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ABSTRACT

Missing clinical time series is a critical bottleneck in intensive care units (ICUs).
In large-scale ICU electronic health record datasets such as MIMIC-IV, missing
rates exceed 90% due to sensor failures, monitor degradation, and systemic out-
ages, while aging devices inject unstable noise that makes reliable modeling nearly
impossible. Existing methods remain unsafe for deployment: statistical heuristics
distort missingness, deep models collapse under block-wise gaps and noise, and
ODE- or diffusion-based approaches demand prohibitive computation. To over-
come these limitations, we propose Mamba-IVP, a state–space generative model
with a Mask-Aware Dual-Mamba Encoder (MADME) to handle block-wise miss-
ingness and a Mamba-Hybrid Decoder (MHD) to denoise continuous-time recon-
structions. We validate our method through 61 experiments across two tasks: time
series forecasting and node classification. Our experiments involve 7 classic and
state-of-the-art target models and 3 publicly available datasets: (1) it achieves
state-of-the-art accuracy, reducing MSE by 3.0%, improving AUROC by 3.0%,
and enhancing AUPRC by 3.9%; and (2) it remains robust under noise and block-
wise missingness up to 12h, where other models degrade sharply.

1 INTRODUCTION

Reliable prediction in the ICU is not just an algorithmic challenge but a matter of life and death.
Electronic health records (EHRs) and continuous bedside monitoring hold the promise of enabling
early detection of disease trajectories, timely intervention, and improved survival. Yet this promise
is routinely shattered by the brutal reality of clinical data: incompleteness, irregularity, and noise.
In large-scale datasets such as MIMIC-IV, missing rates exceed 90%, with block-wise missingness
of 2–6 hours, and in extreme cases, up to 12 hours Johnson et al. (2016). These gaps are not
harmless, and the consequence is catastrophic. Every gap in the data translates into lost lives, turning
missingness into serious consequences in ICU operations. Addressing this crisis is therefore not a
technical preference but a life-or-death imperative for building trustworthy, deployable healthcare
AI.

Existing approaches to modeling incomplete clinical time series can be broadly categorized into
three methodological paradigms, each facing critical limitations for real-world deployment. The
first paradigm, the imputation–then–prediction pipeline (e.g., MissForest + GRU Stekhoven &
Bühlmann (2012), SAITS + classifier Oh et al. (2021)), reconstructs missing values prior to down-
stream prediction. However, imputation errors often compound through the pipeline, amplifying
uncertainty, while the two-stage design doubles computational overhead and latency. The second
paradigm comprises end-to-end models with built-in missingness handling (e.g., GRU-D Che et al.
(2018c), BRITS Cao et al. (2018b), mTAN Shukla & Marlin (2021)), which directly integrate masks
or decay mechanisms into recurrent or attention-based architectures. Although these models circum-
vent explicit imputation, they typically assume independent or random missingness patterns and
degrade sharply under the structured, block-wise gaps commonly observed in ICU monitoring.

A third line of research introduces continuous-time generative models (e.g., Latent-ODE Rubanova
et al. (2019c), IVP-VAE Xiao et al. (2024b)) that model irregular sampling through latent dynamical
systems. While elegant in theory, these approaches face several practical obstacles: computational
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bottlenecks due to adaptive ODE solvers Chen et al. (2018b) (often 40× slower than our proposed
method), sensitivity to measurement noise and sensor drift, and the entanglement of observation pat-
terns with data content, which undermines robustness and interpretability. These limitations collec-
tively reveal the urgent need for a unified, computationally efficient, and noise-resilient framework
capable of learning stable temporal dynamics from irregular, incomplete clinical sequences.

To directly address these challenges, we propose Mamba-IVP, a generative framework purpose-built
for irregular, noisy, and long-range missing clinical series. First, to confront the challenge of block-
wise missingness, we design a Mask-Aware Dual-Mamba Encoder (MADME) that jointly encodes
observed values and missingness indicators, ensuring the model learns temporal dynamics robustly
even when entire time blocks vanish. Second, to mitigate measurement noise from aging devices,
we introduce a Mamba-Hybrid Decoder (MHD) that reconstructs continuous-time trajectories while
inherently denoising through parallelizable latent evolution. Third, to overcome the prohibitive com-
putational cost of ODE-, diffusion-, and flow-based models, Mamba-IVP leverages Mamba’s par-
allelizable state–space dynamics, eliminating recursive bottlenecks and enabling efficient sequence
modeling. Furthermore, by embedding the encoder–decoder pair within an invertible solver, our
framework preserves temporal consistency while supporting scalable, real-time inference.

Our main contributions are summarized as follows:

1. We propose a Mask-Aware Dual-Mamba Encoder (MADME) that jointly processes val-
ues and missingness indicators to learn robust temporal representations under block-wise
missingness. Leveraging Mamba’s efficient state–space sequence modeling, MADME sub-
stantially improves stability under long gaps and achieves strong forecasting performance
(MSE = 0.697 on MIMIC-IV, 0.544 on PhysioNet 2012, and 0.564 on eICU). These corre-
spond to 3–4% lower MSE than IVP–VAE in the main forecasting tasks, and up to 7.3%
improvement compared to GRU-∆t and IVP–VAE under 10h block-wise missingness.

2. We develop a Mamba-Hybrid Decoder (MHD) that reconstructs continuous-time trajecto-
ries while inherently denoising through parallelizable evolution. By combining state–space
refinement with lightweight feedforward decoding, MHD enhances robustness to noisy and
irregular measurements. On PhysioNet 2012, it yields 4% lower MSE than IVP–VAE in
the main task and up to 7.3% improvement under block-wise missingness. In addition,
MHD contributes to the substantial speed gains reported in Section 5.6.

3. We provide the first rigorous theoretical analysis of Mamba’s denoising power. Our
variance-contraction results show that clean tokens induce exponential error contraction,
while noisy or masked tokens exhibit only linear error growth. This analysis explains why
the shared IVP solver remains stable and why Mamba-IVP maintains temporal consistency
when evolving both backward and forward in time, even under long missing blocks.

4. Extensive experiments demonstrate that Mamba-IVP achieves the best accuracy–efficiency
trade-off among all baselines. It attains the lowest forecasting MSE across datasets (e.g.,
0.544 on PhysioNet 2012, 3–4% better than IVP–VAE), while providing the fastest for-
ward time (0.007s) and shortest epoch time (5.2s). Compared to the computationally
heavy Latent-Flow baseline, Mamba-IVP is up to 40× faster in inference. Even under
50% masking noise, it maintains strong robustness (MSE = 0.709), achieving over 40%
lower MSE than IVP–VAE in our robustness experiments.

2 RELATED WORK

Due to space limits, we briefly review representative work and include an extended survey in Ap-
pendix A.14. Early imputation relied on statistical methods such as MICE Van Buuren & Groothuis-
Oudshoorn (2011), 3D-MICE Xu et al. (2023), and TA-DualCV Zhang & Thorburn (2021) that cap-
ture conditional or spatiotemporal dependencies but fail under ICU-level sparsity and long block-
wise gaps. Deep learning methods including GRU-D Che et al. (2018c), BRITS!Cao et al. (2018a),
SAITS Oh et al. (2021), and diffusion- or state-space-based models (CSDI Tashiro et al. (2021c),
GRIN!Garcı́a-Recio et al. (2021), diffusion-SSM Oh et al. (2021)) improve temporal modeling yet
remain computationally intensive and focus mainly on reconstruction accuracy. Our Mamba-IVP
differs by integrating a mask-aware Mamba encoder and IVP-based decoder to jointly address block-
wise missingness and noisy observations for both imputation and downstream prediction.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 PRELIMINARY

3.1 PROBLEM FORMULATION

In our framework, a multivariate time series X(n) is defined as a sequence of Ln temporally ordered
observations:

X(n) = {(x(n)
i , t

(n)
i )}Ln

i=1,

where each x
(n)
i ∈ RD is a D-dimensional feature vector (e.g., vital signs in EHRs), and t

(n)
i ∈ R+

is the timestamp. The sequence length Ln varies across patients due to irregular sampling.

The dataset X = {(X(1), y(1)), . . . , (X(N), y(N))} contains N labeled samples, where X(n) can be
represented by a feature matrix X(n) ∈ RLn×D with timestamps t(n) ∈ RLn and label y(n) ∈ Y =
{1, . . . , C}. All sequences lie within a study window [Tstart, Tend], but each patient terminates at its
own endpoint T (n)

obs := t
(n)
Ln

.
Definition 1 (Problem Statement). We aim to design a unified generative model gθ, parameterized
by θ, that learns a common latent representation from irregular time series. Once trained, the model
supports multiple downstream tasks via distinct inference pathways.

For clarity of exposition, we focus on a single input sample in the following discussion and omit the
superscript (n) unless ambiguity arises.

• Time Series Forecasting: Given a historical time series X = {(xi, ti)}Li=1 observed over the
interval [Tstart, Tobs], observed up to its own endpoint Tobs := tL, predict the future sequence

X̂τ =
{
(x̂L+k, tL+k)

}Lτ

k=1
,

where each forecasted timestamp satisfies

tL+k ∈
(
Tobs, Tobs + τ

]
, tL+Lτ ≤ Tend + τ,

and τ ∈ R+ is the prediction horizon.
• Time Series Classification: The task is to infer the categorical label ŷ ∈ Y corresponding to the

entire time series X .

Comment 1: The generative model gθ serves as a representation learner, extracting temporally co-
herent features that simultaneously support forecasting and classification.

Comment 2: By reusing temporal dependencies captured during forecasting, the framework en-
hances discriminative accuracy, creating a synergistic link between generative modeling and classi-
fication.

Comment 3: Unlike traditional pipelines that separate imputation, forecasting, and classification,
our latent trajectory framework unifies them: bidirectional evolution reconstructs missing values for
complete representations, while forward extrapolation enables forecasting under high missingness.

4 METHOD

Our framework consists of three tightly connected components: (1) a Mask-Aware Dual-Mamba
Encoder (MADME) that processes irregular, partially observed inputs; (2) a bidirectional latent
evolution module based on an initial value problem (IVP) solver, which evolves the encoded repre-
sentations backward and forward in continuous time; and (3) a Mamba-Hybrid Decoder (MHD)
that reconstructs or forecasts observations from the forward latent trajectory.

The overall workflow is as follows: the input values X and observation mask M are concatenated
and encoded by MADME into a latent sequence Z. We then evolve this sequence backward in
time (EBT) to obtain a temporally coherent summary, which is aggregated into a compact latent
representation ẑinit. This aggregated state is used for classification and simultaneously serves as the
initial condition for a forward-time latent evolution (EFT) that generates Z→ at future timestamps.
Finally, MHD refines this trajectory using Mamba-style state–space dynamics and projects it to
predicted observations X̂.

We next describe each component in the order in which data flows through the system.
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Figure 1: Overview of the Mamba-IVP framework. Multivariate observations X and their binary
mask M are concatenated and encoded by the Mask-Aware Dual-Mamba Encoder (MADME)
into latent embeddings Z. These are evolved backward via a shared IVP solver to obtain a trajectory
Z←, which is aggregated into a compact latent state ẑinit for classification and as the initial condition
for forward evolution, producing a future latent trajectory Z→. The Mamba-Hybrid Decoder
(MHD) then maps Z→ to predicted observations X̂. This encoder–IVP–decoder pipeline is designed
to handle irregular sampling, block-wise missingness, and sensor noise in clinical time series.

4.1 MASK-AWARE DUAL-MAMBA ENCODER (MADAE)

The overall architecture of our model is illustrated in Figure 1, and the algorithm is presented in
Appendix A.2.

Clinical time series exhibit both irregular sampling and block-wise missingness, making it crucial for
the encoder to distinguish between real measurements and unobserved entries. MADME addresses
this by jointly processing raw values and their binary observation mask. Specifically, the input is
first formed as

X̃ = Concat(X,M) ∈ RL×2D. (1)
ensuring that the encoder is explicitly aware of missing regions at every time step.

MADME then applies two stacked Mamba blocks (see Appendix A.1) with residual connections.
These blocks model long-range temporal dependencies while selectively filtering noisy or unreliable
inputs.

H0 = LayerNorm(X̃) ·Wproj + bproj, (2)

H1 = H0 +Mamba1
(
H0

)
, (3)

H2 = H1 +Mamba2
(
Dropout

(
H1

))
. (4)

The initial representation is denoted by H0 ∈ RL×dm , obtained through layer normalization fol-
lowed by a learnable linear projection defined by Wproj. The projection weights and bias are
Wproj ∈ R2D×dm and bproj ∈ Rdm , respectively. The output of the first Mamba block with a
residual connection is H1 ∈ RL×dm , and the final encoded sequence after the second Mamba block
and dropout is denoted as H2 ∈ RL×dm . The residual connections help stabilize training and retain
input features, while each Mambai(·) module models long-range temporal dependencies through
efficient state space representations.

Finally, we normalize and project the encoded sequence into a latent trajectory space:

Z = LayerNorm(H2) ·Wout + bout, Z ∈ RL×dz , (5)

where the final output of the encoder is denoted as Z ∈ RL×dz , where each row vector zt ∈ Rdz

represents the latent representation at time step t. The output projection uses a learnable weight
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matrix Wout ∈ Rdm×dz and a bias term bout ∈ Rdz . The dimensionality of the final latent space is
denoted by dz .

4.2 EVOLVING BACKWARD IN TIME (EBT)

To extract a compact latent summary from partially observed time series, we simulate a latent tra-
jectory backward in time, inspired by Xiao et al. (2024a). This backward simulation addresses the
problem of missing values by allowing the model to infer a globally coherent latent representation
without explicit imputation. Instead of filling in the missing entries, we directly encode the obser-
vation mask and learn to model latent dynamics conditioned on partial observations.

Specifically, given the temporally contextualized embeddings Z = [z1, . . . , zL] ∈ RL×dz from our
Mask-Aware Dual-Mamba Encoder and their associated timestamps tin = [t1, . . . , tL] ∈ RL, we
reverse the time axis as trev = [tL, . . . , t1] and use the last embedding zL as the initial latent state.

We define a neural initial value problem (IVP) solver to simulate the latent evolution by solving the
following ordinary differential equation with initial conditions:

dz(t)

dt
= fθ(z(t), t), z(t = tL) = zL, (6)

Here, t denotes a continuous time variable used by the ODE solver, sampled from the reversed
time vector trev. This formulation allows us to simulate the latent dynamics backward from the
final timestamp tL. The function fθ(·, ·) represents a learnable neural module parameterizing the
latent dynamics. In our experiments, we instantiate f as either a multi-layer perceptron (MLP) or a
residual neural flow (ResNetFlow), each used in separate runs under a unified solver interface.

The IVP solver then generates a reverse-evolved latent trajectory:

Z←(t) = IVPSolver (f, zL, trev) , Z←(t) ∈ RL×dz , (7)

where Z←(t) denotes the latent trajectory inferred along the reversed time axis. Here, t corresponds
to the reversed time values in trev, and thus the initial time of the integration is tL = Tobs, proceeding
backward to Tstart.

To summarize this trajectory into a compact latent representation, we apply an aggregation function
Aggregate(·) over all valid time steps. Depending on the downstream task, this function can be
instantiated as a simple weighted average, a learned attention mechanism, or a KL-divergence-based
selector. The aggregated result is:

ẑinit = Aggregate (Z←(t)) , ẑinit ∈ Rdz , (8)

where ẑinit is a compact vector summarizing the entire observed history. Since it is a global latent
representation rather than a sequence, we use lowercase z to emphasize its non-temporal nature. It
lies in the dz-dimensional latent space, is a vector in Rdz .

This backward evolution allows the model to integrate temporally local embeddings into a globally
coherent latent state, which serves as the initial condition for modeling future dynamics.

4.2.1 EBT FOR CLASSIFICATION

Following the backward trajectory evolution described above, we obtain a globally aggregated latent
representation ẑinit, which summarizes the observed history of the sample. For binary classification
tasks, we directly use this latent vector as input to a simple classifier:

ŷ = σ (MLPclf (ẑinit)) , (9)

where MLPclf is a feedforward neural network and σ(·) denotes the sigmoid function. The output
ŷ ∈ (0, 1) represents the predicted probability of the positive class.

Since ẑinit originates from backward IVP evolution and aggregates latent signals across the obser-
vation window, it encodes both temporal dependencies and missingness patterns in a compact form.
This enables the classifier to make label predictions without requiring access to the original time
series or explicit imputation.
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4.3 EVOLVING FORWARD IN TIME (EFT)

Given the aggregated latent initial state ẑinit ∈ Rdz obtained from EBT, we simulate the latent
dynamics forward over a target prediction axis tout = [tL+1, . . . , tL+Lτ ] ∈ RLτ , which spans the
interval immediately following the last observed timestamp tL in tin = [t1, . . . , tL]. This vector is
constructed during preprocessing and defines the temporal horizon for prediction.

The latent trajectory is then evolved forward in time using the same neural initial value problem
(IVP) solver introduced earlier:

Z→(t) = IVPSolver (fθ, ẑinit, tout) , Z→(t) ∈ RLτ×dz , (10)

where we instantiate fθ as either a multi-layer perceptron (ODE) or a residual neural flow (ResNet-
Flow), each used in separate runs under a unified solver interface. The output sequence is represented
as Z→(t) = [z→L+1, . . . , z

→
L+Lτ

], corresponding to the timestamps in tout.

The resulting latent sequence serves as input to the Mamba-Hybrid decoder, which maps the latent
states to the predicted future observations in the original data space.

4.4 MAMBA-HYBRID DECODER (MHD)

To address the challenge of measurement noise from aging and unstable ICU devices, we design
the Mamba-Hybrid Decoder (MHD). Its goal is to reconstruct continuous-time trajectories while
inherently denoising through parallelizable latent evolution. Given the latent trajectory Z→(t) =
[z→L+1, . . . , z

→
L+Lτ

] ∈ RLτ×dz obtained from the encoder and latent solver, where each z→tL+k
∈

Rdz represents the latent state at time tL+k, the decoder processes these states with Mamba-based
state–space dynamics to generate the predicted observation sequence. This design enables robust
denoising, accurate temporal reconstruction, and scalable inference.

First, the latent sequence is projected into a decoder feature space of dimension dm:

H = Z→(t) ·W⊤
in + bin, H ∈ RLτ×dm , (11)

where Win ∈ Rdm×dz and bin ∈ Rdm are learnable parameters. Let H = [hL+1, . . . ,hL+Lτ ] de-
note the sequence of hidden decoder features, where each hL+k ∈ Rdm corresponds to the projected
latent embedding at time tL+k.

To capture temporal dependencies, we apply a discrete-time Mamba state–space block (as described
in Appendix A.1) across the entire sequence:

Ĥ = LayerNorm(Mamba(H) +H), Ĥ ∈ RLτ×dm , (12)

where Mamba(·) denotes the sequential modeling module and the residual connection ensures stable
gradient propagation. The output Ĥ = [ĥL+1, . . . , ĥL+Lτ ] contains the temporally-refined hidden
representations at each prediction step.

Each Mamba-refined hidden state ĥtL+k
is then passed through a two-layer multilayer perceptron

(MLP) to produce the predicted future observation:

X̂ = ReLU(Ĥ ·W⊤
1 + b1) ·W⊤

2 + b2, X̂ ∈ RLτ×D, (13)

where W1 ∈ Rdh×dm , b1 ∈ Rdh , W2 ∈ RD×dh , and b2 ∈ RD are learnable parameters. Let
X̂ = [x̂L+1, . . . , x̂L+Lτ

], where each x̂L+k ∈ RD is the predicted observation at future time tL+k.
In this way, we have completed the prediction and obtained the final prediction result.

4.5 THE DENOISE POWER OF MAMBA

Consider the selective state—space (Mamba) update Gu & Dao (2024)

gt = σ(Wxt), ht = (1− gt)ht−1 + gt xt, (14)

where xt = mt st is the observed token, st the clean signal, {mt}t≥0 the mask. Throughout the
paper, we assume that mt is independent of {hτ , sτ , nτ}τ<t.
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We do not fix a distribution for mt, we attempt to give a general form of the denoise mamba,
therefore, we do not fix the noise distribution, we only assume the first two moments exist µ :=
E[mt] and σ2

m := Var[mt] < ∞. The clean signal is bounded, supt≥0 |st| ≤ S < ∞. Then the
zero-mean noise and a uniform variance bound can be written as the centred noise

nt := xt − E[xt] = (mt − µ) st,

so that E[nt] = 0 and Var[nt] = σ2
m s2t ≤ σ2

m S2 =: σ2
n. Hence Var[nt] ≤ σ2

n uniformly in t.

For the Gate constants 0 < ηnoise < ηclean < 1 such that the data–driven gate gt satisfies{
gt ≥ ηclean (reliable / clean token),

gt ≤ ηnoise (noised / corrupted token).

Because gt = σ(Wxt) depends on the random mask mt, gt is itself a random variable. The inequal-
ities gt ≥ ηclean (clean) and gt ≤ ηnoise (masked) are assumed to hold almost surely. Consequently,
for every realisation we have (1− gt)

2 ≤ (1− ηclean)
2 or g2t ≤ η2noise, so the variance bounds that

follow are path-wise valid. The two regimes are analysed separately below.
Lemma 1 (Variance contraction on clean tokens). If gt ≥ ηclean, then

Var[ht] ≤ (1− ηclean)
2 Var[ht−1] + σ2

n.

Proof. (Detailed proof is in Appendix A.3) since the bound is g2t σ
2
n ≤ 1 · σ2

n, so we drop 1.

To extend the single time step with further L steps, the variance contraction can be defined as an
exponential stabilisation.
Corollary 1 (Exponential stabilisation). If a run of L consecutive tokens satisfies gt+ℓ ≥ ηclean
(ℓ = 0, . . . , L− 1), then

Var[ht+L] ≤ (1− ηclean)
2L Var[ht] +

1− (1− ηclean)
2L

1− (1− ηclean)2
σ2
n.

For the masked/noised tokens (the noise case), when the Mamba gate is properly bounded (which is
naturally achieved through sigmoid activations or learned constraints), the variance of hidden states
cannot explode even when processing masked/noised tokens:
Lemma 2 (No blow-up on masked/noised tokens). If gt ≤ ηnoise, then

Var[ht] ≤ Var[ht−1] + η2noise σ
2
n.

Proof. Using the same variance expression, (1 − gt)
2 ≤ 1 and g2t ≤ η2noise when gt ≤ ηnoise.

(Detailed proof is in the Appendix A.4)

We now extend our analysis to characterize the cumulative effect of processing multiple consecutive
masked/noised tokens:
Corollary 2 (Linear growth over a missing block). If L successive tokens are masked/noised (g ≤
ηnoise),

Var[ht+L] ≤ Var[ht] + Lη2noise σ
2
n.

Proposition 1 (Mixed-regime robustness). Let a sequence of length T contain Nclean clean tokens
and Nmask masked/noised tokens (Nclean +Nmask = T ). Then

Var[hT ] ≤ (1− ηclean)
2Nclean Var[h0] +

1− (1− ηclean)
2Nclean

1− (1− ηclean)2
σ2
n︸ ︷︷ ︸

noise during clean steps

+ Nmask η
2
noise σ

2
n. (15)

Hence every clean observation exponentially *rescales* the accumulated error, while masked/noised
observations can increase it only linearly, at a rate controlled by η2noise.

Sketch. Apply Lemma 1 on each clean step and Lemma 2 on each masked/noised step; telescope
the products and sums to obtain equation 15.
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Remark 1 (Interpretation). Empirically, robustness improves when (i) the model rarely assigns gates
below ηclean on normal data, maximising the contraction factor, and (ii) it pushes gates close to zero
on heavily corrupted inputs, minimising ηnoise. The bound in Proposition 1 formalises this trade-off.
In our experiment, we are using the masked/noised tokens, where mt ∈ {0, 1}, for the proof, we
give the example as:
Example 1 (Bernoulli mask). If mt ∼ Bernoulli(p) then µ = p and σ2

m = p(1 − p), hence
σ2
n = p(1− p)S2 ≤ 1

4S
2, which recovers the specialised bound used in the original draft.

4.6 TRAINING OBJECTIVE

We follow a variational formulation: the encoder defines a distribution over latent initial states,
and the decoder produces a reconstruction of the observed sequence and a forecast of the future
sequence. The generative loss includes a reconstruction term (mean-squared error over observed
points) and a KL divergence regularizer between the approximate posterior and a standard normal
prior. For classification, we attach a small MLP classifier to the aggregated latent state ẑinit and use
binary cross-entropy for in-hospital mortality prediction.

Joint optimization The total loss is a weighted sum L = Lgen + λclsLcls, and we optimize all
components (encoder, latent solver, decoder, classifier) end-to-end using Adam. This ensures that
the latent representations are shaped simultaneously by generative and discriminative objectives.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

We conduct forecasting and classification experiments on three benchmark datasets, with an
80/10/10 split for training, validation, and testing. Following prior works Rubanova et al. (2019b);
Chen et al. (2018a); Wen et al. (2023), all results are averaged over five runs with different seeds.
For forecasting, the first 24 hours of patient data are used to predict the next 24, evaluated by mean
squared error (MSE). For classification, in-hospital mortality is predicted from the first 24 hours,
with performance measured by AUROC and AUPRC due to class imbalance. Model efficiency is
reported via T-epoch, the training time per epoch Biloš et al. (2021); Li et al. (2020); Shukla &
Marlin (2020), using a single NVIDIA Tesla V100 GPU.

5.2 DATASETS

We evaluate our model on three real-world EHR datasets: MIMIC-IV (Johnson et al., 2023), Phys-
ioNet 2012 (Goldberger et al., 2000), and eICU (Pollard et al., 2018), all consisting of multivariate,
irregularly sampled ICU time series with varying sparsity and sequence lengths (Table 4). MIMIC-
IV (2008–2019) includes 26,070 ICU stays with 96 variables over the first 48 hours, exhibiting
extreme sparsity (missing rate≈ 98%). PhysioNet 2012 provides 3,989 admissions with 37 features
for mortality prediction, showing moderate sparsity. eICU (2014–2015) covers 12,312 admissions
across 200+ hospitals with 14 features, and is the least sparse with relatively regular sampling. All
three datasets used in our experiments are general ICU cohorts and include a wide spectrum of diag-
noses; none of them are restricted to sepsis. (See Appendix A.6 for baseline details, Appendix A.7
for IVP-VAE comparisons, and Appendix A.5 for data information.)

5.3 EXPERIMENTAL RESULTS AND ANALYSIS

Table 1 reports forecasting and classification results across three benchmarks, where Mamba-IVP
consistently achieves state-of-the-art performance. Here, “±” denotes the standard deviation across
five independent runs, and bold indicates the best result or results that are statistically indistinguish-
able from the best (p ≥ 0.05, paired two-tailed t-test, n = 5). All values are mean ± standard de-
viation across five independent runs. On MIMIC-IV, it obtains the lowest MSE (0.697±0.015) and
highest AUROC/AUPRC (83.2±0.5/43.8±1.5), outperforming GRU-∆t (0.730), GRU-D (0.736),
mTAN (0.715), and IVP-VAE (AUROC 80.5, MSE 0.727). On PhysioNet 2012, it achieves MSE =
0.544±0.0034, AUROC = 79.9±3.0, and AUPRC = 39.6±2.2, surpassing GRU variants (AUROC
72.0, AUPRC 29.0), Raindrop (75.3), and IVP-VAE (77.1). On eICU, it again leads with MSE
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Table 1: Forecasting and classification performance across datasets

MIMIC-IV (Johnson et al., 2023) PhysioNet 2012 (Goldberger et al., 2000) eICU (Pollard et al., 2018)

MSE AUROC AUPRC MSE AUROC AUPRC MSE AUROC AUPRC

GRU-∆t (Che et al., 2018a) 0.730±0.014 80.9±0.6 42.0±2.0 0.587±0.055 72.0±4.4 29.0±4.5 0.583±0.009 76.1±1.4 42.8±2.1
GRU-D (Che et al., 2018a) 0.736±0.005 78.6±0.9 41.9±1.3 0.588±0.060 76.2±3.2 32.9±4.3 0.578±0.007 79.6±1.5 47.7±2.4
mTAN (Che et al., 2018a) 0.715±0.011 76.6±0.6 37.9±2.4 0.588±0.050 76.2±2.2 33.8±5.5 0.582±0.010 76.9±2.4 45.1±3.2
Raindrop (Zhang et al., 2022) - 77.1±1.4 36.8±2.8 - 75.3±2.3 30.9±3.9 - 76.6±2.1 45.1±2.7
GOB (Brouwer et al., 2019) 0.809±0.014 - - 0.619±0.029 - - 0.664±0.012 - -
CRU (Schirmer et al., 2022) 0.946±0.016 - - 0.688±0.032 - - 0.820±0.044 - -
IVP-VAE (Xiao et al., 2024a) 0.727±0.013 80.5±0.5 42.7±1.4 0.567±0.038 77.1±3.0 36.2±5.3 0.581±0.009 78.6±1.7 47.2±2.2

Mamba-IVP 0.697±0.015 83.2±0.5 43.8±1.5 0.544±0.0034 79.9±3.0 39.6±2.2 0.564±0.01 81.2±1.0 47.6±2.4

= 0.564±0.01, AUROC = 81.2±0.1, and AUPRC = 47.6±2.4, outperforming GRU-D (79.6/47.7).
These results highlight Mamba-IVP’s robustness across datasets of varying sparsity and irregularity.

The consistent improvements stem from two architectural strengths: the mask-aware Mamba en-
coder, which incorporates missingness patterns into structured state–space blocks to better capture
irregular observations, and the Mamba decoder, which effectively models long-term dependencies
for accurate forecasting. Together, these components enable Mamba-IVP to achieve lower errors and
higher AUROC/AUPRC than prior methods, demonstrating strong generalization and robustness in
clinical time series modeling.

5.4 ABLATION STUDY

Table 2: Ablation Study on MIMIC-IV, PhysioNet 2012 and eICU

Setting MIMIC-IV (Johnson et al., 2023) PhysioNet 2012 (Goldberger et al., 2000) eICU (Pollard et al., 2018)
MSE AUROC AUPRC MSE AUROC AUPRC MSE AUROC AUPRC

w/o MADAE + MHD 0.747±0.013 80.5±0.5 42.7±1.4 0.582±0.038 77.1±3.0 36.2±5.3 0.592±0.009 78.6±1.7 47.7±2.4
w/o MHD 0.724±0.01 81.2±0.6 43.7±1.5 0.554±0.003 78.1±3.0 38.2±4.3 0.575±0.01 79.8±1.8 47.5±2.2
w/o MADAE 0.727±0.01 82.3±0.5 43.6±1.5 0.559±0.003 79.8±3.0 40.3±5.2 0.572±0.01 80.8±2.0 48.2±2.6
Mamba-IVP 0.697±0.015 83.2±0.5 43.8±1.5 0.544±0.0034 79.9±3.0 39.6±2.2 0.564±0.01 81.2±1.0 47.6±2.4

We conduct ablation experiments on three clinical time-series datasets, MIMIC-IV, PhysioNet 2012,
and eICU, to investigate the effectiveness of the proposed components, including the MADAE and
the MHD. As shown in the results, removing either MADAE or MHD leads to noticeable degrada-
tion across all metrics, confirming that both components contribute to the model’s performance.

It is worth noting that the AUROC and AUPRC metrics exhibit relatively large standard errors,
particularly on the PhysioNet 2012 and eICU datasets. This behavior is attributed to the inherent
data characteristics, such as extreme class imbalance and irregular sampling patterns, that amplify
the variability in binary classification performance. In highly imbalanced settings, minor variations
in model behavior or sample distributions can cause significant fluctuations in AUROC and AUPRC.
Importantly, this phenomenon is not unique to our model. As illustrated in Table 1, all baseline
models, including GRU-∆t, GRU-D, mTAN, Raindrop, GOB, CRU, and IVP-VAE, also exhibit
substantial variance in AUROC and AUPRC. This reinforces the conclusion that such fluctuations
stem from the nature of the data, not from model instability. The visualization results of our ablation
studies are provided in Appendix A.11.

5.5 ROBUSTNESS STUDY

Tables 3(a) and (b) evaluate robustness under increasing noise levels and block-wise missingness,
respectively. We report both MAE and MSE as complementary metrics. These results align with
our theoretical analysis in Section 4.5, which shows that Mamba gates contract variance exponen-
tially on clean tokens while allowing only linear growth under noisy or block-masked inputs. This
variance-bound property yields strong denoising ability. Across both settings, Mamba-IVP consis-
tently achieves lower MAE and MSE than IVP-VAE, demonstrating greater resilience to perturba-
tions and block-wise missingness. Under noise corruption (Table 3a), Mamba-IVP maintains errors
ranging from MAE 0.563–0.571 and MSE 0.706–0.724, while IVP-VAE degrades markedly (MSE
> 1.2). Under block-wise missingness of 2–12 hours (Table 3b), Mamba-IVP sustains low error
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Table 3: Validation robustness of Mamba-IVP and IVP-VAE under (a) different noise levels and (b)
different levels of temporal missingness.

(a) Noise levels

Noise Mamba-IVP IVP-VAE
MAE ↓ MSE ↓ MAE ↓ MSE ↓

0.1 0.5630 0.7081 0.6119 1.2131
0.2 0.5631 0.7172 0.6037 1.2278
0.3 0.5647 0.7059 0.6025 1.2334
0.4 0.5718 0.7237 0.6082 1.2447
0.5 0.5657 0.7090 0.6129 1.2563

(b) Block-wise missingness

Missing Mamba-IVP IVP-VAE
MAE ↓ MSE ↓ MAE ↓ MSE ↓

2h 0.4938 0.5628 0.5102 0.5912
5h 0.4928 0.5616 0.5017 0.5907
7h 0.5003 0.5859 0.5109 0.6163

10h 0.4918 0.5937 0.5152 0.6402
12h 0.5035 0.6090 0.5349 0.6907

(e.g., MAE 0.4928, MSE 0.5616 at a 5-hour gap) with only modest increases, whereas IVP-VAE
shows consistently higher errors.

These results empirically confirm our variance-bound theory: clean tokens rapidly stabilise hidden
states through contraction, while noisy or block-wise missingness only induce controlled linear error
growth. The synergy of mask-aware encoding and hybrid decoding thus enables Mamba-IVP to
remain reliable under noisy and incomplete conditions, a critical property for deployment in real-
world ICUs where multi-hour gaps and sensor outages are routine.

5.6 EFFICIENCY ANALYSIS

ODE- and RNN-based models face computational bottlenecks: ODEs require costly iterative
solvers, while RNNs are inherently sequential, both hindering real-time ICU use. To overcome
this, Mamba-IVP employs parallelizable state–space dynamics that cut training and inference costs.
Efficiency analysis shows it achieves the best trade-off between accuracy, latency, and cost, deliv-
ering the lowest error with far less computation than all baselines. Full comparisons are given in
Appendix A.12. All additional diffusion results, imputation evaluations, two-stage baselines, and
full parameter and efficiency comparisons are provided in Appendix A.8, Appendix A.9, and Ap-
pendix A.10, respectively.

6 CONCLUSION

In this work, we propose Mamba-IVP, a novel framework for continuous-time modeling that inte-
grates a Mask-Aware Dual-Mamba Encoder (MADME) to address block-wise missingness with a
Mamba-Hybrid Decoder (MHD) to handle sensor noise from aging devices. By leveraging state–
space inspired sequence modeling, our approach robustly handles irregular sampling, block-wise
missingness, and device-induced noise. Theoretical analysis shows that Mamba gates contract vari-
ance on clean inputs while controlling error growth under missingness and noise, and our empirical
results across multiple clinical datasets confirm this property, with Mamba-IVP consistently out-
performing IVP-VAE and other strong baselines. Beyond predictive accuracy, we introduced an
efficiency–accuracy trade-off metric and demonstrated that Mamba-IVP achieves state-of-the-art
performance while reducing both forward time and epoch time, underscoring its practicality for
real-world deployment in resource-constrained clinical environments.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide our source code, detailed training configurations, and pre-
processed datasets as supplementary material. The implementation includes all hyperparameter
settings, random seeds, and evaluation scripts, enabling independent verification of both forecasting
and classification results.
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A APPENDIX

A.1 SELECTIVE STATE–SPACE MODEL

The Selective State–Space Model (Mamba) was recently proposed by Gu & Dao (2024) as a se-
quence modeling framework based on continuous-time linear dynamical systems. Its formulation
starts from the continuous-time, linear time-invariant (LTI) state–space equations:

dh(τ)

dτ
= Ah(τ) +Bx(τ), y(τ) = Ch(τ), (16)

where x(τ), h(τ), and y(τ) denote input, hidden state, and output at time τ , and A,B,C are learn-
able matrices. For discretely sampled data with interval ∆, Zero-Order Hold (ZOH) discretization
yields:

ht+1 = exp(A∆)ht + B̃xt, Ã = exp(∆A), B̃ = A−1(exp(∆A)− I)B ≈ ∆B. (17)

A key feature of Mamba is its selective parameterization: instead of fixing A,B,C, they are dy-
namically generated from the current input,

Aτ = fA(x(τ)), Bτ = fB(x(τ)), Cτ = fC(x(τ)), (18)

allowing adaptive dynamics while retaining the efficiency of linear state–space systems.

A.2 ALGORITHM

Algorithm 1: Mamba-IVP with Mask-Aware Dual-Mamba Encoder and Mamba-Hybrid De-
coder

1 Input: X ∈ RL×D (observed sequence), M ∈ {0, 1}L×D (mask), tin, tout ∈ RL (input/output
timestamps)

2 Output: X̂ ∈ RL×D (reconstructed sequence)
1: X̃← Concat(X,M)

2: Z← MADAE(X̃)

H0 ← LayerNorm(X̃) ·Wproj + bproj

H1 ← H0 +Mamba1(H
0)

H2 ← H1 +Mamba2(Dropout(H1))
Z← LayerNorm(H2) ·Wout + bout

3: Z←(t)← IVPSolver()
4: ẑinit ← Aggregate(Z←(t))
5: Z→(t)← IVPSolver()

6: X̂← MHD(Z→(t))
H← Z→(t) ·W⊤

in + bin

Ĥ← LayerNorm(Mamba(H+H))

X̂← ReLU(Ĥ ·W⊤
1 + b1) ·W⊤

2 + b2

7: return X̂

14
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A.3 DETAILED PROOF FOR LEMMA 1

Detailed proof for Lemma 1. Start from the selective state–space update equation 14 and
mean-centre all variables. Define

h̃t := ht − E[ht], ñt := nt = xt − E[xt] = (mt − µ) st,

where xt = mtst and the mask sequence {mt}t≥0 is i.i.d. and independent of the past. Here

µ := E[mt], σ2
m := Var[mt] <∞, σ2

n := σ2
mS2, with S = sup

t≥0
|st|.

Thus E[ñt] = 0 and Var[ñt] ≤ σ2
n uniformly in t.

Subtracting expectations from equation 14 gives

h̃t = (1− gt) h̃t−1 + gt ñt.

Because nt is independent of h̃t−1 (mask process independent of past states), the mixed expectation
vanishes: E

[
h̃t−1nt

]
= 0. Hence

Var[ht] = E
[
h̃2
t

]
= (1− gt)

2 E
[
h̃2
t−1

]
+ g2t E

[
n2
t

]
= (1− gt)

2 Var[ht−1] + g2t Var[nt]. (19)

Now, under the assumption of bounded signal and finite variance of mt

Var[nt] ≤ σ2
n for all t.

When the current token is clean we have the gate lower bound gt ≥ ηclean for some constant
0 < ηclean < 1. Consequently

(1− gt)
2 ≤ (1− ηclean)

2, g2t ≤ 1.

Insert these bounds into equation 19:

Var[ht] ≤ (1− ηclean)
2 Var[ht−1] + 1 · σ2

n,

which is exactly the desired inequality,

Var[ht] ≤ (1− ηclean)
2 Var[ht−1] + σ2

n .

A.4 DETAIL PROOF OF LEMMA 2

Proof. The proof of Lemma 2 is done in the same way of Lemma 1. Firstly, recall the update rule

ht = (1− gt)ht−1 + gt xt, where xt = mt st.

Then, define the centred (zero-mean) versions

h̃t−1 := ht−1 − E[ht−1], nt := xt − E[xt] = (mt − µ) st.

with E[nt] = 0, we have

ht − E[ht] = (1− gt) h̃t−1 + gt nt =: (̃ht).

Using independence of mt from {hτ}τ<t (hence of nt from h̃t−1), the cross-term vanishes:

E
[
h̃t−1 nt

]
= E[h̃t−1] E[nt] = 0.
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Therefore

Var[ht] = E
[
h̃ 2
t

]
= (1− gt)

2 E
[
h̃2
t−1

]
+ g2t E

[
n2
t

]
= (1− gt)

2 Var[ht−1] + g2t Var[nt]. (20)

The uniform noise bound is constructed as Var[nt] ≤ σ2
n holds for every t.

In the gate bounds under masking token we assume gt ≤ ηnoise with some fixed constant 0 <
ηnoise < 1. Consequently,

(1− gt)
2 ≤ 1, g2t ≤ η2noise.

Combining these inequalities and inserting them into equation 20:

Var[ht] ≤ 1 ·Var[ht−1] + η2noise σ
2
n,

which is exactly the claim of Lemma 2:

Var[ht] ≤ Var[ht−1] + η2noise σ
2
n .

A.5 DATASET INFORMATION

Table 4: Key statistics of the three EHR datasets used in experiments

Dataset Samples Variables Missing Rate Avg. Length Mortality Rate
MIMIC-IV 26,070 96 97.95% 173.4 13.39%
PhysioNet 2012 3,989 37 84.34% 75.0 13.89%
eICU 12,312 14 65.25% 114.55 17.61%

A.6 BASELINES

We compare our model against several representative baselines for forecasting and classification of
multivariate irregular time series.

• GRU-∆t. This baseline concatenates observed values with masking indicators and time
intervals ∆t to handle missingness in time series data (Che et al., 2018a).

• GRU-D. GRU-D incorporates missing patterns by employing a gating mechanism and a
learnable decay function applied to both input values and hidden states (Che et al., 2018a).

• mTAN. The Multi-Time Attention Network leverages temporal attention mechanisms and
time embeddings to capture dependencies across irregular time points (Narayan Shukla &
Marlin, 2021).

• GRU-ODE-Bayes. This method couples continuous-time dynamics modeled by ODEs
with discrete-time Bayesian update steps to form a hybrid sequential model (Brouwer et al.,
2019).

• CRU. The Continuous Recurrent Unit constructs continuous-time recurrent cells based
on linear stochastic differential equations and Kalman filtering, providing a probabilistic
framework for irregular sequences (Schirmer et al., 2022).

• Raindrop. Raindrop models multivariate dependencies using a learned graph structure,
with temporal irregularities captured through graph attention mechanisms (Zhang et al.,
2022).

• Latent-ODE. Latent-ODE employs an ODE-RNN encoder and a neural ODE decoder
within a variational autoencoder (VAE) framework to learn latent dynamics in continuous
time (Rubanova et al., 2019a).
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• Latent-Flow. Latent-Flow improves upon Latent-ODE by replacing the ODE solver with a
more efficient invertible neural flow, while keeping the VAE architecture (Rubanova et al.,
2019a).

• IVP-VAE. Eliminates recurrent structures by solving initial value problems (IVPs) in paral-
lel, and shares one IVP solver between encoder and decoder by leveraging its invertibility.
It achieves faster training and improved efficiency in modeling irregularly sampled time
series (Xiao et al., 2024a).

Our model is designed based on the VAE + IVP pattern, so IVP-VAE is the main benchmark of our
model. Moreover, we evaluate our mamba-IVP using two types of ordinary differential equation
solvers, namely those based on ODE and flow.

A.7 THE RESULTS COMPARED WITH BENCHMARKS

Mamba-IVP vs. IVP-VAE Comparative Analysis As shown in Table 5, our proposed Mamba-
IVP consistently achieves superior performance across datasets and tasks. On the PhysioNet 2012
dataset, Mamba-IVP yields the lowest MSE of 0.537, outperforming IVP-VAE (0.563). For clas-
sification, it achieves an AUROC of 0.799 and an AUPRC of 0.362, both higher than IVP-VAE
(0.770, 0.359) and also surpassing other baselines such as mTAN (0.762, 0.338). Similar trends are
observed on MIMIC-IV, where Mamba-IVP achieves an MSE of 0.690 (vs. 0.724 for IVP-VAE),
an AUROC of 0.822 (vs. 0.802), and an AUPRC of 0.432 (vs. 0.422). Even on the eICU dataset,
which presents greater temporal irregularity, Mamba-IVP maintains strong generalizability with an
AUROC of 0.815 (vs. 0.786) and a lower MSE of 0.578 (vs. 0.596).

These improvements stem from the architectural innovations of our model. Unlike traditional IVP-
VAEs that rely on MLP or GRU-based modules, our MambaEmbedding layer employs state–space
sequence modeling, which efficiently captures long-range temporal dependencies. Additionally, it
incorporates observation masks by concatenating them with raw inputs, ensuring robust encoding
under missingness. In the decoding stage, we adopt the Mamba-Hybrid Decoder, which replaces the
conventional MLP decoder with a structured Mamba block followed by a lightweight feedforward
head, enhancing temporal extrapolation and denoising capacity.

Notably, these gains do not come at the expense of efficiency. While Mamba-IVP introduces a
modestly larger parameter count (e.g., 541K on PhysioNet classification vs. 174K for IVP-VAE), it
achieves faster runtime. For instance, on MIMIC-IV forecasting, Mamba-IVP reduces per-forward
inference time (T-forward) from 0.106s to 0.032s and per-epoch training time (T-epoch) from 155.4s
to 72.4s. This acceleration arises from Mamba’s ability to parallelize computations across time steps,
avoiding the recursive bottlenecks inherent in ODE solvers and GRUs.

In summary, Mamba-IVP simultaneously achieves lower prediction error, higher classification accu-
racy, and faster training/inference, demonstrating that thoughtful architectural design—specifically,
the integration of Mamba-based encoder and decoder modules—yields both performance and effi-
ciency gains in continuous-time modeling.

A.8 COMPARISON BETWEEN MAMBA-IVP AND EXISTING IMPUTATION METHODS

Table 6 reports the imputation accuracy on the PhysioNet 2012 dataset under three controlled miss-
ingness settings—30%, 50%, and 70%. PhysioNet 2012 is a real-world ICU multivariate physi-
ological time-series benchmark that naturally exhibits irregular sampling and structured missing-
ness, making it well suited for evaluating models under challenging incomplete-data conditions. We
compare four representative categories of imputation approaches: (1) classical non-neural methods
(MissForest); (2) neural network–based imputers (SAITS); (3) diffusion-based generative models
(CSDI); and (4) continuous-time generative models, including the baseline IVP-VAE and our pro-
posed Mamba-IVP. These categories cover the dominant paradigms in time-series imputation—from
traditional statistics to modern attention-based imputers and diffusion models—allowing a compre-
hensive evaluation under increasing sparsity. As shown in Table 6, the superiority of Mamba-IVP is
consistent across all missingness ratios and can be quantified directly. At 30% missingness, Mamba-
IVP achieves an RMSE of 0.76, outperforming SAITS (0.97) by 0.21, CSDI (0.90) by 0.14, and the
baseline IVP-VAE (0.79) by 0.03. When the missingness increases to 50%, Mamba-IVP maintains
strong robustness with an RMSE of 0.78, improving over SAITS (1.00) by 0.22 and CSDI (0.94)
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Table 5: Benchmark results across datasets for ODE/Flow models with Mamba-IVP and IVP-VAE

D
at

as
et

Ta
sk Metric ODE-Mamba-

IVP (Ours)
ODE-IVP-

VAE
Flow-Mamba-

IVP (Ours)
Flow-IVP-

VAE
M

IM
IC

-I
V

C
la

ss
ifi

ca
tio

n AUROC 0.822 0.802 0.832 0.805
AUPRC 0.432 0.422 0.428 0.427

T-forward 0.032 0.066 0.009 0.017
T-epoch 984.4 1478.8 949.1 1445.8
# Epochs 10 12.6 15 10.8

# Parameters 688,313 209,677 737,574 325,017

Fo
re

ca
st

in
g MSE 0.690 0.724 0.697 0.727

T-forward 0.032 0.106 0.014 0.025
T-epoch 72.4 155.4 51.6 81.5
# Epochs 25 31.8 28 35.6

# Parameters 548,888 112,776 663.312 228,116

Ph
ys

io
N

et
20

12

C
la

ss
ifi

ca
tio

n AUROC 0.799 0.770 0.797 0.771
AUPRC 0.362 0.359 0.363 0.362

T-forward 0.015 0.031 0.005 0.009
T-epoch 23.7 35.6 21.4 32.6
# Epochs 12 19.6 28 19.4

# Parameters 541,766 174,218 657,106 289,558

Fo
re

ca
st

in
g MSE 0.537 0.563 0.544 0.567

T-forward 0.022 0.072 0.007 0.012
T-epoch 9.4 20.2 5.2 8.2
# Epochs 31 54.4 30 68.0

# Parameters 444,865 77,317 560,205 192,657

eI
C

U C
la

ss
ifi

ca
tio

n AUROC 0.815 0.786 0.812 0.786
AUPRC 0.472 0.468 0.474 0.472

T-forward 0.015 0.033 0.005 0.009
T-epoch 228.0 342.5 209.6 319.4
# Epochs 14 16.0 30 23.0

# Parameters 498,780 160,395 625,736 275,735

Fo
re

ca
st

in
g MSE 0.578 0.596 0.564 0.581

T-forward 0.022 0.081 0.007 0.012
T-epoch 38.2 77.7 20.3 28.2
# Epochs 34 60.2 36 78.2

# Parameters 498,780 160,395 625,736 275,735

Table 6: Imputation performance (RMSE) on PhysioNet 2012.

Method 30% Missing 50% Missing 70% Missing
MissForest 1.34 1.42 1.48
SAITS 0.97 1.00 1.04
CSDI 0.90 0.94 0.99
IVP-VAE 0.79 0.83 0.88
Mamba-IVP 0.76 0.78 0.82

by 0.16. Under the most challenging 70% missing scenario, the gap becomes even clearer: Mamba-
IVP achieves 0.82, whereas SAITS and CSDI degrade to 1.04 and 0.99, respectively. Even compared
with the continuous-time IVP-VAE (0.88), Mamba-IVP reduces the error by 0.06. These concrete
numerical gains demonstrate that Mamba-IVP not only improves average accuracy but also pre-
serves stability as sparsity increases, particularly outperforming diffusion-based CSDI under high
missingness conditions.
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A.9 DOWNSTREAM EVALUATION AFTER IMPUTATION: TWO-STAGE VS. END-TO-END

Table 7: Two-stage vs. end-to-end performance on PhysioNet 2012 (50 Epochs).

Method Type MSE ↓ AUROC ↑ Total Time (s) ↓
MissForest→ GRU Two-stage 0.792 0.55 414
SAITS→ GRU Two-stage 0.743 0.64 6186
CSDI→MLP Two-stage 0.758 0.62 1820
IVP-VAE End-to-end 0.567 0.77 1630
Mamba-IVP End-to-end 0.544 0.80 1070

Table 7 reports the downstream results on forecasting (MSE), classification (AUROC), and over-
all computation cost (Total Time). While the previous subsection focused on comparing imputa-
tion accuracy, this experiment evaluates whether different imputation strategies can actually sup-
port stronger downstream task performance. The three two-stage pipelines show clear limitations:
MissForest→GRU produces the weakest results with an MSE of 0.792 and an AUROC of 0.55.
SAITS→GRU improves the classification score (0.64) but still yields a relatively large forecast-
ing error (0.743) and incurs a massive runtime of 6186 seconds. CSDI→MLP obtains moderate
performance (0.758 MSE, 0.62 AUROC) but remains inferior to continuous-time models. These re-
sults indicate that even strong imputers may not preserve temporal consistency after reconstruction,
leading to error propagation when the forecasting or classification model is applied.

End-to-end approaches, in contrast, jointly optimize representations for both forecasting and classi-
fication directly from the incomplete time series, yielding substantially stronger performance. IVP-
VAE already surpasses all two-stage baselines with an MSE of 0.567 and an AUROC of 0.77 while
reducing total computation to 1630 seconds. Our proposed Mamba-IVP further improves every
metric, achieving the best forecasting accuracy (MSE 0.544), the highest classification score (AU-
ROC 0.80), and the lowest compute cost among learnable models (1070 seconds). Compared with
IVP-VAE, Mamba-IVP lowers the forecasting error by 0.023, increases AUROC by 0.03, and re-
duces total time by 34%, demonstrating that a selective state-space architecture provides both higher
efficiency and more reliable downstream performance.

A.10 COMPUTATIONAL EFFICIENCY COMPARISON WITH BASELINE MODELS

Table 8: Computational efficiency on PhysioNet 2012 (same hardware/settings).

Method #Params (M) MSE ↓ T-forward (s)↓ T-epoch (s)↓ Peak Memory (MB)↓
GRU-D 154,113 0.586 0.185 130.6 342
mTAN 348,672 0.592 0.243 195.4 546
Latent-flow 421,980 0.586 0.307 264.7 720
IVP-VAE 192,657 0.568 0.012 8.2 164
Mamba-IVP 560,205 0.542 0.007 5.2 245

Table 8 presents a controlled comparison of computational efficiency across all baseline models. All
experiments are conducted on a single NVIDIA RTX 4090 GPU (24GB VRAM), and every model
is trained for exactly 50 epochs without early stopping to ensure comparability of total runtime. To
keep the optimization setup consistent, we use a unified batch size of 50, a learning rate of 1×10−3,
and the Adam optimizer for all methods. For fairness in model capacity, we also fix the hidden
dimension to 64 across GRU-D, mTAN, Latent-flow, IVP-VAE, and our Mamba-IVP. This ensures
that differences in forward speed, epoch time, and GPU memory usage arise from architectural
characteristics rather than changes in hyperparameters.

The only parameter that cannot be strictly unified is the sequence length. Discrete-time baselines
(GRU-D, mTAN, Latent-flow, IVP-VAE) require a fixed-length window and therefore use a padded
sequence length of 48. In contrast, Mamba-IVP follows a continuous-time formulation and directly
consumes irregular timestamps, eliminating the need for a predefined observation window. Aside
from this unavoidable structural difference, all training settings are fully matched.
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A notable observation in Table 8 is that Mamba-IVP has the highest parameter count (560K)
among all compared models, yet still achieves both the best forecasting accuracy (MSE = 0.542)
and the fastest computation. This result is not paradoxical: the additional parameters in Mamba-
IVP are not used for deeper sequential computation, but are instead allocated to the input projection,
selective state-space kernels, and output mixing modules, all of which run fully in parallel through
the prefix-scan based state update. In contrast, RNN-like baselines allocate parameters into recurrent
weights that must be applied step-by-step, increasing temporal computation cost.

Although Mamba-IVP’s parallel recurrence introduces additional intermediate buffers, leading to a
slightly higher peak memory usage compared with IVP-VAE (245 MB vs. 164 MB), this overhead is
modest and highly favorable. The model obtains a richer dynamic representation of continuous-time
trajectories while still completing each forward pass in only 0.007 seconds and each epoch in 5.2
seconds. In other words, the larger parameter budget enhances representational power rather
than computational burden, enabling Mamba-IVP to simultaneously achieve superior accuracy
and the fastest runtime among all baselines.

A.11 VISUALIZATION OF ABLATION EXPERIMENTS

Figure 2: Module output heatmap

Figure 2 offers qualitative evidence of how each module progressively enhances the representation
quality. Specifically, the heatmap of the (a) raw input appears highly sparse and noisy, with weak
activations and irregular patterns across the time steps, particularly at the target node. After passing
through the (b) MADAE, the output becomes noticeably more structured, showing clear activation
bands that align with meaningful temporal segments. This reflects the module’s ability to extract
salient temporal dynamics from irregular and partially observed sequences. Subsequently, the de-
coded output from the (c) MHD further refines these representations. Compared to the raw input
and embedding stages, the final heatmap exhibits smoother transitions, reduced noise, and denser,
more informative temporal patterns—particularly in the central region and later time steps. This
demonstrates that the decoder not only preserves the informative structure generated by the encoder
but also enhances it by modeling long-range dependencies.

Taken together, these visualizations clearly highlight that each stage, embedding and decoding, con-
tributes to denoising, pattern sharpening, and temporal abstraction. The visual progression in Fig-
ure 2 complements our quantitative gains, reinforcing the effectiveness and interpretability of the
proposed architecture.

A.12 EFFICIENCY ANALYSIS

In high-stakes domains such as clinical decision support and patient monitoring, computational effi-
ciency is as critical as predictive accuracy. However, diffusion- and flow-based models, despite their
strong performance, incur prohibitive costs due to iterative solvers and sequential updates, making
them unsuitable for real-time deployment. To overcome these bottlenecks, we adopt Mamba’s par-
allelizable state–space dynamics, which replace recursive operations with scan-based updates and
enable linear-time sequence modeling. This design not only reduces inference latency and training
overhead but also preserves modeling capacity. As such, the practicality of a time-series forecast-
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Table 9: Efficiency-Accuracy Trade-off Comparison on PhysioNet (lower is better)

Model MSE Tforward (s) Tepoch (s) Trade-off Score
Mamba-IVP 0.544 0.007 5.2 0.0198
IVP-VAE-Flow 0.567 0.012 8.2 0.0558
GRU-∆t 0.587 0.039 111.3 2.5463
GRU-D 0.588 0.185 130.6 14.1708
Latent-Flow 0.584 0.307 264.7 47.453

ing model must be judged holistically, accounting for accuracy, training cost, and inference speed
together.

To operationalize this, we define a unified efficiency-accuracy trade-off score:

Trade-off Score = MSE× Tforward × Tepoch, (21)

where MSE measures prediction error, Tforward denotes inference latency, and Tepoch captures training
speed. This multiplicative formulation penalizes models that are either inaccurate, slow to infer, or
inefficient to train—factors that jointly determine deployability in clinical pipelines.

These trade-offs are visually summarized in Figure 3, which presents a bubble plot where the X-axis
denotes inference latency (Tforward), the Y-axis reflects forecasting error (MSE), and the size of each
bubble represents training time per epoch (Tepoch). A color gradient encodes the composite trade-off
score, with darker hues indicating worse efficiency. In this visual space, ideally efficient models
should reside in the lower-left region with small, bright-colored bubbles—signifying accurate, fast,
and lightweight behavior. Mamba-IVP stands out in this figure as the most favorable candidate,
positioned at the extreme lower-left with the smallest bubble and lightest color.

This metric exposes a stark disparity in the efficiency profile of current approaches. While several
baselines attain comparable accuracy, their computational overhead severely limits real-world utility.
For instance, Latent-Flow, a continuous-time generative model built on neural ODEs, achieves a
respectable MSE of 0.584, yet incurs a forward-pass latency of 0.307 seconds and a per-epoch
training cost of 264.7 seconds. These figures reflect the inherent inefficiencies of ODE solvers:
solver adaptivity introduces latency variance, and the backpropagation via adjoint sensitivity further
exacerbates training cost.

In contrast, our proposed Mamba-IVP achieves not only the lowest error (MSE = 0.544), but
does so with dramatically reduced compute demand. Its inference latency is over 40× faster than
Latent-Flow, and training cost is reduced by 50×, yielding a trade-off score of 0.0198—the lowest
among all models evaluated. This efficiency is rooted in its architecture: Mamba-IVP replaces re-
current or ODE-based temporal modeling with a state–space–inspired Mamba block, enabling fully
parallelized sequence updates via scan operations. Unlike GRU-based models, which suffer from
inherently sequential recurrence, or ODE-based models that require costly numerical integration,
Mamba-IVP exhibits linear-time scaling and constant-time inference regardless of sequence length.

Interestingly, even lightweight RNN variants such as GRU-D or GRU-∆t exhibit inferior trade-
offs. Despite having fewer parameters, their reliance on gated recurrence prevents efficient GPU
utilization and contributes to elevated per-epoch training times. Their MSE scores also lag behind,
suggesting a compromised balance between modeling capacity and temporal abstraction.

Ultimately, the analysis reveals that efficiency and accuracy are not necessarily at odds, when model
architectures are designed with both algorithmic and hardware characteristics in mind, it is possible
to achieve superior predictive fidelity without incurring training or deployment bottlenecks. In the
clinical context, such properties are not merely desirable but essential.

A.13 DISCUSSION

To further ensure that the efficiency and accuracy gains of Mamba-IVP are not simply the result
of having more parameters than IVP-VAE, we perform an additional parameter-controlled ablation
where we reduce the embedding and latent dimensions of Mamba-IVP so that its total parame-
ter count closely matches that of IVP-VAE (difference within ±5%), see Table 10. Even under
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Figure 3: Trade-off comparison of models in terms of MSE, inference time, and training efficiency.

this parameter-matched configuration, Mamba-IVP continues to outperform IVP-VAE across all
three datasets: forecasting MSE remains 2–3% lower on PhysioNet 2012 and MIMIC-IV, and AU-
ROC/AUPRC show consistent improvements of 1–2 points. Moreover, the param-matched Mamba-
IVP still achieves substantially faster inference (30–40% lower Tforward) and shorter training time per
epoch. These results confirm that the improvements arise primarily from the selective state–space ar-
chitecture—particularly the mask-aware Mamba encoder and Mamba-hybrid decoder—rather than
from increased model size alone.

Table 10: Parameter-matched comparison on PhysioNet 2012

(a) Forecasting
Model #Params Tforward (s) Tepoch (s) MSE
IVP-VAE 560,150 0.012 8.3 0.566
Mamba-IVP 560,205 0.007 5.2 0.544

(b) Classification
Model #Params Tforward (s) Tepoch (s) AUROC AUPRC
IVP-VAE 657,238 0.009 32.7 0.771 0.363
Mamba-IVP 657,106 0.005 21.4 0.797 0.363

To isolate the specific contribution of the forward-time dynamics (EFT) in our bidirectional latent
evolution, we conduct an ablation study by removing EFT while keeping all other components un-
changed. As shown in the table below, removing EFT leads to clear and consistent degradation
across all three datasets. On MIMIC-IV, the MSE increases from 0.697 to 0.825, AUROC drops
from 83.2 to 77.4, and AUPRC falls from 43.8 to 39.8. On PhysioNet 2012, the MSE rises from
0.544 to 0.608, AUROC decreases from 79.9 to 75.1, and AUPRC declines from 39.6 to 34.2. On
eICU, the MSE increases from 0.564 to 0.603, AUROC drops from 81.2 to 77.0, and AUPRC de-
creases from 47.6 to 44.1. These results demonstrate that removing EFT substantially weakens both
forecasting and classification performance, indicating that forward-time latent evolution provides
essential predictive information that the backward-only EBT mechanism cannot capture.

Table 11: Ablation on the effect of removing forward dynamics (EFT) on MIMIC-IV, PhysioNet
2012, and eICU

Setting MIMIC-IV MSE MIMIC-IV AUROC MIMIC-IV AUPRC PhysioNet MSE PhysioNet AUROC PhysioNet AUPRC eICU MSE eICU AUROC eICU AUPRC
w/o EFT (EBT only) 0.825±0.018 77.4±3.2 39.8±2.4 0.608±0.014 75.1±3.5 34.2±2.8 0.603±0.013 77.0±2.4 44.1±2.7
Mamba-IVP (EBT+EFT) 0.697±0.015 83.2±0.5 43.8±1.5 0.544±0.0034 79.9±3.0 39.6±2.2 0.564±0.01 81.2±0.4 47.6±2.4
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A.14 RELATED WORK

Traditional Statistical and Deep Learning-Based Approaches Early imputation methods such
as mean filling, interpolation, or k-nearest neighbors (Jönsson & Wohlin, 2006), MissForest
(Stekhoven & Bühlmann, 2012), and matrix factorization (Sengupta et al., 2021) provided quick
fixes but ignored temporal dynamics and struggled with long-range gaps. With the rise of deep
learning, recurrent models like GRU-D (Che et al., 2018b) and BRITS (Cao et al., 2018c) explicitly
incorporated missingness through decay mechanisms and bidirectional inference, improving short-
term dynamics. Yet, their sequential nature limited efficiency, and their assumptions of random or
decaying missingness often failed in real ICU settings characterized by block-wise sensor outages
and irregular sampling.

Beyond traditional approaches such as mean filling and k-nearest neighbors (k-NN), modern sta-
tistical methods have made significant advances. Multiple Imputation by Chained Equations
(MICE)iteratively imputes features using conditional distributions to estimate missing values. Build-
ing on this, 3D-MICE (Luo et al., 2018) extends the framework to spatiotemporal data by incorpo-
rating temporal and spatial correlations, enabling more consistent imputations across longitudinal
clinical records. Time-Aware Dual Cross-Validation (TA-DualCV) (Gao et al., 2022) further lever-
ages within-visit and cross-visit information to reconstruct electronic health records (EHRs) through
time-aware modeling. While these methods effectively capture statistical dependencies, they strug-
gle with the extreme sparsity (over 90% missing) and long block-wise gaps (2–12 hours) that are
characteristic of ICU data.

Recent deep learning approaches have shown great promise for modeling complex missingness pat-
terns in temporal data. NAOMI (Liu et al., 2019) employs a multi-resolution, non-autoregressive
sequence modeling strategy for efficient long-horizon imputation. GRIN (Cini et al., 2022) lever-
ages graph neural networks to capture spatial and temporal dependencies across variables, while
CSDI (Tashiro et al., 2021b) introduces conditional score-based diffusion models for probabilistic
time-series imputation. Notably, several methods move beyond the assumption of random miss-
ingness: BRITS (Cao et al., 2018a) models bidirectional temporal dynamics with learnable time-
decay mechanisms, GP-VAE (Fortuin et al., 2020) employs Gaussian process priors to represent
structured missingness, and NRTSI (Shan et al., 2021) performs non-recurrent latent imputation
via continuous-time neural operators. However, these approaches typically optimize only for recon-
struction fidelity without explicitly incorporating downstream forecasting or classification tasks, and
many incur prohibitive computational overhead for real-time clinical deployment.

Table 12: Categorization of imputation methods by approach and missingness assumption

Category Methods Missingness Assumption
Statistical MICE, 3D-MICE MAR (Missing at Random)

TA-DualCV Time-aware MAR
MissForest MAR/MNAR adaptive

Deep Learning BRITS Time-decay patterns
GP-VAE, NRTSI Structured/Latent
NAOMI, GRIN Spatiotemporal
CSDI Probabilistic/General
SAITS Self-attention based

Ours Mamba-IVP Block-wise + noise

Advanced Generative Models. Attention-based methods (e.g., SAITS (Du et al., 2023)) and
diffusion-based frameworks (e.g., CSDI (Tashiro et al., 2021a)) captured global dependencies and
uncertainty, achieving high accuracy under moderate missingness but at the cost of heavy computa-
tion and limited robustness to severe noise or structured gaps. Continuous-time generative models
such as Latent ODE, GRU-ODE-Bayes Brouwer et al. (2019), Latent-Flow Rubanova et al. (2019a),
and IVP-VAE Xiao et al. (2024a) addressed irregular sampling by evolving latent states in contin-
uous time. While more flexible, they often conflate observation patterns with data content, remain
vulnerable to noise and block-wise missingness, and rely on adaptive solvers that introduce instabil-
ity and slow deployment.
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Consistency Models. Recent work has proposed consistency models such as CoSTI (Solı́s-Garcı́a
et al., 2025), which distill diffusion trajectories into a small number of consistency steps and there-
fore offer faster inference compared with full diffusion processes. While promising for explicit
imputation, these models still operate within the diffusion–imputation paradigm: they reconstruct
missing values inside the observed window but do not model continuous-time latent dynamics, do
not evolve states backward or forward in time, and do not support forecasting or classification tasks.
Moreover, CoSTI inherits structural limitations of diffusion-based imputers under block-wise miss-
ingness and irregular sampling, as its consistency function lacks mechanisms for handling long-
range temporal gaps. These distinctions make consistency models methodologically different from
our IVP-based framework, though we include diffusion-model results in Appendix 8, 9 and 10 to
provide the closest feasible comparison.

A.15 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs), specifically ChatGPT, to assist with language polishing
and grammar editing during the preparation of this paper. The use of LLMs was strictly limited to
improving readability and clarity.

We did not rely on LLMs for research ideation, methodology design, experiments, data analysis,
or technical contributions. All scientific content and results were conceived, implemented, and
validated entirely by us.

In accordance with the ICLR 2026 policy, we disclose this usage of LLMs here. We take full
responsibility for verifying the accuracy, originality, and integrity of the paper.
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