
000 001 002 003 004 005 006 007 MAMBA-IVP: A DENOISING STATE-SPACE INITIAL 008 VALUE PROBLEM FRAMEWORK FOR SOTA CLINICAL 009 TIME SERIES, HEALTHCARE ALTERNATIVE 010 011 012

013 **Anonymous authors**
014 Paper under double-blind review
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032 Missing clinical time series is a critical bottleneck in intensive care units (ICUs).
033 In large-scale ICU electronic health record datasets such as MIMIC-IV, missing
034 rates exceed 90% due to sensor failures, monitor degradation, and systemic out-
035 ages, while aging devices inject unstable noise that makes reliable modeling nearly
036 impossible. Existing methods remain unsafe for deployment: statistical heuristics
037 distort missingness, deep models collapse under block-wise gaps and noise, and
038 ODE- or diffusion-based approaches demand prohibitive computation. To over-
039 come these limitations, we propose Mamba-IVP, a state-space generative model
040 with a Mask-Aware Dual-Mamba Encoder (MADME) to handle block-wise miss-
041 ingness and a Mamba-Hybrid Decoder (MHD) to denoise continuous-time recon-
042 structions. We validate our method through 61 experiments across two tasks: time
043 series forecasting and node classification. Our experiments involve 7 classic and
044 state-of-the-art target models and 3 publicly available datasets: (1) it achieves
045 state-of-the-art accuracy, reducing MSE by 3.0%, improving AUROC by 3.0%,
046 and enhancing AUPRC by 3.9%; and (2) it remains robust under noise and block-
047 wise missingness up to 12h, where other models degrade sharply.
048
049
050

1 INTRODUCTION

051
052 Reliable prediction in the ICU is not just an algorithmic challenge but a matter of life and death.
053 Electronic health records (EHRs) and continuous bedside monitoring hold the promise of enabling
054 early detection of disease trajectories, timely intervention, and improved survival. Yet this promise
055 is routinely shattered by the brutal reality of clinical data: incompleteness, irregularity, and noise.
056 In large-scale datasets such as MIMIC-IV, missing rates exceed 90%, with block-wise missingness
057 of 2–6 hours, and in extreme cases, up to 12 hours Johnson et al. (2016). These gaps are not
058 harmless, and the consequence is catastrophic. Every gap in the data translates into lost lives, turning
059 missingness into serious consequences in ICU operations. Addressing this crisis is therefore not a
060 technical preference but a life-or-death imperative for building trustworthy, deployable healthcare
061 AI.

062 Existing approaches to modeling incomplete clinical time series can be broadly categorized into
063 three methodological paradigms, each facing critical limitations for real-world deployment. The
064 first paradigm, the *imputation-then-prediction* pipeline (e.g., MissForest + GRU Stekhoven &
065 Bühlmann (2012), SAITS + classifier Oh et al. (2021)), reconstructs missing values prior to down-
066 stream prediction. However, imputation errors often compound through the pipeline, amplifying
067 uncertainty, while the two-stage design doubles computational overhead and latency. The second
068 paradigm comprises *end-to-end models with built-in missingness handling* (e.g., GRU-D Che et al.
069 (2018c), BRITS Cao et al. (2018b), mTAN Shukla & Marlin (2021)), which directly integrate masks
070 or decay mechanisms into recurrent or attention-based architectures. Although these models circum-
071 vent explicit imputation, they typically assume independent or random missingness patterns and
072 degrade sharply under the structured, block-wise gaps commonly observed in ICU monitoring.

073 A third line of research introduces *continuous-time generative models* (e.g., Latent-ODE Rubanova
074 et al. (2019c), IVP-VAE Xiao et al. (2024b)) that model irregular sampling through latent dynamical
075 systems. While elegant in theory, these approaches face several practical obstacles: computational

054 bottlenecks due to adaptive ODE solvers Chen et al. (2018b) (often 40x slower than our proposed
055 method), sensitivity to measurement noise and sensor drift, and the entanglement of observation pat-
056 terns with data content, which undermines robustness and interpretability. These limitations collec-
057 tively reveal the urgent need for a unified, computationally efficient, and noise-resilient framework
058 capable of learning stable temporal dynamics from irregular, incomplete clinical sequences.

059 To directly address these challenges, we propose Mamba-IVP, a generative framework purpose-built
060 for irregular, noisy, and long-range missing clinical series. First, to confront the challenge of block-
061 wise missingness, we design a Mask-Aware Dual-Mamba Encoder (MADME) that jointly encodes
062 observed values and missingness indicators, ensuring the model learns temporal dynamics robustly
063 even when entire time blocks vanish. Second, to mitigate measurement noise from aging devices,
064 we introduce a Mamba-Hybrid Decoder (MHD) that reconstructs continuous-time trajectories while
065 inherently denoising through parallelizable latent evolution. Third, to overcome the prohibitive com-
066 putational cost of ODE-, diffusion-, and flow-based models, Mamba-IVP leverages Mamba’s par-
067 allelizable state-space dynamics, eliminating recursive bottlenecks and enabling efficient sequence
068 modeling. Furthermore, by embedding the encoder-decoder pair within an invertible solver, our
069 framework preserves temporal consistency while supporting scalable, real-time inference.

070 Our main contributions are summarized as follows:

- 071 1. We propose a Mask-Aware Dual-Mamba Encoder (MADME) that jointly processes val-
072 ues and missingness indicators to learn robust temporal representations under block-wise
073 missingness. Leveraging Mamba’s efficient state-space sequence modeling, MADME sub-
074 stantially improves stability under long gaps and achieves strong forecasting performance
075 (MSE = 0.697 on MIMIC-IV, 0.544 on PhysioNet 2012, and 0.564 on eICU). These corre-
076 spond to **3–4% lower MSE than IVP-VAE** in the main forecasting tasks, and **up to 7.3%**
077 improvement compared to GRU- Δ_t and IVP-VAE under 10h block-wise missingness.
- 078 2. We develop a Mamba-Hybrid Decoder (MHD) that reconstructs continuous-time trajec-
079 tories while inherently denoising through parallelizable evolution. By combining state-space
080 refinement with lightweight feedforward decoding, MHD enhances robustness to noisy and
081 irregular measurements. On PhysioNet 2012, it yields **4% lower MSE than IVP-VAE** in
082 the main task and **up to 7.3% improvement** under block-wise missingness. In addition,
083 MHD contributes to the substantial speed gains reported in Section 5.6.
- 084 3. We provide the first rigorous theoretical analysis of Mamba’s denoising power. Our
085 variance-contraction results show that clean tokens induce *exponential* error contraction,
086 while noisy or masked tokens exhibit only *linear* error growth. This analysis explains why
087 the shared IVP solver remains stable and why Mamba-IVP maintains temporal consistency
088 when evolving both backward and forward in time, even under long missing blocks.
- 089 4. Extensive experiments demonstrate that Mamba-IVP achieves the best accuracy-efficiency
090 trade-off among all baselines. It attains the lowest forecasting MSE across datasets (e.g.,
091 0.544 on PhysioNet 2012, **3–4% better than IVP-VAE**), while providing the **fastest for-
092 ward time** (0.007s) and **shortest epoch time** (5.2s). Compared to the computationally
093 heavy Latent-Flow baseline, Mamba-IVP is **up to 40× faster** in inference. Even under
094 50% masking noise, it maintains strong robustness (MSE = 0.709), achieving **over 40%**
095 **lower MSE than IVP-VAE** in our robustness experiments.

097 2 RELATED WORK

098 Due to space limits, we briefly review representative work and include an extended survey in Ap-
099 pendix A.14. Early imputation relied on statistical methods such as MICE Van Buuren & Groothuis-
100 Oudshoorn (2011), 3D-MICE Xu et al. (2023), and TA-DualCV Zhang & Thorburn (2021) that cap-
101 ture conditional or spatiotemporal dependencies but fail under ICU-level sparsity and long block-
102 wise gaps. Deep learning methods including GRU-D Che et al. (2018c), BRITS!Cao et al. (2018a),
103 SAITS Oh et al. (2021), and diffusion- or state-space-based models (CSDI Tashiro et al. (2021c),
104 GRIN!García-Recio et al. (2021), diffusion-SSM Oh et al. (2021)) improve temporal modeling yet
105 remain computationally intensive and focus mainly on reconstruction accuracy. Our **Mamba-IVP**
106 differs by integrating a mask-aware Mamba encoder and IVP-based decoder to jointly address block-
107 wise missingness and noisy observations for both imputation and downstream prediction.

108 **3 PRELIMINARY**
109

110 **3.1 PROBLEM FORMULATION**
111

112 In our framework, a multivariate time series $X^{(n)}$ is defined as a sequence of L_n temporally ordered
113 observations:

114
$$X^{(n)} = \{(\mathbf{x}_i^{(n)}, t_i^{(n)})\}_{i=1}^{L_n},$$

115 where each $\mathbf{x}_i^{(n)} \in \mathbb{R}^D$ is a D -dimensional feature vector (e.g., vital signs in EHRs), and $t_i^{(n)} \in \mathbb{R}^+$
116 is the timestamp. The sequence length L_n varies across patients due to irregular sampling.
117

118 The dataset $\mathbf{X} = \{(X^{(1)}, y^{(1)}), \dots, (X^{(N)}, y^{(N)})\}$ contains N labeled samples, where $X^{(n)}$ can be
119 represented by a feature matrix $\mathbf{X}^{(n)} \in \mathbb{R}^{L_n \times D}$ with timestamps $\mathbf{t}^{(n)} \in \mathbb{R}^{L_n}$ and label $y^{(n)} \in \mathcal{Y} =$
120 $\{1, \dots, C\}$. All sequences lie within a study window $[T_{\text{start}}, T_{\text{end}}]$, but each patient terminates at its
121 own endpoint $T_{\text{obs}}^{(n)} := t_{L_n}^{(n)}$.

122 **Definition 1** (Problem Statement). We aim to design a unified generative model g_θ , parameterized
123 by θ , that learns a common latent representation from irregular time series. Once trained, the model
124 supports multiple downstream tasks via distinct inference pathways.

125 For clarity of exposition, we focus on a single input sample in the following discussion and omit the
126 superscript (n) unless ambiguity arises.
127

- 128 • **Time Series Forecasting:** Given a historical time series $X = \{(\mathbf{x}_i, t_i)\}_{i=1}^L$ observed over the
129 interval $[T_{\text{start}}, T_{\text{obs}}]$, observed up to its own endpoint $T_{\text{obs}} := t_L$, predict the future sequence

130
$$\hat{X}^\tau = \{(\hat{\mathbf{x}}_{L+k}, t_{L+k})\}_{k=1}^{L_\tau},$$

132 where each forecasted timestamp satisfies

133
$$t_{L+k} \in (T_{\text{obs}}, T_{\text{obs}} + \tau], \quad t_{L+L_\tau} \leq T_{\text{end}} + \tau,$$

134 and $\tau \in \mathbb{R}^+$ is the prediction horizon.

- 135 • **Time Series Classification:** The task is to infer the categorical label $\hat{y} \in \mathcal{Y}$ corresponding to the
136 entire time series X .
137

138 *Comment 1:* The generative model g_θ serves as a representation learner, extracting temporally co-
139 herent features that simultaneously support forecasting and classification.

140 *Comment 2:* By reusing temporal dependencies captured during forecasting, the framework en-
141 hances discriminative accuracy, creating a synergistic link between generative modeling and classi-
142 fication.

143 *Comment 3:* Unlike traditional pipelines that separate imputation, forecasting, and classification,
144 our latent trajectory framework unifies them: bidirectional evolution reconstructs missing values for
145 complete representations, while forward extrapolation enables forecasting under high missingness.
146

147 **4 METHOD**
148

149 Our framework consists of three tightly connected components: (1) a **Mask-Aware Dual-Mamba**
150 **Encoder (MADME)** that processes irregular, partially observed inputs; (2) a **bidirectional latent**
151 **evolution module** based on an initial value problem (IVP) solver, which evolves the encoded repre-
152 sentations backward and forward in continuous time; and (3) a **Mamba-Hybrid Decoder (MHD)**
153 that reconstructs or forecasts observations from the forward latent trajectory.
154

155 The overall workflow is as follows: the input values \mathbf{X} and observation mask \mathbf{M} are concatenated
156 and encoded by MADME into a latent sequence \mathbf{Z} . We then evolve this sequence backward in
157 time (EBT) to obtain a temporally coherent summary, which is aggregated into a compact latent
158 representation $\hat{\mathbf{z}}_{\text{init}}$. This aggregated state is used for classification and simultaneously serves as the
159 initial condition for a forward-time latent evolution (EFT) that generates \mathbf{Z}^\rightarrow at future timestamps.
160 Finally, MHD refines this trajectory using Mamba-style state-space dynamics and projects it to
161 predicted observations $\hat{\mathbf{X}}$.

162 We next describe each component in the order in which data flows through the system.

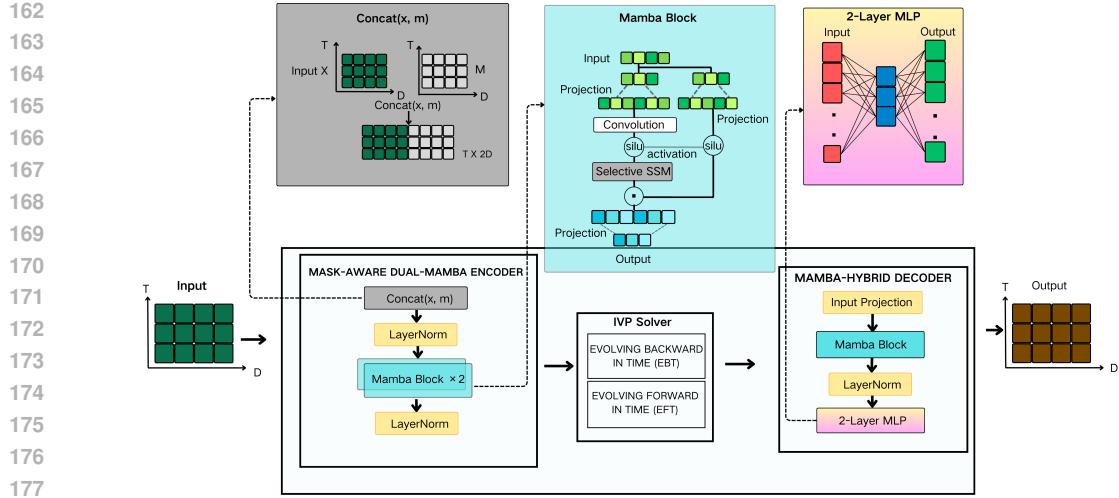


Figure 1: Overview of the Mamba-IVP framework. Multivariate observations \mathbf{X} and their binary mask \mathbf{M} are concatenated and encoded by the **Mask-Aware Dual-Mamba Encoder (MADME)** into latent embeddings \mathbf{Z} . These are evolved *backward* via a shared IVP solver to obtain a trajectory \mathbf{Z}^{\leftarrow} , which is aggregated into a compact latent state $\hat{\mathbf{z}}_{\text{init}}$ for classification and as the initial condition for *forward* evolution, producing a future latent trajectory \mathbf{Z}^{\rightarrow} . The **Mamba-Hybrid Decoder (MHD)** then maps \mathbf{Z}^{\rightarrow} to predicted observations $\hat{\mathbf{X}}$. This encoder–IVP–decoder pipeline is designed to handle irregular sampling, block-wise missingness, and sensor noise in clinical time series.

4.1 MASK-AWARE DUAL-MAMBA ENCODER (MADAE)

The overall architecture of our model is illustrated in Figure 1, and the algorithm is presented in Appendix A.2.

Clinical time series exhibit both irregular sampling and block-wise missingness, making it crucial for the encoder to distinguish between real measurements and unobserved entries. MADME addresses this by jointly processing raw values and their binary observation mask. Specifically, the input is first formed as

$$\tilde{\mathbf{X}} = \text{Concat}(\mathbf{X}, \mathbf{M}) \in \mathbb{R}^{L \times 2D}. \quad (1)$$

ensuring that the encoder is explicitly aware of missing regions at every time step.

MADME then applies two stacked Mamba blocks (see Appendix A.1) with residual connections. These blocks model long-range temporal dependencies while selectively filtering noisy or unreliable inputs.

$$\mathbf{H}^0 = \text{LayerNorm}(\tilde{\mathbf{X}}) \cdot \mathbf{W}_{\text{proj}} + \mathbf{b}_{\text{proj}}, \quad (2)$$

$$\mathbf{H}^1 = \mathbf{H}^0 + \text{Mamba}_1(\mathbf{H}^0), \quad (3)$$

$$\mathbf{H}^2 = \mathbf{H}^1 + \text{Mamba}_2(\text{Dropout}(\mathbf{H}^1)). \quad (4)$$

The initial representation is denoted by $\mathbf{H}^0 \in \mathbb{R}^{L \times d_m}$, obtained through layer normalization followed by a learnable linear projection defined by \mathbf{W}_{proj} . The projection weights and bias are $\mathbf{W}_{\text{proj}} \in \mathbb{R}^{2D \times d_m}$ and $\mathbf{b}_{\text{proj}} \in \mathbb{R}^{d_m}$, respectively. The output of the first Mamba block with a residual connection is $\mathbf{H}^1 \in \mathbb{R}^{L \times d_m}$, and the final encoded sequence after the second Mamba block and dropout is denoted as $\mathbf{H}^2 \in \mathbb{R}^{L \times d_m}$. The residual connections help stabilize training and retain input features, while each $\text{Mamba}_i(\cdot)$ module models long-range temporal dependencies through efficient state space representations.

Finally, we normalize and project the encoded sequence into a latent trajectory space:

$$\mathbf{Z} = \text{LayerNorm}(\mathbf{H}^2) \cdot \mathbf{W}_{\text{out}} + \mathbf{b}_{\text{out}}, \quad \mathbf{Z} \in \mathbb{R}^{L \times d_z}, \quad (5)$$

where the final output of the encoder is denoted as $\mathbf{Z} \in \mathbb{R}^{L \times d_z}$, where each row vector $\mathbf{z}_t \in \mathbb{R}^{d_z}$ represents the latent representation at time step t . The output projection uses a learnable weight

216 matrix $\mathbf{W}_{\text{out}} \in \mathbb{R}^{d_m \times d_z}$ and a bias term $\mathbf{b}_{\text{out}} \in \mathbb{R}^{d_z}$. The dimensionality of the final latent space is
 217 denoted by d_z .
 218

219 **4.2 EVOLVING BACKWARD IN TIME (EBT)**
 220

221 To extract a compact latent summary from partially observed time series, we simulate a latent trajectory
 222 backward in time, inspired by Xiao et al. (2024a). This backward simulation addresses the
 223 problem of missing values by allowing the model to infer a globally coherent latent representation
 224 without explicit imputation. Instead of filling in the missing entries, we directly encode the obser-
 225 vation mask and learn to model latent dynamics conditioned on partial observations.

226 Specifically, given the temporally contextualized embeddings $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_L] \in \mathbb{R}^{L \times d_z}$ from our
 227 Mask-Aware Dual-Mamba Encoder and their associated timestamps $\mathbf{t}_{\text{in}} = [t_1, \dots, t_L] \in \mathbb{R}^L$, we
 228 reverse the time axis as $\mathbf{t}_{\text{rev}} = [t_L, \dots, t_1]$ and use the last embedding \mathbf{z}_L as the initial latent state.
 229

230 We define a neural initial value problem (IVP) solver to simulate the latent evolution by solving the
 231 following ordinary differential equation with initial conditions:
 232

$$\frac{d\mathbf{z}(t)}{dt} = f_{\theta}(\mathbf{z}(t), t), \quad \mathbf{z}(t = t_L) = \mathbf{z}_L, \quad (6)$$

234 Here, t denotes a continuous time variable used by the ODE solver, sampled from the reversed
 235 time vector \mathbf{t}_{rev} . This formulation allows us to simulate the latent dynamics backward from the
 236 final timestamp t_L . The function $f_{\theta}(\cdot, \cdot)$ represents a learnable neural module parameterizing the
 237 latent dynamics. In our experiments, we instantiate f as either a multi-layer perceptron (MLP) or a
 238 residual neural flow (ResNetFlow), each used in separate runs under a unified solver interface.
 239

240 The IVP solver then generates a reverse-evolved latent trajectory:
 241

$$\mathbf{Z}^{\leftarrow}(t) = \text{IVPSolver}(f, \mathbf{z}_L, \mathbf{t}_{\text{rev}}), \quad \mathbf{Z}^{\leftarrow}(t) \in \mathbb{R}^{L \times d_z}, \quad (7)$$

242 where $\mathbf{Z}^{\leftarrow}(t)$ denotes the latent trajectory inferred along the reversed time axis. Here, t corresponds
 243 to the reversed time values in \mathbf{t}_{rev} , and thus the initial time of the integration is $t_L = T_{\text{obs}}$, proceeding
 244 backward to T_{start} .
 245

246 To summarize this trajectory into a compact latent representation, we apply an aggregation function
 247 $\text{Aggregate}(\cdot)$ over all valid time steps. Depending on the downstream task, this function can be
 248 instantiated as a simple weighted average, a learned attention mechanism, or a KL-divergence-based
 249 selector. The aggregated result is:
 250

$$\hat{\mathbf{z}}_{\text{init}} = \text{Aggregate}(\mathbf{Z}^{\leftarrow}(t)), \quad \hat{\mathbf{z}}_{\text{init}} \in \mathbb{R}^{d_z}, \quad (8)$$

251 where $\hat{\mathbf{z}}_{\text{init}}$ is a compact vector summarizing the entire observed history. Since it is a global latent
 252 representation rather than a sequence, we use lowercase \mathbf{z} to emphasize its non-temporal nature. It
 253 lies in the d_z -dimensional latent space, is a vector in \mathbb{R}^{d_z} .
 254

255 This backward evolution allows the model to integrate temporally local embeddings into a globally
 256 coherent latent state, which serves as the initial condition for modeling future dynamics.
 257

258 **4.2.1 EBT FOR CLASSIFICATION**
 259

260 Following the backward trajectory evolution described above, we obtain a globally aggregated latent
 261 representation $\hat{\mathbf{z}}_{\text{init}}$, which summarizes the observed history of the sample. For binary classification
 262 tasks, we directly use this latent vector as input to a simple classifier:
 263

$$\hat{y} = \sigma(\text{MLP}_{\text{clf}}(\hat{\mathbf{z}}_{\text{init}})), \quad (9)$$

264 where MLP_{clf} is a feedforward neural network and $\sigma(\cdot)$ denotes the sigmoid function. The output
 265 $\hat{y} \in (0, 1)$ represents the predicted probability of the positive class.
 266

267 Since $\hat{\mathbf{z}}_{\text{init}}$ originates from backward IVP evolution and aggregates latent signals across the obser-
 268 vation window, it encodes both temporal dependencies and missingness patterns in a compact form.
 269 This enables the classifier to make label predictions without requiring access to the original time
 270 series or explicit imputation.

270 4.3 EVOLVING FORWARD IN TIME (EFT)
 271

272 Given the aggregated latent initial state $\hat{\mathbf{z}}_{\text{init}} \in \mathbb{R}^{d_z}$ obtained from EBT, we simulate the latent
 273 dynamics forward over a target prediction axis $\mathbf{t}_{\text{out}} = [t_{L+1}, \dots, t_{L+L_\tau}] \in \mathbb{R}^{L_\tau}$, which spans the
 274 interval immediately following the last observed timestamp t_L in $\mathbf{t}_{\text{in}} = [t_1, \dots, t_L]$. This vector is
 275 constructed during preprocessing and defines the temporal horizon for prediction.

276 The latent trajectory is then evolved forward in time using the same neural initial value problem
 277 (IVP) solver introduced earlier:

278
$$\mathbf{Z}^{\rightarrow}(t) = \text{IVPSolver}(f_\theta, \hat{\mathbf{z}}_{\text{init}}, \mathbf{t}_{\text{out}}), \quad \mathbf{Z}^{\rightarrow}(t) \in \mathbb{R}^{L_\tau \times d_z}, \quad (10)$$

280 where we instantiate f_θ as either a multi-layer perceptron (ODE) or a residual neural flow (ResNet-
 281 Flow), each used in separate runs under a unified solver interface. The output sequence is represented
 282 as $\mathbf{Z}^{\rightarrow}(t) = [\mathbf{z}_{L+1}^{\rightarrow}, \dots, \mathbf{z}_{L+L_\tau}^{\rightarrow}]$, corresponding to the timestamps in \mathbf{t}_{out} .

283 The resulting latent sequence serves as input to the Mamba-Hybrid decoder, which maps the latent
 284 states to the predicted future observations in the original data space.

286 4.4 MAMBA-HYBRID DECODER (MHD)
 287

288 To address the challenge of measurement noise from aging and unstable ICU devices, we design
 289 the Mamba-Hybrid Decoder (MHD). Its goal is to reconstruct continuous-time trajectories while
 290 inherently denoising through parallelizable latent evolution. Given the latent trajectory $\mathbf{Z}^{\rightarrow}(t) =$
 291 $[\mathbf{z}_{L+1}^{\rightarrow}, \dots, \mathbf{z}_{L+L_\tau}^{\rightarrow}] \in \mathbb{R}^{L_\tau \times d_z}$ obtained from the encoder and latent solver, where each $\mathbf{z}_{t_{L+k}}^{\rightarrow} \in$
 292 \mathbb{R}^{d_z} represents the latent state at time t_{L+k} , the decoder processes these states with Mamba-based
 293 state-space dynamics to generate the predicted observation sequence. This design enables robust
 294 denoising, accurate temporal reconstruction, and scalable inference.

295 First, the latent sequence is projected into a decoder feature space of dimension d_m :

297
$$\mathbf{H} = \mathbf{Z}^{\rightarrow}(t) \cdot \mathbf{W}_{\text{in}}^{\top} + \mathbf{b}_{\text{in}}, \quad \mathbf{H} \in \mathbb{R}^{L_\tau \times d_m}, \quad (11)$$

299 where $\mathbf{W}_{\text{in}} \in \mathbb{R}^{d_m \times d_z}$ and $\mathbf{b}_{\text{in}} \in \mathbb{R}^{d_m}$ are learnable parameters. Let $\mathbf{H} = [\mathbf{h}_{L+1}, \dots, \mathbf{h}_{L+L_\tau}]$ de-
 300 note the sequence of hidden decoder features, where each $\mathbf{h}_{L+k} \in \mathbb{R}^{d_m}$ corresponds to the projected
 301 latent embedding at time t_{L+k} .

302 To capture temporal dependencies, we apply a discrete-time Mamba state-space block (as described
 303 in Appendix A.1) across the entire sequence:

304
$$\hat{\mathbf{H}} = \text{LayerNorm}(\text{Mamba}(\mathbf{H}) + \mathbf{H}), \quad \hat{\mathbf{H}} \in \mathbb{R}^{L_\tau \times d_m}, \quad (12)$$

306 where $\text{Mamba}(\cdot)$ denotes the sequential modeling module and the residual connection ensures stable
 307 gradient propagation. The output $\hat{\mathbf{H}} = [\hat{\mathbf{h}}_{L+1}, \dots, \hat{\mathbf{h}}_{L+L_\tau}]$ contains the temporally-refined hidden
 308 representations at each prediction step.

309 Each Mamba-refined hidden state $\hat{\mathbf{h}}_{t_{L+k}}$ is then passed through a two-layer multilayer perceptron
 310 (MLP) to produce the predicted future observation:

312
$$\hat{\mathbf{X}} = \text{ReLU}(\hat{\mathbf{H}} \cdot \mathbf{W}_1^{\top} + \mathbf{b}_1) \cdot \mathbf{W}_2^{\top} + \mathbf{b}_2, \quad \hat{\mathbf{X}} \in \mathbb{R}^{L_\tau \times D}, \quad (13)$$

314 where $\mathbf{W}_1 \in \mathbb{R}^{d_h \times d_m}$, $\mathbf{b}_1 \in \mathbb{R}^{d_h}$, $\mathbf{W}_2 \in \mathbb{R}^{D \times d_h}$, and $\mathbf{b}_2 \in \mathbb{R}^D$ are learnable parameters. Let
 315 $\hat{\mathbf{X}} = [\hat{\mathbf{x}}_{L+1}, \dots, \hat{\mathbf{x}}_{L+L_\tau}]$, where each $\hat{\mathbf{x}}_{L+k} \in \mathbb{R}^D$ is the predicted observation at future time t_{L+k} .
 316 In this way, we have completed the prediction and obtained the final prediction result.

317 4.5 THE DENOISE POWER OF MAMBA

319 Consider the selective state-space (Mamba) update Gu & Dao (2024)

321
$$g_t = \sigma(W x_t), \quad h_t = (1 - g_t) h_{t-1} + g_t x_t, \quad (14)$$

323 where $x_t = m_t s_t$ is the observed token, s_t the clean signal, $\{m_t\}_{t \geq 0}$ the mask. Throughout the
 324 paper, we assume that m_t is independent of $\{h_\tau, s_\tau, n_\tau\}_{\tau < t}$.

We do not fix a distribution for m_t , we attempt to give a general form of the denoise mamba, therefore, we do not fix the noise distribution, we only assume the first two moments exist $\mu := \mathbb{E}[m_t]$ and $\sigma_m^2 := \text{Var}[m_t] < \infty$. The clean signal is bounded, $\sup_{t \geq 0} |s_t| \leq S < \infty$. Then the zero-mean noise and a uniform variance bound can be written as the centred noise

$$n_t := x_t - \mathbb{E}[x_t] = (m_t - \mu) s_t,$$

so that $\mathbb{E}[n_t] = 0$ and $\text{Var}[n_t] = \sigma_m^2 s_t^2 \leq \sigma_m^2 S^2 =: \sigma_n^2$. Hence $\text{Var}[n_t] \leq \sigma_n^2$ uniformly in t .

For the Gate constants $0 < \eta_{\text{noise}} < \eta_{\text{clean}} < 1$ such that the data-driven gate g_t satisfies

$$\begin{cases} g_t \geq \eta_{\text{clean}} & (\text{reliable / clean token}), \\ g_t \leq \eta_{\text{noise}} & (\text{noised / corrupted token}). \end{cases}$$

Because $g_t = \sigma(Wx_t)$ depends on the random mask m_t , g_t is itself a random variable. The inequalities $g_t \geq \eta_{\text{clean}}$ (clean) and $g_t \leq \eta_{\text{noise}}$ (masked) are assumed to hold almost surely. Consequently, for every realisation we have $(1 - g_t)^2 \leq (1 - \eta_{\text{clean}})^2$ or $g_t^2 \leq \eta_{\text{noise}}^2$, so the variance bounds that follow are path-wise valid. The two regimes are analysed separately below.

Lemma 1 (Variance contraction on clean tokens). *If $g_t \geq \eta_{\text{clean}}$, then*

$$\text{Var}[h_t] \leq (1 - \eta_{\text{clean}})^2 \text{Var}[h_{t-1}] + \sigma_n^2.$$

Proof. (Detailed proof is in Appendix A.3) since the bound is $g_t^2 \sigma_n^2 \leq 1 \cdot \sigma_n^2$, so we drop 1. \square

To extend the single time step with further L steps, the variance contraction can be defined as an exponential stabilisation.

Corollary 1 (Exponential stabilisation). *If a run of L consecutive tokens satisfies $g_{t+\ell} \geq \eta_{\text{clean}}$ ($\ell = 0, \dots, L-1$), then*

$$\text{Var}[h_{t+L}] \leq (1 - \eta_{\text{clean}})^{2L} \text{Var}[h_t] + \frac{1 - (1 - \eta_{\text{clean}})^{2L}}{1 - (1 - \eta_{\text{clean}})^2} \sigma_n^2.$$

For the masked/noised tokens (the noise case), when the Mamba gate is properly bounded (which is naturally achieved through sigmoid activations or learned constraints), the variance of hidden states cannot explode even when processing masked/noised tokens:

Lemma 2 (No blow-up on masked/noised tokens). *If $g_t \leq \eta_{\text{noise}}$, then*

$$\text{Var}[h_t] \leq \text{Var}[h_{t-1}] + \eta_{\text{noise}}^2 \sigma_n^2.$$

Proof. Using the same variance expression, $(1 - g_t)^2 \leq 1$ and $g_t^2 \leq \eta_{\text{noise}}^2$ when $g_t \leq \eta_{\text{noise}}$. (Detailed proof is in the Appendix A.4) \square

We now extend our analysis to characterize the cumulative effect of processing multiple consecutive masked/noised tokens:

Corollary 2 (Linear growth over a missing block). *If L successive tokens are masked/noised ($g \leq \eta_{\text{noise}}$),*

$$\text{Var}[h_{t+L}] \leq \text{Var}[h_t] + L \eta_{\text{noise}}^2 \sigma_n^2.$$

Proposition 1 (Mixed-regime robustness). *Let a sequence of length T contain N_{clean} clean tokens and N_{mask} masked/noised tokens ($N_{\text{clean}} + N_{\text{mask}} = T$). Then*

$$\text{Var}[h_T] \leq (1 - \eta_{\text{clean}})^{2N_{\text{clean}}} \text{Var}[h_0] + \underbrace{\frac{1 - (1 - \eta_{\text{clean}})^{2N_{\text{clean}}}}{1 - (1 - \eta_{\text{clean}})^2} \sigma_n^2}_{\text{noise during clean steps}} + N_{\text{mask}} \eta_{\text{noise}}^2 \sigma_n^2. \quad (15)$$

*Hence every clean observation exponentially *rescales* the accumulated error, while masked/noised observations can increase it only linearly, at a rate controlled by η_{noise}^2 .*

Sketch. Apply Lemma 1 on each clean step and Lemma 2 on each masked/noised step; telescope the products and sums to obtain equation 15. \square

378 *Remark 1* (Interpretation). Empirically, robustness improves when (i) the model rarely assigns gates
379 below η_{clean} on normal data, maximising the contraction factor, and (ii) it pushes gates close to zero
380 on heavily corrupted inputs, minimising η_{noise} . The bound in Proposition 1 formalises this trade-off.
381 In our experiment, we are using the masked/noised tokens, where $m_t \in \{0, 1\}$, for the proof, we
382 give the example as:

383 *Example 1* (Bernoulli mask). If $m_t \sim \text{Bernoulli}(p)$ then $\mu = p$ and $\sigma_m^2 = p(1 - p)$, hence
384 $\sigma_n^2 = p(1 - p)S^2 \leq \frac{1}{4}S^2$, which recovers the specialised bound used in the original draft.
385

386 4.6 TRAINING OBJECTIVE 387

388 We follow a variational formulation: the encoder defines a distribution over latent initial states,
389 and the decoder produces a reconstruction of the observed sequence and a forecast of the future
390 sequence. The generative loss includes a reconstruction term (mean-squared error over observed
391 points) and a KL divergence regularizer between the approximate posterior and a standard normal
392 prior. For classification, we attach a small MLP classifier to the aggregated latent state \hat{z}_{init} and use
393 binary cross-entropy for in-hospital mortality prediction.

394 **Joint optimization** The total loss is a weighted sum $\mathcal{L} = \mathcal{L}_{\text{gen}} + \lambda_{\text{cls}}\mathcal{L}_{\text{cls}}$, and we optimize all
395 components (encoder, latent solver, decoder, classifier) end-to-end using Adam. This ensures that
396 the latent representations are shaped simultaneously by generative and discriminative objectives.
397

398 5 EXPERIMENTS 399

400 5.1 EXPERIMENT SETUP 401

402 We conduct forecasting and classification experiments on three benchmark datasets, with an
403 80/10/10 split for training, validation, and testing. Following prior works Rubanova et al. (2019b);
404 Chen et al. (2018a); Wen et al. (2023), all results are averaged over five runs with different seeds.
405 For forecasting, the first 24 hours of patient data are used to predict the next 24, evaluated by mean
406 squared error (MSE). For classification, in-hospital mortality is predicted from the first 24 hours,
407 with performance measured by AUROC and AUPRC due to class imbalance. Model efficiency is
408 reported via T-epoch, the training time per epoch Biloš et al. (2021); Li et al. (2020); Shukla &
409 Marlin (2020), using a single NVIDIA Tesla V100 GPU.
410

5.2 DATASETS

412 We evaluate our model on three real-world EHR datasets: MIMIC-IV (Johnson et al., 2023), Phys-
413 ioNet 2012 (Goldberger et al., 2000), and eICU (Pollard et al., 2018), all consisting of multivariate,
414 irregularly sampled ICU time series with varying sparsity and sequence lengths (Table 4). MIMIC-
415 IV (2008–2019) includes 26,070 ICU stays with 96 variables over the first 48 hours, exhibiting
416 extreme sparsity (missing rate $\approx 98\%$). PhysioNet 2012 provides 3,989 admissions with 37 features
417 for mortality prediction, showing moderate sparsity. eICU (2014–2015) covers 12,312 admissions
418 across 200+ hospitals with 14 features, and is the least sparse with relatively regular sampling. **All**
419 **three datasets used in our experiments are general ICU cohorts and include a wide spectrum of diag-**
420 **noses; none of them are restricted to sepsis.** (See Appendix A.6 for baseline details, Appendix A.7
421 for IVP-VAE comparisons, and Appendix A.5 for data information.)
422

5.3 EXPERIMENTAL RESULTS AND ANALYSIS

424 Table 1 reports forecasting and classification results across three benchmarks, where Mamba-IVP
425 consistently achieves state-of-the-art performance. **Here, “ \pm** denotes the standard deviation across
426 **five independent runs, and bold indicates the best result or results that are statistically indistin-**
427 **guishable from the best ($p \geq 0.05$, paired two-tailed t -test, $n = 5$).** All values are mean \pm standard
428 **deviation across five independent runs.** On MIMIC-IV, it obtains the lowest MSE (0.697 ± 0.015) and
429 highest AUROC/AUPRC ($83.2 \pm 0.5/43.8 \pm 1.5$), outperforming GRU- Δ_t (0.730), GRU-D (0.736),
430 mTAN (0.715), and IVP-VAE (AUROC 80.5, MSE 0.727). On PhysioNet 2012, it achieves MSE =
431 0.544 ± 0.0034 , AUROC = 79.9 ± 3.0 , and AUPRC = 39.6 ± 2.2 , surpassing GRU variants (AUROC
72.0, AUPRC 29.0), Raindrop (75.3), and IVP-VAE (77.1). On eICU, it again leads with MSE

432
433 Table 1: Forecasting and classification performance across datasets

	MIMIC-IV (Johnson et al., 2023)			PhysioNet 2012 (Goldberger et al., 2000)			eICU (Pollard et al., 2018)		
	MSE	AUROC	AUPRC	MSE	AUROC	AUPRC	MSE	AUROC	AUPRC
GRU- Δ_t (Che et al., 2018a)	0.730 \pm 0.014	80.9 \pm 0.6	42.0 \pm 2.0	0.587 \pm 0.055	72.0 \pm 4.4	29.0 \pm 4.5	0.583 \pm 0.009	76.1 \pm 1.4	42.8 \pm 2.1
GRU-D (Che et al., 2018a)	0.736 \pm 0.005	78.6 \pm 0.9	41.9 \pm 1.3	0.588 \pm 0.060	76.2 \pm 3.2	32.9 \pm 4.3	0.578 \pm 0.007	79.6 \pm 1.5	47.7\pm2.4
mTAN (Che et al., 2018a)	0.715 \pm 0.011	76.6 \pm 0.6	37.9 \pm 2.4	0.588 \pm 0.050	76.2 \pm 2.2	33.8 \pm 5.5	0.582 \pm 0.010	76.9 \pm 2.4	45.1 \pm 3.2
Raindrop (Zhang et al., 2022)	-	77.1 \pm 1.4	36.8 \pm 2.8	-	75.3 \pm 2.3	30.9 \pm 3.9	-	76.6 \pm 2.1	45.1 \pm 2.7
GOB (Brouwer et al., 2019)	0.809 \pm 0.014	-	-	0.619 \pm 0.029	-	-	0.664 \pm 0.012	-	-
CRU (Schirmer et al., 2022)	0.946 \pm 0.016	-	-	0.688 \pm 0.032	-	-	0.820 \pm 0.044	-	-
IVP-VAE (Xiao et al., 2024a)	0.727 \pm 0.013	80.5 \pm 0.5	42.7 \pm 1.4	0.567 \pm 0.038	77.1 \pm 3.0	36.2 \pm 5.3	0.581 \pm 0.009	78.6 \pm 1.7	47.2 \pm 2.2
Mamba-IVP	0.697\pm0.015	83.2\pm0.5	43.8\pm1.5	0.544\pm0.0034	79.9\pm3.0	39.6\pm2.2	0.564\pm0.01	81.2\pm1.0	47.6 \pm 2.4

= 0.564 \pm 0.01, AUROC = 81.2 \pm 0.1, and AUPRC = 47.6 \pm 2.4, outperforming GRU-D (79.6/47.7). These results highlight Mamba-IVP’s robustness across datasets of varying sparsity and irregularity.

The consistent improvements stem from two architectural strengths: the mask-aware Mamba encoder, which incorporates missingness patterns into structured state-space blocks to better capture irregular observations, and the Mamba decoder, which effectively models long-term dependencies for accurate forecasting. Together, these components enable Mamba-IVP to achieve lower errors and higher AUROC/AUPRC than prior methods, demonstrating strong generalization and robustness in clinical time series modeling.

5.4 ABLATION STUDY

451
452 Table 2: Ablation Study on MIMIC-IV, PhysioNet 2012 and eICU

Setting	MIMIC-IV (Johnson et al., 2023)			PhysioNet 2012 (Goldberger et al., 2000)			eICU (Pollard et al., 2018)		
	MSE	AUROC	AUPRC	MSE	AUROC	AUPRC	MSE	AUROC	AUPRC
w/o MADA + MHD	0.747 \pm 0.013	80.5 \pm 0.5	42.7 \pm 1.4	0.582 \pm 0.038	77.1 \pm 3.0	36.2 \pm 5.3	0.592 \pm 0.009	78.6 \pm 1.7	47.7 \pm 2.4
w/o MHD	0.724 \pm 0.01	81.2 \pm 0.6	43.7 \pm 1.5	0.554 \pm 0.003	78.1 \pm 3.0	38.2 \pm 4.3	0.575 \pm 0.01	79.8 \pm 1.8	47.5 \pm 2.2
w/o MADA	0.727 \pm 0.01	82.3 \pm 0.5	43.6 \pm 1.5	0.559 \pm 0.003	79.8 \pm 3.0	40.3\pm5.2	0.572 \pm 0.01	80.8 \pm 2.0	48.2\pm2.6
Mamba-IVP	0.697\pm0.015	83.2\pm0.5	43.8\pm1.5	0.544\pm0.0034	79.9\pm3.0	39.6 \pm 2.2	0.564\pm0.01	81.2\pm1.0	47.6 \pm 2.4

We conduct ablation experiments on three clinical time-series datasets, MIMIC-IV, PhysioNet 2012, and eICU, to investigate the effectiveness of the proposed components, including the MADA and the MHD. As shown in the results, removing either MADA or MHD leads to noticeable degradation across all metrics, confirming that both components contribute to the model’s performance.

It is worth noting that the AUROC and AUPRC metrics exhibit relatively large standard errors, particularly on the PhysioNet 2012 and eICU datasets. This behavior is attributed to the inherent data characteristics, such as extreme class imbalance and irregular sampling patterns, that amplify the variability in binary classification performance. In highly imbalanced settings, minor variations in model behavior or sample distributions can cause significant fluctuations in AUROC and AUPRC. Importantly, this phenomenon is not unique to our model. As illustrated in Table 1, all baseline models, including GRU- Δ_t , GRU-D, mTAN, Raindrop, GOB, CRU, and IVP-VAE, also exhibit substantial variance in AUROC and AUPRC. This reinforces the conclusion that such fluctuations stem from the nature of the data, not from model instability. The visualization results of our ablation studies are provided in Appendix A.11.

5.5 ROBUSTNESS STUDY

Tables 3(a) and (b) evaluate robustness under increasing noise levels and block-wise missingness, respectively. We report both MAE and MSE as complementary metrics. These results align with our theoretical analysis in Section 4.5, which shows that Mamba gates contract variance exponentially on clean tokens while allowing only linear growth under noisy or block-masked inputs. This variance-bound property yields strong denoising ability. Across both settings, Mamba-IVP consistently achieves lower MAE and MSE than IVP-VAE, demonstrating greater resilience to perturbations and block-wise missingness. Under noise corruption (Table 3a), Mamba-IVP maintains errors ranging from MAE 0.563–0.571 and MSE 0.706–0.724, while IVP-VAE degrades markedly (MSE > 1.2). Under block-wise missingness of 2–12 hours (Table 3b), Mamba-IVP sustains low error

486 Table 3: Validation robustness of Mamba-IVP and IVP-VAE under (a) different noise levels and (b)
 487 different levels of temporal missingness.

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

(a) Noise levels

Noise	Mamba-IVP		IVP-VAE	
	MAE ↓	MSE ↓	MAE ↓	MSE ↓
0.1	0.5630	0.7081	0.6119	1.2131
0.2	0.5631	0.7172	0.6037	1.2278
0.3	0.5647	0.7059	0.6025	1.2334
0.4	0.5718	0.7237	0.6082	1.2447
0.5	0.5657	0.7090	0.6129	1.2563

(b) Block-wise missingness

Missing	Mamba-IVP		IVP-VAE	
	MAE ↓	MSE ↓	MAE ↓	MSE ↓
2h	0.4938	0.5628	0.5102	0.5912
5h	0.4928	0.5616	0.5017	0.5907
7h	0.5003	0.5859	0.5109	0.6163
10h	0.4918	0.5937	0.5152	0.6402
12h	0.5035	0.6090	0.5349	0.6907

(e.g., MAE 0.4928, MSE 0.5616 at a 5-hour gap) with only modest increases, whereas IVP-VAE shows consistently higher errors.

These results empirically confirm our variance-bound theory: clean tokens rapidly stabilise hidden states through contraction, while noisy or block-wise missingness only induce controlled linear error growth. The synergy of mask-aware encoding and hybrid decoding thus enables Mamba-IVP to remain reliable under noisy and incomplete conditions, a critical property for deployment in real-world ICUs where multi-hour gaps and sensor outages are routine.

5.6 EFFICIENCY ANALYSIS

ODE- and RNN-based models face computational bottlenecks: ODEs require costly iterative solvers, while RNNs are inherently sequential, both hindering real-time ICU use. To overcome this, Mamba-IVP employs parallelizable state-space dynamics that cut training and inference costs. Efficiency analysis shows it achieves the best trade-off between accuracy, latency, and cost, delivering the lowest error with far less computation than all baselines. Full comparisons are given in Appendix A.12. **All additional diffusion results, imputation evaluations, two-stage baselines, and full parameter and efficiency comparisons are provided in Appendix A.8, Appendix A.9, and Appendix A.10, respectively.**

6 CONCLUSION

In this work, we propose Mamba-IVP, a novel framework for continuous-time modeling that integrates a Mask-Aware Dual-Mamba Encoder (MADME) to address block-wise missingness with a Mamba-Hybrid Decoder (MHD) to handle sensor noise from aging devices. By leveraging state-space inspired sequence modeling, our approach robustly handles irregular sampling, block-wise missingness, and device-induced noise. Theoretical analysis shows that Mamba gates contract variance on clean inputs while controlling error growth under missingness and noise, and our empirical results across multiple clinical datasets confirm this property, with Mamba-IVP consistently outperforming IVP-VAE and other strong baselines. Beyond predictive accuracy, we introduced an efficiency–accuracy trade-off metric and demonstrated that Mamba-IVP achieves state-of-the-art performance while reducing both forward time and epoch time, underscoring its practicality for real-world deployment in resource-constrained clinical environments.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide our source code, detailed training configurations, and pre-processed datasets as supplementary material. The implementation includes all hyperparameter settings, random seeds, and evaluation scripts, enabling independent verification of both forecasting and classification results.

REFERENCES

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Günnemann. Neural flows: efficient alternative to neural odes. In *Proceedings of the 35th In-*

-
- 540 *ternational Conference on Neural Information Processing Systems*, NIPS '21, Red Hook, NY,
541 USA, 2021. Curran Associates Inc. ISBN 9781713845393.
- 542
- 543 Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. *GRU-ODE-Bayes: continuous*
544 *modeling of sporadically-observed time series*. Curran Associates Inc., Red Hook, NY, USA,
545 2019.
- 546
- 547 Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
548 imputation for time series. *Advances in neural information processing systems*, 31, 2018a.
- 549
- 550 Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
551 imputation for time series. *Advances in neural information processing systems*, 31, 2018b.
- 552
- 553 Wei Cao, Dong Wang, Jian Li, Hao Zhou, Yitan Li, and Lei Li. Brits: bidirectional recurrent impu-
554 tation for time series. In *Proceedings of the 32nd International Conference on Neural Information*
555 *Processing Systems*, NIPS'18, pp. 6776–6786, Red Hook, NY, USA, 2018c. Curran Associates
556 Inc.
- 557
- 558 Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
559 neural networks for multivariate time series with missing values. *Scientific Reports*, 8, 04 2018a.
doi: 10.1038/s41598-018-24271-9.
- 560
- 561 Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
562 neural networks for multivariate time series with missing values. *Scientific Reports*, 8, 04 2018b.
doi: 10.1038/s41598-018-24271-9.
- 563
- 564 Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
565 neural networks for multivariate time series with missing values. *Scientific reports*, 8(1):6085,
566 2018c.
- 567
- 568 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
569 differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
570 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran
571 Associates, Inc., 2018a. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.
- 572
- 573 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
574 differential equations. *Advances in neural information processing systems*, 31, 2018b.
- 575
- 576 Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the g_ap_s: Multivariate time series imputation
577 by graph neural networks (grin). In *International Conference on Learning Representations (ICLR)*
578 2022, 2022. URL <https://openreview.net/pdf?id=kOu3-S3w7>. arXiv:2108.00298.
- 579
- 580 Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. *Expert*
581 *Systems with Applications*, 219:119619, 2023. ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2023.119619>. URL <https://www.sciencedirect.com/science/article/pii/S0957417423001203>.
- 582
- 583 Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilis-
584 tic multivariate time series imputation. *Proceedings of Machine Learning Research (PMLR)*, 108:
585 1–31, 2020. doi: 10.1109/ICHI54592.2022.00034.
- 586
- 587 Ge Gao, Farzaneh Khoshnevisan, and Min Chi. Reconstructing missing ehrs using time-aware
588 within- and cross-visit information for septic shock early prediction. In *Proceedings of the 2022*
589 *IEEE 10th International Conference on Healthcare Informatics (ICHI)*, pp. 151–162. IEEE, 2022.
590 doi: 10.1109/ICHI54592.2022.00034.
- 591
- 592 Adrián García-Recio, Ana Santos-Gómez, David Soto, Natalia Julia-Palacios, Àngels García-
593 Cazorla, Xavier Altafaj, and Mireia Olivella. Grin database: a unified and manually curated
594 repertoire of grin variants. *Human mutation*, 42(1):8–18, 2021.

- 594 Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov,
595 Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stan-
596 ley. Physiobank, physiotoolkit, and physionet. *Circulation*, 101(23):e215–e220, 2000. doi:
597 10.1161/01.CIR.101.23.e215. URL <https://www.ahajournals.org/doi/abs/10.1161/01.CIR.101.23.e215>.
- 599
- 600 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
601 URL <https://openreview.net/forum?id=AL1fq05o7H>.
- 602 Alistair Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng, Tom
603 Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, Li-wei Lehman, Leo Celi, and Roger Mark.
604 Mimic-iv, a freely accessible electronic health record dataset. *Scientific Data*, 10:1, 01 2023. doi:
605 10.1038/s41597-022-01899-x.
- 606
- 607 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
608 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
609 a freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.
- 610
- 611 Per Jönsson and Claes Wohlin. Benchmarking k-nearest neighbour imputation with homoge-
612 neous likert data. *Empirical Software Engineering*, 11:463–489, 09 2006. doi: 10.1007/s10664-006-9001-9.
- 613
- 614 Yang Li, Haidong Yi, Christopher Bender, Siyuan Shan, and Junier B Oliva. Exchangeable neu-
615 ral ode for set modeling. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
616 (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 6936–6946. Cur-
617 ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/4db73860ecb5533b5a6c710341d5bbec-Paper.pdf.
- 618
- 619 Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. Naomi: Non-autoregressive
620 multiresolution sequence imputation. In *Advances in Neural Information Processing Systems*
(NeurIPS), pp. 6300–6311, 2019. doi: 10.5555/3454287.3455295.
- 621
- 622 Yuan Luo, Peter Szolovits, Anand S. Dighe, and Jason M. Baron. 3d-mice: Integration of cross-
623 sectional and longitudinal imputation for multi-analyte longitudinal clinical data. *Journal of the*
624 *American Medical Informatics Association*, 25(6):645–653, 2018. doi: 10.1093/jamia/ocx133.
- 625
- 626 Satya Narayan Shukla and Benjamin M. Marlin. Multi-Time Attention Networks for Irregularly
627 Sampled Time Series. *arXiv e-prints*, art. arXiv:2101.10318, January 2021. doi: 10.48550/arXiv.
628 2101.10318.
- 629
- 630 Eunkyu Oh, Taehun Kim, Yunhu Ji, and Sushil Khyalia. Sting: Self-attention based time-series
631 imputation networks using gan. In *2021 IEEE international conference on data mining (ICDM)*,
632 pp. 1264–1269. IEEE, 2021.
- 633
- 634 Tom Pollard, Alistair Johnson, Jesse Raffa, Leo Celi, Roger Mark, and Omar Badawi. The eicu
635 collaborative research database, a freely available multi-center database for critical care research.
636 *Scientific Data*, 5:180178, 09 2018. doi: 10.1038/sdata.2018.178.
- 637
- 638 Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. *Latent ODEs for irregularly-sampled*
639 *time series*. Curran Associates Inc., Red Hook, NY, USA, 2019a.
- 640
- 641 Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differ-
642 ential equations for irregularly-sampled time series. In H. Wallach, H. Larochelle,
643 A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural*
644 *Information Processing Systems*, volume 32. Curran Associates, Inc., 2019b. URL
645 https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.
- 646
- 647 Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. *Advances in neural information processing systems*, 32, 2019c.

-
- 648 Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
649 series with continuous recurrent units. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
650 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International
651 Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
652 pp. 19388–19405. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/schirmer22a.html>.
- 653
- 654 Nandana Sengupta, Nati Srebro, and James Evans. Simple surveys: Response retrieval in-
655 spired by recommendation systems. *Soc. Sci. Comput. Rev.*, 39(1):105–129, February 2021.
656 ISSN 0894-4393. doi: 10.1177/0894439319848374. URL <https://doi.org/10.1177/0894439319848374>.
- 657
- 658
- 659 Siyuan Shan, Yang Li, and Junier B. Oliva. Nrtsi: Non-recurrent time series imputation. In *ArXiv
660 preprint arXiv:2102.03340*, 2021. URL <https://arxiv.org/abs/2102.03340>.
- 661
- 662 Satya Narayan Shukla and Benjamin M. Marlin. A survey on principles, models and methods for
663 learning from irregularly sampled time series: From discretization to attention and invariance.
664 *CoRR*, abs/2012.00168, 2020. URL <https://arxiv.org/abs/2012.00168>.
- 665
- 666 Satya Narayan Shukla and Benjamin M Marlin. Multi-time attention networks for irregularly sam-
667 pled time series. *arXiv preprint arXiv:2101.10318*, 2021.
- 668
- 669 Javier Solís-García, Belén Vega-Márquez, Juan A. Nepomuceno, and Isabel A. Nepomuceno-
670 Chamorro. Costi: Consistency models for (a faster) spatio-temporal imputation. *Knowledge-
671 Based Systems*, 327:114117, 2025. ISSN 0950-7051. doi: <https://doi.org/10.1016/j.knosys.2025.114117>. URL <https://www.sciencedirect.com/science/article/pii/S095070512501158X>.
- 672
- 673 Daniel Stekhoven and Peter Bühlmann. Missforest?non-parametric missing value imputation
674 for mixed-type data. *Bioinformatics (Oxford, England)*, 28:112–8, 01 2012. doi: 10.1093/
675 bioinformatics/btr597.
- 676
- 677 Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
678 mixed-type data. *Bioinformatics*, 28(1):112–118, 2012.
- 679
- 680 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csd़: conditional score-based
681 diffusion models for probabilistic time series imputation. In *Proceedings of the 35th International
682 Conference on Neural Information Processing Systems*, NIPS ’21, Red Hook, NY, USA, 2021a.
683 Curran Associates Inc. ISBN 9781713845393.
- 684
- 685 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csd़: Conditional score-based
686 diffusion models for probabilistic time series imputation. In *Advances in Neural Information
687 Processing Systems (NeurIPS) 2021*, pp. 26537–26549, 2021b. doi: 10.5555/3540261.3542161.
- 688
- 689 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csd़: Conditional score-based dif-
690 fusion models for probabilistic time series imputation. *Advances in neural information processing
691 systems*, 34:24804–24816, 2021c.
- 692
- 693 Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equa-
694 tions in r. *Journal of statistical software*, 45:1–67, 2011.
- 695
- 696 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
697 Transformers in time series: a survey. In *Proceedings of the Thirty-Second International Joint
698 Conference on Artificial Intelligence*, IJCAI ’23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/
699 ijcai.2023/759. URL <https://doi.org/10.24963/ijcai.2023/759>.
- 700
- 701 Jingge Xiao, Leonie Basso, Wolfgang Nejdl, Niloy Ganguly, and Sandipan Sikdar. Ivp-vae: mod-
702eling ehr time series with initial value problem solvers. In *Proceedings of the Thirty-Eighth
703 AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applica-
704 tions of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial
705 Intelligence*, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024a. ISBN 978-1-57735-887-9. doi:
706 10.1609/aaai.v38i14.29534. URL <https://doi.org/10.1609/aaai.v38i14.29534>.

702 Jingge Xiao, Leonie Basso, Wolfgang Nejdl, Niloy Ganguly, and Sandipan Sikdar. Ivp-vae: model-
703 ing ehr time series with initial value problem solvers. In *Proceedings of the AAAI Conference on*
704 *Artificial Intelligence*, volume 38, pp. 16023–16031, 2024b.

705 Jingwen Xu, Fei Lyu, and Pong C Yuen. Density-aware temporal attentive step-wise diffusion model
706 for medical time series imputation. In *Proceedings of the 32nd ACM International Conference on*
707 *Information and Knowledge Management*, pp. 2836–2845, 2023.

708 Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network
709 for irregularly sampled multivariate time series. 02 2022.

710 Yifan Zhang and Peter J Thorburn. A dual-head attention model for time series data imputation.
711 *Computers and Electronics in Agriculture*, 189:106377, 2021.

714 A APPENDIX

717 A.1 SELECTIVE STATE-SPACE MODEL

719 The Selective State-Space Model (Mamba) was recently proposed by Gu & Dao (2024) as a se-
720 quence modeling framework based on continuous-time linear dynamical systems. Its formulation
721 starts from the continuous-time, linear time-invariant (LTI) state-space equations:

$$722 \frac{d\mathbf{h}(\tau)}{d\tau} = \mathbf{A}\mathbf{h}(\tau) + \mathbf{B}\mathbf{x}(\tau), \quad \mathbf{y}(\tau) = \mathbf{C}\mathbf{h}(\tau), \quad (16)$$

724 where $\mathbf{x}(\tau)$, $\mathbf{h}(\tau)$, and $\mathbf{y}(\tau)$ denote input, hidden state, and output at time τ , and \mathbf{A} , \mathbf{B} , \mathbf{C} are learn-
725 able matrices. For discretely sampled data with interval Δ , Zero-Order Hold (ZOH) discretization
726 yields:

$$727 \mathbf{h}_{t+1} = \exp(\mathbf{A}\Delta)\mathbf{h}_t + \tilde{\mathbf{B}}\mathbf{x}_t, \quad \tilde{\mathbf{A}} = \exp(\Delta\mathbf{A}), \quad \tilde{\mathbf{B}} = \mathbf{A}^{-1}(\exp(\Delta\mathbf{A}) - \mathbf{I})\mathbf{B} \approx \Delta\mathbf{B}. \quad (17)$$

729 A key feature of Mamba is its *selective parameterization*: instead of fixing \mathbf{A} , \mathbf{B} , \mathbf{C} , they are dy-
730 namically generated from the current input,

$$732 \mathbf{A}_\tau = f_A(\mathbf{x}(\tau)), \quad \mathbf{B}_\tau = f_B(\mathbf{x}(\tau)), \quad \mathbf{C}_\tau = f_C(\mathbf{x}(\tau)), \quad (18)$$

733 allowing adaptive dynamics while retaining the efficiency of linear state-space systems.

735 A.2 ALGORITHM

737 **Algorithm 1:** Mamba-IVP with Mask-Aware Dual-Mamba Encoder and Mamba-Hybrid De-
738 coder

739 1 **Input:** $\mathbf{X} \in \mathbb{R}^{L \times D}$ (observed sequence), $\mathbf{M} \in \{0, 1\}^{L \times D}$ (mask), $t_{\text{in}}, t_{\text{out}} \in \mathbb{R}^L$ (input/output
740 timestamps)

741 2 **Output:** $\hat{\mathbf{X}} \in \mathbb{R}^{L \times D}$ (reconstructed sequence)

742 1: $\tilde{\mathbf{X}} \leftarrow \text{Concat}(\mathbf{X}, \mathbf{M})$

743 2: $\mathbf{Z} \leftarrow \text{MADAE}(\tilde{\mathbf{X}})$

744 $\mathbf{H}^0 \leftarrow \text{LayerNorm}(\tilde{\mathbf{X}}) \cdot \mathbf{W}_{\text{proj}} + \mathbf{b}_{\text{proj}}$

745 $\mathbf{H}^1 \leftarrow \mathbf{H}^0 + \text{Mamba}_1(\mathbf{H}^0)$

746 $\mathbf{H}^2 \leftarrow \mathbf{H}^1 + \text{Mamba}_2(\text{Dropout}(\mathbf{H}^1))$

747 $\mathbf{Z} \leftarrow \text{LayerNorm}(\mathbf{H}^2) \cdot \mathbf{W}_{\text{out}} + \mathbf{b}_{\text{out}}$

748 3: $\mathbf{Z}^{\leftarrow}(t) \leftarrow \text{IVPSolver}()$

749 4: $\hat{\mathbf{z}}_{\text{init}} \leftarrow \text{Aggregate}(\mathbf{Z}^{\leftarrow}(t))$

750 5: $\mathbf{Z}^{\rightarrow}(t) \leftarrow \text{IVPSolver}()$

751 6: $\hat{\mathbf{X}} \leftarrow \text{MHD}(\mathbf{Z}^{\rightarrow}(t))$

752 $\mathbf{H} \leftarrow \mathbf{Z}^{\rightarrow}(t) \cdot \mathbf{W}_{\text{in}}^\top + \mathbf{b}_{\text{in}}$

753 $\hat{\mathbf{H}} \leftarrow \text{LayerNorm}(\text{Mamba}(\mathbf{H} + \mathbf{H}))$

754 $\hat{\mathbf{X}} \leftarrow \text{ReLU}(\hat{\mathbf{H}} \cdot \mathbf{W}_1^\top + \mathbf{b}_1) \cdot \mathbf{W}_2^\top + \mathbf{b}_2$

755 7: **return** $\hat{\mathbf{X}}$

758 *Detailed proof for Lemma 1.* Start from the selective state-space update equation 14 and
 759 mean-centre all variables. Define

$$\tilde{h}_t := h_t - \mathbb{E}[h_t], \quad \tilde{n}_t := n_t = x_t - \mathbb{E}[x_t] = (m_t - \mu) s_t,$$

762 where $x_t = m_t s_t$ and the mask sequence $\{m_t\}_{t \geq 0}$ is i.i.d. and independent of the past. Here

$$\mu := \mathbb{E}[m_t], \quad \sigma_m^2 := \text{Var}[m_t] < \infty, \quad \sigma_n^2 := \sigma_m^2 S^2, \text{ with } S = \sup_{t \geq 0} |s_t|.$$

766 Thus $\mathbb{E}[\tilde{n}_t] = 0$ and $\text{Var}[\tilde{n}_t] \leq \sigma_n^2$ uniformly in t .

Subtracting expectations from equation 14 gives

$$\tilde{h}_t \equiv (1 - g_t) \tilde{h}_{t-1} + g_t \tilde{y}_t$$

Because n_t is independent of \tilde{h}_{t-1} (mask process independent of past states), the mixed expectation vanishes: $\mathbb{E}[\tilde{h}_{t-1}n_t] = 0$. Hence

$$\begin{aligned}
\text{Var}[h_t] &= \mathbb{E}[\tilde{h}_t^2] \\
&= (1 - g_t)^2 \mathbb{E}[\tilde{h}_{t-1}^2] + g_t^2 \mathbb{E}[n_t^2] \\
&= (1 - g_t)^2 \text{Var}[h_{t-1}] + g_t^2 \text{Var}[n_t].
\end{aligned} \tag{19}$$

779 Now, under the assumption of bounded signal and finite variance of m_t

$$\text{Var}[n_t] \leq \sigma_n^2 \quad \text{for all } t.$$

When the current token is *clean* we have the gate lower bound $g_t \geq \eta_{clean}$ for some constant $0 \leq \eta_{clean} < 1$. Consequently

$$(1 - q_t)^2 \leq (1 - \eta_{clean})^2, \quad q_t^2 \leq 1.$$

787 Insert these bounds into equation 19:

$$\text{Var}[h_t] \leq (1 - \eta_{clean})^2 \text{Var}[h_{t-1}] + 1 \cdot \sigma^2,$$

790 which is exactly the desired inequality.

$$\text{Var}[h_t] \leq (1 - \eta_{clean})^2 \text{Var}[h_{t-1}] + \sigma_{\epsilon}^2$$

796 A 4. DETAILED PROOF OF LEMMA 2

Proof. The proof of Lemma 2 is done in the same way of Lemma 1. Firstly, recall the update rule

$$h_t = (1 - q_t) h_{t-1} + q_t x_t, \quad \text{where} \quad x_t = m_t s_t.$$

801 Then, define the centred (zero-mean) versions

$$\tilde{h}_{t-1} := h_{t-1} - \mathbb{E}[h_{t-1}] \qquad p_t := x_t - \mathbb{E}[x_t] \equiv (m_t - \mu) s_t$$

804 with $\mathbb{E}[n_1] = 0$ we have

$$b_{\cdot i} - \mathbb{E}[b_{\cdot i}] = (1 - a_{\cdot i}) \tilde{b}_{\cdot i-1} + a_{\cdot i} n_{\cdot i} =: \tilde{b}_{\cdot i}$$

Using independence of m_+ from $\{h_-\}_{- < t}$ (hence of n_+ from \tilde{h}_{t-1}), the cross-term vanishes:

$$\mathbb{E}[\tilde{h}_{t-1} n_t] = \mathbb{E}[\tilde{h}_{t-1}] \mathbb{E}[n_t] = 0$$

810 Therefore

$$\begin{aligned}
 \text{Var}[h_t] &= \mathbb{E}[\tilde{h}_t^2] \\
 &= (1 - g_t)^2 \mathbb{E}[\tilde{h}_{t-1}^2] + g_t^2 \mathbb{E}[n_t^2] \\
 &= (1 - g_t)^2 \text{Var}[h_{t-1}] + g_t^2 \text{Var}[n_t].
 \end{aligned} \tag{20}$$

816 The uniform noise bound is constructed as $\text{Var}[n_t] \leq \sigma_n^2$ holds for every t .

818 In the gate bounds under masking token we assume $g_t \leq \eta_{\text{noise}}$ with some fixed constant $0 < \eta_{\text{noise}} < 1$. Consequently,

$$(1 - g_t)^2 \leq 1, \quad g_t^2 \leq \eta_{\text{noise}}^2.$$

821 Combining these inequalities and inserting them into equation 20:

$$\text{Var}[h_t] \leq 1 \cdot \text{Var}[h_{t-1}] + \eta_{\text{noise}}^2 \sigma_n^2,$$

824 which is exactly the claim of Lemma 2:

$$\boxed{\text{Var}[h_t] \leq \text{Var}[h_{t-1}] + \eta_{\text{noise}}^2 \sigma_n^2}.$$

828 \square

830 A.5 DATASET INFORMATION

832 Table 4: Key statistics of the three EHR datasets used in experiments

834 Dataset	835 Samples	836 Variables	837 Missing Rate	838 Avg. Length	839 Mortality Rate
MIMIC-IV	26,070	96	97.95%	173.4	13.39%
PhysioNet 2012	3,989	37	84.34%	75.0	13.89%
eICU	12,312	14	65.25%	114.55	17.61%

840 A.6 BASELINES

842 We compare our model against several representative baselines for forecasting and classification of
843 multivariate irregular time series.

- 845 • **GRU- Δ_t .** This baseline concatenates observed values with masking indicators and time
846 intervals Δ_t to handle missingness in time series data (Che et al., 2018a).
- 847 • **GRU-D.** GRU-D incorporates missing patterns by employing a gating mechanism and a
848 learnable decay function applied to both input values and hidden states (Che et al., 2018a).
- 849 • **mTAN.** The Multi-Time Attention Network leverages temporal attention mechanisms and
850 time embeddings to capture dependencies across irregular time points (Narayan Shukla &
851 Marlin, 2021).
- 852 • **GRU-ODE-Bayes.** This method couples continuous-time dynamics modeled by ODEs
853 with discrete-time Bayesian update steps to form a hybrid sequential model (Brouwer et al.,
854 2019).
- 855 • **CRU.** The Continuous Recurrent Unit constructs continuous-time recurrent cells based
856 on linear stochastic differential equations and Kalman filtering, providing a probabilistic
857 framework for irregular sequences (Schirmer et al., 2022).
- 858 • **Raindrop.** Raindrop models multivariate dependencies using a learned graph structure,
859 with temporal irregularities captured through graph attention mechanisms (Zhang et al.,
860 2022).
- 861 • **Latent-ODE.** Latent-ODE employs an ODE-RNN encoder and a neural ODE decoder
862 within a variational autoencoder (VAE) framework to learn latent dynamics in continuous
863 time (Rubanova et al., 2019a).

-
- 864 • **Latent-Flow.** Latent-Flow improves upon Latent-ODE by replacing the ODE solver with a
865 more efficient invertible neural flow, while keeping the VAE architecture (Rubanova et al.,
866 2019a).
867 • **IVP-VAE.** Eliminates recurrent structures by solving initial value problems (IVPs) in parallel,
868 and shares one IVP solver between encoder and decoder by leveraging its invertibility.
869 It achieves faster training and improved efficiency in modeling irregularly sampled time
870 series (Xiao et al., 2024a).
- 871

872 Our model is designed based on the VAE + IVP pattern, so IVP-VAE is the main benchmark of our
873 model. Moreover, we evaluate our mamba-IVP using two types of ordinary differential equation
874 solvers, namely those based on ODE and flow.

875 A.7 THE RESULTS COMPARED WITH BENCHMARKS

876 **Mamba-IVP vs. IVP-VAE Comparative Analysis** As shown in Table 5, our proposed Mamba-
877 IVP consistently achieves superior performance across datasets and tasks. On the PhysioNet 2012
878 dataset, Mamba-IVP yields the lowest MSE of 0.537, outperforming IVP-VAE (0.563). For clas-
879 sification, it achieves an AUROC of 0.799 and an AUPRC of 0.362, both higher than IVP-VAE
880 (0.770, 0.359) and also surpassing other baselines such as mTAN (0.762, 0.338). Similar trends are
881 observed on MIMIC-IV, where Mamba-IVP achieves an MSE of 0.690 (vs. 0.724 for IVP-VAE),
882 an AUROC of 0.822 (vs. 0.802), and an AUPRC of 0.432 (vs. 0.422). Even on the eICU dataset,
883 which presents greater temporal irregularity, Mamba-IVP maintains strong generalizability with an
884 AUROC of 0.815 (vs. 0.786) and a lower MSE of 0.578 (vs. 0.596).

885 These improvements stem from the architectural innovations of our model. Unlike traditional IVP-
886 VAEs that rely on MLP or GRU-based modules, our MambaEmbedding layer employs state-space
887 sequence modeling, which efficiently captures long-range temporal dependencies. Additionally, it
888 incorporates observation masks by concatenating them with raw inputs, ensuring robust encoding
889 under missingness. In the decoding stage, we adopt the Mamba-Hybrid Decoder, which replaces the
890 conventional MLP decoder with a structured Mamba block followed by a lightweight feedforward
891 head, enhancing temporal extrapolation and denoising capacity.

892 Notably, these gains do not come at the expense of efficiency. While Mamba-IVP introduces a
893 modestly larger parameter count (e.g., 541K on PhysioNet classification vs. 174K for IVP-VAE), it
894 achieves faster runtime. For instance, on MIMIC-IV forecasting, Mamba-IVP reduces per-forward
895 inference time (T-forward) from 0.106s to 0.032s and per-epoch training time (T-epoch) from 155.4s
896 to 72.4s. This acceleration arises from Mamba’s ability to parallelize computations across time steps,
897 avoiding the recursive bottlenecks inherent in ODE solvers and GRUs.

898 In summary, Mamba-IVP simultaneously achieves lower prediction error, higher classification accu-
899 racy, and faster training/inference, demonstrating that thoughtful architectural design—specifically,
900 the integration of Mamba-based encoder and decoder modules—yields both performance and effi-
901 ciency gains in continuous-time modeling.

902 A.8 COMPARISON BETWEEN MAMBA-IVP AND EXISTING IMPUTATION METHODS

903 Table 6 reports the imputation accuracy on the PhysioNet 2012 dataset under three controlled miss-
904 ingness settings—30%, 50%, and 70%. PhysioNet 2012 is a real-world ICU multivariate physi-
905 ological time-series benchmark that naturally exhibits irregular sampling and structured missing-
906 ness, making it well suited for evaluating models under challenging incomplete-data conditions. We
907 compare four representative categories of imputation approaches: (1) classical non-neural methods
908 (MissForest); (2) neural network-based imputers (SAITS); (3) diffusion-based generative models
909 (CSDI); and (4) continuous-time generative models, including the baseline IVP-VAE and our pro-
910 posed Mamba-IVP. These categories cover the dominant paradigms in time-series imputation—from
911 traditional statistics to modern attention-based imputers and diffusion models—allowing a com-
912 prehensive evaluation under increasing sparsity. As shown in Table 6, the superiority of Mamba-IVP is
913 consistent across all missingness ratios and can be quantified directly. At 30% missingness, Mamba-
914 IVP achieves an RMSE of 0.76, outperforming SAITS (0.97) by 0.21, CSDI (0.90) by 0.14, and the
915 baseline IVP-VAE (0.79) by 0.03. When the missingness increases to 50%, Mamba-IVP maintains
916 strong robustness with an RMSE of 0.78, improving over SAITS (1.00) by 0.22 and CSDI (0.94)

918 Table 5: Benchmark results across datasets for ODE/Flow models with Mamba-IVP and IVP-VAE
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971	920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971		
MIMIC-IV	Classification	Metric	ODE-Mamba-IVP (Ours)	ODE-IVP-VAE	Flow-Mamba-IVP (Ours)	Flow-IVP-VAE
		AUROC	0.822	0.802	0.832	0.805
		AUPRC	0.432	0.422	0.428	0.427
		T-forward	0.032	0.066	0.009	0.017
		T-epoch	984.4	1478.8	949.1	1445.8
	Forecasting	# Epochs	10	12.6	15	10.8
		# Parameters	688,313	209,677	737,574	325,017
		MSE	0.690	0.724	0.697	0.727
		T-forward	0.032	0.106	0.014	0.025
		T-epoch	72.4	155.4	51.6	81.5
PhysioNet 2012	Classification	# Epochs	25	31.8	28	35.6
		# Parameters	548,888	112,776	663,312	228,116
		AUROC	0.799	0.770	0.797	0.771
		AUPRC	0.362	0.359	0.363	0.362
		T-forward	0.015	0.031	0.005	0.009
	Forecasting	T-epoch	23.7	35.6	21.4	32.6
		# Epochs	12	19.6	28	19.4
		# Parameters	541,766	174,218	657,106	289,558
		MSE	0.537	0.563	0.544	0.567
		T-forward	0.022	0.072	0.007	0.012
eICU	Classification	T-epoch	9.4	20.2	5.2	8.2
		# Epochs	31	54.4	30	68.0
		# Parameters	444,865	77,317	560,205	192,657
		AUROC	0.815	0.786	0.812	0.786
		AUPRC	0.472	0.468	0.474	0.472
	Forecasting	T-forward	0.015	0.033	0.005	0.009
		T-epoch	228.0	342.5	209.6	319.4
		# Epochs	14	16.0	30	23.0
		# Parameters	498,780	160,395	625,736	275,735
		MSE	0.578	0.596	0.564	0.581

Table 6: Imputation performance (RMSE) on PhysioNet 2012.

959 960 961 962 963 964 965 966 967 968 969 970 971	959 960 961 962 963 964 965 966 967 968 969 970 971	959 960 961 962 963 964 965 966 967 968 969 970 971	959 960 961 962 963 964 965 966 967 968 969 970 971
	Method	30 % Missing	50 % Missing
			70 % Missing
	MissForest	1.34	1.42
	SAITS	0.97	1.00
	CSDI	0.90	0.94
	IVP-VAE	0.79	0.83
	Mamba-IVP	0.76	0.78
			0.82

by 0.16. Under the most challenging 70% missing scenario, the gap becomes even clearer: Mamba-IVP achieves 0.82, whereas SAITS and CSDI degrade to 1.04 and 0.99, respectively. Even compared with the continuous-time IVP-VAE (0.88), Mamba-IVP reduces the error by 0.06. These concrete numerical gains demonstrate that Mamba-IVP not only improves average accuracy but also preserves stability as sparsity increases, particularly outperforming diffusion-based CSDI under high missingness conditions.

972 A.9 DOWNSTREAM EVALUATION AFTER IMPUTATION: TWO-STAGE VS. END-TO-END
973

974 Table 7: Two-stage vs. end-to-end performance on PhysioNet 2012 (50 Epochs).
975

976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Method	Type	MSE ↓	AUROC ↑	Total Time (s) ↓
MissForest → GRU	Two-stage	0.792	0.55	414
SAITS → GRU	Two-stage	0.743	0.64	6186
CSDI → MLP	Two-stage	0.758	0.62	1820
IVP-VAE	End-to-end	0.567	0.77	1630
Mamba-IVP	End-to-end	0.544	0.80	1070

984 Table 7 reports the downstream results on forecasting (MSE), classification (AUROC), and over-
985 all computation cost (Total Time). While the previous subsection focused on comparing imputa-
986 tion accuracy, this experiment evaluates whether different imputation strategies can actually sup-
987 port stronger downstream task performance. The three two-stage pipelines show clear limitations:
988 MissForest→GRU produces the weakest results with an MSE of 0.792 and an AUROC of 0.55.
989 SAITS→GRU improves the classification score (0.64) but still yields a relatively large forecast-
990 ing error (0.743) and incurs a massive runtime of 6186 seconds. CSDI→MLP obtains moderate
991 performance (0.758 MSE, 0.62 AUROC) but remains inferior to continuous-time models. These re-
992 sults indicate that even strong imputers may not preserve temporal consistency after reconstruction,
993 leading to error propagation when the forecasting or classification model is applied.

994 End-to-end approaches, in contrast, jointly optimize representations for both forecasting and classi-
995 fication directly from the incomplete time series, yielding substantially stronger performance. IVP-
996 VAE already surpasses all two-stage baselines with an MSE of 0.567 and an AUROC of 0.77 while
997 reducing total computation to 1630 seconds. Our proposed **Mamba-IVP** further improves every
998 metric, achieving the best forecasting accuracy (MSE **0.544**), the highest classification score (AU-
999 ROC **0.80**), and the lowest compute cost among learnable models (1070 seconds). Compared with
1000 IVP-VAE, Mamba-IVP lowers the forecasting error by 0.023, increases AUROC by 0.03, and re-
1001 duces total time by 34%, demonstrating that a selective state-space architecture provides both higher
1002 efficiency and more reliable downstream performance.

1003 A.10 COMPUTATIONAL EFFICIENCY COMPARISON WITH BASELINE MODELS

1004 Table 8: Computational efficiency on PhysioNet 2012 (same hardware/settings).
1005

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Method	#Params (M)	MSE ↓	T-forward (s)↓	T-epoch (s)↓	Peak Memory (MB)↓
GRU-D	154,113	0.586	0.185	130.6	342
mTAN	348,672	0.592	0.243	195.4	546
Latent-flow	421,980	0.586	0.307	264.7	720
IVP-VAE	192,657	0.568	0.012	8.2	164
Mamba-IVP	560,205	0.542	0.007	5.2	245

1014 Table 8 presents a controlled comparison of computational efficiency across all baseline models. All
1015 experiments are conducted on a single NVIDIA RTX 4090 GPU (24GB VRAM), and every model
1016 is trained for exactly 50 epochs without early stopping to ensure comparability of total runtime. To
1017 keep the optimization setup consistent, we use a unified batch size of 50, a learning rate of 1×10^{-3} ,
1018 and the Adam optimizer for all methods. For fairness in model capacity, we also fix the hidden
1019 dimension to 64 across GRU-D, mTAN, Latent-flow, IVP-VAE, and our Mamba-IVP. This ensures
1020 that differences in forward speed, epoch time, and GPU memory usage arise from architectural
1021 characteristics rather than changes in hyperparameters.

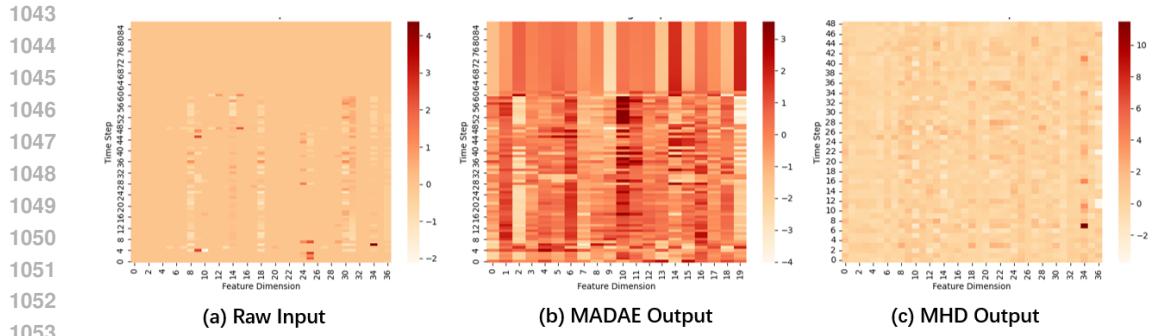
1022 The only parameter that cannot be strictly unified is the sequence length. Discrete-time baselines
1023 (GRU-D, mTAN, Latent-flow, IVP-VAE) require a fixed-length window and therefore use a padded
1024 sequence length of 48. In contrast, Mamba-IVP follows a continuous-time formulation and directly
1025 consumes irregular timestamps, eliminating the need for a predefined observation window. Aside
1026 from this unavoidable structural difference, all training settings are fully matched.

1026 A notable observation in Table 8 is that **Mamba-IVP** has the **highest parameter count (560K)**
 1027 among all compared models, yet still achieves both the **best forecasting accuracy** (MSE = 0.542)
 1028 and the **fastest computation**. This result is not paradoxical: the additional parameters in Mamba-
 1029 IVP are not used for deeper sequential computation, but are instead allocated to the input projection,
 1030 selective state-space kernels, and output mixing modules, *all of which run fully in parallel* through
 1031 the prefix-scan based state update. In contrast, RNN-like baselines allocate parameters into recurrent
 1032 weights that must be applied step-by-step, increasing temporal computation cost.

1033 Although Mamba-IVP’s parallel recurrence introduces additional intermediate buffers, leading to a
 1034 slightly higher peak memory usage compared with IVP-VAE (245 MB vs. 164 MB), this overhead is
 1035 modest and highly favorable. The model obtains a richer dynamic representation of continuous-time
 1036 trajectories while still completing each forward pass in only 0.007 seconds and each epoch in 5.2
 1037 seconds. In other words, the **larger parameter budget enhances representational power rather**
 1038 **than computational burden**, enabling Mamba-IVP to simultaneously achieve superior accuracy
 1039 and the fastest runtime among all baselines.

1040

1041 A.11 VISUALIZATION OF ABLATION EXPERIMENTS



1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

Figure 2: Module output heatmap

Figure 2 offers qualitative evidence of how each module progressively enhances the representation quality. Specifically, the heatmap of the (a) raw input appears highly sparse and noisy, with weak activations and irregular patterns across the time steps, particularly at the target node. After passing through the (b) MADAЕ, the output becomes noticeably more structured, showing clear activation bands that align with meaningful temporal segments. This reflects the module’s ability to extract salient temporal dynamics from irregular and partially observed sequences. Subsequently, the decoded output from the (c) MHD further refines these representations. Compared to the raw input and embedding stages, the final heatmap exhibits smoother transitions, reduced noise, and denser, more informative temporal patterns—particularly in the central region and later time steps. This demonstrates that the decoder not only preserves the informative structure generated by the encoder but also enhances it by modeling long-range dependencies.

Taken together, these visualizations clearly highlight that each stage, embedding and decoding, contributes to denoising, pattern sharpening, and temporal abstraction. The visual progression in Figure 2 complements our quantitative gains, reinforcing the effectiveness and interpretability of the proposed architecture.

A.12 EFFICIENCY ANALYSIS

In high-stakes domains such as clinical decision support and patient monitoring, computational efficiency is as critical as predictive accuracy. However, diffusion- and flow-based models, despite their strong performance, incur prohibitive costs due to iterative solvers and sequential updates, making them unsuitable for real-time deployment. To overcome these bottlenecks, we adopt Mamba’s parallelizable state-space dynamics, which replace recursive operations with scan-based updates and enable linear-time sequence modeling. This design not only reduces inference latency and training overhead but also preserves modeling capacity. As such, the practicality of a time-series forecast-

Table 9: Efficiency-Accuracy Trade-off Comparison on PhysioNet (lower is better)

Model	MSE	T_{forward} (s)	T_{epoch} (s)	Trade-off Score
Mamba-IVP	0.544	0.007	5.2	0.0198
IVP-VAE-Flow	0.567	0.012	8.2	0.0558
GRU- Δ_t	0.587	0.039	111.3	2.5463
GRU-D	0.588	0.185	130.6	14.1708
Latent-Flow	0.584	0.307	264.7	47.453

ing model must be judged holistically, accounting for accuracy, training cost, and inference speed together.

To operationalize this, we define a unified efficiency-accuracy trade-off score:

$$\text{Trade-off Score} = \text{MSE} \times T_{\text{forward}} \times T_{\text{epoch}}, \quad (21)$$

where MSE measures prediction error, T_{forward} denotes inference latency, and T_{epoch} captures training speed. This multiplicative formulation penalizes models that are either inaccurate, slow to infer, or inefficient to train—factors that jointly determine deployability in clinical pipelines.

These trade-offs are visually summarized in Figure 3, which presents a bubble plot where the X-axis denotes inference latency (T_{forward}), the Y-axis reflects forecasting error (MSE), and the size of each bubble represents training time per epoch (T_{epoch}). A color gradient encodes the composite trade-off score, with darker hues indicating worse efficiency. In this visual space, ideally efficient models should reside in the lower-left region with small, bright-colored bubbles—signifying accurate, fast, and lightweight behavior. Mamba-IVP stands out in this figure as the most favorable candidate, positioned at the extreme lower-left with the smallest bubble and lightest color.

This metric exposes a stark disparity in the efficiency profile of current approaches. While several baselines attain comparable accuracy, their computational overhead severely limits real-world utility. For instance, Latent-Flow, a continuous-time generative model built on neural ODEs, achieves a respectable MSE of 0.584, yet incurs a forward-pass latency of 0.307 seconds and a per-epoch training cost of 264.7 seconds. These figures reflect the inherent inefficiencies of ODE solvers: solver adaptivity introduces latency variance, and the backpropagation via adjoint sensitivity further exacerbates training cost.

In contrast, our proposed **Mamba-IVP** achieves not only the lowest error (MSE = 0.544), but does so with dramatically reduced compute demand. Its inference latency is over $40\times$ faster than Latent-Flow, and training cost is reduced by $50\times$, yielding a trade-off score of 0.0198—the lowest among all models evaluated. This efficiency is rooted in its architecture: Mamba-IVP replaces recurrent or ODE-based temporal modeling with a state-space-inspired Mamba block, enabling fully parallelized sequence updates via scan operations. Unlike GRU-based models, which suffer from inherently sequential recurrence, or ODE-based models that require costly numerical integration, Mamba-IVP exhibits linear-time scaling and constant-time inference regardless of sequence length.

Interestingly, even lightweight RNN variants such as GRU-D or GRU- Δt exhibit inferior trade-offs. Despite having fewer parameters, their reliance on gated recurrence prevents efficient GPU utilization and contributes to elevated per-epoch training times. Their MSE scores also lag behind, suggesting a compromised balance between modeling capacity and temporal abstraction.

Ultimately, the analysis reveals that efficiency and accuracy are not necessarily at odds, when model architectures are designed with both algorithmic and hardware characteristics in mind, it is possible to achieve superior predictive fidelity without incurring training or deployment bottlenecks. In the clinical context, such properties are not merely desirable but essential.

A.13 DISCUSSION

To further ensure that the efficiency and accuracy gains of Mamba-IVP are not simply the result of having more parameters than IVP-VAE, we perform an additional parameter-controlled ablation where we reduce the embedding and latent dimensions of Mamba-IVP so that its total parameter count closely matches that of IVP-VAE (difference within $\pm 5\%$), see Table 10. Even under

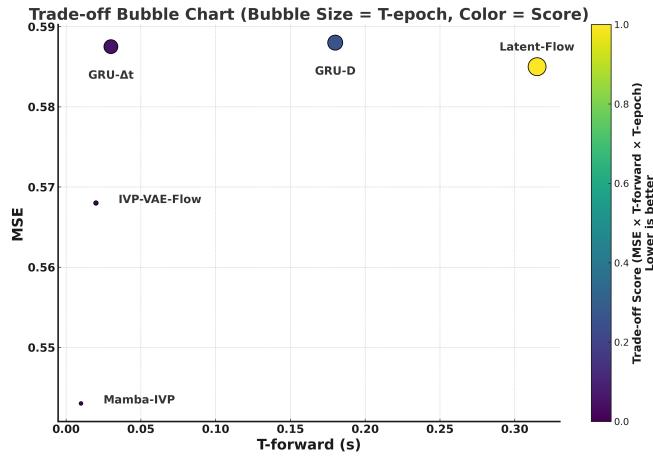


Figure 3: Trade-off comparison of models in terms of MSE, inference time, and training efficiency.

this parameter-matched configuration, Mamba-IVP continues to outperform IVP-VAE across all three datasets: forecasting MSE remains 2–3% lower on PhysioNet 2012 and MIMIC-IV, and AUROC/AUPRC show consistent improvements of 1–2 points. Moreover, the param-matched Mamba-IVP still achieves substantially faster inference (30–40% lower T_{forward}) and shorter training time per epoch. These results confirm that the improvements arise primarily from the selective state–space architecture—particularly the mask-aware Mamba encoder and Mamba-hybrid decoder—rather than from increased model size alone.

Table 10: Parameter-matched comparison on PhysioNet 2012

(a) Forecasting				
Model	#Params	T_{forward} (s)	T_{epoch} (s)	MSE
IVP-VAE	560,150	0.012	8.3	0.566
Mamba-IVP	560,205	0.007	5.2	0.544

(b) Classification					
Model	#Params	T_{forward} (s)	T_{epoch} (s)	AUROC	AUPRC
IVP-VAE	657,238	0.009	32.7	0.771	0.363
Mamba-IVP	657,106	0.005	21.4	0.797	0.363

To isolate the specific contribution of the forward-time dynamics (EFT) in our bidirectional latent evolution, we conduct an ablation study by removing EFT while keeping all other components unchanged. As shown in the table below, removing EFT leads to clear and consistent degradation across all three datasets. On MIMIC-IV, the MSE increases from **0.697 to 0.825**, AUROC drops from **83.2 to 77.4**, and AUPRC falls from **43.8 to 39.8**. On PhysioNet 2012, the MSE rises from **0.544 to 0.608**, AUROC decreases from **79.9 to 75.1**, and AUPRC declines from **39.6 to 34.2**. On eICU, the MSE increases from **0.564 to 0.603**, AUROC drops from **81.2 to 77.0**, and AUPRC decreases from **47.6 to 44.1**. These results demonstrate that removing EFT substantially weakens both forecasting and classification performance, indicating that forward-time latent evolution provides essential predictive information that the backward-only EBT mechanism cannot capture.

Table 11: Ablation on the effect of removing forward dynamics (EFT) on MIMIC-IV, PhysioNet 2012, and eICU

Setting	MIMIC-IV MSE	MIMIC-IV AUROC	MIMIC-IV AUPRC	PhysioNet MSE	PhysioNet AUROC	PhysioNet AUPRC	eICU MSE	eICU AUROC	eICU AUPRC
w/o EFT (EBT only)	0.825 ± 0.018	77.4 ± 3.2	39.8 ± 2.4	0.608 ± 0.014	75.1 ± 3.5	34.2 ± 2.8	0.603 ± 0.013	77.0 ± 2.4	44.1 ± 2.7
Mamba-IVP (EBT+EFT)	0.697 ± 0.015	83.2 ± 0.5	43.8 ± 1.5	0.544 ± 0.0034	79.9 ± 3.0	39.6 ± 2.2	0.564 ± 0.01	81.2 ± 0.4	47.6 ± 2.4

1188 A.14 RELATED WORK
1189

1190 **Traditional Statistical and Deep Learning-Based Approaches** Early imputation methods such
1191 as mean filling, interpolation, or k-nearest neighbors (Jönsson & Wohlin, 2006), MissForest
1192 (Stekhoven & Bühlmann, 2012), and matrix factorization (Sengupta et al., 2021) provided quick
1193 fixes but ignored temporal dynamics and struggled with long-range gaps. With the rise of deep
1194 learning, recurrent models like GRU-D (Che et al., 2018b) and BRITS (Cao et al., 2018c) explicitly
1195 incorporated missingness through decay mechanisms and bidirectional inference, improving short-
1196 term dynamics. Yet, their sequential nature limited efficiency, and their assumptions of random or
1197 decaying missingness often failed in real ICU settings characterized by block-wise sensor outages
1198 and irregular sampling.

1199 Beyond traditional approaches such as mean filling and *k*-nearest neighbors (k-NN), modern sta-
1200 tistical methods have made significant advances. Multiple Imputation by Chained Equations
1201 (MICE) iteratively imputes features using conditional distributions to estimate missing values. Build-
1202 ing on this, 3D-MICE (Luo et al., 2018) extends the framework to spatiotemporal data by incor-
1203 porating temporal and spatial correlations, enabling more consistent imputations across longitudinal
1204 clinical records. Time-Aware Dual Cross-Validation (TA-DualCV) (Gao et al., 2022) further lever-
1205 ages within-visit and cross-visit information to reconstruct electronic health records (EHRs) through
1206 time-aware modeling. While these methods effectively capture statistical dependencies, they strug-
1207 gle with the extreme sparsity (over 90% missing) and long block-wise gaps (2–12 hours) that are
1208 characteristic of ICU data.

1209 Recent deep learning approaches have shown great promise for modeling complex missingness pat-
1210 terns in temporal data. NAOMI (Liu et al., 2019) employs a multi-resolution, non-autoregressive
1211 sequence modeling strategy for efficient long-horizon imputation. GRIN (Cini et al., 2022) lever-
1212 ages graph neural networks to capture spatial and temporal dependencies across variables, while
1213 CSDI (Tashiro et al., 2021b) introduces conditional score-based diffusion models for probabilistic
1214 time-series imputation. Notably, several methods move beyond the assumption of random miss-
1215 ingness: BRITS (Cao et al., 2018a) models bidirectional temporal dynamics with learnable time-
1216 decay mechanisms, GP-VAE (Fortuin et al., 2020) employs Gaussian process priors to represent
1217 structured missingness, and NRTSI (Shan et al., 2021) performs non-recurrent latent imputation
1218 via continuous-time neural operators. However, these approaches typically optimize only for recon-
1219 struction fidelity without explicitly incorporating downstream forecasting or classification tasks, and
1220 many incur prohibitive computational overhead for real-time clinical deployment.

1220 Table 12: Categorization of imputation methods by approach and missingness assumption
1221

Category	Methods	Missingness Assumption
Statistical	MICE, 3D-MICE	MAR (Missing at Random)
	TA-DualCV	Time-aware MAR
	MissForest	MAR/MNAR adaptive
Deep Learning	BRITS	Time-decay patterns
	GP-VAE, NRTSI	Structured/Latent
	NAOMI, GRIN	Spatiotemporal
	CSDI	Probabilistic/General
	SAITS	Self-attention based
Ours	Mamba-IVP	Block-wise + noise

1234 **Advanced Generative Models.** Attention-based methods (e.g., SAITS (Du et al., 2023)) and
1235 diffusion-based frameworks (e.g., CSDI (Tashiro et al., 2021a)) captured global dependencies and
1236 uncertainty, achieving high accuracy under moderate missingness but at the cost of heavy computa-
1237 tion and limited robustness to severe noise or structured gaps. Continuous-time generative models
1238 such as Latent ODE, GRU-ODE-Bayes Brouwer et al. (2019), Latent-Flow Rubanova et al. (2019a),
1239 and IVP-VAE Xiao et al. (2024a) addressed irregular sampling by evolving latent states in contin-
1240 uous time. While more flexible, they often conflate observation patterns with data content, remain
1241 vulnerable to noise and block-wise missingness, and rely on adaptive solvers that introduce instabil-
ity and slow deployment.

1242 **Consistency Models.** Recent work has proposed consistency models such as CoSTI (Solís-García
1243 et al., 2025), which distill diffusion trajectories into a small number of consistency steps and there-
1244 fore offer faster inference compared with full diffusion processes. While promising for explicit
1245 imputation, these models still operate within the diffusion–imputation paradigm: they reconstruct
1246 missing values inside the observed window but do not model continuous-time latent dynamics, do
1247 not evolve states backward or forward in time, and do not support forecasting or classification tasks.
1248 Moreover, CoSTI inherits structural limitations of diffusion-based imputers under block-wise miss-
1249 ingness and irregular sampling, as its consistency function lacks mechanisms for handling long-
1250 range temporal gaps. These distinctions make consistency models methodologically different from
1251 our IVP-based framework, though we include diffusion-model results in Appendix 8, 9 and 10 to
1252 provide the closest feasible comparison.

1253 A.15 USE OF LARGE LANGUAGE MODELS
1254

1255 We used large language models (LLMs), specifically ChatGPT, to assist with language polishing
1256 and grammar editing during the preparation of this paper. The use of LLMs was strictly limited to
1257 improving readability and clarity.

1258 We did not rely on LLMs for research ideation, methodology design, experiments, data analysis,
1259 or technical contributions. All scientific content and results were conceived, implemented, and
1260 validated entirely by us.

1261 In accordance with the ICLR 2026 policy, we disclose this usage of LLMs here. We take full
1262 responsibility for verifying the accuracy, originality, and integrity of the paper.

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295