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ABSTRACT
Despite echo chambers in social media have been under consider-
able scrutiny, general models for their detection and analysis are
missing. In this work, we aim to fill this gap by proposing a proba-
bilistic generative model that explains social media footprints—i.e.,
social network structure and propagations of information—through
a set of latent communities, characterized by a degree of echo-
chamber behavior and by an opinion polarity. Specifically, echo
chambers are modeled as communities that are permeable to pieces
of information with similar ideological polarity, and impermeable
to information of opposed leaning: this allows discriminating echo
chambers from communities that lack a clear ideological alignment.

To learn the model parameters we propose a scalable, stochastic
adaptation of the Generalized Expectation Maximization algorithm,
that optimizes the joint likelihood of observing social connections
and information propagation. Experiments on synthetic data show
that our algorithm is able to correctly reconstruct ground-truth
latent communities with their degree of echo-chamber behavior
and opinion polarity. Experiments on real-world data about polar-
ized social and political debates, such as the Brexit referendum or
the COVID-19 vaccine campaign, confirm the effectiveness of our
proposal in detecting echo chambers. Finally, we show how our
model can improve accuracy in auxiliary predictive tasks, such as
stance detection and prediction of future propagations.

CCS CONCEPTS
• Computing methodologies → Learning in probabilistic
graphical models; • Information systems → Social networking
sites;
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1 INTRODUCTION
Social-media platforms have substantially altered the landscape of
societal debates. By delivering an extremely large amount of content
to online users, they enable quick and easy access to information
and facilitate participation in public debates. This positive effect is
intertwined by the growing phenomenon that online political dis-
courses, especially on socially relevant issues, tend to fragment and
polarize opinions. As a result, the propagation of information is af-
fected by users’ propensity to select and promote claims that adhere
to their beliefs and ignore or even contrast dissenting information.

The “echo chamber” effect in social media refers to groups of
users that, by being exposed solely to like-minded individuals, tend
to reinforce each other’s pre-existing opinions. This effect has been
put under scrutiny as a possible culprit of increased polarization
and radicalization [22]. Thus, several studies have been devoted
to providing empirical evidence of the existence of echo cham-
bers [11, 16, 21], with variable results, depending on the specific plat-
forms and contexts. For instance, on Reddit echo chambers seem to
be less prominent [16], while on Twitter, it has been shown that in-
formation propagates in well-separated echo chambers [13, 14, 30].
However, this literature proposes ad hoc approaches for the detec-
tion of echo chambers in specific platforms and contexts, while
a ground-up approach to detect echo chambers through a formal
model of their behavior is still missing.

Prior studies [4–6, 9, 32, 38, 41] have explored the role of com-
munities in information propagation. The underlying assumption
of these studies is that a user’s activities and social connections are
the visible effects of a latent stochastic diffusion process governed
by community-level causal factors. As a result, the proposed mod-
els successfully devise communities through the lenses of social
contagion and are able to characterize community membership in
terms of propensity to filter and/or promote community-relevant
information. Unfortunately, these models do not take into account
the latent relationships between polarization and information diffu-
sion that justify the formation of ideological groups and ultimately
characterize the echo-chamber effect.
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Inspired by this family of approaches for community detection,
in this paper we tackle the problem of detecting echo chambers by ob-
serving the way polarized information propagates in a social network.
Similarly to communities, echo chambers are defined by groups
of nodes who interact and exchange information in a social net-
work. However, while communities in networks are simply defined
as high-density clusters in the social graph, echo chambers only
need enough structure to allow information to propagate, without
the high density typical of a close-knit group of friends. Moreover,
as put by Alatawi et al. [1], an echo chamber can be defined as a
community that spontaneously emerges as the most effective for
spreading polarized content, where conflicting opinions are ignored
or even discredited. In other terms, we expect echo chambers to
facilitate the flow, through its internals, of information that is ide-
ologically aligned with its opinion, while preventing the flow of
information with an opposed leaning. Based on this intuition of
echo-chamber behavior, we introduce a generative probabilistic
model that encodes, in probabilistic terms, the following core con-
cepts: (i) Each community is characterized by a measurable degree
of polarization and highly polarized communities represent echo
chambers. (ii) Analogously, the participation of users to a specific
community can be measured by means of a given engagement
degree. (iii) A polarized cascade can only occur within an echo
chamber, provided that the corresponding polarities are aligned.
Furthermore, the likelihood of a user contributing to a cascade
depends on their level of engagement in the corresponding commu-
nity. (iv) Social connections are likely to occur between community
members; however, it is possible to explain such connections dif-
ferently according to whether the underlying latent community is
considered an echo chamber or not.

Notably, the underlying latent parameters for such a model can
be efficiently inferred by resorting to a suitable adaptation of the
Generalized Expectation Maximization algorithm [8], which ex-
ploits samples of observable propagations and social connections
to learn such parameters through an alternating gradient-based
optimization strategy. As a result, the learning is scalable and likely
to produce communities that can be amenable to coherent explana-
tions in terms of echo-chamber behavior and opinion polarity.

Paper contributions and roadmap. Our technical contributions
can be summarized as follows:

• We propose a community-aware information propagation
model that explains the creation of social links and the diffu-
sion of items in terms of homogeneity and alignment within a
polarized ideological space (§3).

• We devise a scalable gradient-based optimization procedure to
learn both the communities and their degree of polarization,
maximizing an approximation of the likelihood of a set of
information cascades (§4).

• We provide an extensive empirical evaluation of our proposal
on synthetic and real-world datasets and show that our in-
ference algorithm is effective, provides meaningful and inter-
pretable communities, and can be used to predict auxiliary
tasks such as activation of users on a given cascade, or their
stance (§5).

In the next section, we discuss relevant related work.

2 RELATEDWORK
Echo chambers: causes and traits. The mechanisms behind the
formation of echo chambers are still subject of investigation, how-
ever, three main phenomena seem to play key roles in the for-
mation process: algorithmic recommendation (both content [20],
and people [12] recommenders), confirmation bias [17, 37], and ho-
mophily [27]. The literature also presents several characterizations
of echo chambers highlighting their distinctive traits, such as dis-
torted information patterns [26], users similarity growth [11], users
psychological profiles [7], the presence of polarization effects [21],
and the capacity of spreading polarized content [1].
Echo chambers: detection. Some prior works have analysed so-
cial media information to detect echo chambers in a variety of dif-
ferent platforms, without proposing a general method [11, 37, 40].
Usually, a combination of different sources of information is con-
sidered, such as textual features (e.g., tweets and hashtags) and
interaction network (e.g., retweets, mentions, follow). While some
studies (e.g. [10]) focus mainly on the former, in this work we ex-
ploit, together with the social graph, the polarity of information
pieces and their cascades, which have been shown to be more ef-
fective in detecting communities [36] and user-level stances [2].
Other researchers have approached the task of detecting echo cham-
bers as a community detection task, thus exploiting the network
structure, followed by an interpretation step to properly identify
communities that have echo-chamber traits [14, 15, 18, 19, 24]. In
our model, the community structure and the level of echo cham-
berness of each community are learnt jointly. A recent effort by
Morini et al. [35] adopts a hybrid approach, employing network-
based methods together with NLP tools for content analysis. In
particular, the authors propose to first infer users’ ideology on a
controversial issue, thus constructing a debate network, then detect
polarity-homogeneous communities. Their framework is the most
similar to ours in terms of input and output: nonetheless, it differs
from our proposal as it does not exploit the mutual influence of
social bonds and cascades. Moreover, it lacks an explanation for the
inferred echo chambers, as it is not based on a model, instead it is a
concatenation of pre-existing techniques.
Community detection from cascades. Barbieri et al. [4] intro-
duce a stochastic generative model that relies on a mixture of mem-
berships to learn communities from observed cascades. Similarly
to our approach, learning is performed by means of Expectation-
Maximization: the derived model can both output the overlapping
communities and the users’ level of participation. Nevertheless,
this approach does not take in consideration the polarity of con-
tent and the differences between normal social communities and
echo chambers. In the context of dynamic networks, He et al. [25]
use cascade diffusion models to discover overlapping communities.
In the same context, Sattari and Zamanifar [39] propose a hybrid
approach that relies on label propagation and cascades models to
learn overlapping communities in dynamic networks. A related
research line has attempted inferring the communities from the
information cascades only, i.e., when the underlying network is
not observable [6, 36]. Despite this major difference, the proposed
approaches share important features with our work, such as infer-
ring the individual membership by maximum-likelihood. Finally,
Monti et al. [34] have recently proposed to exploit cascades models



to learn users’ opinions/leanings in social networks. In particular,
[34] introduces a stochastic model-based approach to learning, by
gradient-based optimization, the ideological leaning of each user
in a multidimensional ideological space. While their framework
targets directly the user-level representation, in our work we focus
on the mesoscale community structure.

3 MODELING ECHO CHAMBERS
We next introduce our probabilistic generative model of echo cham-
bers, which has two main goals. First, to provide a generative de-
scription of the echo-chamber phenomenon. Second, to draw on
this description in order to identify echo chambers in the wild. We
start by identifying some variables as observables —representing
the evidence of the phenomena we aim at modeling — and others
as latent— i.e., the components that explain the observables.
Observables.We consider the following input:

(1) A directed social graph𝐺 = (𝑉 , 𝐸), where𝑉 represents a set
of social media users, and 𝐸 a set of links, where (𝑢, 𝑣) ∈ 𝐸
represents the fact that user 𝑢 is followed by user 𝑣 .

(2) A set of items I, where each item 𝑖 ∈ I is labeled with a polar-
ity 𝑝𝑖 ∈ [−1, 1], that characterize its ideological content (e.g.,
with respect to a given political axis). As we are interested
in modeling echo chambers, we assume that our input set
I only contains polarized items, i.e., whose 𝑝𝑖 value is not
close to 0.

(3) For each item 𝑖 ∈ I, its cascade D𝑖 ⊆ 𝑉 in the social graph,
i.e., the set of nodes that propagated (or consumed) item 𝑖 .

Latent variables. We assume that nodes in 𝑉 can be grouped in
latent communities. Some of these communities are echo chambers;
that is, they facilitate the flow, through its internals, of information
that is ideologically aligned with its opinion, while preventing the
flow of information with an opposed leaning. By contrast, we call
social communities those communities that are likely to incorporate
ideologically heterogeneous nodes.

Given a set𝐶 of latent communities, the value 𝜂𝑐 ∈ [−1, 1] (with
𝑐 ∈ {1, . . . , 𝐾}) indicates both the polarization and the degree of
echo-chamber behavior of the community 𝑐 . In particular, the value
|𝜂𝑐 | = 1 indicates an ideal echo chamber community, while |𝜂𝑐 | = 0
indicate the perfect social community.

We assume that each observation (i.e., the links of the social
graph and the cascades) is the result of a stochastic process where
people act in the network according to their fuzzy membership to
latent communities. More specifically, we assume two prior com-
ponents for a given node 𝑢 ∈ 𝑉 and community 𝑐:

• 𝜃𝑐,𝑢 ∈ [0, 1] represents the level of polarized engagement of
user 𝑢 in a echo chamber 𝑐;

• 𝜙𝑐,𝑢 ∈ [0, 1] is the level of social engagement of user 𝑢 in a
social community 𝑐 .

Both 𝜃𝑐 and 𝜙𝑐 represents categorical distributions and model how
likely is that a user 𝑢 contributes to 𝑐 . Each phenomenon in the
social network can be explained by the above latents: a link (𝑢, 𝑣)
can only be observed if 𝑢 and 𝑣 are part of the same close-knit
community or if they are part of echo chambers with the same
polarity. Similarly, each item 𝑖 is produced by a community 𝑐 and it
propagates by flowing through the nodes of that community.

3.1 Modeling links and propagations
We use the above latent variables to devise a stochastic process
generating the observables. As discussed previously, we assume
that echo chambers facilitate the flow of information which is ide-
ologically aligned with their opinion, while preventing the flow
of information with an opposed leaning. Following this assump-
tion, the propagation of an item 𝑖 is generated by considering its
polarity 𝑝𝑖 and the polarity of the echo chamber 𝜂𝑐 . Specifically,
echo chambers only allow items with the same polarity; therefore,
a propagation is allowed only if sign(𝑝𝑖 ) = sign(𝜂𝑐 ), and is allowed
with a probability depending on the degree of echo-chamber be-
havior of 𝑐; i.e., a Bernoulli trial with probability |𝜂𝑐 |. Finally, it
depends on how strong is the item polarity, i.e. a Bernoulli trial with
probability |𝑝𝑖 |. If these conditions are respected, a node is chosen
from the categorical distribution of the community, i.e.𝑢 ∼ Cat(𝜃𝑐 ).
This process gives rise to the following likelihood of observing a
propagation D𝑖 with polarity 𝑝𝑖 :

𝑃 (D𝑖 |𝑐) = max(0, 𝑝𝑖 · 𝜂𝑐 )
∏
𝑢∈D𝑖

𝜃𝑐,𝑢 . (1)

In other words, item propagations can only be explained by an
alignment between the item polarity and the sign of 𝜂𝑐 . In fact, the
term max(0, 𝑝𝑖 ·𝜂𝑐 ) is only positive when both 𝑝𝑖 and 𝜂𝑐 exhibit the
same sign. If this is the case, users can contribute to the propagation
according to their degree of echo-chamber involvement.

Similarly, social links in𝐺 are generated as follows. Each commu-
nity 𝑐 chooses whether it is an echo chamber with a Bernoulli ran-
dom trial with probability |𝜂𝑐 |. If it is, it will create a link (𝑢, 𝑣) ∈ 𝐸
by extracting two nodes𝑢, 𝑣 by using the 𝜃𝑐 , i.e.𝑢 ∼ Cat(𝜃𝑐 ). Other-
wise, it will do so by using the social engagement𝜙𝑐 . This procedure
defines the probability of each link (𝑢, 𝑣) given that it was latently
generated by a given community 𝑐 as

𝑃
(
(𝑢, 𝑣) ∈ 𝐸 |𝑐

)
= |𝜂𝑐 | · 𝜃𝑐,𝑢𝜃𝑐,𝑣 + (1 − |𝜂𝑐 |) · 𝜙𝑐,𝑢𝜙𝑐,𝑣 . (2)

The above probability follows from this stochastic process where
users contribute to the underlying community according to the
polarity of the community itself. In fact, |𝜂𝑐 | represents a char-
acterization of the community either as an echo chamber (and
consequently links forms with 𝜃𝑐 and propagations are possible) or
as a social community (links occur thanks to 𝜙𝑐 ).
Latent priors. Equations 1 and 2 model conditional probabilities
for links and propagations, given 𝑐 . In order to specify the uncon-
ditional likelihood, we introduce the categorical priors 𝜋ℓ and 𝜋𝑓 ;
those define the probability of creating respectively links and propa-
gations. The term𝜋ℓ (𝑐) (resp.𝜋𝑓 (𝑐)) represents the prior probability
of a link (resp. a propagation) within 𝑐 . However, according to our
assumption, the probability 𝜋𝑓 (𝑐) strongly depends on the polarity
𝜂𝑐 : when 𝜂𝑐 ≈ 0, propagations cannot be explained through 𝑐 . This
constraint can be enforced by introducing the Dirichlet priors 𝛼 𝑓

and 𝛼𝑙 defined as

𝛼
𝑓
𝑐 = ℎ · |𝜂𝑐 | + 𝜖, 𝛼𝑙𝑐 = 𝑠 · (1 − |𝜂𝑐 |) + ℎ · |𝜂𝑐 | (3)

where hyperparameters 𝑠 > 0, ℎ > 0 represent the prior impor-
tance of social and echo chamber communities (respectively) in
generating links, and 𝜖 is a regularization value (e.g. 10−5). There-
fore, we can generate 𝜋𝑓 and 𝜋ℓ through sampling from Dirichlet
distributions parameterized by 𝛼 𝑓 and 𝛼𝑙 .



(a) Social (b) Balanced (c) Polarized

Figure 1: Generated examples for the model with different values for 𝑠, ℎ in order to have different balances of echo chambers
and social communities in the network: Social with (𝑠 = 16, ℎ = 8), Balanced with (𝑠 = 8, ℎ = 8), and Polarized with (𝑠 = 8, ℎ = 16).

Likelihood. We can finally specify the likelihood for both links
and propagations. Given the model parameters Θ = {𝜃, 𝜙, 𝜂} and
the hyperparameters 𝑠 and ℎ, we have:

𝑃 (ℓ |Θ; 𝑠, ℎ) =
∫ {∑︁

𝑐

𝑃 (ℓ |𝑐)𝜋ℓ (𝑐)
}
Dir

(
𝜋ℓ ;𝛼𝑙

)
d 𝜋ℓ

𝑃 (D𝑖 |Θ; 𝑠, ℎ) =
∫ {∑︁

𝑐

𝑃 (D𝑖 |𝑐)𝜋𝑓 (𝑐)
}
Dir

(
𝜋𝑓 ;𝛼𝑝

)
d 𝜋𝑓

(4)

For readers’ convenience, we provide a notation reference in Table 1.

3.2 Generative process
We can summarize the aforementioned procedure as a simple gen-
erative stochastic process for data generation that adheres to the
aforementioned modeling assumptions. The process assumes that
𝑉 and 𝐼 are given; then, based on the model parameters it generates
both links and item propagations with the following processes.
Links. The generative process for a link ℓ is:
(i) Pick a community 𝑐ℓ ∼ Cat(𝜋ℓ ).
(ii) Pick 𝑦𝑐 ∼ Bernoulli( |𝜂𝑐ℓ |) (whether 𝑐ℓ is an echo chamber).
(iii) If 𝑦𝑐 > 0, Pick two nodes 𝑢, 𝑣 ∼ Cat(𝜃𝑐 ).
(iv) Else, pick two nodes 𝑢, 𝑣 ∼ Cat(𝜙𝑐 ).
(v) Add the arc (𝑢, 𝑣) to 𝐸.

Table 1: Notation reference.

Variable Meaning

𝜂𝑐 Polarity of community 𝑐
𝜃𝑐,𝑢 Polarized engagement of user 𝑢 in community 𝑐
𝜙𝑐,𝑢 Social engagement of user 𝑢 in community 𝑐
𝑝𝑖 Polarity of item 𝑖

𝜋ℓ (𝑐) Prior link probability in community 𝑐
𝜋𝑓 (𝑐) Prior propagation probability in community 𝑐
𝛼𝑙
𝑐 Parameter of the Dirichlet distrib. that defines 𝜋ℓ

𝛼
𝑓
𝑐 Parameter of the Dirichlet distrib. that defines 𝜋𝑓

ℎ Link generation strength of echo chambers
𝑠 Link generation strength of social communities
𝛾ℓ,𝑐 Posterior to observe a link 𝑙 in community 𝑐
𝜉s,𝑐 Posterior to observe a propagation s in community 𝑐

(a) Community (b) Propagation

Figure 2: Example community and propagation generated
for the network represented in Figure 1a. Left (a) shows the
membership for one social-type community with shades of
green. Right (b) shows one propagation, spreading within
an echo-chamber community with homogeneous polarity,
where polarity is represented by node colors.

Items. The generative process for the propagation of an item 𝑖 with
polarity 𝑝𝑖 is:
(i) Repeat:

• pick 𝑐 ∼ Cat(𝜋𝑓 );
• 𝑦𝑖 ∼ Bernoulli(𝑔𝑖 ) where 𝑔𝑖 (𝑐) = max(0, 𝑝𝑖 · 𝜂𝑐 );
until 𝑦𝑖 > 0.

(ii) Pick a user 𝑢 ∼ Cat (𝜃𝑐 ) and let D𝑖 = {𝑢}.
(iii) Repeat:

• let 𝐹𝑖 = {𝑢 | (𝑣,𝑢) ∈ 𝐸, 𝑣 ∈ 𝐷𝑖 , 𝑢 ∉ 𝐷𝑖 };
• pick the next user

𝑢 ∼ Cat (𝜃𝑐 · [𝑢 ∈ 𝐹𝑖 ]) ;
• add 𝑢 to the set of activated nodes 𝐷𝑖 ;
until 𝐹𝑖 = ∅ or 𝐷𝑖 has reached a given size.

3.3 Generated networks
Here, we show and analyze some networks generated by the gener-
ative process we devised. We consider three different sets of param-
eters 𝑠, ℎ (defined in Equation 3), in order to obtain a varying degree
of echo-chamber behavior in the network. In all these networks,
we generate 5 communities with a fixed 𝜂 = [−1,−0.5, 0.0, 0.5, 1]:
two opposing echo chambers, a purely social community, and two



cases in-between. Then, we randomly generate 𝜃 and 𝜙 for 𝑁 = 256
nodes. Considering 𝑠 ∈ {−1, 1} we define two echo-chamber priors
𝛼𝑠𝑐 = max(0, 𝑠 · 𝜂𝑐 ) · 𝜎𝑠 + 𝜖 where 𝜎𝑠 are concentration parameters.
Analogously, we define a social-type prior for 𝜙 with parameters
𝛼0 = (1− |𝜂 |) ·𝜎0. Then, for each node 𝑢 we obtain the membership
𝜃𝑢 = 𝑈𝑝 · 𝑃 + (1 −𝑈𝑝 ) ·𝑈𝑛 · 𝑁 and 𝜙𝑢 = (1 −𝑈𝑝 ·𝑈𝑛) · 𝑆 , where
𝑃 ∼ Dir(𝛼𝑝 ), 𝑁 ∼ Dir(𝛼𝑛), 𝑆 ∼ Dir(𝛼0) and𝑈𝑝 ,𝑈𝑛 ∼ Bernoulli(𝛿)
(we set 𝛿 = .3 in experiments). Finally, we generate the network
according to our generative procedure, producing 2048 links (an av-
erage of 8 links per node). Similarly, we generate 2048 propagations
of items; to generate item polarities, we draw them as 𝑝𝑖 = 2𝑋 − 1
with 𝑋 ∼ Beta(𝜇, 𝜇), where 𝜇 = 0.25 is a parameter regulating
the ideological strength of the generated items. Figure 1 shows
the three graphs obtained with these different settings of (𝑠, ℎ). In
each visualization, the color gradient represents the polarities for
each node, obtained as 𝜂 · 𝜃 (i.e., the weighted average polarity of
each community for a given node). We observe that the first graph
(Figure 1a) appears not to be shaped by polarized communities,
but instead nodes with similar polarities are scattered across the
network. In Figure 2 we further explore the first generated net-
work from Figure 1a, where links are predominantly generated by
social-type communities. We depict two features of this data set: a
social community, and a propagation. We see that social commu-
nities, while embedded in a dense network (as in real-world data
sets), are closely-knitted in the network. Nevertheless, propagations
still happen inside echo-chamber communities, spreading across
ideologically aligned nodes.

4 MODEL LEARNING
Given 𝐺 and I, the optimal Θ parameters can be learned by maxi-
mizing the total likelihood

𝑃 (𝐸, I|Θ) =
∏
ℓ∈𝐸

𝑃 (ℓ |Θ)
∏
D𝑖
𝑖∈I

𝑃 (D𝑖 |Θ) .

First of all, we notice that Equation 4 can be simplified by exploiting
the conjugacy of the Dirichlet Distribution [8]:

𝑃 (ℓ |Θ) =
∑︁
𝑐

𝑃 (ℓ |𝑐)𝜋ℓ (𝑐), 𝑃 (D𝑖 |Θ) =
∑︁
𝑐

𝑃 (D𝑖 |𝑐)𝜋𝑓 (𝑐),

where

𝜋ℓ (𝑐) =
𝛼𝑙𝑐∑
𝑐′ 𝛼

𝑙
𝑐′
, 𝜋𝑓 (𝑐) =

𝛼
𝑓
𝑐∑

𝑐′ 𝛼
𝑓

𝑐′

. (5)

A potential problem with the resulting optimization problem is
represented by the contribution of each propagation in the total
likelihood.

By comparing Equations 1 and 2, we observe that the proba-
bility of a link embeds a product over two probabilities, whereas
by contrast the probability of a propagation embeds the product
over multiple probabilities. Thus, long propagations have very low
probability and as a consequence the whole learning process is
dominated by link probabilities. This issue makes it difficult to ef-
fectively learn the latent variable 𝜃 , and consequently the detection
of echo chambers.

This problem can be addressed by resorting to a surrogate ver-
sion of the above likelihood. In practice, we can consider the
weighted multi-graph 𝐺 I = (𝑉 , 𝐸I) induced by all propagations,

with s(𝑢, 𝑣, 𝑝𝑖 ) ∈ 𝐸I if 𝑢, 𝑣 ∈ D𝑖 representing a sharing link (i.e.,
both 𝑢 and 𝑣 share an item 𝑖 , characterized by polarity 𝑝𝑖 ). Then,
the probability of observing such a link can be directly adapted
from Equation 1:

𝑃 (s(𝑢, 𝑣, 𝑝) |𝑐) = max(0, 𝑝 · 𝜂𝑐 )𝜃𝑐,𝑢𝜃𝑐,𝑣
Thus, the total likelihood can be rewritten into 𝑃 (𝐸, 𝐸I) =∏
ℓ∈𝐸 𝑃 (ℓ |Θ)

∏
s∈𝐸I 𝑃 (s|Θ) that allows a more balanced approach

through stochastic backpropagation, where each batch can include
a sample of both social connections and sharing links. We further
simplify the optimization problem by resorting to a variational
approximation. Let 𝑋 ⊆ 𝐸 ∪ 𝐸I be a batch of social connections
and sharing links, 𝑌 be a set of corresponding binary variables
representing the latent community assignment for both social con-
nections and sharing links; that is, 𝑦ℓ,𝑐 = 1 (resp. 𝑦s,𝑐 = 1) if ℓ (resp.
s) is associated to community 𝑐 . Observe that

log 𝑃 (𝑋,𝑌 |Θ) =
∑︁
ℓ,s∈𝑋

∑︁
𝑐

{
log 𝑃 (ℓ |Θ, 𝑐) + log𝜋ℓ (𝑐)

+ log 𝑃 (s|Θ, 𝑐) + log𝜋𝑓 (𝑐)
}
,

and define
Q (Θ,Θ′ |𝑋 ) = E𝑌 |𝑋,Θ′ [log 𝑃 (𝑋,𝑌 |Θ)]

=
∑︁
ℓ,s∈𝑋

∑︁
𝑐

{
𝑃 (𝑦ℓ,𝑐 |ℓ,Θ′) (log 𝑃 (ℓ |Θ, 𝑐) + log𝜋ℓ (𝑐))

+ 𝑃 (𝑦s,𝑐 |s,Θ′)
(
log 𝑃 (s|Θ, 𝑐) + log𝜋𝑓 (𝑐)

) }
.

(6)

Notably, whenever Q (Θ,Θ′ |𝑋 ) ≥ Q (Θ′,Θ′ |𝑋 ), then log 𝑃 (𝑋 |Θ) ≥
log 𝑃 (𝑋 |Θ′). In fact,

log 𝑃 (𝑋 |Θ) =E𝑌 |𝑋,Θ′ [log 𝑃 (𝑋 |Θ)]

=E𝑌 |𝑋,Θ′

[
log

𝑃 (𝑋,𝑌 |Θ)
𝑃 (𝑌 |𝑋,Θ)

]
=Q (Θ,Θ′ |𝑋 ) − E𝑌 |𝑋,Θ′ [log 𝑃 (𝑌 |𝑋,Θ)]
≥Q (Θ′,Θ′ |𝑋 ) − E𝑌 |𝑋,Θ′ [log 𝑃 (𝑌 |𝑋,Θ)] (a)

=Q (Θ′,Θ′ |𝑋 ) − E𝑌 |𝑋,Θ′
[
log 𝑃 (𝑌 |𝑋,Θ′)

]
− E𝑌 |𝑋,Θ′

[
log

𝑃 (𝑌 |𝑋,Θ)
𝑃 (𝑌 |𝑋,Θ′)

]
≥Q (Θ′,Θ′ |𝑋 ) − E𝑌 |𝑋,Θ′

[
log 𝑃 (𝑌 |𝑋,Θ′)

]
(b)

=E𝑌 |𝑋,Θ′

[
log

𝑃 (𝑋,𝑌 |Θ′)
𝑃 (𝑌 |𝑋,Θ′)

]
= log 𝑃 (𝑋 |Θ′),

where (a) holds by hypothesis, and (b) by Jensen’s inequality. This
enables an iterative optimization strategy where, for each iteration
𝑡 , we sample a batch 𝑋 of social connections and sharing links, and
then apply the following alternating steps:

• (Expectation) For each ℓ, s ∈ 𝑋 and community 𝑐 , compute
the posteriors

𝛾ℓ,𝑐 ≡ 𝑃 (𝑦ℓ,𝑐 |ℓ,Θ(𝑡 ) ) = 𝑃 (ℓ |𝑐)𝜋ℓ (𝑐)∑
𝑐 𝑃 (ℓ |𝑐)𝜋ℓ (𝑐)

𝜉s,𝑐 ≡ 𝑃 (𝑦s,𝑐 |s,Θ(𝑡 ) ) =
𝑃 (s|𝑐)𝜋𝑓 (𝑐)∑
𝑐 𝑃 (s|𝑐)𝜋𝑓 (𝑐)

,

(7)

given the current parameter set Θ(𝑡 ) = {𝜂 (𝑡 ) , 𝜃 (𝑡 )𝜙 (𝑡 ) }



Algorithm 1 ECD Inference
Input: Graph𝐺 = (𝑉 , 𝐸) ; Sharing links 𝐸.
Hyper-parameters: number of communities𝐶 , social prior size 𝑠 ,

echo-chamber prior size ℎ, learning rate 𝜆,
number of optimization steps for each iteration 𝐻 .

Output: polarities 𝜂, memberships 𝜃 and 𝜙 .
1: Randomly initialize Θ(0) = {𝜂 (0) , 𝜃 (0) , 𝜙 (0) } and set 𝑡 = 0.
2: repeat
3: let Θ(∗) = Θ(𝑡 )

4: for 𝑤 ∈ {1, . . . , 𝐻 } do
5: Sample 𝑋 from 𝐸 ∪ 𝐸I .
6: for each ℓ, s ∈ 𝑋 and 𝑐 ∈ {1, . . . ,𝐶 } do
7: Compute posteriors 𝛾ℓ,𝑐 and 𝜉s,𝑐 according according to Eqs. 7, 5 and

the current parameters Θ(𝑡 ) . ⊲ E Step
8: end for
9: Compute the expected likelihood Q according to Eqs. 6 and 5 and the

posteriors 𝛾 and 𝜉 .
10: Update the parameters: ⊲ M Step

Θ(∗) = Θ(∗) + 𝜆∇ΘQ (Θ(∗) ,Θ(𝑡 ) |𝑋 )
11: end for
12: Set Θ(𝑡+1) = Θ(∗) and increase 𝑡 :
13: until convergence

• (Optimization) Ascend the gradient ∇ΘQ (Θ,Θ(𝑡 ) |𝑋 ) to ob-
tain Θ(𝑡+1) .

The whole procedure, dubbed ECD (Echo Chamber Detection),
is described in Algorithm 1.

It converges to a local minimum, for a sufficiently small learn-
ing rate, since it preserves the general properties of stochastic
backpropagation. In fact, although there is no guarantee that the
improvement in the likelihood of the current batch corresponds to
an improvement in the likelihood of the whole set of observables,
this property occurs on average and can eventually be improved
by, at each iteration, freezing Θ(𝑡 ) and applying the E and M steps
on multiple batches.
Implementation details. The implementation follows the struc-
ture depicted in the previous sections. The vector 𝜂 is fed into a
tanh(·) in order to constraint its values into [−1, +1], 𝜃 and 𝜙 are
modeled as a 2-layer GCN [28] using 1024 hidden units, the social
graph, one-hot encoding attributes, and an output layer with |𝐶 |
components, that are then fed to a softmax and a sigmoid func-
tion, respectively for 𝜃 and 𝜙 . The latter decision is intuitive: echo-
chamber communities compete to attract users, while each user
could belong to multiple social communities. For modeling, the
implementation of 𝜃 and 𝜙 is transparent since they are normalized
w.r.t. communities before the likelihood computation as mentioned
at the end of Section 3.2. We train the overall architecture through
the stochastic algorithm described above, using Adam optimizer
with default settings and one epoch. To balance the contribution
of links and propagations, we randomly oversample the minority
class between the two to achieve a balanced distribution.

5 EXPERIMENTS
In this section, we empirically asses our proposal and answer the
following research questions:

• RQ1. Assuming that a data set is generated according to the
generative process described in Section 3, is the ECD inference
algorithm discussed in Section 4 able to estimate its original
parameters? Under which conditions? (Section 5.1)

Table 2: Results from synthetic experiments with different
configurations of parameters (𝑠, ℎ) used for generation. For
each metric, we report its mean and its standard deviation
across 10 experiments. Metrics indicate, respectively, the
MAE between polarities for each community, between the
original and estimated social interest of nodes in commu-
nities, between the original and estimated membership of
nodes in communities, the correlation between original and
estimated polarities for each node.

Input data set 𝑀𝐴𝐸 (𝜂, 𝜂∗) ↓ 𝑀𝐴𝐸 (𝜙, 𝜙∗) ↓ 𝑀𝐴𝐸 (𝜃, 𝜃∗) ↓ 𝜌 (𝜂𝜃, 𝜂∗𝜃∗) ↑
Social (𝑠 = 16, ℎ = 8) 0.27 ± 0.11 0.21 ± 0.00 0.24 ± 0.03 0.91 ± 0.03
Balanced (𝑠 = 8, ℎ = 8) 0.27 ± 0.10 0.22 ± 0.00 0.22 ± 0.03 0.93 ± 0.01
Polarized (𝑠 = 8, ℎ = 16) 0.27 ± 0.10 0.21 ± 0.00 0.19 ± 0.03 0.96 ± 0.03

• RQ2. Do polarized communities detected in real world data
sets exhibit typical features associated with echo chambers?
(Section 5.2)

• RQ3. Can our model be used to provide relevant information
to auxiliary predictive tasks, such as predicting activations or
individual stances? (Section 5.3)

5.1 Synthetic experiments
In order to answer our first research question, we generate an array
of data sets according to the generative model described in Section 3,
with different combinations of hyper-parameters.

Reconstruction experiment.We use data sets generated with the
procedure defined in Section 3 to test whether the ECD algorithm is
able to reliably infer the latent communities. The goal here is first, to
present experimental evidence that our algorithm fits the intended
purpose. Second, as with any inference procedure, it is necessary
to check if a reasonably-sized amount of data is sufficient for a
meaningful estimate of the latent communities with the presented
algorithm, and under which conditions.

To do so, we consider the same three different settings of pa-
rameters 𝑠, ℎ from Section 3.3 and visualized in Figure 1. For each
parameter setting, we generate 10 data sets composed of a graph and
a set of propagations each characterized by a polarity. On each data
set, we run our estimation algorithm (initialized with the values for
𝑠, ℎ used to generate the data set). From our algorithm, we obtain an
estimate for the node-community membership 𝜃∗, the community
polarities 𝜂∗, and the social interest of nodes 𝜙∗. We then measure
the absolute error between the original value used to produce the
data, and the estimated values obtained by our inference algorithm.
Since there is not a natural ordering in the community space, the
absolute error is computed as the best result achieved through an
exhaustive search in the community indexes.

We present results in Table 2. We observe that our algorithm
obtains a low error (between 0.19 and 0.27) for all parameters,
and for 𝜙 and 𝜃 in particular. Moreover, the reconstruction of the
individual nodes’ polarities is very precise (𝜌 > 0.9). The estimate
of the node memberships 𝜃 gains reliability as the echo-chamber
behavior is more apparent: this is quite expected since propagations
are more informative when the network is dominated by echo
chambers.
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Figure 3: Impact of the average number of items per user
on the inference of node polarities (measured by Pearson’s
Correlation, on the left) and communitymemberships (mea-
sured by MAE, on the right). In both cases, we observe an
average number of items per user equal to 10 is sufficient to
reach maximum performances, even if node polarities are
recovered also with 4 items.

Efficiency Analysis. Then, we investigate the amount of data
needed to reliably reconstruct the latent communities. We do so
by generating data sets with a growing number of propagations.
Specifically, we test from an average number of propagations per
user of 1 to 16, with steps of 1. Using these data sets, we perform
a grid of experiments by using the same setting described in Sec-
tion 3.3 (𝑠 = 8, ℎ = 16). The results are shown in Figure 3. We
observe that both the estimation of node polarities and 𝜃 member-
ships are affected by different amounts of input data. When looking
at the membership reconstruction error, an average of 10 items
per user is sufficient for the model to reach its top performance,
which then saturates. Individual node polarities, instead, are well
estimated even with 4 items per user. This analysis gives a hint at
the real-world applicability of our method.

5.2 Echo chamber assessment
In order to answer our second research question, we apply ECD to
three real-world data sets extracted from Twitter.
Data sets. Each data set is focused on a different controversial
topic:

• Brexit [42] regards the remain-leave discourse before the
2016 UK Referendum to exit the EU. Since this data set does
not include retweets, we scrape all the retweets in the period
May-July 2016 that contain at least one of the first 100 most
used hashtags about Brexit, for a core set of users with at least
5 tweets.

• Referendum [29] is gathered during the Italian constitutional
referendum in 2016.

• VaxNoVax [14] comprises polarized discussions related to the
vaccine debate in Italy in 2018.

Summary statistics for each data set are reported in Table 3. Each
data set exposes different features from the others, relative to the
number of users and items, polarity distribution, and cascade size.

In all data sets, we use follows to construct the social graph 𝐺
and retweets as propagations D. In cases where the two diverge (a
user retweets an item that has not been shared by any of the users
they follow in the graph), we insert such missing links in the social
graph. Our model also needs as input a polarity 𝑝𝑖 for each item:

Table 3: Summary statistics of real-world data sets. The last
column refers to the ratio between the number of itemswith
positive I+ and negative I− polarity.

data set No. of users No. of items Cascade size |I+ |
|I− |

Brexit 7589 19963 3.6 ± 5.6 1.37
Referendum 2879 40344 5.6 ± 9.9 0.18
VaxNoVax 14315 21312 7.6 ± 28.9 0.80

to compute it for the Brexit and Referendum data sets, we train a
supervised text classifier on the labeled subset of tweets provided in
the original works. Specifically, we first subselect polarized tweets
(AUC ROC 0.78 and 0.75 in 10-fold cross-validation, respectively),
and then assign a polarity to each polarized tweet (AUC ROC 0.81
and 0.86). For the VaxNoVax data set, we use the original labeled
data to train a text-based classifier that separates tweets from the
two ideological sides (F1 0.87) and then sub-select tweets that obtain
a classification score larger than 0.75 in absolute value.

Experimental protocol. We next apply the ECD algorithm to
these data sets. We chose social prior size 𝑠 = 8 and echo-chamber
prior size ℎ = 16, since these data sets are collected around po-
larizing topics, where we expect to find a configuration similar
to Figure 1c. We set 𝐾 = 8 as the number of communities; if the
data set can be explained by a fewer number of communities, our
method simply assigns them a near-zero membership. Thus, in
the following, we will consider only non-empty communities. We
then adopt the evaluation method proposed by Morini et al. [35]:
analyzing each community in terms of its conductance —i.e., how
closely-knitted is the community with the rest of the graph—and
its purity—i.e., the ratio of users with the same ideological align-
ment, measured as the average polarity of the tweets they reshare.
Morini et al. identify a low conductance and a high purity as typical
properties of echo chambers. ECD training time takes ∼2, 6, and 120
minutes on the three dataset Brexit, Referendum, and VaxNoVax.
In light of Table 3, cascade size is a determinant factor for scalability.
This is intuitive since we model cascades through all pairs of users
s(𝑢, 𝑣, 𝑖) that interacts with item 𝑖 .

Results. We report our results in Figure 4. We observe that all
the echo chambers detected by our method (i.e., the communities
with a high value of |𝜂 |) indeed display typical echo-chamber traits.
Specifically, in the case of Brexit and Referendum (Figures 4a,
4b), we obtain two echo-chamber communities with high purity
and low conductance. On VaxNoVax, besides the two echo-chamber
communities we also obtain two social communities (|𝜂 | ∼ 0). From
an empirical analysis, one of these social communities contains all
authoritative news sources (e.g., SkyTG24 and AdKronos), while
the other contains users who are arguably pro-vax, but without
significant pro-vax propagations. Indeed, both social communities
have very high conductance, thus missing the segregation exhibited
by typical echo chambers.

5.3 Predictive tasks
The latent communities and echo chambers discovered by the ECD
model provide valuable information to describe social media users.
Such information could be therefore useful for other applicative



Figure 4: Purity-Conductance plots of the communities detected by our method for three data sets: (a) Brexit, (b) Referendum,
and (c) VaxNoVax. Each dot represents a community, whose coordinates are its level of conductance (x-axis) and purity (y-axis).
The community assignment for a user 𝑢 is derived from argmax𝑐 𝜃𝑢 , and the colors are associated with the 𝜂 values inferred by
our model. For higher values of |𝜂 | (echo chambers), we obtain communities well isolated (low conductance) and containing
users of the same ideology (high purity), with a clear correspondence in the retweet networks (bottom). Lower absolute values
of 𝜂 correspond to neutral in-between communities which correspond to newsmedia accounts. Force Atlas 2 with gravity= 100
is used in Gephi to define the layout of the network and the inferred community assignment to color the nodes.

predictive tasks. To assess the significance of the produced com-
munities in such tasks, we study two typical prediction problems:
graph-based stance detection and next-activation prediction.

Graph-based stance detection. In the first task, wewish to assign
an individual polarity to each node in the network. To evaluate our
performance, we manually label a set of ∼100 users for each data
set. Then, we apply our model, excluding their activations from the
training set (our model sees their social links). Finally, we assign to
each of them the polarity as the weighted average of the polarities
of the communities they belong (i.e., 𝜂∗ · 𝜃∗).

We compare its results to the following baselines:
• 1-Hop Average: given a user 𝑢 we compute their stance as the

average polarity of the propagations of the users that𝑢 follows.
A similar method was proposed by Barberá [3].

• node2vec [23]: we embed the social graph 𝐺 using the embed-
ding dimension 𝐾 = 128; then, we train a logistic regression
using these embeddings. Since this method is supervised, we
test it through a leave-one-out cross-validation procedure w.r.t.
our set of manually-labeled users; we then report the average.

• GCN [28]: we adopt a 2-layer Graph Convolutional Neural
Network, using as node features 𝑥𝑢 a one-hot encoding of the
|𝐼 | propagations, i.e. 𝑥𝑢 [𝑖] = 1 if𝑢 ∈ D𝑖 , and 0 otherwise. Since
this method is also supervised, we again adopt leave-one-out
to test its performance.

Results are reported in Table 4. We use ROC-AUC as a standard
metric to compare the superiority of different models. On all three
data sets, our method significantly outperforms the 1-Hop Average
baseline. Node2Vec and GCN perform substantially worse than
our method, except on VaxNoVax, where all methods achieve good
results. In practice, although propagations or the social graph are

valuable sources, ECD is the only model that can efficiently combine
information coming from both.
Next-activation prediction. The second predictive task we test is
predicting future propagations. In order to evaluate our approach,
for each propagation, we split the set of nodes that activated on it
into training and test. That is, a fraction (to be determined later)
of the activated nodes is not visible during training. Then, we use
only the training activations to estimate our model parameters. To
approximate the probability of a node 𝑢 activating on an item 𝑖 ,
we consider the maximum probability of propagation from each
of the other activated nodes 𝐷𝑖 ; then, following our model, each
probability is computed marginalizing over each community 𝑐 , thus
obtaining

𝑃 (𝑢 |D𝑖 ) = max

{∑︁
𝑐

𝜋𝑓 (𝑐) · 𝑃 (s(𝑢, 𝑣, 𝑝𝑖 ) |𝑐)
����� ∀𝑣 ∈ D𝑖

}
.

Using this probability as a prediction score, we evaluate the
performance as a binary classification task where, given a pair
(𝑢, 𝑖), the model predicts whether user 𝑢 will activate on item 𝑖 or
not. Hence, we use ROC AUC to measure prediction quality. We
apply this procedure for each of the three data sets introduced in the
previous section. On each data set, we test different fractions for the
train-test split, expressed as the percentage of masked activations
during training. Since we treat the next-activation task as a binary
classification problem, all pairs (𝑢, 𝑖) s.t. 𝑢 ∉ D𝑖 are attached to the
test set as negative instances.

To benchmark the performance of our method, we compare its
results with two heuristics. The first one, dubbed𝑀𝑜𝑠𝑡𝑃𝑜𝑝 , gives
higher probability to the most active users:

MostPop(𝑢,D𝑖 ) =
∑

𝑗 ∈I 1(𝑢 ∈ D𝑗 )∑
𝑗 ∈I

∑
𝑣∈𝑉 1(𝑣 ∈ D𝑗 )



Table 4: ROC-AUC on the stance-detection task for our ap-
proach (ECD) and different graph-based supervised and un-
supervised baselines (see text). ROC-AUC scores of super-
vised baselines are measured as average on leave-one-out
cross validation.

Supervised Method ROC-AUC
Brexit VaxNoVax Referendum

ECD 0.98 0.97 0.91
1-Hop Average 0.47 0.85 0.49

✓ Node2Vec+LR 0.85 1.00 0.75
✓ GCN 0.92 0.94 0.87

while the second,𝑀𝑜𝑠𝑡𝑃𝑜𝑝∗, takes into account the item polarity
by assigning higher weight to those users activating on items with
similar polarity:

MostPop∗ (𝑢,D𝑖 ) =
∑

𝑗 ∈I,𝑠𝑖𝑔𝑛 (𝑝𝑖 )=𝑠𝑖𝑔𝑛 (𝑝 𝑗 ) 1(𝑢 ∈ D𝑗 )∑
𝑗 ∈I,𝑠𝑖𝑔𝑛 (𝑝𝑖 )=𝑠𝑖𝑔𝑛 (𝑝 𝑗 )

∑
𝑣∈𝑉 1(𝑣 ∈ D𝑗 )

Results are shown in Figure 5. With a 90%-10% train-test split,
we report an AUC ROC of around 0.9 for all three data sets—
substantially better than the tested baselines. Moreover, the per-
formance of our method degrades gracefully when the train set
size decreases: we do not observe sudden variations in these curves.
This result also suggests that the model is not impacted by different
sampling choices for the training set.
Reproducibility: our code and data are available at
https://github.com/mminici/Echo-Chamber-Detection.git

6 CONCLUSIONS AND FUTUREWORK
In this work, we fill the gap between modeling and data analysis
approaches when studying echo chambers in social networks. We
propose a gradient-based inference algorithm derived from a prob-
abilistic model, which implements realistic assumptions on echo
chambers, distinguishing them from other types of communities,
and can be used to generate polarized networks and propagations.

Our solution inherits its explainability from this principled gen-
erative approach. This approach allows us to formalize the common
intuition of a deep entanglement between the observed propagation
patterns of polarized contents, and the latent association between
users and communities.

The experimental analysis confirms that our algorithm success-
fully detects echo chambers exhibitng their typical traits of connec-
tivity and opinion homogeneity. Comparisons against state-of-the-
art baselines on auxiliary prediction tasks, such as stance detection
and next-activation prediction, show the good performance of our
algorithm for such tasks in cold-start settings. Also, experiments
show that the algorithm is efficient in terms of the number of input
propagations needed, and robust with respect to missing data.

Our approach relies on minimal and realistic assumptions that
define the perimeter of its effectiveness, and allows for possible
extensions. For instance, we consider one specific type of interaction
that reflects endorsement, and neglects all the possible nuances in
the users’ debates (e.g., replies on Twitter could be antagonizing).
Furthermore, as presented in Section 5.1, the results of our method
improve with the polarization of the input. However, it would
be straightforward to extend our model by introducing a form of

Next-Activation prediction

5 10 15 20 25 30
Masked activations (%)

0.72

0.76

0.8

0.84

0.88

0.92

0.96

R
O

C
-A

U
C

5 10 15 20 25 30
Masked activations (%)

0.8

0.84

0.88

0.92

R
O

C
-A

U
C

(a) Brexit (b) Referendum

5 10 15 20 25 30
Masked activations (%)

0.72

0.76

0.8

0.84

0.88

0.92

0.96

R
O

C
-A

U
C

0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

ECD
Most Pop∗

Most Pop

(c) VaxNoVax

Figure 5: Performance of our ECD model and baselines on
the task of next-activation prediction, for our three data sets,
as a function of the training set size.

hindered propagation for neutral content in non-echo-chamber
communities; such an extension would leave our algorithm almost
identical.

As in every experimental study, our empirical validation is lim-
ited by the available data. For instance, we use only one type of
social network, i.e. Twitter. Nonetheless, we hypothesize that our
framework would suit also other social media platforms, as long as
they allow the existence of a social graph and propagations.

Our work focuses on a given single ideological axis; however,
learning the interplay of different axes has been proved successful
in the literature [34]: it would be worth devising an extension of
our model able to deal with multiple ideological axes.

Another interesting direction for future investigation, would be
to model the temporal aspects of propagations that, for simplicity,
we do not consider here. On the one hand, propagations naturally
happen over time, and their speed could provide further characteri-
zation of echo chambers [31]. On the other hand, also polarities do
change over time: such an extension could offer improvements on
the difficult task of learning opinion dynamics from data [33].

Finally, we consider the polarity of items (i.e., tweets) as part of
the input, since they can be easily obtained from natural language
processing techniques. However, it would be interesting to inte-
grate such approaches with our model, by considering the items’
polarities as a latent variable, that can be estimated by looking at
their propagations as well as their content.
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