasets. We primarily evaluate the model’s ability417

in question-answering scenarios given references,418

considering three types of tasks in our experiments:419

(1) RAG-specific Benchmark, which mainly uses420

the Noise Robustness(RGB-noise) and Information421

Integration(RGB-int) datasets from RGB(Chen422

et al., 2023). (2) Open-Domain QA, which423

mainly includes PopQA(Mallen et al., 2023), Hot-424

potQA(Yang et al., 2018), and MuSiQue(Trivedi425

et al., 2022). PopQA is a single-hop QA task,426

while HotpotQA and MuSiQue are multi-hop427

tasks. (3) Domain-specific QA, mainly using428

PubMedQA(Jin et al., 2019), which is a question-429

answering dataset in the medical domain. We em-430

ploy accuracy as the primary evaluation metric and431

additionally use Exact Match (EM) for the Pub-432

medQA dataset. Throughout these experiments,433

we conduct zero-shot evaluations.434

Baselines. We consider the following base-435

lines: (1) Large-scale Models with RAG, includ-436

ing proprietary models, such as GPT-4(OpenAI437

et al., 2024) and GPT-4o-mini, through the of-438

ficial OpenAI APIS. Concurrently, we employ439

large-scale Llama models, such as Llama3-70B-440

Instruct. (2)Baseline Models with RAG, where441

we evaluate robust publicly available instruction-442

tuned LLMs such as Llama2-7B-Chat, Llama2-443

13B-Chat(Touvron et al., 2023), Llama3-8B-444

Instruct(Grattafiori et al., 2024). (3) RAG-specific445

baselines, including Self-RAG, RQ-RAG, ChatQA-446

1.5, and ChatQA-2.0. For these methods, we use447

publicly released model weights and prompts pro-448

vided by their respective works. Additionally, for449

RankRAG and RAFT, we select parts of their eval- 450

uation results that align with our assessment for 451

comparison. Note that since RGB is evaluated in a 452

fixed document scenario, we do not assess methods 453

that optimize the retrieval process. 454

Implementation Details. During the training 455

stage, we employ Llama2-7B and Llama3-8B as 456

the backbone models. For the inference stage, 457

we utilize vLLM(Kwon et al., 2023) for accel- 458

erated inference and consistently use Contriever- 459

MS(Izacard et al., 2022) as the retriever. More 460

details can be found in the Appendix A.2. 461

4.2 Main Results 462

HIRAG outperforms the base models. We ob- 463

served the performance of HIRAG across different 464

tasks, and it consistently surpassed the similarly- 465

sized Llama models. Notably, on specific datasets 466

such as PopQA and PubMedQA, HIRAG is capa- 467

ble of achieving results that are comparable to, or 468

even exceed, those of more powerful models, in- 469

cluding the open-source Llama-70B-Instruct and 470

the closed-source GPT-4 and GPT-4o-mini. 471

HIRAG is better than existing RAG-Specific 472

models. As shown in Table 1, the HIRAG model 473

exhibits superior overall performance compared 474

to existing RAG methods. Specifically, with an 475

8B scale model, our model achieved substantial 476

improvements of 2.5, 2.4, and 7.7 percentage 477

points over the current state-of-the-art models on 478

the PopQA, HotpotQA, and Musique datasets, re- 479

spectively. In domain-specific tasks, when using 480

Llama2 as the baseline model, our model exhib- 481

ited significantly superior performance compared 482

to existing models. 483

4.3 Experiment Results on Chinese 484

Benchmarks 485

To enhance the robustness of the experimental 486

results, we conducted experiments on a Chinese 487

dataset. Table 2 presents the performance of HI- 488

RAG on the Chinese Benchmarks. We note that on 489

the Chinese RGB evaluation dataset, HIRAG sig- 490

nificantly outperforms the base model of the same 491

size. Furthermore, compared to larger models, HI- 492

RAG surpasses Qwen2.5-32B and approaches the 493

performance level of Qwen2.5-72B. 494
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Table 1: Zero-shot performance of HIRAG and baselines on 6 datasets. Results unavailable in public reports
are marked as “–”. Bold numbers and underline numbers indicate the best and second-best experimental results
among small-scale models, and gray-colored bold text denotes the best large-scale model when it outperforms all
small-scale models.

Dataset RGB-noise RGB-int PopQA HotpotQA MuSiQue PubMedQA
Metric Acc Acc Acc Acc Acc EM

Large-scale Models with RAG

GPT-4 98.0 79.0 63.3 51.5 32.3 58.3
GPT-4o-mini 99.0 86.0 64.2 54.2 37.7 56.8
Llama3-70B-Instruct 98.7 83.0 67.2 53.2 36.9 65.4

Baseline Models with RAG

Llama2-7B-Chat 67.3 42.0 51.4 38.2 21.1 38.6
Llama2-13B-Chat 73.6 60.0 61.2 39.9 23.3 36.4
Llama3-8B-Instruct 87.7 56.0 62.0 41.9 18.9 63.6

RAG-Specific Models with RAG

RQ-RAG (Llama2-7B) - - 56.4 43.5 17.3 56.2
Self-RAG (Llama2-7B) - - 55.3 35.7 10.7 49.4
RAFT(Llama2-7B) - - - - - 73.3
ChatQA-1.5 (Llama3-8B) 90.3 61.0 54.5 46.8 20.1 55.1
ChatQA-2.0 (Llama3-8B) 91.6 59.0 58.5 41.9 16.2 49.2
RankRAG(Llama3-8B) - - 64.1 - - -

HIRAG(Llama2-7B) 83.7 50.0 64.9 47.2 21.8 73.7
HIRAG(Llama3-8B) 94.6 66.0 66.6 49.2 27.8 74.6

Table 2: Results of HIRAG and Qwen-2.5 of different
sizes on the RGB-int and RGB-noise Chinese datasets.

Dataset-zh RGB-noise RGB-int
Metric Acc Acc

Qwen2.5-7B 86.3 71.0
Qwen2.5-14B 95.0 73.0
Qwen2.5-32B 89.7 77.0
Qwen2.5-70B 96.0 84.0
HIRAG(Qwen2.5-7B) 95.3 78.0

4.4 Ablation Study on HIRAG495

To evaluate the impact of three progressively com-496

plex datasets on model performance, we conducted497

experiments with varying data ratios on both Chi-498

nese and English datasets. To ensure fairness, the499

only variable among the models was the data ratio,500

with the total amount of data kept constant. The501

results for the English experiments are presented in502

Table 3, and the results for the Chinese experiments503

are shown in Table 4. From the experimental re-504

sults, it is evident that the introduction of combina-505

tion and RAG-specific reasoning datasets has led to506

an enhancement in the model’s overall capabilities.507

This improvement is particularly pronounced in508

the Chinese RGB-int dataset. Additionally, we ob-509

served that increasing the proportion of composite510

and RAG-specific reasoning data significantly im-511

proves performance on the RGB-int dataset, while 512

maintaining comparable performance on the RGB- 513

noise dataset. Ultimately, we selected a model 514

trained with a 1:2:2 ratio of Filtering, Combination, 515

and RAG-specific reasoning data, which demon- 516

strated the best overall performance.

Table 3: The results of the ablation experiments using
Llama-8B are presented. Here, i:j:k denotes the ratio of
Filtering, Combination, and RAG-specific Reasoning
datasets, respectively.

Dataset-en RGB-noise RGB-int
Metric Acc Acc

HIRAG1:0:0 94.3 48.1
HIRAG1:1:0 94.6 58.5
HIRAG1:1:1 96.6 58.5
HIRAG2:1:1 96.3 58.5
HIRAG1:2:1 94.3 61.3
HIRAG1:1:2 95.6 62.2
HIRAG1:2:2 94.6 66.0

517

4.5 Case Study 518

Table3 shows the specific case analysis on the 519

MuSiQue dataset. When multiple documents have 520

relevant information at the same time, it shows 521

HIRAG’s excellent ability in cross-document infor- 522

mation integration and document reasoning. 523
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Figure 3: A case study on Musique. illustrating the effectiveness of HIRAG-8B over Llama-8B-Instruct.

Table 4: The results of the ablation experiments using
Qwen2.5-7B.

Dataset-zh RGB-noise RGB-int
Metric Acc Acc

HIRAG1:0:0 94.0 53.0
HIRAG1:1:0 94.7 63.0
HIRAG1:1:1 94.7 74.0
HIRAG2:1:1 93.7 77.0
HIRAG1:2:1 92.7 77.0
HIRAG1:1:2 93.3 75.0
HIRAG1:2:2 95.3 78.0

5 Conclusion524

In this work, we present HIRAG, a novel instruc-525

tion tuning method specifically designed for RAG526

(Retrieval-Augmented Generation) models. This527

method provides a more granular enhancement of528

RAG’s three core capabilities: filtering, combi-529

nation, and RAG-specific reasoning. This is ac-530

complished by employing a hierarchical "chain of531

thought" (CoT) approach to improve the model’s532

performance in open-book examinations. This ap-533

proach demonstrates that HIRAG exhibits strong534

performance across a variety of document-based535

question-answering benchmarks, achieving out-536

comes that are not only competitive with but in537

some instances, exceed those of much larger mod-538

els. In the future, we will focus more on the rea-539

soning aspect of the chain of thought. Using stack-540

based thought processes or reinforcement learning,541

we aim to enhance the diversity and coherence of542

reasoning pathways to achieve better performance543

in RAG scenarios.544

Limitations 545

Heavy Dependence on Documents: Our method 546

performs exceptionally well when the answers are 547

present within the documents. However, its perfor- 548

mance declines when the documents only provide 549

supplementary information without containing the 550

exact answers. Further experimentation and adjust- 551

ments are required to optimize the model’s ability 552

to generate direct answers in such scenarios. 553

Domain Knowledge Enhancement: Training 554

RAG models solely on general knowledge is in- 555

sufficient for performance in specialized domains. 556

Future work could consider a two-stage training 557

approach. In the first stage, we conduct gen- 558

eral domain RAG fine-tuning. Building on the 559

general reasoning abilities established in the first 560

phase, this phase involves setting different paths 561

of thought and stacked thoughts based on various 562

intents within the vertical domains. 563

Reliance on Synthetic Data: Our approach lever- 564

ages more powerful models, such as GPT-4, for 565

data synthesis. Despite the inclusion of a data vali- 566

dation step in our generation pipeline, the synthetic 567

data may still contain errors that can impact down- 568

stream tasks. Moreover, the frequent invocation of 569

GPT-4 at multiple stages incurs substantial compu- 570

tational costs. Therefore, developing cost-effective 571

methods to generate highly accurate synthetic data 572

remains a significant challenge. 573
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A More Details in our Experiments753

A.1 More Details of Training754

Data Construction. The corpus for data construc-755

tion is sourced from Wikipedia. We provide a de-756

tailed data construction pipeline and prompts.

Algorithm 1 Data Construction Algorithm

1: Input: Entire multi-theme set documents, D,
Strong LLM, M(GPT-4o)

2: Source Data Acquisition: Cluster similar doc-
uments, Dtheme,i ∈ D and single document
D′ ∈ D

3: Generate query: Q under query tasks
QTfiltering, QTcombination, QTrag-reasoning accord-
ing to documents D:

4: for QT ′ in (QTfilter, QTcombination,
QTrag-reasoning) do

5: Q1 = M(QT ′(D′))
6: Q2 = M(QT ′(Dtheme,i)))
7: end for
8: Generate thought&answer and golden doc-

ument(s) D̃ under Thought&Answer Tasks
Tfiltering, Tcombination, Trag-reasoning

9: for T ′ in Tfiltering, Tcombination, Trag-reasoning do
10: Thought1, Answer1, D̃1 =

M(T ′(Q1, D
′))

11: Thought2, Answer2, D̃2 =
M(T ′(Q2, Dtheme,i))

12: end for
13: Validation: Revise answer and classify task

A′, Task = MA(Q, D̃, Thouht) and then do
validation.

14: Add Noisy Documents: D̄i /∈ D̃ ∈ Dtheme,i,
forms all training documents Dfinal =
{D̄, D̃}, and randomly shuffle Dfinal 20% of
the Doc samples.

15: return Q,Dfinal, Thought,Answer when
A′ == Answer and Task matches

757
Training Settings. The training dataset, consisting758

of approximately 120K samples, was constructed759

according to the pipeline. The training process760

was conducted using eight NVIDIA A100 GPUs.761

All models were trained with a learning rate of762

3e-5, a batch size of 4, a warmup ratio of 0.5%,763

and linear weight decay. The training duration764

was approximately 32 hours for Llama3-8B and765

around 28 hours for Llama2-7B. The maximum766

token length was set to 4096 for all models. We767

provide a specific example of the training data in768

Figure 4.769

A.2 More Details of Evaluation 770

We conducted experiments on HIRAG across three 771

types of tasks, encompassing six datasets. In these 772

experiments, each model utilized the same set 773

of questions and documents as input. The spe- 774

cific dataset processing methods are as follows: 775

For the evaluation on PopQA, we followed prior 776

works(Asai et al., 2023b) by utilizing a subset of 777

1,399 long-tail questions and employing Wikipedia 778

as the retrieval corpus. For other tasks, the can- 779

didate documents were sourced directly from the 780

respective datasets. Specifically, for RGB-Noise, 781

we set the passage number to 10 and the noise rate 782

to 0.8. In the case of RGB-int, where it is neces- 783

sary for all golden documents to be included in the 784

input, we set the passage num to 10 and the noise 785

rate to 0.6. For HotpotQA and Musique, we se- 786

lected the top 10 documents. For PubmedQA, we 787

used the original documents without any additional 788

processing. Please note that there are certain errors 789

in the RGB dataset. We have manually corrected 790

them and can provide the corrected version upon 791

request. 792

B Prompts in our experiments 793

B.1 Prompt Templates for Data Construction 794

We provide detailed prompt templates with the data 795

construction pipeline in Figures 5 through 12. 796

B.2 Prompt Templates in the Evaluation 797

The prompts used for evaluation are shown in Table 798

5. 799

11



Figure 4: Train Data Example

Table 5: Prompt templates in the Evaluation.

Task Template

RAG-Specific Benchmark

You are an accurate and reliable AI assistant that can answer questions with the
help of external documents. Please note that external documents may contain noisy
or factually incorrect information. If the information in the document contains the
correct answer, you will give an accurate answer. If the information in the document
does not contain the answer, you will generate ’I can not answer the question
because of the insufficient information in documents.’ If there are inconsistencies
with the facts in some of the documents, please generate the response ’There are
factual errors in the provided documents.’ and provide the correct answer.
Question:
{question}
Reference:
{reference}

Open-Domain QA Question:
{question}
Reference:
{reference}

Domain-Specific QA
Please refer to the reference above and answer the following question: Answer the
question with "yes" or "no" or "maybe" directly.
Question:
{question}
Reference:
{reference}

12



Figure 5: Filtering Prompt Template.
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Figure 6: Combination Prompt Template.
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Figure 7: Comparative-Reasoning Query Prompt Template.
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Figure 8: Casual-Reasoning Query Prompt Template.
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Figure 9: Deductive-Reasoning Query Prompt Template.
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Figure 10: Reasoning Thought&Answer Prompt Template.
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Figure 11: Task Definition Compliance Prompt Template.
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Figure 12: To verify the correctness of the synthetic data answers, we additionally used GPT-4 to directly answer
the questions and checked whether the two answers are consistent.
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