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ABSTRACT

In this paper we introduce a method for improving the signal to noise ratio of fi-
nancial data. The approach relies on combining a target variable with different
context variables and using auto-encoders (AEs) to learn reconstructions of the
combined inputs. The idea is to seek agreement among multiple AEs which are
trained on related but different inputs for which they are forced to find common
ground. The training process is set up as a conversation where models take turns at
producing a prediction (speaking) or reconciling own predictions with the output
of the other AE (listening), until an agreement is reached. This leads to “mutual
regularization” among the AEs. Unlike standard regularization which relies on
including a complexity penalty into the loss function, the proposed method uses
the partner network to detect and amend the lack of generality in the data repre-
sentation. As only true regularities can be agreed upon by the AEs, the replication
of noise is costly and will therefore be avoided.

1 INTRODUCTION

Financial data is characterized by an extremely poor signal-to-noise ration and hence poor pre-
dictability AQR (2024). Even while some logical explanation of market moves may be given ex-post,
future prices appear to be largely random especially when considering short (¡ one year) investment
horizons. Financial markets are social systems in which multiple mechanisms continuously compete
for the attention of investors. It is common to think of the market as operating in different “regimes”
each having its own set of rules on how real-world observations (news) are converted into prices.
Auto-encoders (AEs) seem to be well suited to extract and represent these rules. Their design is
guided by the manifold hypothesis which states that many datasets of practical interest concentrate
around a low-dimensional manifold Meilă & Zhang (2023). The geometry of the manifold reflects
structural constraints obeyed by the data which, in turn, are due to some mechanism that prepares the
data. AEs project inputs onto the manifold in the encoding stage and “lift” points on the manifold
back into the high–dimensional input space during the decoding stage.

The key is to make the encoder as insensitive to variations of the input as possible. Only variations
that give rise to a new input pattern (instead of being a noisy version of a given pattern) must be
encoded. These variations define the tangent directions of the manifold. Learning is unsupervised
so the difference between signal and noise is not known but determined by the auto-encoder or, more
precisely, its (in-)sensitivity to inputs. Insensitivity to input data is typically achieved by placing a
bottleneck layer at the end of the encoding stage such that the code dimension is lower than the
input dimension (undercomplete auto-encoder). Alternatively (or in addition), a regularization term
is added to the loss function which limits the complexity of the code e.g., by encouraging zeros in the
encoding layer. Yet another method pursues local insensitivity to input variations by penalizing the
derivative of the encoding function with respect to inputs Rifai et al. (2011). None of these methods
incorporate an explicit statement of the generalization capability of the model. They all approach
the problem indirectly by preventing the auto-encoder to represent arbitrary data sets.

COMMON UNDERSTANDING REQUIRES GENERALITY

In this paper we approach the regularization problem in a different way. Every training step is
followed by a reconciliation step in which two networks try and understand each other. The idea
is that common understanding can only be obtained if the acquired knowledge (about the data) is
general enough. If two AEs disagree on the representation of data they will be forced to alter the
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way they encode the data so that different aspects are extracted on which an agreement is possible.
The agreement is measured in terms of the recurrence of combined encoding patterns: two networks
are said to agree if a given encoding keeps appearing in conjunction with the same encoding by
the partner AE. The idea is that this only happens if both networks extract essential features from
the input data which itself keep reappearing. If spurious features are encoded then the probability of
recurrence of a specific pair of encodings is low. This means that the agreement level (AL) quantifies
the generality of the representation.

The principal idea in this paper is to have two networks create two differing vantage points from
which the data is examined. This is realized by a) choosing heterogeneous architectures i.e., net-
works that differ in the number and width of layers or activation functions and b) by combining
a target variable with different context variables i.e., to provide the inputs (y, x1) and (y, x2) to
the networks as shown in figure 1. x1 and x2 are different but related signals which help create
alternative perspectives on y. Agreement can only be achieved on an abstract level in the sense that
the networks agree on the occurrence of data configurations to which they assign codes that can be
translated between the networks using a stable dictionary. In the context of finance, these config-
urations are often referred to as market regimes. The advantage over a single auto-encoder of all
available signals (y, x1, x2) is that our set-up allows the AEs to develop independent perspectives
which are subsequently aligned. This retains the focus on the target y which would otherwise be
dominated by the context variables when minimizing the reconstruction loss.

2 RELATED WORK

The de-noising problem is well-known in finance and has traditionally been addressed using linear
filter methods (such as moving averages, Bollinger bands, Kalman filtering). In a recent paper Liu
& Cheng (2024), mode decomposition and a wavelet-thresholding method are employed to classify
stock price movements. Other methods employ a generative model to reproduce known stylized
features of market prices e.g., based on Langevin dynamics Wang & Ventre (2024). The paper
by Bao et al. (2017) presents stacked autoencoders for hierarchically extracting deep features in
stock prices which are used as an input to an LSTM to forecast next day’s closing prices. The
estimation procedure in this paper is comparatively simpler and consists in a pair (or more) parallel
auto-encoders. The novelty here is that the AEs mutually regularize their learned representations.

As stated in the introduction, regularization has been an integral part of the development of autoen-
coders. Without it, they would merely produce a literal copy of the input without extracting valuable
features from data or be able to reduce the dimensionality of its representation. Classic approaches
involve L1 and L2 constraints on the network weights or robust training techniques like dropout
Baldi & Sadowski (2013) that avoid over-dependence on particular activation patterns. This paper
takes an interactive approach which similar in spirit to adversarial regularization Makhzani et al.
(2015), Zhao et al. (2018). The adversary sub-network encourages the main network to learn an
unbiased representation. This has been shown to yield undesirable side-effects, including unstable
gradients and reduced performance on in-domain examples Grand & Belinkov (2019). By contrast,
our setting is a collaborative one in which the encoder outputs of two networks are compared given
the same input data. Our idea is to reconcile these outputs in terms of the synchronicity of their
appearance.

3 REGULARIZATION

Autoencoders project the input data on a low dimensional manifold M whose coordinates are given
by the codes z in the hidden layer. They are typically designed to be undercomplete, i.e. the
dimension of their encoder outputs is much smaller than the input dimension. This prevents them
from learning the identity function. Because of the bottleneck, some aspects of the input have to be
grouped into larger components from which the input is reconstructed while a literal reproduction
is avoided. These components represent the features that define the objects contained in the data.
However, the relationship between architectural constraints and simplification is quite loose and is
typically determined empirically. In this paper, we propose a scheme in which the simplification is
the result of a negotiation among two networks.
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z1

T1 T2

Figure 1: Two AEs communicate with each other (via translators) at the level of the encoding layer
while trying to reproduce input data.

The networks only have weak bottlenecks and may produce over-fitted predictions. The key point is
that the models are different in the sense that predictions are obtained by decoding two different sets
of codes z. If the networks assign codes to different perceived regularities in the data they can only
agree on their (posterior) distribution p(z|x) if the different codes repeatedly co-occur. If a code has
been assigned to noise, the probability of its repeated co-occurrence with a code generated by the
other network is very low. On codes for which an agreement on p(z|x) is possible on the other hand
must refer to a true regularities in the data.

The more the two networks differ the more effective they are as mutual regularizers. To achieve
a different encoding behavior the networks can be of different complexity (e.g., by the number
and width of layers). Also, independent noise sources n1, n2 can be added (as shown in figure 1)
whose role is to encourage the networks to search in different directions. Notice that the noise is
applied at the input and output during the training of the AE (unlike the denoising setup). (Very
loosely speaking,) it can be seen as an additional source of entropy which helps explore the space of
possible code words. The objective is to find a common denominator with the other network, which
may lie outside of the code regions explored by the networks individually. By mutual agreement we
expect not only the noise to be rejected, but also the predictions to be more standardized as they are
reproductions of the input data which are decoded from an agreed-upon posterior.

3.1 TRAINING SETUP

The training algorithm simultaneously improves the data fit and the mutual understanding on how
to achieve it. Training is organized as a conversation among two AEs. The networks take turns at
talk and either speak (S) or listen (L) to the other network. The S/L phases are asynchronous as in
natural conversations. Translation layers T1 and T2 are placed between the two AEs to convert to
and from the encoder outputs z1 and z2. In view of the desired dissimilarity the encoding layers may
have different output dimensions e.g., dimz1 > dimz2 (without loss of generality). The loop starts
with a speak action (S) by one of the networks, say AE1. Utterances are produced by sampling from
a multivariate Gaussian with mean µ1(x) using the familiar re-parametrization trick

z1 = µ1(x) + σ ε ε ∼ N (0, 1) (1)

where µ1(x) is learned by the encoder and σ > 0 is fixed for simplicity. We write z1 ∼ q1(z1|x)
where q1(z1|x) is the a posteriori distribution of codes z1 after seeing the data x. It depends on
the network parameters of AE1. A deterministic decoder maps z1 to the network output x′

1 which
represents the prediction of the input data x. During (S), no parameters are updated. While AE1

speaks, AE2 listens.
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TRAINING THE AUTOENCODER

Training only occurs during the listening phase. The following training procedure is described from
the perspective of AE2 but equally applies to AE1 once it listens (with the roles of all variables
switched accordingly). By means of the translation layer T1, AE2 obtains an estimate z′2 of its own
code z2 as produced by AE1:

T1 : z′2 = g(z1, z̄1, z̄2) z1 ∼ q1(·|x) (2)

where z̄1, z̄2 are pairs of codes obtained from a previous training round (see next section). This
transformation gives z′2 ∼ p1(·) where p1(·) is no longer a posterior distribution from the perspective
of AE2 but represents data-independent noise. It depends on the parameters of AE1 which, however,
are not updated while AE1 speaks. Predictions x′ of x will be generated by sampling codes z2 ∼
q2(·|x) from the posterior distribution of AE2. We assume that there exists a decoder p2(x|z2)
depending on AE2’s parameters that describes the joint distribution p2(x, z2) = p2(x|z2)p1(z2)
well. This means that

Ez2∼q2(·|x)

[
p2(x, z2)

q2(z2|x)

]
︸ ︷︷ ︸

ξ(z)

is an unbiased estimator of the data-likelihood p2(x). From this we obtain ln p2(x) =
lnEz∼q2(·|x)ξ(z) ≥ Ez∼q2(·|x) ln ξ(z) :− L2(x, q2) by Jensen’s inequality, where L2 is the ELBO
associated with AE2. L2 may be re-written as

L2(x, q2) = Ez2∼q2(·|x) [ln p2(x|z2)−DKL(q2(·|x)∥p1(·)] (3)

We measure ln p2(x|z2) with the help of isotropic Gaussians N (x′
2, diagσ2) centered at predictions

x′
2(z2) and using the same variance σ2 as in equation (1) so the term becomes proportional to

−1/σ2∥x − x′
2∥2. The KL divergence between the approximate posterior q2(z2|x) and the data

independent prior p1(z2) is the divergence between two Gaussians

DKL(q2∥p1) = 0.5

[
ln

|Σp1
|

|Σq2 |
− dim(z2) + (µq2 − µp1

)TΣ−1
p1

(µq2 − µp1
) + tr[Σ−1

p1
Σq2 ]

]
(4)

We let
z2 = µ2(x) + σ ε ε ∼ N (0, 1) (5)

using the same scaling factor σ as in (1) so the parameter dependent part of DKL(q2∥p1) becomes
proportional to 1/σ2∥µq2 − µp1∥2. In summary, we obtain:

L2(x, q2) = −Ez2∼q2(·|x)
[
∥x− x′

2(z2)∥2 + ∥µq2 − µp1
∥2
]

(6)

which is maximized during the listening (L) phase of AE2. The presence of p1(·) acts as a (regular-
ization) obstacle that prevents the encoder from fitting an arbitrarily complex posterior q2(·|x)

THE TRANSLATION LAYER

g(·) in equation (2) is realized by a non-trainable attention layer which associates z1 with z2 by
means of key-value pairs z̄1, z̄2 obtained from a previous training loop (and initialized by training
the two AEs separately during the first epoch). A kernel function

k(z1, z̄1) = exp
[
−∥z1 − z̄1∥2

]
(7)

allows us to retrieve the closest match between any given z1 and the set z̄1. Every such matching key
has a value z2 ∈ {z̄2} associated with it. This yields a per-sample translation among representations
and is in contrast to learning a smooth functional relationship between z2 and z1 which would lack
the sharpness needed for regularization. This is illustrated by the dashed line in figure 2. The
shape of the line is dominated by the three data patches in the lower, middle and upper part of the
diagram. Bearing in mind that both dimz1 and dimz2 ≫ 1, the natural situation is that there will
be less populated areas or “gaps” which are only occupied by a few samples. These samples do
not contribute materially to the loss function of the hypothetical model that is fitted to learn g(·)
and are therefore ignored. However, in the diagram, they form an equivalence class (versions of the
letter “a”) which are all mapped to the same code (calligraphic a) as AE2 perceives them as equal.
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Figure 2: The translator

This is precisely the information that will regularize AE1 and must therefore be retained rather than
“averaged” out. In other words, the translator must provide a per-sample association between zt1 and
zt2 for every data point xt, t = 1, . . . , T . The same is true for

T2 : z′1 = h(z2, z̄1, z̄2) z2 ∼ q2(·|x) (8)

which is the analog of equation (2) in reverse direction. AE2 will use T2 in the subsequent speak
(S) phase to produce z′1 which AE1 obtains as a regularization input. AE1 then assumes the role
of the listener (L) and the same update rules (with swapped variables) as described a above are
applied. The training procedure is summarized in figure 3: standard training of separate networks
only contains “speak” phases while mutual training features turn-taking among the networks.

The right hand side of the figure presents a typical evolution of the training error. The need to
incorporate translated codes received from the other network introduces a non-monotonicity which
has to be overcome by aligning the codes. The sigmoid activation functions in the encoding layer
have a discretization effect on the codes that need to be aligned. By consequence, the error landscape
is more rugged than the one obtained with standard training. The experiments behind these data are
further described in the next section.

It should be noted additional conversation partners may be added which communicate with either
one or more existing ones. For example we may introduce AE3 which communicates with AE2 by
providing translations T3 of z3 to z2. The loss function (6) is then modified as

L2(x, q2) = −Ez2∼q2(·|x)
[
∥x− x′

2(z2)∥2 + ∥µq2 − µpo
∥2
]

(9)

where po alternates between o = 1 and o = 3 depending how the turns at talk are organized.

4 REGULARITIES IN FINANCIAL TIME-SERIES

Financial markets are in general very efficient at converting new information into prices of traded
securities. This means that changes in prices are essentially driven by the random arrival of new
information. As a consequence, ’noise’ dominates the evolution of financial time-series. Regular-
ities arise when market participants irrationally disregard available information or have difficulties
interpreting it. The regularity represents a market inefficiency which becomes a source of risk-free
return (alpha) if exploited by a trading strategy. For example, the prices of two related commodi-
ties may temporarily be out of sync which creates a price spread that eventually has to disappear
because the more expensive commodity may be substituted by the cheaper one creating demand for
the latter. Most systematic trading strategies available today are handcrafted, i.e. they start with an
inefficiency which is underpinned by an economic theory, e.g. behavioral finance. It is reasonable
to expect that many more regularities exist in financial times years which however are hidden be-
hind high levels of noise. An auto-encoder with strong denoising capabilities opens the door to a
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Figure 3: Separate (in blue) vs. mutual learning (in red) of two AEs

potentially large strategies space and may help discover new sources of alpha. This is illustrated,
in the following experiments. It must be noted that we use the profitability of a trading strategy as
an indication of whether the denoising is successful or not. This is because “ground truth” i.e., the
low-noise skeleton inside the time-series, cannot be observed in practice.

The regularities we seek to discover in time-series consist of longitudinal and cross-sectional ones.
We employ a convolutional auto-encoder to capture them, see figure 4. The bottleneck layer (output
of the encoder) flattens the time-step dimension (i.e., the dimension representing the rolling window
over data used in the convolutions) and transforms the result via a dense layer into a low-dimensional
code making the overall network under-complete. The network is trained using an ADAM optimizer
with learning rate 0.01. The data consists of weekly macro and price data starting in the mid 1980’s
which gives about 2000 samples. This relatively small data set corresponds to the typical informa-
tion available to traders operating on the mid-to long-term horizon. We subdivide the dataset into
10 mini-batches and train for 150 batches. The translator is implemented as a simple dense net-
work with a single, wide, hidden layer. As mentioned above, the objective of the translator is not
simplification but to implement a one-to-one dictionary between the codes generated by the partner
networks. Again, ADAM is used to optimize with step-size 0.1 over 10 epochs. All training phases
(see figure 3) are incremental, i.e. the network weights obtained in a given epoch form the initial
weights at which the next training epoch starts.

In the experiments, we will study how predictions obtained from an autoencoder with this architec-
tural constraint improve by adding the mutual regularization constraint. In particular we are inter-
ested in emergent patterns among the context variables once the AEs interact with each other. The
experimental setup consists in a target variable y being combined with different context variables
xi , i = 1, 2, . . . , N . The variables refer financial time-series where y corresponds to the returns
of a target market (to be traded) and xi to environment (e.g., macroeconomic) data. The returns of
the target market are shifted forward h time-steps during the training phase. The motivation behind
this set-up is that if a relationship between today’s environment and the h-steps forward returns of a
target market is found, then xi provides a trading signal for y. In such a case, h corresponds to the
investment horizon of the trading strategy based on xi.

For every pair (y, xi), an autoencoder AEi is trained which produces a denoised version (y′, x′
i)

of the input. The idea is that after denoising the relationship between xi and y is more stable
and apparent. The objective is to learn “typical” evolutions of xi that precede market up– or down–
moves. These typical evolutions are obtained by clustering (e.g., by standard K-means) the denoised
x′
i conditional on y > 0 (up-market) or y < 0 (down-market). The evolutions are truncated at

a length that corresponds to the “depth” dimension of the convolution layers (32 timesteps in this
case, see figure 4). The clustered patterns form a library of signals that can be used out-of-sample
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32@1x32
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1x10

1x512

16@1x32

2@1x32

Flatten Bottleneck Expand ConvTransposeInput Output

Figure 4: Architecture of one AE: encoding and decoding stages employ (1D) convolutional layers
and are linked through a bottleneck layer in which the “time-step” dimension of the convolution
output is flattened. Heterogeneity among different AEs is obtained by varying the number of the
input convolution channels between 16 and 32.

to decide whether to build a long or short position in the target market. Since y is shifted forward,
out-of-sample data cannot be auto-encoded, so only the original (noisy) xi can be compared to the
library. However, as every pattern corresponds to a (truncated) time-series our feature space is fairly
high dimensional which means that we can robustly determine the relative closeness of noisy signals
towards the up– or down–patterns in the library.

Indeed, we define a trading position in terms of relative distances as

θi = d−1
iu /(d−1

iu + d−1
id ) (10)

where diu =
∑

ξu
MSE(xi, ξu) and ξu is a library entry corresponding to an up-market and MSE

stands for “mean squared error”. did refers to the distance to all down-market library patterns. This
definition of θi corresponds to a simple (directional) trading strategy which directly exploits rela-
tionships extracted from denoised configurations (y, xi). The strategy can be refined by combining
libraries obtained from multiple AEs. At this stage, finding common ground among the AEs is
an important prerequisite as it not only leads to more abstract reconstructions of the target–context
pairs but also allows us to mix contexts. When mixing signals it is practical to proceed in a pairwise
fashion. This provides an interesting use-case for mutual regularization as introduced in this paper.

The target variable (y) is the S&P 500 (total return USD). The context variables (xi) used in figures
4-6 are: Y10 = 10-Year Treasury Yield, CAPE = Cyclically Adjusted Price/Earnings Ratio, NYF
= New York Fed Economic Activity Index, MG = US Corporate Margins (YoY), Y02 = 2-Year
Treasury Yield/ short-term rates, STP = Steepness of the Treasury Yield Curve, M2 = Money Supply
(YoY). In figure 5, we study configurations of context variables namely Y10 (used by AE1) and
CAPE (used by AE2) while the target market (S&P 500) is color coded as up (red) or down (blue).
For illustration purposes homogeneous up or down regions are red or blue shaded. We find that the
separate reconstructions achieve some sorting relative to the original data. The output of AEs with
mutual regularization, in turn, reveal that up and down phases can be very clearly separated in Y10-
CAPE space. It should be noted that all three representations yield the same reconstruction of the
target variable but differ in the location its up/down values in the space spanned by context variables.
Strong denoising is also apparent as the data occupies a smaller region in Y10-CAPE space.

Figure 6 illustrates how the sorting of context variables allows for the extraction of characteristic
profiles associated with up or down markets. The profiles consist of sequences of length 24 (weeks)
and are extracted by clustering the reconstructed (i.e., denoised) context variables conditional on
positive/ negative reconstructed future returns of the target market. The profile form references
against which new context data will be compared. Notice that the new data cannot be processed by
the AE as the pair (yt+h, xt

i) contains future (unknown) returns yt+h which are only available if t is
h steps in the past (h is the investment horizon). The role of denoising (by the AE) is to create stable
and sufficiently different reference profiles against which noisy (unprocessed) data can be compared

7
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Figure 5: Reconstructions of context variables x1 =Y10, x2 =CAPE; left: literal reconstruction (no
regularization), middle: separate training of AEs), right: training of AEs with mutual regularization.
Up/ down values of the target variable y =S&P 500 are color coded as red and blue.

out-of-sample. If trading positions in the underlying market are entered according to (10) a payout
profile emerges with interesting diversifying properties relative to the market in that it avoids the
2020 and 2022 draw-downs induced by the onset of the pandemic or the rate hike cycle respectively.
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Figure 6: Strategy discovery from denoising environment variables: characteristic profiles are ex-
tracted to which new data is compared to define a trading position in the market for which a context
representation has been found.

By forming random pairs from the available context variables we can efficiently create other strate-
gies which derive trading decisions from different configurations of context variables. Figure 7
provides examples of strategies obtained by combining other pairs of contexts. We see that the
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resulting trading positions and P/L (profit and loss) time-series are quite different and respond to
different macro-events. While CAPE/NYF and CAPE/MG respond to fundamental economic ac-
tivity and margin growth (compared to what is priced into the valuation multiple) the three other
strategies introduce the vantage point of rates (Y02, or RR) as well as money supply (M2). Interest
rates determine how future cash-flows received from owning the stocks should be discounted and
thereby impact the valuation multiple. The middle strategy PE/Y02 stayed out of the market after the
first rate hikes occured before 2020. it is also much less sensitive to rates when the hiking resumed
after the pandemic. This is very different from strategy STP/M2 which recognizes that the enormous
expansion of money supply during the pandemic eventually inflates prices including those of stocks.
We see that despite the abstract nature of the AE itself, its output can be understood and interpreted
especially when forming pairs of AEs that coordinate their learning through mutual regularization.
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Figure 7: Overview of trading strategies obtained by denoising pairs of context variables together
with a (shared) target variable.

5 CONCLUSION

The paper discusses collaborative regularization where two networks compare notes in the form of
encodings generated upon seeing the same input data. A useful analogy is to think of the codes as
words in different languages denoting the same object. The expressions might have different con-
notations which however have to be neglected in order make an agreement on their usage possible.
This implies a degree of standardization in what can be predicted using agreed-upon codes. The
codes correspond to recurring features in the input data, which are therefore also the defining ele-
ments of the objects contained in the data. Every input data point gives rise to a code and if this code
is of the “agreed-upon” type, it means that the data point is representative of the object or pattern to
be identified. This conclusion can be reached in an entirely unsupervised fashion. In some sense,
the networks mutually supervise themselves by trying to match their use of encodings. Agreed-upon
codes define equivalence classes of inputs (one for each code).

The idea opens up a to a vast strategy space which has yet to unfold entirely as more and more
stable relationships are identified and traded. This will contribute to making financial markets more
complete by providing liquidity and putting a price on more assets in more states of the world. Many
active strategies are based on well-known (stylized) market inefficiencies or they operate within
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significant constraints (e.g., within a tracking error limit vs. a benchmark). If all market participants
search along a similar dimension, alpha capture becomes a zero-sum game. A market with more
heterogeneous trade positions can make all participants better off –according to their own criteria–
without having to make someone else worse off (Pareto optimality with differential preferences).
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