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ABSTRACT

Efficient exploration in contextual bandits is crucial due to their large action space,
where uninformed exploration can lead to computational and statistical inefficien-
cies. However, the rewards of actions are often correlated, which can be leveraged
for more efficient exploration. In this work, we use pre-trained diffusion model pri-
ors to capture these correlations and develop diffusion Thompson sampling (dTS).
We establish both theoretical and algorithmic foundations for dTS. Specifically,
we derive efficient posterior approximations (required by dTS) under a diffusion
model prior, which are of independent interest beyond bandits and reinforcement
learning. We analyze dTS in linear instances and provide a Bayes regret bound.
Our experiments validate our theory and demonstrate dTS’s favorable performance.

1 INTRODUCTION

A contextual bandit is a popular and practical framework for online learning under uncertainty (Li
et al., 2010). In each round, an agent observes a context, takes an action, and receives a reward based
on the context and action. The goal is to maximize the expected cumulative reward over n rounds,
striking a balance between exploiting actions with high estimated rewards from available data and
exploring other actions to improve current estimates. This trade-off is often addressed using either
upper confidence bound (UCB) (Auer et al., 2002) or Thompson sampling (TS) (Scott, 2010).

The action space in contextual bandits is often large, resulting in less-than-optimal performance
with standard exploration strategies. Luckily, actions usually exhibit correlations, making efficient
exploration possible as one action may inform the agent about other actions. In particular, Thompson
sampling offers remarkable flexibility, allowing its integration with informative priors (Hong et al.,
2022b) that capture these correlations. Inspired by the achievements of diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020), which effectively approximate complex distributions (Dhariwal
& Nichol, 2021; Rombach et al., 2022), this work captures action correlations by employing diffusion
models as priors in contextual Thompson sampling.

We illustrate the idea using video streaming. The objective is to optimize watch time for a user j
by selecting a video i from a catalog of K videos. Users j and videos i are associated with context
vectors xj and unknown video parameters θi, respectively. User j’s expected watch time for video i
is linear as x⊤j θi. Then, a natural strategy is to independently learn video parameters θi using LinTS
or LinUCB (Agrawal & Goyal, 2013a; Abbasi-Yadkori et al., 2011), but this proves statistically
inefficient for largerK. Fortunately, the reward when recommending a movie can provide informative
insights into other movies. To capture this, we leverage offline estimates of video parameters denoted
by θ̂i and build a diffusion model on them. This diffusion model approximates the video parameter
distribution, capturing their dependencies. This model enriches contextual Thompson sampling as a
prior, effectively capturing complex video dependencies while ensuring computational efficiency.

We introduce a framework for contextual bandits with diffusion model priors, upon which we develop
diffusion Thompson sampling (dTS) that is both computationally and statistically efficient. dTS
requires fast updates of the posterior and fast sampling from the posterior, both of which are achieved
through our novel efficient posterior approximations. These approximations become exact when
both the diffusion model and likelihood are linear. We establish a bound on dTS’s Bayes regret for
this specific case, highlighting the advantages of using diffusion models as priors. Our empirical
evaluations validate our theory and demonstrate dTS’s strong performance across various settings.

Diffusion models were applied in offline decision-making (Ajay et al., 2022; Janner et al., 2022;
Wang et al., 2022), but their use in online learning was only recently explored by Hsieh et al. (2023),
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who focused on multi-armed bandits without theoretical guarantees. Our work extends Hsieh et al.
(2023) in two ways. First, we apply the concept to the broader contextual bandit, which is more
practical and realistic. Second, we show that with diffusion models parametrized by linear link
functions and linear rewards, we can derive exact closed-form posteriors without approximations.
These exact posteriors are valuable as they enable theoretical analysis (unlike Hsieh et al. (2023),
who did not provide theoretical guarantees) and motivate efficient approximations for non-linear link
functions in contextual bandits, addressing gaps in Hsieh et al. (2023)’s focus on multi-armed bandits.

A key contribution, beyond applying diffusion models in contextual bandits, is the efficient com-
putation and sampling of the posterior distribution of a d-dimensional parameter θ | Ht, with Ht

representing the data, when using a diffusion model prior on θ. This is relevant not only to bandits
and RL but also to a broader range of applications (Chung et al., 2022). Our approximations are
motivated with exact closed-form solutions obtained in cases where both the link functions of the
diffusion model and the likelihood are linear. These solutions form the basis for our approximations
for non-linear link functions, demonstrating both strong empirical performance and computational
efficiency. Our approach avoids the computational burden of heavy approximate sampling algorithms
required for each latent parameter. For a detailed related work discussion, see Appendix A, where we
discuss diffusion models in decision-making, structured bandits, approximate posteriors, etc.

2 SETTING

The agent interacts with a contextual bandit over n rounds. In round t ∈ [n], the agent observes a
context Xt ∈ X , where X ⊆ Rd is a context space, it takes an action At ∈ [K], and then receives a
stochastic reward Yt ∈ R that depends on both the context Xt and the taken action At. Each action
i ∈ [K] is associated with an unknown action parameter θ∗,i ∈ Rd, so that the reward received in
round t is Yt ∼ P (· | Xt; θ∗,At), where P (· | x; θ∗,i) is the reward distribution of action i in context
x. Throughout the paper, we assume that the reward distribution is parametrized as a generalized
linear model (GLM) (McCullagh & Nelder, 1989). That is, for any x ∈ X , P (· | x; θ∗,i) is an
exponential-family distribution with mean g(x⊤θ∗,i), where g is the mean function. For example, we
recover linear bandits when P (· | x; θ∗,i) = N (·;x⊤θ∗,i, σ2) where σ > 0 is the observation noise.
Similarly, we recover logistic bandits (Filippi et al., 2010) if we let g(u) = (1 + exp(−u))−1 and
P (· | x; θ∗,i) = Ber(g(x⊤θ∗,i)), where Ber(p) be the Bernoulli distribution with mean p.

We consider the Bayesian bandit setting (Russo & Van Roy, 2014; Hong et al., 2022b; Neu et al.,
2022; Gouverneur et al., 2023), where the action parameters θ∗,i are assumed to be sampled from
a known prior distribution. We proceed to define this prior distribution using a diffusion model.
The correlations between the action parameters θ∗,i are captured through a diffusion model, where
they share a set of L consecutive unknown latent parameters ψ∗,ℓ ∈ Rd for ℓ ∈ [L]. Precisely, the
action parameter θ∗,i depends on the L-th latent parameter ψ∗,L as θ∗,i | ψ∗,1 ∼ N (f1(ψ∗,1),Σ1),
where the link function f1 and covariance Σ1 are known. Also, the ℓ − 1-th latent param-
eter ψ∗,ℓ−1 depends on the ℓ-th latent parameter ψ∗,ℓ as ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (fℓ(ψ∗,ℓ),Σℓ),
where fℓ and Σℓ are known. Finally, the L-th latent parameter ψ∗,L is sampled as ψ∗,L ∼
N (0,ΣL+1), where ΣL+1 is known. We summarize this model in Eq. (1) and its graph in Fig. 1.

: taken action
in round 

Figure 1: Graphical model of Eq. (1).

ψ∗,L ∼ N (0,ΣL+1) , (1)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (fℓ(ψ∗,ℓ),Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (f1(ψ∗,1),Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ P (· | Xt; θ∗,At

) , ∀t ∈ [n] .

The model in Eq. (1) represents a Bayesian bandit, where
the agent interacts with a bandit instance defined by θ∗,i
over n rounds (4-th line in Eq. (1)). These action parameters θ∗,i are drawn from the generative
process in the first 3 lines of Eq. (1). In practice, Eq. (1) can be built by pre-training a diffusion model
on offline estimates of the action parameters θ∗,i (Hsieh et al., 2023).

A natural goal for the agent in this Bayesian framework is to minimize its Bayes regret (Russo & Van
Roy, 2014) that measures the expected performance across multiple bandit instances θ∗ = (θ∗,i)i∈[K],

BR(n) = E
[∑n

t=1 r(Xt, At,∗; θ∗)− r(Xt, At; θ∗)
]
, (2)
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Algorithm 1 dTS: diffusion Thompson Sampling
Input: Prior: fℓ, ℓ ∈ [L], Σℓ, ℓ ∈ [L+ 1], and P .
for t = 1, . . . , n do

Sample ψt,L ∼ Qt,L (requires fast approximate posterior update and sampling)
for ℓ = L, . . . , 2 do

Sample ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ) (requires fast approximate posterior update and sampling)
for i = 1, . . . ,K do

Sample θt,i ∼ Pt,i(· | ψt,1) (requires fast approximate posterior update and sampling)
Take action At = argmaxi∈[K]r(Xt, i; θt), where θt = (θt,i)i∈[K]

Receive reward Yt ∼ P (· | Xt; θ∗,At
) and update posteriors Qt+1,ℓ and Pt+1,i.

where the expectation in Eq. (2) is taken over all random variables in Eq. (1). Here
r(x, i; θ∗) = EY∼P (·|x;θ∗,i) [Y ] is the expected reward of action i in context x and At,∗ =
argmaxi∈[K] r(Xt, i; θ∗) is the optimal action in round t. The Bayes regret is known to capture
the benefits of using informative priors (Hong et al., 2022b;a; Aouali et al., 2023b), and hence it is
suitable for our problem.

3 DIFFUSION CONTEXTUAL THOMPSON SAMPLING

We design a Thompson sampling algorithm that samples the latent and action parameters hierar-
chically (Lindley & Smith, 1972). Precisely, let Ht = (Xk, Ak, Yk)k∈[t−1] be the history of all
interactions up to round t and let Ht,i = (Xk, Ak, Yk){k∈[t−1];Ak=i} be the history of interactions
with action i up to round t. To motivate our algorithm, we decompose the posterior P (θ∗,i = θ |Ht)
recursively as

P (θ∗,i = θ |Ht) =
∫
ψ1:L

Qt,L(ψL)
∏L
ℓ=2Qt,ℓ−1(ψℓ−1 | ψℓ)Pt,i(θ | ψ1) dψ1:L , where (3)

Qt,L(ψL) = P (ψ∗,L = ψL |Ht) is the latent-posterior density of ψ∗,L | Ht. Moreover, for any
ℓ ∈ [2 : L], Qt,ℓ−1(ψℓ−1 | ψℓ) = P (ψ∗,ℓ−1 = ψℓ−1 |Ht, ψ∗,ℓ = ψℓ) is the conditional latent-
posterior density of ψ∗,ℓ−1 | Ht, ψ∗,ℓ = ψℓ. Finally, for any action i ∈ [K], Pt,i(θ | ψ1) =
P (θ∗,i = θ |Ht,i, ψ∗,1 = ψ1) is the conditional action-posterior density of θ∗,i | Ht,i, ψ∗,1 = ψ1.

The decomposition in Eq. (3) inspires hierarchical sampling. In round t, we initially sample the L-th
latent parameter as ψt,L ∼ Qt,L(·). Then, for ℓ ∈ [L]/{1}, we sample the ℓ− 1-th latent parameter
given that ψ∗,ℓ = ψt,ℓ, as ψt,ℓ−1 ∼ Qt,ℓ−1(· | ψt,ℓ). Lastly, given that ψ∗,1 = ψt,1, each action
parameter is sampled individually as θt,i ∼ Pt,i(θ | ψt,1). This is possible because action parameters
θ∗,i are conditionally independent given ψ∗,1. This leads to Algorithm 1, named diffusion Thompson
Sampling (dTS). dTS requires sampling from the K + L posteriors Pt,i and Qt,ℓ. Thus we start by
providing an efficient recursive scheme to express these posteriors using known quantities. We note
that these expressions do not necessarily lead to closed-form posteriors and approximation might be
needed. First, the conditional action-posterior Pt,i(· | ψ1) can be written as

Pt,i(θ | ψ1) ∝
∏
k∈St,i

P (Yk | Xk; θ)N (θ; f1(ψ1),Σ1) , (4)

where St,i = {ℓ ∈ [t − 1], Aℓ = i} are the rounds where the agent takes action i up to round t.
Moreover, let Lℓ(ψℓ) = P (Ht |ψ∗,ℓ = ψℓ) be the likelihood of observations up to round t given that
ψ∗,ℓ = ψℓ. Then, for any ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior Qt,ℓ−1(· | ψℓ) is

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ Lℓ−1(ψℓ−1)N (ψℓ−1, fℓ(ψℓ),Σℓ) , (5)

and Qt,L(ψL) ∝ LL(ψL)N (ψL, 0,ΣL+1). All the terms above are known, except the likelihoods
Lℓ(ψℓ) for ℓ ∈ [L]. These are computed recursively as follows. First, the basis of the recursion is

L1(ψ1) =
∏K
i=1

∫
θi

∏
k∈St,i

P (Yk | Xk; θi)N (θi; f1(ψ1),Σ1) dθi. (6)

Then for ℓ ∈ [L]/{1}, the recursive step is Lℓ(ψℓ) =
∫
ψℓ−1

Lℓ−1(ψℓ−1)N (ψℓ−1; fℓ(ψℓ),Σℓ) dψℓ−1.

All posterior expressions above use known quantities (fℓ,Σℓ, P (y | x; θ)). However, these expres-
sions typically need to be approximated, except when the link functions fℓ are linear and the reward
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distribution P (· | x; θ) is linear-Gaussian, where closed-form solutions can be obtained with careful
derivations. These approximations are not trivial, and prior studies often rely on computationally
intensive approximate sampling algorithms. In the following sections, we explain how we derive our
efficient approximations which are motivated by the closed-form solutions of linear instances.

3.1 POSTERIOR APPROXIMATION

The reward distribution is parameterized as a generalized linear model (GLM) (McCullagh &
Nelder, 1989), allowing for non-linear rewards, which necessitates an approximation. We adopt an
approach similar to the Laplace approximation, where a Gaussian density approximates the likelihood.
Specifically, the reward distribution P (· | x; θ) belongs to the exponential family with a mean function
g. Then we approximate the likelihood as

∏
k∈St,i

P (Yk | Xk; θ) ≈ N
(
θ; B̂t,i, Ĝ

−1
t,i

)
, where B̂t,i is

the maximum likelihood estimate (MLE) and Ĝt,i is the Hessian of the negative log-likelihood:

B̂t,i = argmaxθ∈Rd log
∏
k∈St,i

P (Yk | Xk; θ) , Ĝt,i =
∑
k∈St,i

ġ
(
X⊤
k B̂t,i

)
XkX

⊤
k . (7)

where St,i = {ℓ ∈ [t − 1] : Aℓ = i} represents the rounds where the agent selects action i up
to round t. Unlike Laplace, which approximates the entire posterior with a Gaussian, we only
approximate the likelihood, allowing the approximate posterior to remain more complex (a diffusion
model with updated parameters) than a Gaussian, as described next. After this initial approximation,
we plug it in the action and latent posteriors, Pt,i and Qt,ℓ, in Eqs. (4) and (5). This removes the
non-linearity of the reward but still doesn’t yield a closed-form solution due to the non-linearity in
the link functions fℓ. Thus, we apply another approximation inspired by the linear diffusion case
where the link functions fℓ are linear, such as fℓ(ψℓ) = Wℓψℓ for ℓ ∈ [L], with Wℓ ∈ Rd×d (see
Appendix B.1). In that case, closed-form solutions can be derived (Appendix B.2), and we use these
to construct efficient approximations by replacing the linear terms Wℓψℓ with the more general term
fℓ(ψℓ), resulting in highly efficient approximations (see Appendix C for details). Specifically, we
approximate Pt,i(· | ψ1) ≈ N (·; µ̂t,i, Σ̂t,i), where

Σ̂−1
t,i = Σ−1

1 + Ĝt,i µ̂t,i = Σ̂t,i
(
Σ−1

1 f1(ψ1) + Ĝt,iB̂t,i
)
. (8)

In the absence of samples, Gt,i = 0d×d. Thus, the approximate action posterior in Eq. (8) matches
precisely the term N (f1(ψ1),Σ1) in the diffusion prior in Eq. (1). Moreover, as more data is
accumulated, Gt,i increases, and the influence of the prior diminishes as Ĝt,iB̂t,i will dominate
the prior term Σ−1

1 f1(ψ1). Similarly, for ℓ ∈ [L]/{1}, the ℓ − 1-th conditional latent-posterior is
approximated by a Gaussian distribution as Qt,ℓ−1(· | ψℓ) ≈ N (µ̄t,ℓ−1, Σ̄t,ℓ−1), where

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ fℓ(ψℓ) + B̄t,ℓ−1

)
, (9)

and the L-th latent-posterior is Qt,L(·) = N (µ̄t,L, Σ̄t,L),

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (10)

Here, Ḡt,ℓ and B̄t,ℓ for ℓ ∈ [L] are computed recursively. The basis of the recursion are

Ḡt,1 =
∑K
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
, B̄t,1 = Σ−1

1

∑K
i=1 Σ̂t,iĜt,iB̂t,i . (11)

Then, the recursive step for ℓ ∈ [L]/{1} is,

Ḡt,ℓ = Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ , B̄t,ℓ = Σ−1

ℓ Σ̄t,ℓ−1B̄t,ℓ−1 . (12)

Similarly, in the absence of samples, Qt,ℓ−1 in Eq. (9) precisely matches the term N (fℓ(ψℓ),Σℓ) in
the diffusion prior in Eq. (1). As more data is accumulated, the influence of this prior diminishes.
Therefore, this approximation retains a key attribute of exact posteriors: they match the prior when
there is no data, and the prior’s effect diminishes as data accumulates.

Note that this approximate posterior is also a diffusion model with updated means and co-
variances. For instance, the latent-posterior means can be viewed as updated link functions
f̂t,ℓ(ψℓ) = µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ fℓ(ψℓ) + B̄t,ℓ−1

)
, and similarly for the updated covariances

Σ̄t,ℓ. Thus, this approximation results in a complex posterior (a diffusion model with updated pa-
rameters) without requiring heavy computations, and it is different from the Laplace approximation,
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which approximates the entire posterior with a Gaussian distribution. Other approximations can be
used, but they can be costly. We need fast updates and sampling from the posterior, both of which our
approximation achieves. These two requirements may not be met by other methods. For example,
optimizing a variational bound using the re-parameterization trick and Monte Carlo estimation would
introduce a complex optimization problem into a bandit algorithm that needs to be updated in each
interaction round. Appendix E.3 provides an experiment demonstrating that this approximation
closely matches the exact posterior in that setting.

4 ANALYSIS

We analyze dTS asusming that: (A1) The rewards are linear P (· | x; θ∗,a) = N (·;x⊤θ∗,a, σ2). (A2)
The link functions fℓ are linear such as fℓ(ψ∗,ℓ) = Wℓψ∗,ℓ for ℓ ∈ [L], where Wℓ ∈ Rd×d are known
mixing matrices. This leads to a structure with L layers of linear Gaussian relationships detailed in
Appendix B.1. In particular, this leads to closed-form posteriors given in Appendix B.2 that inspired
our approximation and enable theory similar to linear bandits (Agrawal & Goyal, 2013a). However,
proofs are not the same, and technical challenges remain (explained in Appendix D).

Although our result holds for milder assumptions, we make additional simplifications for clarity and
interpretability. We assume that (A3) Contexts satisfy ∥Xt∥22 = 1 for any t ∈ [n]. Note that (A3) can
be relaxed to any contexts Xt with bounded norms ∥Xt∥2. (A4) Mixing matrices and covariances
satisfy λ1(W⊤

ℓ Wℓ) = 1 for any ℓ ∈ [L] and Σℓ = σ2
ℓ Id for any ℓ ∈ [L+ 1]. (A4) can be relaxed to

positive definite covariances Σℓ and arbitrary mixing matrices Wℓ. In particular, this is satisfied once
we use a diffusion model parametrized with linear functions. In this section, we write Õ for the big-O
notation up to polylogarithmic factors. We start by stating our bound for dTS.

Theorem 4.1. Let σ2
MAX = maxℓ∈[L+1] 1 +

σ2
ℓ

σ2 . For any δ ∈ (0, 1), the Bayes regret of dTS under
(A1), (A2), (A3) and (A4) is bounded as

BR(n) ≤
√
2n

(
RACT(n) +

∑L
ℓ=1 RLAT

ℓ

)
log(1/δ)

)
+ cnδ , with c > 0 is constant and, (13)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
, RLAT

ℓ = cℓd log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

,

Eq. (13) holds for any δ ∈ (0, 1). In particular, the term cnδ is constant when δ = 1/n. Then, the

bound is Õ
(√

n(dKσ2
1 + d

∑L
ℓ=1 σ

2
ℓ+1σ

2ℓ
MAX)

)
, and this dependence on the horizon n aligns with

prior Bayes regret bounds. The bound comprises L+ 1 main terms, RACT(n) and RLAT
ℓ for ℓ ∈ [L].

First, RACT(n) relates to action parameters learning, conforming to a standard form (Lu & Van Roy,
2019). Similarly, RLAT

ℓ is associated with learning the ℓ-th latent parameter.

To include more structure, we propose the sparsity assumption (A5) Wℓ = (W̄ℓ, 0d,d−dℓ), where
W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L]. Note that (A5) is not an assumption when dℓ = d for any ℓ ∈ [L].
Notably, (A5) incorporates a plausible structural characteristic that a diffusion model could capture.

Proposition 4.2 (Sparsity). Let σ2
MAX = maxℓ∈[L+1] 1 +

σ2
ℓ

σ2 . For any δ ∈ (0, 1), the Bayes regret of
dTS under (A1), (A2), (A3), (A4) and (A5) is bounded as

BR(n) ≤
√
2n

(
RACT(n) +

∑L
ℓ=1 R̃LAT

ℓ

)
log(1/δ)

)
+ cnδ , with c > 0 is constant, (14)

RACT(n) = c0dK log
(
1 +

nσ2
1

d

)
, c0 =

σ2
1

log(1+σ2
1)
, R̃LAT

ℓ = cℓdℓ log
(
1 +

σ2
ℓ+1

σ2
ℓ

)
, cℓ =

σ2
ℓ+1σ

2ℓ
MAX

log(1+σ2
ℓ+1)

.

From Proposition 4.2, our bounds scales as

BR(n) = Õ
(√

n(dKσ2
1 +

∑L
ℓ=1 dℓσ

2
ℓ+1σ

2ℓ
MAX)

)
. (15)

The Bayes regret bound has a clear interpretation: if the true environment parameters are drawn
from the prior, then the expected regret of an algorithm stays below that bound. Consequently, a
less informative prior (such as high variance) leads to a more challenging problem and thus a higher
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bound. Then, smaller values of K, L, d or dℓ translate to fewer parameters to learn, leading to lower
regret. The regret also decreases when the initial variances σ2

ℓ decrease. These dependencies are
common in Bayesian analysis, and empirical results match them. The reader might question the
dependence of our bound on both L and K. We will address this next.

Why the bound increases with K? This arises due to our conditional learning of θ∗,i given
ψ∗,1. Rather than assuming deterministic linearity, θ∗,i = W1ψ∗,1, we account for stochasticity by
modeling θ∗,i ∼ N (W1ψ∗,1, σ

2
1Id). This makes dTS robust to misspecification scenarios where θ∗,i

is not perfectly linear with respect to ψ∗,1, at the cost of additional learning of θ∗,i | ψ∗,1. If we were
to assume deterministic linearity (σ1 = 0), our regret bound would scale with L only.

Why the bound increases with L? This is because increasing the number of layers L adds more
initial uncertainty due to the additional covariance introduced by the extra layers. However, this does
not imply that we should always use L = 1 (the minimum possible L). Precisely, the theoretical
results predict that regret increases with L when the true prior distribution matches a diffusion model
of depth L, as increasing L reflects a more complex action parameter distribution and hence a more
complex bandit problem. However, in practice, when L is small, the pre-trained diffusion model
may be too simple to capture the true prior distribution, violating the assumptions of our theory.
Increasing L improves the pre-trained model’s quality, reducing regret. Once L is large enough and
the pre-trained model adequately captures the true prior distribution, the theoretical assumptions hold,
and regret begins to increase with L, as predicted. This is validated empirically in Fig. 4b.

Technical contributions. dTS uses hierarchical sampling. Thus the marginal posterior distribution of
θ∗,i | Ht is not explicitly defined. The first contribution is deriving θ∗,i | Ht using the total covariance
decomposition combined with an induction proof, as our posteriors were derived recursively. Unlike
standard analyses where the posterior distribution of θ∗,i | Ht is predetermined due to the absence of
latent parameters, our method necessitates this recursive total covariance decomposition. Moreover,
in standard proofs, we need to quantify the increase in posterior precision for the action taken At in
each round t ∈ [n]. However, in dTS, our analysis extends beyond this. We not only quantify the
posterior information gain for the taken action but also for every latent parameter, since they are also
learned. To elaborate, we use our recursive posteriors that connect the posterior covariance of each
latent parameter ψ∗,ℓ with the covariance of the posterior action parameters θ∗,i. This allows us to
propagate the information gain associated with the action taken in round At to all latent parameters
ψ∗,ℓ, for ℓ ∈ [L] by induction. More technical details are provided in Appendix D.

4.1 DISCUSSION

Computational benefits. Action correlations prompt an intuitive approach: marginalize all latent
parameters and maintain a joint posterior of (θ∗,i)i∈[K] | Ht. Unfortunately, this is computationally
inefficient for large action spaces. To illustrate, suppose that all posteriors are multivariate Gaussians.
Then maintaining the joint posterior (θ∗,i)i∈[K] | Ht necessitates converting and storing its dK×dK-
dimensional covariance matrix, leading to O(K3d3) and O(K2d2) time and space complexities.
In contrast, the time and space complexities of dTS are O

((
L + K

)
d3
)

and O
((
L + K

)
d2
)
.

This is because dTS requires converting and storing L+K covariance matrices, each being d× d-
dimensional. The improvement is huge whenK ≫ L, which is common in practice. Certainly, a more
straightforward way to enhance computational efficiency is to discard latent parameters and maintain
K individual posteriors, each relating to an action parameter θ∗,i ∈ Rd (LinTS). This improves time
and space complexity to O

(
Kd3

)
and O

(
Kd2

)
. However, LinTS maintains independent posteriors

and fails to capture the correlations among actions; it only models θ∗,i | Ht,i rather than θ∗,i | Ht

as done by dTS. Consequently, LinTS incurs higher regret due to the information loss caused by
unused interactions of similar actions. Our regret bound and empirical results reflect this aspect.

Statistical benefits. We do not provide a matching lower bound. The only Bayesian lower bound that
we know of is Ω(log2(n)) for a much simpler K-armed bandit (Lai, 1987, Theorem 3). All seminal
works on Bayesian bandits do not match it and providing such lower bounds on Bayes regret is still
relatively unexplored (even in standard settings) compared to the frequentist one. Also, a min-max
lower bound of Ω(d

√
n) was given by Dani et al. (2008). In this work, we argue that our bound

reflects the overall structure of the problem by comparing dTS to algorithms that only partially use
the structure or do not use it at all as follows.
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When the link functions are linear, we can transform the diffusion prior into a Bayesian linear
model (LinTS) by marginalizing out the latent parameters; in which case the prior on action
parameters becomes θ∗,i ∼ N (0, Σ), with the θ∗,i being not necessarily independent, and Σ is the
marginal initial covariance of action parameters and it writes Σ = σ2

1Id +
∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ with

Bℓ =
∏ℓ
k=1 Wk. Then, it is tempting to directly apply LinTS to solve our problem. This approach

will induce higher regret because the additional uncertainty of the latent parameters is accounted for
in Σ despite integrating them. This causes the marginal action uncertainty Σ to be much higher than
the conditional action uncertainty σ2

1Id, since we have Σ = σ2
1Id +

∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ ≽ σ2

1Id. This
discrepancy leads to higher regret, especially when K is large. This is due to LinTS needing to learn
K independent d-dimensional parameters, each with a considerably higher initial covariance Σ. This
is also reflected by our regret bound. To simply comparisons, suppose that σ ≥ maxℓ∈[L+1] σℓ so
that σ2

MAX ≤ 2. Then the regret bounds of dTS (where we bound σ2ℓ
MAX by 2ℓ) and LinTS read

dTS : Õ
(√

n(dKσ2
1 +

∑L
ℓ=1 dℓσ

2
ℓ+12

ℓ)
)
, LinTS : Õ

(√
ndK(σ2

1 +
∑L
ℓ=1 σ

2
ℓ+1)

)
.

Then regret improvements are captured by the variances σℓ and the sparsity dimensions dℓ, and we
proceed to illustrate this through the following scenarios.

(I) Decreasing variances. Assume that σℓ = 2ℓ for any ℓ ∈ [L+ 1]. Then, the regrets become

dTS : Õ
(√

n(dK +
∑L
ℓ=1 dℓ4

ℓ))
)
, LinTS : Õ

(√
ndK2L)

)
Now to see the order of gain, assume the problem is high-dimensional (d≫ 1), and set L = log2(d)

and dℓ = ⌊ d
2ℓ
⌋. Then the regret of dTS becomes Õ

(√
nd(K + L))

)
, and hence the multiplicative

factor 2L in LinTS is removed and replaced with a smaller additive factor L.

(II) Constant variances. Assume that σℓ = 1 for any ℓ ∈ [L+ 1]. Then, the regrets become

dTS : Õ
(√

n(dK +
∑L
ℓ=1 dℓ2

ℓ))
)
, LinTS : Õ

(√
ndKL)

)
Similarly, let L = log2(d), and dℓ = ⌊ d

2ℓ
⌋. Then dTS’s regret is Õ

(√
nd(K + L)

)
. Thus the

multiplicative factor L in LinTS is removed and replaced with the additive factor L. By comparing
this to (I), the gain with decreasing variances is greater than with constant ones. In general, diffusion
models use decreasing variances (Ho et al., 2020) and hence we expect great gains in practice.
All observed improvements in this section could become even more pronounced when employing
non-linear diffusion models. In our theory, we used linear diffusion models, and yet we can already
discern substantial differences. Moreover, under non-linear diffusion Eq. (1), the latent parameters
cannot be analytically marginalized, making LinTS with exact marginalization inapplicable. Finally,
Appendix D.7 provide an additional comparison and connection to hierarchies with two levels.

Large action space aspect and regret independent of K? dTS’s regret bound scales with Kσ2
1

instead of K
∑
ℓ σ

2
ℓ , which is particularly beneficial when σ1 is small, as often seen in diffusion

models. Both our regret bound and experiments demonstrate that dTS outperforms LinTS more
significantly as the action space grows. Previous studies (Foster et al., 2020; Xu & Zeevi, 2020;
Zhu et al., 2022) proposed bandit algorithms whose regret do not scale with K, but our setting is
fundamentally different, explaining our inherent dependence on K when σ1 > 0. Specifically, they
assume a reward function r(x, i; θ∗) = ϕ(x, i)⊤θ∗, with a shared θ∗ ∈ Rd and a known mapping ϕ.
In contrast, we consider r(x, i; θ∗) = x⊤θ∗,i, where θ∗ = (θ∗,i)i∈[K] ∈ RdK , requiring the learning
of K separate d-dimensional action parameters. Using our proof techniques, we can show that dTS’s
regret is independent ofK in their setting, assuming the availability of ϕ. Our setting reflects practical
scenarios like recommendation systems where each product is represented by a unique embedding.

5 EXPERIMENTS

We evaluate dTS using both synthetic and MovieLens problems. In our experiments, we run 50
random simulations and plot the average regret with its standard error.

5.1 WHEN THE TRUE PRIOR IS A DIFFUSION MODEL

Synthetic bandit problems are generated from the diffusion model in Eq. (1) with both linear and
non-linear rewards. Linear rewards follow P (· | x; θ∗,a) = N (x⊤θ∗,a, 1), while non-linear rewards

7
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Figure 2: Regret of dTS with varying diffusion and reward models and varying parameters d, K, L.

are binary from P (· | x; θ∗,a) = Ber(g(x⊤θ∗,a)), with g as the sigmoid function. Covariances are
Σℓ = Id, and contexts Xt are uniformly drawn from [−1, 1]d. We vary d ∈ {5, 20}, L ∈ {2, 4},
K ∈ {102, 104}, and set the horizon to n = 5000, considering both linear and non-linear models.

Linear diffusion. We consider Eq. (1) with fℓ(ψ) = Wℓψ, where Wℓ uniformly drawn from
[−1, 1]d×d. Sparsity is introduced by zeroing the last dℓ columns of Wℓ as Wℓ = (W̄ℓ, 0d,d−dℓ). For
d = 5 and L = 2, (d1, d2) = (5, 2); for d = 20 and L = 4, (d1, d2, d3, d4) = (20, 10, 5, 2).

Non-linear diffusion. We consider Eq. (1) where fℓ are 2-layer neural networks with random weights
in [−1, 1], ReLU activation, and hidden layers of size h = 20 for d = 5, and h = 60 for d = 20.

Baselines. For linear rewards, we use LinUCB (Abbasi-Yadkori et al., 2011), LinTS (Agrawal &
Goyal, 2013a), and HierTS (Hong et al., 2022b), marginalizing out all latent parameters except ψ∗,L,
which corresponds to HierTS-1 in Appendix D.7. For non-linear rewards, we include UCB-GLM
(Li et al., 2017) and GLM-TS (Chapelle & Li, 2012). We exclude GLM-UCB (Filippi et al., 2010) due
to high regret and HierTS as it’s designed for linear rewards. We name dTS as dTS-dr, where d
refers to diffusion type (L for linear, N for non-linear) and r indicates reward type (L for linear, N for
non-linear). For example, dTS-LL signifies dTS in linear diffusion with linear rewards.

Results and interpretations. Results are shown in Fig. 2 and we make the following observations:

1) dTS demonstrates superior performance (Fig. 2). dTS consistently outperforms the baselines
across all settings, including the four combinations of linear/non-linear diffusion and reward (columns
in Fig. 2) and both bandit settings with varying K, L, and d (rows in Fig. 2).

2) Latent diffusion structure may be more important than the reward distribution. When
rewards are non-linear (second and fourth columns in Fig. 2), we include variants of dTS that use
the correct diffusion prior but the wrong reward distribution, applying linear-Gaussian instead of
logistic-Bernoulli (dTS-LL in the second column and dTS-NL in the fourth). Despite the reward
misspecification, these variants outperform models using the correct reward distribution but ignoring
the latent diffusion structure, such as GLM-TS and UCB-GLM. This highlights the importance of
accounting for latent structure, which can be more critical than an accurate reward distribution.

3) Performance gap between dTS and LinTS widens as K increases (Fig. 3a). To show dTS’s
improved scalability, we evaluate its performance with varying values of K ∈ [10, 5× 104], in the
linear diffusion and rewards setting. Fig. 3a shows the final cumulative regret for varying K values
for both dTS-LL and LinTS, revealing a widening performance gap as K increases.

4) Regret scaling withK, d and Lmatches our theory (Fig. 3b). We assess the effect of the number
of actions K, context dimension d, and diffusion depth L on dTS’s regret. Using the linear diffusion
and rewards setting, for which we have derived a Bayes regret upper bound, we plot dTS-LL’s
regret across varying values of K ∈ {10, 100, 500, 1000}, d ∈ {5, 10, 15, 20}, and L ∈ {2, 4, 5, 6}
in Fig. 3b. As predicted by our theory, the empirical regret increases with larger values of K, d, or L,
as these make the learning problem more challenging, leading to higher regret.

5) Diffusion prior misspecification (Fig. 3c). Here, dTS’s diffusion prior parameters differ from the
true diffusion prior. In the linear diffusion and reward setting, we replace the true parameters Wℓ
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Figure 3: Effect of various factors on dTS’s performance.
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Figure 4: (a) and (b): Impact of pre-training sample size and diffusion depth L for the Swiss roll
data. (c): Regret of dTS in MovieLens.

and Σℓ with misspecified ones, Wℓ + ϵ1 and Σℓ + ϵ2, where ϵ1 and ϵ2 are uniformly sampled from
[v, v + 0.5]d×d, with v controlling the misspecification level. We vary v ∈ {0.5, 1, 1.5} and assess
dTS’s performance, comparing it to the well-specified dTS-LL and the strongest baseline in this
fully-linear setting, HierTS. As shown in Fig. 3c, dTS’s performance decreases with increasing
misspecification but remains superior to the baseline, except at v = 1.5, where their performances are
comparable. Additional misspecification experiments are presented in Section 5.2, where the bandit
environment is not sampled from a diffusion model.

5.2 EFFECT OF PRE-TRAINING WHEN THE TRUE PRIOR IS NOT A DIFFUSION MODEL

Swiss roll data. Unlike previous experiments, the true action parameters are now sampled from the
Swiss roll distribution (see Fig. 5 in Appendix E.1), rather than from a diffusion model. The diffusion
model used by dTS is pre-trained on samples from this distribution, with the offline pre-training
procedure described in Appendix E.2. Fig. 4a shows that larger sample sizes increase the performance
gap between dTS and LinTS. More samples improve the estimation of the diffusion prior (see
Fig. 5 in Appendix E.1), leading to better dTS performance. Notably, comparable performance
was achieved with as few as 10 samples, and dTS outperformed LinTS by a factor of 1.5 with
just 50 samples. While more samples may be required for more complex problems, LinTS would
also struggle in such cases. Therefore, we expect these gains to be even more significant in more
challenging settings.

We studied the effect of the pre-trained diffusion model depth L and found that L ≈ 40 yields the
best performance, with a drop beyond that point (Fig. 4b). While our theory doesn’t apply directly
here, as it assumes a linear diffusion model, it still offers some intuition on the decreased performance
for L > 40. The theorem shows dTS’s regret bound increases with L when the true distribution
is a diffusion model. For small L, the pre-trained model doesn’t fully capture the true distribution,
making the theorem inapplicable, but at L ≈ 40, the distribution is nearly captured, and further
increases in L lead to higher regret, consistent with our theory.

MovieLens data. We also evaluate dTS using the standard MovieLens setting. In this semi-synthetic
experiment, a user is sampled from the rating matrix in each interaction round, and the reward is the
rating the user gives to a movie (see Clavier et al. (2023, Section 5) for details about this setting).
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Here, the true distribution of action parameters is unknown and not a diffusion model. The diffusion
model is pre-trained on offline estimates of action parameters obtained through low-rank factorization
of the rating matrix. Fig. 4c demonstrates that dTS outperforms LinTS in this setting.

6 CONCLUSION

We use a pre-trained diffusion model as a strong and flexible prior for dTS. Diffusion model pre-
training relies on offline data which is often widely available. This diffusion model is then sequentially
refined through online interactions using our posterior approximation. This approximation allows fast
sampling and updating of the posterior while performing very well empirically. dTS regret is bounded
in a simple linear instance. Limitations and future research, broader impact and computational
resources used are discussed in Appendices F to H, respectively.
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SUPPLEMENTARY MATERIALS

Notation. For any positive integer n, we define [n] = {1, 2, ..., n}. Let v1, . . . , vn ∈ Rd be n vectors,
(vi)i∈[n] ∈ Rnd is the nd-dimensional vector obtained by concatenating v1, . . . , vn. For any matrix
A ∈ Rd×d, λ1(A) and λd(A) denote the maximum and minimum eigenvalues of A, respectively.
Finally, we write Õ for the big-O notation up to polylogarithmic factors.

Table of notations.
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Table 1: Notation.

Symbol Definition
n Learning horizon
X Context space
K Number of actions
[K] Set of actions
d Dimension of contexts and action parameters d
θ∗,i d-dimensional parameter of action i ∈ [K]
P (· | x; θ∗,a) Reward distribution of context x and action a
r(x, a; θ∗) Reward function of context x and action a
BR(n) Bayes regret after n interactions
N (µ,Σ) Multivariate Gaussian distribution of parameters µ and Σ
N (·;µ,Σ) Multivariate Gaussian density of parameters µ and Σ
L Diffusion model depth
ψ∗,ℓ ℓ-th d-dimensional latent parameter
fℓ Link functions of the diffusion model
Σℓ Covariances of the link function
Ht History of interactions
Pt,i action-posterior density of θ∗,i | Ht

Qt,ℓ−1 Latent-posterior density of ψ∗,ℓ−1 | ψ∗,ℓ, Ht

A EXTENDED RELATED WORK

Thompson sampling (TS) operates within the Bayesian framework and it involves specifying a
prior/likelihood model. In each round, the agent samples unknown model parameters from the
current posterior distribution. The chosen action is the one that maximizes the resulting reward. TS
is naturally randomized, particularly simple to implement, and has highly competitive empirical
performance in both simulated and real-world problems (Russo & Van Roy, 2014; Chapelle & Li,
2012). Regret guarantees for the TS heuristic remained open for decades even for simple models.
Recently, however, significant progress has been made. For standard multi-armed bandits, TS is
optimal in the Beta-Bernoulli model (Kaufmann et al., 2012; Agrawal & Goyal, 2013b), Gaussian-
Gaussian model (Agrawal & Goyal, 2013b), and in the exponential family using Jeffrey’s prior (Korda
et al., 2013). For linear bandits, TS is nearly-optimal (Russo & Van Roy, 2014; Agrawal & Goyal,
2017; Abeille & Lazaric, 2017). In this work, we build TS upon complex diffusion priors and analyze
the resulting Bayes regret (Russo & Van Roy, 2014; Neu et al., 2022; Gouverneur et al., 2023) in the
linear contextual bandit setting.

Decision-making with diffusion models gained attention recently, especially in offline learning
(Ajay et al., 2022; Janner et al., 2022; Wang et al., 2022). However, their application in online
learning was only examined by Hsieh et al. (2023), which focused on meta-learning in multi-armed
bandits without theoretical guarantees. In this work, we expand the scope of Hsieh et al. (2023) to
encompass the broader contextual bandit framework. In particular, we provide theoretical analysis for
linear instances, effectively capturing the advantages of using diffusion models as priors in contextual
Thompson sampling. These linear cases are particularly captivating due to closed-form posteriors,
enabling both theoretical analysis and computational efficiency; an important practical consideration.

Hierarchical Bayesian bandits (Bastani et al., 2019; Kveton et al., 2021; Basu et al., 2021; Sim-
chowitz et al., 2021; Wan et al., 2021; Hong et al., 2022b; Peleg et al., 2022; Wan et al., 2022; Aouali
et al., 2023b) applied TS to simple graphical models, wherein action parameters are generally sampled
from a Gaussian distribution centered at a single latent parameter. These works mostly span meta-
and multi-task learning for multi-armed bandits, except in cases such as Aouali et al. (2023b); Hong
et al. (2022a) that consider the contextual bandit setting. Precisely, Aouali et al. (2023b) assume that
action parameters are sampled from a Gaussian distribution centered at a linear mixture of multiple
latent parameters. On the other hand, Hong et al. (2022a) applied TS to a graphical model represented
by a tree. Our work can be seen as an extension of all these works to much more complex graphical
models, for which both theoretical and algorithmic foundations are developed. Note that the settings
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in most of these works can be recovered with specific choices of the diffusion depth L and functions
fℓ. This attests to the modeling power of dTS.

Approximate Thompson sampling is a major problem in the Bayesian inference literature. This is
because most posterior distributions are intractable, and thus practitioners must resort to sophisti-
cated computational techniques such as Markov chain Monte Carlo (Kruschke, 2010). Prior works
(Riquelme et al., 2018; Chapelle & Li, 2012; Kveton et al., 2020) highlight the favorable empirical
performance of approximate Thompson sampling. Particularly, (Kveton et al., 2020) provide the-
oretical guarantees for Thompson sampling when using the Laplace approximation in generalized
linear bandits (GLB). In our context, we incorporate approximate sampling when the reward exhibits
non-linearity. While our approximation does not come with formal guarantees, it enjoys strong
practical performance. An in-depth analysis of this approximation is left as a direction for future
works. Similarly, approximating the posterior distribution when the diffusion model is non-linear as
well as analyzing it is an interesting direction of future works.

Bandits with underlying structure also align with our work, where we assume a structured rela-
tionship among actions, captured by a diffusion model. In latent bandits (Maillard & Mannor, 2014;
Hong et al., 2020), a single latent variable indexes multiple candidate models. Within structured
finite-armed bandits (Lattimore & Munos, 2014; Gupta et al., 2018), each action is linked to a known
mean function parameterized by a common latent parameter. This latent parameter is learned. TS
was also applied to complex structures (Yu et al., 2020; Gopalan et al., 2014). However, simultaneous
computational and statistical efficiencies aren’t guaranteed. Meta- and multi-task learning with upper
confidence bound (UCB) approaches have a long history in bandits (Azar et al., 2013; Gentile et al.,
2014; Deshmukh et al., 2017; Cella et al., 2020). These, however, often adopt a frequentist perspec-
tive, analyze a stronger form of regret, and sometimes result in conservative algorithms. In contrast,
our approach is Bayesian, with analysis centered on Bayes regret. Remarkably, our algorithm, dTS,
performs well as analyzed without necessitating additional tuning. Finally, Low-rank bandits (Hu
et al., 2021; Cella et al., 2022; Yang et al., 2020) also relate to our linear diffusion model when
L = 1. Broadly, there exist two key distinctions between these prior works and the special case
of our model (linear diffusion model with L = 1). First, they assume θ∗,i = W1ψ∗,1, whereas we
incorporate additional uncertainty in the covariance Σ1 to account for possible misspecification as
θ∗,i = N (W1ψ∗,1,Σ1). Consequently, these algorithms might suffer linear regret due to model
misalignment. Second, we assume that the mixing matrix W1 is available and pre-learned offline,
whereas they learn it online. While this is more general, it leads to computationally expensive
methods that are difficult to employ in a real-world online setting.

Large action spaces. Roughly speaking, the regret bound of dTS scales with Kσ2
1 rather than

K
∑
ℓ σ

2
ℓ . This is particularly beneficial when σ1 is small, a common scenario in diffusion models

with decreasing variances. A notable case is when σ1 = 0, where the regret becomes independent of
K. Also, our analysis (Section 4.1) indicates that the gap in performance between dTS and LinTS
becomes more pronounced when the number of action increases, highlighting dTS’s suitability for
large action spaces. Note that some prior works (Foster et al., 2020; Xu & Zeevi, 2020; Zhu et al.,
2022) proposed bandit algorithms that do not scale with K. However, our setting differs significantly
from theirs, explaining our inherent dependency on K when σ1 > 0. Precisely, they assume a
reward function of r(x, i) = ϕ(x, i)⊤θ∗, with a shared θ∗ ∈ Rd across actions and a known mapping
ϕ. In contrast, we consider r(x, i) = x⊤θ∗,i, requiring the learning of K separate d-dimensional
action parameters. In their setting, with the availability of ϕ, the regret of dTS would similarly be
independent ofK. However, obtaining such a mapping ϕ can be challenging as it needs to encapsulate
complex context-action dependencies. Notably, our setting reflects a common practical scenario,
such as in recommendation systems where each product is often represented by its embedding. In
summary, the dependency on K is more related to our setting than the method itself, and dTS would
scale with d only in their setting. Note that dTS is both computationally and statistically efficient
(Section 4.1). This becomes particularly notable in large action spaces. Our empirical results in
Fig. 2, notably with K = 104, demonstrate that dTS significantly outperforms the baselines. More
importantly, the performance gap between dTS and these baselines is larger when the number of
actions (K) increases, highlighting the improved scalability of dTS to large action spaces.
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B POSTERIOR DERIVATIONS FOR LINEAR DIFFUSION MODELS

B.1 LINEAR DIFFUSION MODEL

Here, we assume the link functions fℓ are linear such as fℓ(ψ∗,ℓ) = Wℓψ∗,ℓ for ℓ ∈ [L], where
Wℓ ∈ Rd×d are known mixing matrices. Then, Eq. (1) becomes a linear Gaussian system (LGS)
(Bishop, 2006) and can be summarized as follows

ψ∗,L ∼ N (0,ΣL+1) , (16)
ψ∗,ℓ−1 | ψ∗,ℓ ∼ N (Wℓψ∗,ℓ,Σℓ) , ∀ℓ ∈ [L]/{1} ,
θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) , ∀i ∈ [K] ,

Yt | Xt, θ∗,At
∼ P (· | Xt; θ∗,At

) , ∀t ∈ [n] .

This model is important, both in theory and practice. For theory, it leads to closed-form posteriors
when the reward distribution is linear-Gaussian as P (· | x; θ∗,i) = N (·;x⊤θ∗,i, σ2). This allows
bounding the Bayes regret of dTS. For practice, the posterior expressions are used to motivate
efficient approximations for the general case in Eq. (1) as we show in Section 3.1.

In this section, we derive theK+L posteriors Pt,i andQt,ℓ, for which we provide the full expressions
in Appendix B.2. In our proofs, p(x) ∝ f(x) means that the probability density p satisfies p(x) =
f(x)
Z for any x ∈ Rd, where Z is a normalization constant. In particular, we extensively use that if
p(x) ∝ exp[− 1

2x
⊤Λx + x⊤m], where Λ is positive definite. Then p is the multivariate Gaussian

density with covariance Σ = Λ−1 and mean µ = Σm. These are standard notations and techniques
to manipulate Gaussian distributions (Koller & Friedman, 2009, Chapter 7).

B.2 POSTERIOR EXPRESSIONS FOR LINEAR DIFFUSION MODELS

In this section, we consider the linear link function case in Appendix B.1, and the proofs are provided
in Appendices B.3 and B.4. Recall that we posit that the reward distribution is parameterized as a
generalized linear model (GLM) (McCullagh & Nelder, 1989), allowing for non-linear rewards. As a
result, despite linearity in link functions, the non-linearity in rewards makes it challenging to obtain
closed-form posteriors. However, since this non-linearity arises solely from the reward distribution,
we approximate it using a Gaussian distribution. This leads to efficient posterior approximations that
are exact in cases where the reward function is indeed Gaussian (a special case of the GLM model).
Precisely, the reward distribution P (· | x; θ) is an exponential-family distribution. Therefore, the
log-likelihoods write logP (Ht,i | θ∗,i = θ) =

∑
k∈St,i

YkX
⊤
k θ −A(X⊤

k θ) + C(Yk), where C is a
real function, and A is a twice continuously differentiable function whose derivative is the mean
function, Ȧ = g. Now we let B̂t,i and Ĝt,i be the maximum likelihood estimate (MLE) and the
Hessian of the negative log-likelihood, respectively, defined as

B̂t,i = argmax
θ∈Rd

logP (Ht,i | θ∗,i = θ) , Ĝt,i =
∑
k∈St,i

ġ
(
X⊤
k B̂t,i

)
XkX

⊤
k . (17)

where St,i = {ℓ ∈ [t − 1] : Aℓ = i} are the rounds where the agent takes action i up to round t.
Then we approximation the respective likelihood as P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
. This

approximation makes all posteriors Gaussian. First, the conditional action-posterior reads Pt,i(· |
ψ1) = N (·; µ̂t,i, Σ̂t,i),

Σ̂−1
t,i = Σ−1

1 + Ĝt,i µ̂t,i = Σ̂t,i
(
Σ−1

1 W1ψ1 + Ĝt,iB̂t,i
)
. (18)

For ℓ ∈ [L]/{1}, the ℓ− 1-th conditional latent-posterior is Qt,ℓ−1(· | ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1),

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (19)

and the L-th latent-posterior is Qt,L(·) = N (µ̄t,L, Σ̄t,L),

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (20)

Finally, Ḡt,ℓ and B̄t,ℓ for ℓ ∈ [L] are computed recursively. The basis of the recursion are

Ḡt,1 = W⊤
1

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 , B̄t,1 = W⊤

1 Σ
−1
1

K∑
i=1

Σ̂t,iĜt,iB̂t,i . (21)
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Then, the recursive step for ℓ ∈ [L]/{1} is,

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ , B̄t,ℓ = W⊤

ℓ Σ
−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 . (22)

This concludes the derivation of our posterior approximation. Note that these approximations are exact
when the reward distribution follows a linear-Gaussian model, P (· | x; θ∗,a) = N (·;x⊤θ∗,a, σ2).

B.3 DERIVATION OF ACTION-POSTERIORS FOR LINEAR DIFFUSION MODELS

To simplify derivations, we consider the case where the reward distribution is indeed linear-Gaussian
as P (· | Xt; θ∗,At

) = N
(
X⊤
t θ∗,At

, σ2
)
, but the same derivations can be applied when the rewards

are non-linear. In this case, the likelihood approximation in Eq. (17) becomes exact as we have
that P (Ht,i | θ∗,i = θ) ∝ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
, where B̂t,i is the corresponding MLE and Ĝt,i =

σ−2
∑
k∈St,i

XkX
⊤
k in this case. Our derivations rely on the fact that the MLE B̂t,i in this linear-

Gaussian case satisfies: Ĝt,iB̂t,i = v
∑
k∈St,i

XkY
⊤
k .

Proposition B.1. Consider the following model, which corresponds to the last two layers in Eq. (16)

θ∗,i | ψ∗,1 ∼ N (W1ψ∗,1,Σ1) ,

Yt | Xt, θ∗,At
∼ N

(
X⊤
t θ∗,At

, σ2
)
, ∀t ∈ [n] .

Then we have that for any t ∈ [n] and i ∈ [K], Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) =

N (θ; µ̂t,i, Σ̂t,i), where

Σ̂−1
t,i = Ĝt,i +Σ−1

1 , µ̂t,i = Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ1

)
.

Proof. Let v = σ−2 , Λ1 = Σ−1
1 . Then the action-posterior decomposes as

Pt,i(θ | ψ1) = P (θ∗,i = θ |ψ∗,1 = ψ1, Ht,i) ,

∝ P (Ht,i |ψ∗,1 = ψ1, θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (Bayes rule)
= P (Ht,i | θ∗,i = θ)P (θ∗,i = θ |ψ∗,1 = ψ1) , (given θ∗,i, Ht,i is independent of ψ∗,1)

=
∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)N (θ;W1ψ1,Σ1) ,

= exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2YkX

⊤
k θ + (X⊤

k θ)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+
(
W1ψ1

)⊤
Λ1

(
W1ψ1

))]
,

∝ exp
[
− 1

2

(
θ⊤(v

∑
k∈St,i

XkX
⊤
k + Λ1)θ − 2θ⊤

(
v

∑
k∈St,i

XkYk + Λ1W1ψ1

))]
,

∝ N
(
θ; µ̂t,i, Λ̂

−1
t,i

)
,

with Λ̂t,i = v
∑
k∈St,i

XkX
⊤
k + Λ1 , Λ̂t,iµ̂t,i = v

∑
k∈St,i

XkYk + Λ1W1ψ1. Using that, in this

linear-Gaussian case, Ĝt,i = v
∑
k∈St,i

XkX
⊤
k and Ĝt,iB̂t,i = v

∑
k∈St,i

XkYk concludes the
proof.

The same proof applies when the reward distribution is not linear-Gaussian, with the approximation
P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
. Using this approximation in the derivations above leads to

the same results.

B.4 DERIVATION OF RECURSIVE LATENT-POSTERIORS FOR LINEAR DIFFUSION MODELS

Again, to simplify derivations, we consider the case where the reward distribution is indeed linear-
Gaussian as P (· | Xt; θ∗,At

) = N
(
X⊤
t θ∗,At

, σ2
)
, but the same derivations can be applied when the

rewards are non-linear.
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Proposition B.2. For any ℓ ∈ [L]/{1}, the ℓ − 1-th conditional latent-posterior reads Qt,ℓ−1(· |
ψℓ) = N (µ̄t,ℓ−1, Σ̄t,ℓ−1), with

Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 , µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
, (23)

and the L-th latent-posterior reads Qt,L(·) = N (µ̄t,L, Σ̄t,L), with

Σ̄−1
t,L = Σ−1

L+1 + Ḡt,L , µ̄t,L = Σ̄t,LB̄t,L . (24)

Proof. Let ℓ ∈ [L]/{1}. Then, Bayes rule yields that

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1,Wℓψℓ,Σℓ) ,

But from Lemma B.3, we know that

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
.

Therefore,

Qt,ℓ−1(ψℓ−1 | ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1,Wℓψℓ,Σℓ) ,

∝ exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

− 1

2
(ψℓ−1 −Wℓψℓ)

⊤Σ−1
ℓ (ψℓ−1 −Wℓψℓ))

]
,

(i)
∝ exp

[
− 1

2
ψ⊤
ℓ−1(Ḡt,ℓ−1 +Σ−1

ℓ )ψℓ−1 + ψ⊤
ℓ−1(B̄t,ℓ−1 +Σ−1

ℓ Wℓψℓ)
]
,

(ii)
∝ N (ψℓ−1; µ̄t,ℓ−1, Σ̄t,ℓ−1) ,

with Σ̄−1
t,ℓ−1 = Σ−1

ℓ + Ḡt,ℓ−1 and µ̄t,ℓ−1 = Σ̄t,ℓ−1

(
Σ−1
ℓ Wℓψℓ + B̄t,ℓ−1

)
. In (i), we omit terms that

are constant in ψℓ−1. In (ii), we complete the square. This concludes the proof for ℓ ∈ [L]/{1}. For
Qt,L, we use Bayes rule to get

Qt,L(ψL) ∝ P (Ht |ψ∗,L = ψL)N (ψL, 0,ΣL+1) .

Then from Lemma B.3, we know that

P (Ht |ψ∗,L = ψL) ∝ exp
[
− 1

2
ψ⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
,

We then use the same derivations above to compute the product exp
[
− 1

2ψ
⊤
L Ḡt,LψL + ψ⊤

L B̄t,L

]
×

N (ψL, 0,ΣL+1), which concludes the proof.

Lemma B.3. The following holds for any t ∈ [n] and ℓ ∈ [L],

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp
[
− 1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where Ḡt,ℓ and B̄t,ℓ are defined by recursion in Appendix B.2.

Proof. We prove this result by induction. To reduce clutter, we let v = σ−2, and Λ1 = Σ−1
1 . We

start with the base case of the induction when ℓ = 1.
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(I) Base case. Here we want to show that P (Ht |ψ∗,1 = ψ1) ∝ exp
[
− 1

2ψ
⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1
)]

,

where Ḡt,1 and B̄t,1 are given in Eq. (21). First, we have that

P (Ht |ψ∗,1 = ψ1)
(i)
=

∏
i∈[K]

P (Ht,i |ψ∗,1 = ψ1) =
∏
i∈[K]

∫
θ

P (Ht,i, θ∗,i = θ |ψ∗,1 = ψ1) dθ ,

=
∏
i∈[K]

∫
θ

P (Ht,i | θ∗,i = θ)N (θ;W1ψ1,Σ1) dθ ,

=
∏
i∈[K]

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ︸ ︷︷ ︸

hi(ψ1)

,

=
∏
i∈[K]

hi(ψ1) , (25)

where (i) follows from the fact that θ∗,i for i ∈ [K] are conditionally independent given
ψ∗,1 = ψ1 and that given θ∗,i, Ht,i is independent of ψ∗,1. Now we compute hi(ψ1) =∫
θ

(∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ as

hi(ψ1) =

∫
θ

( ∏
k∈St,i

N (Yk;X
⊤
k θ, σ

2)
)
N (θ;W1ψ1,Σ1) dθ ,

∝
∫
θ

exp
[
− 1

2
v

∑
k∈St,i

(Yk −X⊤
k θ)

2 − 1

2
(θ −W1ψ1)

⊤Λ1(θ −W1ψ1)
]
dθ ,

=

∫
θ

exp
[
− 1

2

(
v

∑
k∈St,i

(Y 2
k − 2Ykθ

⊤Xk + (θ⊤Xk)
2) + θ⊤Λ1θ − 2θ⊤Λ1W1ψ1

+ (W1ψ1)
⊤Λ1(W1ψ1)

)]
dθ ,

∝
∫
θ

exp
[
− 1

2

(
θ⊤

(
v

∑
k∈St,i

XkX
⊤
k + Λ1

)
θ − 2θ⊤

(
v

∑
k∈St,i

YkXk

+ Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ .

But we know that Ĝt,i = v
∑
k∈St,i

XkX
⊤
k , and Ĝt,iB̂t,i = v

∑
k∈St,i

YkXk (because we assumed
linear-Gaussian likelihood). To further simplify expressions, we also let

V =
(
Ĝt,i + Λ1

)−1
, U = V −1 , β = V

(
Ĝt,iB̂t,i + Λ1W1ψ1

)
.

We have that UV = V U = Id , and thus

hi(ψ1) ∝
∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤UV

(
Ĝt,iB̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
θ⊤Uθ − 2θ⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

=

∫
θ

exp

[
−1

2

(
(θ − β)⊤U(θ − β)− β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

dθ ,

∝ exp

[
−1

2

(
−β⊤Uβ + (W1ψ1)

⊤Λ1(W1ψ1)
)]

,

= exp

[
−1

2

(
−
(
Ĝt,iB̂t,i + Λ1W1ψ1

)⊤
V
(
Ĝt,iB̂t,i + Λ1W1ψ1

)
+ (W1ψ1)

⊤Λ1(W1ψ1)

)]
,

∝ exp

[
−1

2

(
ψ⊤
1 W

⊤
1 (Λ1 − Λ1V Λ1)W1ψ1 − 2ψ⊤

1

(
W⊤

1 Λ1V Ĝt,iB̂t,i

))]
,

= exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,
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where

Ωi = W⊤
1 (Λ1 − Λ1V Λ1)W1 = W⊤

1

(
Λ1 − Λ1(Ĝt,i + Λ1)

−1Λ1

)
W1 ,

mi = W⊤
1 Λ1V Ĝt,iB̂t,i = W⊤

1 Λ1(Ĝt,i + Λ1)
−1Ĝt,iB̂t,i . (26)

But notice that V = (Ĝt,i + Λ1)
−1 = Σ̂t,i and thus

Ωi = W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 , mi = W⊤

1 Λ1Σ̂t,iĜt,iB̂t,i . (27)

Finally, we plug this result in Eq. (25) to get

P (Ht |ψ∗,1 = ψ1) =
∏
i∈[K]

hi(ψ1) ∝
∏
i∈[K]

exp

[
−1

2
ψ⊤
1 Ωiψ1 + ψ⊤

1 mi

]
,

= exp

−1

2
ψ⊤
1

∑
i∈[K]

Ωiψ1 + ψ⊤
1

∑
i∈[K]

mi

 ,

= exp

[
−1

2
ψ⊤
1 Ḡt,1ψ1 + ψ⊤

1 B̄t,1

]
,

where

Ḡt,1 =

K∑
i=1

Ωi =

K∑
i=1

W⊤
1

(
Λ1 − Λ1Σ̂t,iΛ1

)
W1 = W⊤

1

K∑
i=1

(
Σ−1

1 − Σ−1
1 Σ̂t,iΣ

−1
1

)
W1 ,

B̄t,1 =

K∑
i=1

mi =

K∑
i=1

Σ̂t,iĜt,iB̂t,i = W⊤
1 Σ

−1
1

K∑
i=1

Σ̂t,iĜt,iB̂t,i .

This concludes the proof of the base case.

(II) Induction step. Let ℓ ∈ [L]/{1}. Suppose that

P (Ht |ψ∗,ℓ−1 = ψℓ−1) ∝ exp

[
−1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
. (28)

Then we want to show that

P (Ht |ψ∗,ℓ = ψℓ) ∝ exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
,

where

Ḡt,ℓ = W⊤
ℓ

(
Σ−1
ℓ − Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
Wℓ = W⊤

ℓ

(
Σ−1
ℓ − Σ−1

ℓ (Σ−1
ℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1B̄t,ℓ−1 = W⊤

ℓ Σ
−1
ℓ (Σ−1

ℓ + Ḡt,ℓ−1)
−1B̄t,ℓ−1 .

To achieve this, we start by expressing P (Ht |ψ∗,ℓ = ψℓ) in terms of P (Ht |ψ∗,ℓ−1 = ψℓ−1) as

P (Ht |ψ∗,ℓ = ψℓ) =

∫
ψℓ−1

P (Ht, ψ∗,ℓ−1 = ψℓ−1 |ψ∗,ℓ = ψℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1, ψ∗,ℓ = ψℓ)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

=

∫
ψℓ−1

P (Ht |ψ∗,ℓ−1 = ψℓ−1)N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

]
N (ψℓ−1;Wℓψℓ,Σℓ) dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 .
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Now let S = Ḡt,ℓ−1 + Λℓ and V = B̄t,ℓ−1 + ΛℓWℓψℓ. Then we have that,

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp
[
− 1

2
ψ⊤
ℓ−1Ḡt,ℓ−1ψℓ−1 + ψ⊤

ℓ−1B̄t,ℓ−1

+ (ψℓ−1 −Wℓψℓ)
⊤Λℓ(ψℓ−1 −Wℓψℓ)

)]
dψℓ−1 ,

∝
∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1Sψℓ−1 − 2ψ⊤

ℓ−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)
+ ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
ψ⊤
ℓ−1S(ψℓ−1 − 2S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ

)]
dψℓ−1 ,

=

∫
ψℓ−1

exp
[
− 1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V )

+ ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1.

In the second step, we omit constants in ψℓ and ψℓ−1. Thus

P (Ht |ψ∗,ℓ = ψℓ)

∝
∫
ψℓ−1

exp

[
−1

2

(
(ψℓ−1 − S−1V )⊤S(ψℓ−1 − S−1V ) + ψ⊤

ℓ W
⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
dψℓ−1,

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
.

It follows that

P (Ht |ψ∗,ℓ = ψℓ)

∝ exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ − V ⊤S−1V

)]
,

= exp

[
−1

2

(
ψ⊤
ℓ W

⊤
ℓ ΛℓWℓψℓ −

(
B̄t,ℓ−1 + ΛℓWℓψℓ

)⊤
S−1

(
B̄t,ℓ−1 + ΛℓWℓψℓ

))]
∝ exp

[
−1

2

(
ψ⊤
ℓ

(
W⊤
ℓ ΛℓWℓ −W⊤

ℓ ΛℓS
−1ΛℓWℓ

)
ψℓ − 2ψ⊤

ℓ W
⊤
ℓ ΛℓS

−1B̄t,ℓ−1

)]
,

= exp

[
−1

2
ψ⊤
ℓ Ḡt,ℓψℓ + ψ⊤

ℓ B̄t,ℓ

]
.

In the last step, we omit constants in ψℓ and we set

Ḡt,ℓ = W⊤
ℓ

(
Λℓ − ΛℓS

−1Λℓ
)
Wℓ = W⊤

ℓ

(
Λℓ − Λℓ(Λℓ + Ḡt,ℓ−1)

−1Σ−1
ℓ Λℓ

)
Wℓ ,

B̄t,ℓ = W⊤
ℓ ΛℓS

−1B̄t,ℓ−1 = W⊤
ℓ Λℓ(Λℓ + Ḡt,ℓ−1)

−1B̄t,ℓ−1 .

This completes the proof.

Similarly, this same proof applies when the reward distribution is not linear-Gaussian, with the
approximation P (Ht,i | θ∗,i = θ) ≈ N

(
θ; B̂t,i, Ĝ

−1
t,i

)
. Using this approximation in the derivations

above leads to the same results.

C POSTERIOR DERIVATIONS FOR NON-LINEAR DIFFUSION MODELS

After deriving the exact posteriors in the case where the link functions fℓ are linear (Appendix B.2),
we now get back to the general case with any link functions fℓ that can be non-linear. Approximation
is needed since both the link functions and rewards can be non-linear. To avoid any computational
challenges, we use a simple and intuitive approximation, where all posteriors Pt,i and Qt,ℓ are
approximated by the Gaussian distributions in Appendix B.2, with few changes. First, the terms
Wℓψℓ in Eq. (19) are replaced by fℓ(ψℓ). This accounts for the fact that the prior mean is now fℓ(ψℓ)
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rather than Wℓψℓ, and this is the main difference between the linear diffusion model in Eq. (16) and
the general, potentially non-linear, diffusion model in Eq. (1). Second, the matrix multiplications
that involve the matrices Wℓ in Eq. (21) and Eq. (22) are simply removed. Despite being simple,
this approximation is efficient and avoids the computational burden of heavy approximate sampling
algorithms required for each latent parameter. This is why deriving the exact posterior for linear link
functions was key beyond enabling theoretical analyses. Moreover, this approximation retains some
key attributes of exact posteriors. Specifically, in the absence of data, it recovers precisely the prior in
Eq. (1), and as more data is accumulated, the influence of the prior diminishes.

D REGRET PROOF AND ADDITIONAL DISCUSSIONS

D.1 SKETCH OF THE PROOF

We start with the following standard lemma upon which we build our analysis (Aouali et al., 2023b).
Lemma D.1. Assume that P (θ∗,i = θ |Ht) = N (θ; µ̌t,i, Σ̌t,i) for any i ∈ [K], then for any δ ∈
(0, 1),

BR(n) ≤
√
2n log(1/δ)

√
E
[∑n

t=1 ∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (29)

Applying Lemma D.1 requires proving that the marginal action-posteriors P (θ∗,i = θ |Ht) in Eq. (3)
are Gaussian and computing their covariances, while we only know the conditional action-posteriors
Pt,i and latent-posteriors Qt,ℓ. This is achieved by leveraging the preservation properties of the
family of Gaussian distributions (Koller & Friedman, 2009) and the total covariance decomposition
(Weiss, 2005) which leads to the next lemma.
Lemma D.2. Let t ∈ [n] and i ∈ [K], then the marginal covariance matrix Σ̌t,i reads

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L] Pi,ℓΣ̄t,ℓP

⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1. (30)

The marginal covariance matrix Σ̌t,i in Eq. (30) decomposes into L + 1 terms. The first term
corresponds to the posterior uncertainty of θ∗,i | ψ∗,1. The remaining L terms capture the posterior
uncertainties of ψ∗,L and ψ∗,ℓ−1 | ψ∗,ℓ for ℓ ∈ [L]/{1}. These are then used to quantify the posterior
information gain of latent parameters after one round as follows.
Lemma D.3 (Posterior information gain). Let t ∈ [n] and ℓ ∈ [L], then

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓ

XtX
⊤
t PAt,ℓ , where σ2

MAX = maxℓ∈[L+1] 1 +
σ2
ℓ

σ2 . (31)

Finally, Lemma D.2 is used to decompose ∥Xt∥2Σ̌t,At

in Eq. (29) into L + 1 terms. Each term is
bounded thanks to Lemma D.3. This results in the Bayes regret bound in Theorem 4.1.

D.2 TECHNICAL CONTRIBUTIONS

Our main technical contributions are the following.

Lemma D.2. In dTS, sampling is done hierarchically, meaning the marginal posterior distribution of
θ∗,i|Ht is not explicitly defined. Instead, we use the conditional posterior distribution of θ∗,i|Ht, ψ∗,1.
The first contribution was deriving θ∗,i|Ht using the total covariance decomposition combined with
an induction proof, as our posteriors in Appendix B.2 were derived recursively. Unlike in Bayes regret
analysis for standard Thompson sampling, where the posterior distribution of θ∗,i|Ht is predetermined
due to the absence of latent parameters, our method necessitates this recursive total covariance
decomposition, marking a first difference from the standard Bayesian proofs of Thompson sampling.
Note that HierTS, which is developed for multi-task linear bandits, also employs total covariance
decomposition, but it does so under the assumption of a single latent parameter; on which action
parameters are centered. Our extension significantly differs as it is tailored for contextual bandits
with multiple, successive levels of latent parameters, moving away from HierTS’s assumption
of a 1-level structure. Roughly speaking, HierTS when applied to contextual would consider a
single-level hierarchy, where θ∗,i|ψ∗,1 ∼ N (ψ∗,1,Σ1) with L = 1. In contrast, our model proposes a
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multi-level hierarchy, where the first level is θ∗,i|ψ∗,1 ∼ N (W1ψ∗,1,Σ1). This also introduces a new
aspect to our approach – the use of a linear function W1ψ∗,1, as opposed to HierTS’s assumption
where action parameters are centered directly on the latent parameter. Thus, while HierTS also
uses the total covariance decomposition, our generalize it to multi-level hierarchies under L linear
functions Wℓψ∗,ℓ, instead of a single-level hierarchy under a single identity function ψ∗,1.

Lemma D.3. In Bayes regret proofs for standard Thompson sampling, we often quantify the posterior
information gain. This is achieved by monitoring the increase in posterior precision for the action
taken At in each round t ∈ [n]. However, in dTS, our analysis extends beyond this. We not only
quantify the posterior information gain for the taken action but also for every latent parameter, since
they are also learned. This lemma addresses this aspect. To elaborate, we use the recursive formulas in
Appendix B.2 that connect the posterior covariance of each latent parameter ψ∗,ℓ with the covariance
of the posterior action parameters θ∗,i. This allows us to propagate the information gain associated
with the action taken in round At to all latent parameters ψ∗,ℓ, for ℓ ∈ [L] by induction. This is a
novel contribution, as it is not a feature of Bayes regret analyses in standard Thompson sampling.

Proposition 4.2. Building upon the insights of Theorem 4.1, we introduce the sparsity assumption
(A3). Under this assumption, we demonstrate that the Bayes regret outlined in Theorem 4.1 can
be significantly refined. Specifically, the regret becomes contingent on dimensions dℓ ≤ d, as
opposed to relying on the entire dimension d. The underlying principle of this sparsity assumption is
straightforward: the Bayes regret is influenced by the quantity of parameters that require learning.
With the sparsity assumption, this number is reduced to less than d for each latent parameter. To
substantiate this claim, we revisit the proof of Theorem 4.1 and modify a crucial equality. This
adjustment results in a more precise representation by partitioning the covariance matrix of each
latent parameter ψ∗,ℓ into blocks. These blocks comprise a dℓ × dℓ segment corresponding to the
learnable dℓ parameters of ψ∗,ℓ, and another block of size (d−dℓ)× (d−dℓ) that does not necessitate
learning. This decomposition allows us to conclude that the final regret is solely dependent on dℓ,
marking a significant refinement from the original theorem.

D.3 PROOF OF LEMMA D.2

In this proof, we heavily rely on the total covariance decomposition (Weiss, 2005). Also, refer to
(Hong et al., 2022b, Section 5.2) for a brief introduction to this decomposition. Now, from Eq. (18),
we have that

cov [θ∗,i |Ht, ψ∗,1] = Σ̂t,i =
(
Ĝt,i +Σ−1

1

)−1

,

E [θ∗,i |Ht, ψ∗,1] = µ̂t,i = Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ∗,1

)
.

First, given Ht, cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

is constant. Thus

E [cov [θ∗,i |Ht, ψ∗,1] |Ht] = cov [θ∗,i |Ht, ψ∗,1] =
(
Ĝt,i +Σ−1

1

)−1

= Σ̂t,i .

In addition, given Ht, Σ̂t,i, Ĝt,i and B̂t,i are constant. Thus

cov [E [θ∗,i |Ht, ψ∗,1] |Ht] = cov
[
Σ̂t,i

(
Ĝt,iB̂t,i +Σ−1

1 W1ψ∗,1

) ∣∣∣Ht

]
,

= cov
[
Σ̂t,iΣ

−1
1 W1ψ∗,1

∣∣∣Ht

]
,

= Σ̂t,iΣ
−1
1 W1cov [ψ∗,1 |Ht]W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i ,

where ¯̄Σt,1 = cov [ψ∗,1 |Ht] is the marginal posterior covariance of ψ∗,1. Finally, the total covariance
decomposition (Weiss, 2005; Hong et al., 2022b) yields that

Σ̌t,i = cov [θ∗,i |Ht] = E [cov [θ∗,i |Ht, ψ∗,1] |Ht] + cov [E [θ∗,i |Ht, ψ∗,1] |Ht] ,

= Σ̂t,i + Σ̂t,iΣ
−1
1 W1

¯̄Σt,1W
⊤
1 Σ

−1
1 Σ̂t,i , (32)
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However, ¯̄Σt,1 = cov [ψ∗,1 |Ht] is different from Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] that we already derived
in Eq. (19). Thus we do not know the expression of ¯̄Σt,1. But we can use the same total covariance
decomposition trick to find it. Precisely, let ¯̄Σt,ℓ = cov [ψ∗,ℓ |Ht] for any ℓ ∈ [L]. Then we have that

Σ̄t,1 = cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

,

µ̄t,1 = E [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

)
.

First, given Ht, cov [ψ∗,1 |Ht, ψ∗,2] =
(
Σ−1

2 + Ḡt,1
)−1

is constant. Thus

E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov [ψ∗,1 |Ht, ψ∗,2] = Σ̄t,1 .

In addition, given Ht, Σ̄t,1, Σ̃t,1 and B̄t,1 are constant. Thus

cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] = cov
[
Σ̄t,1

(
Σ−1

2 W2ψ∗,2 + B̄t,1

) ∣∣∣Ht

]
,

= cov
[
Σ̄t,1Σ

−1
2 W2ψ∗,2

∣∣Ht

]
,

= Σ̄t,1Σ
−1
2 W2cov [ψ∗,2 |Ht]W

⊤
2 Σ

−1
2 Σ̄t,1 ,

= Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .

Finally, total covariance decomposition (Weiss, 2005; Hong et al., 2022b) leads to

¯̄Σt,1 = cov [ψ∗,1 |Ht] = E [cov [ψ∗,1 |Ht, ψ∗,2] |Ht] + cov [E [ψ∗,1 |Ht, ψ∗,2] |Ht] ,

= Σ̄t,1 + Σ̄t,1Σ
−1
2 W2

¯̄Σt,2W
⊤
2 Σ

−1
2 Σ̄t,1 .

Now using the techniques, this can be generalized using the same technique as above to

¯̄Σt,ℓ = Σ̄t,ℓ + Σ̄t,ℓΣ
−1
ℓ+1Wℓ+1

¯̄Σt,ℓ+1W
⊤
ℓ+1Σ

−1
ℓ+1Σ̄t,ℓ , ∀ℓ ∈ [L− 1] .

Then, by induction, we get that

¯̄Σt,1 =
∑
ℓ∈[L]

P̄ℓΣ̄t,ℓP̄
⊤
ℓ , ∀ℓ ∈ [L− 1] ,

where we use that by definition ¯̄Σt,L = cov [ψ∗,L |Ht] = Σ̄t,L and set P̄1 = Id and P̄ℓ =∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1 for any ℓ ∈ [L]/{1}. Plugging this in Eq. (32) leads to

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓP̄

⊤
ℓ W

⊤
1 Σ

−1
1 Σ̂t,i ,

= Σ̂t,i +
∑
ℓ∈[L]

Σ̂t,iΣ
−1
1 W1P̄ℓΣ̄t,ℓ(Σ̂t,iΣ

−1
1 W1)

⊤ ,

= Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ ,

where Pi,ℓ = Σ̂t,iΣ
−1
1 W1P̄ℓ = Σ̂t,iΣ

−1
1 W1

∏ℓ−1
k=1 Σ̄t,kΣ

−1
k+1Wk+1.

D.4 PROOF OF LEMMA D.3

We prove this result by induction. We start with the base case when ℓ = 1.
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(I) Base case. Let u = σ−1Σ̂
1
2

t,At
Xt From the expression of Σ̄t,1 in Eq. (19), we have that

Σ̄−1
t+1,1 − Σ̄−1

t,1 = W⊤
1

(
Σ−1

1 − Σ−1
1 (Σ̂−1

t,At
+ σ−2XtX

⊤
t )

−1Σ−1
1 − (Σ−1

1 − Σ−1
1 Σ̂t,At

Σ−1
1 )

)
W1 ,

= W⊤
1

(
Σ−1

1 (Σ̂t,At
− (Σ̂−1

t,At
+ σ−2XtX

⊤
t )

−1)Σ−1
1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + σ−2Σ̂

1
2

t,At
XtX

⊤
t Σ̂

1
2

t,At
)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

= W⊤
1

(
Σ−1

1 Σ̂
1
2

t,At
(Id − (Id + uu⊤)−1)Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(i)
= W⊤

1

(
Σ−1

1 Σ̂
1
2

t,At

uu⊤

1 + u⊤u
Σ̂

1
2

t,At
Σ−1

1

)
W1 ,

(ii)
= σ−2W⊤

1 Σ
−1
1 Σ̂t,At

XtX
⊤
t

1 + u⊤u
Σ̂t,At

Σ−1
1 W1 . (33)

In (i) we use the Sherman-Morrison formula. Note that (ii) says that Σ̄−1
t+1,1 − Σ̄−1

t,1 is one-rank
which we will also need in induction step. Now, we have that ∥Xt∥2 = 1. Therefore,

1 + u⊤u = 1 + σ−2X⊤
t Σ̂t,At

Xt ≤ 1 + σ−2λ1(Σ1)∥Xt∥2 = 1 + σ−2σ2
1 ≤ σ2

MAX ,

where we use that by definition of σ2
MAX in Lemma D.3, we have that σ2

MAX ≥ 1 + σ−2σ2
1 . Therefore,

by taking the inverse, we get that 1
1+u⊤u

≥ σ−2
MAX. Combining this with Eq. (33) leads to

Σ̄−1
t+1,1 − Σ̄−1

t,1 ⪰ σ−2σ−2
MAXW

⊤
1 Σ

−1
1 Σ̂t,At

XtX
⊤
t Σ̂t,At

Σ−1
1 W1

Noticing that PAt,1 = Σ̂t,AtΣ
−1
1 W1 concludes the proof of the base case when ℓ = 1.

(II) Induction step. Let ℓ ∈ [L]/{1} and suppose that Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank and that it
holds for ℓ− 1 that

Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 ⪰ σ−2σ
−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1 , where σ−2

MAX = max
ℓ∈[L]

1 + σ−2σ2
ℓ .

Then, we want to show that Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ is also one-rank and that it holds that

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ , where σ−2

MAX = max
ℓ∈[L]

1 + σ−2σ2
ℓ .

This is achieved as follows. First, we notice that by the induction hypothesis, we have that Σ̃−1
t+1,ℓ−1−

Ḡt,ℓ−1 = Σ̄−1
t+1,ℓ−1 − Σ̄−1

t,ℓ−1 is one-rank. In addition, the matrix is positive semi-definite. Thus we
can write it as Σ̃−1

t+1,ℓ−1 − Ḡt,ℓ−1 = uu⊤ where u ∈ Rd. Then, similarly to the base case, we have

Σ̄−1
t+1,ℓ−Σ̄−1

t,ℓ = Σ̃−1
t+1,ℓ − Σ̃−1

t,ℓ ,

= W⊤
ℓ

(
Σℓ + Σ̃t+1,ℓ−1

)−1
Wℓ −W⊤

ℓ

(
Σℓ + Σ̃t,ℓ−1

)−1
Wℓ ,

= W⊤
ℓ

[(
Σℓ + Σ̃t+1,ℓ−1

)−1 −
(
Σℓ + Σ̃t,ℓ−1

)−1
]
Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Σ̃−1

t+1,ℓ−1

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Ḡt,ℓ−1 + Σ̃−1

t+1,ℓ−1 − Ḡt,ℓ−1

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[(
Σ−1
ℓ + Ḡt,ℓ−1

)−1 −
(
Σ−1
ℓ + Ḡt,ℓ−1 + uu⊤

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[
Σ̄t,ℓ−1 −

(
Σ̄−1
t,ℓ−1 + uu⊤

)−1
]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ

[
Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1

]
Σ−1
ℓ Wℓ ,

= W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ
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However, we it follows from the induction hypothesis that uu⊤ = Σ̃−1
t+1,ℓ−1 − Ḡt,ℓ−1 = Σ̄−1

t+1,ℓ−1 −
Σ̄−1
t,ℓ−1 ⪰ σ−2σ

−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1. Therefore,

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ = W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

uu⊤

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

⪰ W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1

σ−2σ
−2(ℓ−1)
MAX P⊤

At,ℓ−1XtX
⊤
t PAt,ℓ−1

1 + u⊤Σ̄t,ℓ−1u
Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

=
σ−2σ

−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
W⊤
ℓ Σ

−1
ℓ Σ̄t,ℓ−1P

⊤
At,ℓ−1XtX

⊤
t PAt,ℓ−1Σ̄t,ℓ−1Σ

−1
ℓ Wℓ ,

=
σ−2σ

−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ .

Finally, we use that 1 + u⊤Σ̄t,ℓ−1u ≤ 1 + ∥u∥2λ1(Σ̄t,ℓ−1) ≤ 1 + σ−2σ2
ℓ . Here we use that

∥u∥2 ≤ σ−2, which can also be proven by induction, and that λ1(Σ̄t,ℓ−1) ≤ σ2
ℓ , which follows from

the expression of Σ̄t,ℓ−1 in Appendix B.2. Therefore, we have that

Σ̄−1
t+1,ℓ − Σ̄−1

t,ℓ ⪰ σ−2σ
−2(ℓ−1)
MAX

1 + u⊤Σ̄t,ℓ−1u
P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ
−2(ℓ−1)
MAX

1 + σ−2σ2
ℓ

P⊤
At,ℓXtX

⊤
t PAt,ℓ ,

⪰ σ−2σ−2ℓ
MAXP

⊤
At,ℓXtX

⊤
t PAt,ℓ ,

where the last inequality follows from the definition of σ2
MAX = maxℓ∈[L] 1+ σ−2σ2

ℓ . This concludes
the proof.

D.5 PROOF OF THEOREM 4.1

We start with the following standard result which we borrow from (Hong et al., 2022a; Aouali et al.,
2023b),

BR(n) ≤
√
2n log(1/δ)

√√√√E

[
n∑
t=1

∥Xt∥2Σ̌t,At

]
+ cnδ , where c > 0 is a constant . (34)

Then we use Lemma D.2 and express the marginal covariance Σ̌t,At
as

Σ̌t,i = Σ̂t,i +
∑
ℓ∈[L]

Pi,ℓΣ̄t,ℓP
⊤
i,ℓ , where Pi,ℓ = Σ̂t,iΣ

−1
1 W1

ℓ−1∏
k=1

Σ̄t,kΣ
−1
k+1Wk+1. (35)

Therefore, we can decompose ∥Xt∥2Σ̌t,At

as

∥Xt∥2Σ̌t,At
= σ2X

⊤
t Σ̌t,AtXt

σ2

(i)
= σ2

(
σ−2X⊤

t Σ̂t,At
Xt + σ−2

∑
ℓ∈[L]

X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt

)
,

(ii)

≤ c0 log(1 + σ−2X⊤
t Σ̂t,AtXt) +

∑
ℓ∈[L]

cℓ log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) , (36)

where (i) follows from Eq. (35), and we use the following inequality in (ii)

x =
x

log(1 + x)
log(1 + x) ≤

(
max
x∈[0,u]

x

log(1 + x)

)
log(1 + x) =

u

log(1 + u)
log(1 + x) ,

which holds for any x ∈ [0, u], where constants c0 and cℓ are derived as

c0 =
σ2
1

log(1 +
σ2
1

σ2 )
, cℓ =

σ2
ℓ+1

log(1 +
σ2
ℓ+1

σ2 )
,with the convention that σL+1 = 1 .
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The derivation of c0 uses that

X⊤
t Σ̂t,At

Xt ≤ λ1(Σ̂t,At
)∥Xt∥2 ≤ λ−1

d (Σ−1
1 +Gt,At

) ≤ λ−1
d (Σ−1

1 ) = λ1(Σ1) = σ2
1 .

The derivation of cℓ follows from

X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt ≤ λ1(PAt,ℓP

⊤
At,ℓ)λ1(Σ̄t,ℓ)∥Xt∥2 ≤ σ2

ℓ+1 .

Therefore, from Eq. (36) and Eq. (34), we get that

BR(n) ≤
√
2n log(1/δ)

(
E
[
c0

n∑
t=1

log(1 + σ−2X⊤
t Σ̂t,At

Xt)

+
∑
ℓ∈[L]

cℓ

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt)

]) 1
2

+ cnδ (37)

Now we focus on bounding the logarithmic terms in Eq. (37).

(I) First term in Eq. (37) We first rewrite this term as

log(1 + σ−2X⊤
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t+1,At
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) ,

where (i) follows from the Weinstein–Aronszajn identity. Then we sum over all rounds t ∈ [n], and
get a telescoping

n∑
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where (i) follows from the fact that Σ̂1,i = Σ1. Now we use the inequality of arithmetic and
geometric means and get
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(II) Remaining terms in Eq. (37) Let ℓ ∈ [L]. Then we have that
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where we use the Weinstein–Aronszajn identity in (i). Now we know from Lemma D.3 that the
following inequality holds σ−2σ−2ℓ
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Then we sum over all rounds t ∈ [n], and get a telescoping
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where we use that Σ̄1,ℓ = Σℓ+1 in (i). Finally, we use the inequality of arithmetic and geometric
means and get that
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The last inequality follows from the expression of Σ̄−1
n+1,ℓ in Eq. (19) that leads to
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where we use the assumption that λ1(W⊤
ℓ Wℓ) = 1 (A2) and that λ1(Σℓ+1) = σ2

ℓ+1 and λ1(Σ−1
ℓ ) =

1/σ2
ℓ . This is because Σℓ = σ2

ℓ Id for any ℓ ∈ [L+1]. Finally, plugging Eqs. (38) and (39) in Eq. (37)
concludes the proof.

D.6 PROOF OF PROPOSITION 4.2

We use exactly the same proof in Appendix D.5, with one change to account for the sparsity
assumption (A3). The change corresponds to Eq. (39). First, recall that Eq. (39) writes

n∑
t=1

log(1 + σ−2X⊤
t PAt,ℓΣ̄t,ℓP

⊤
At,ℓXt) ≤ σ2ℓ

MAX

(
log det(Σ

1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1)
)
,

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where
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where the second equality follows from the assumption that Σℓ+1 = σ2
ℓ+1Id. But notice that in

our assumption, (A3), we assume that Wℓ = (W̄ℓ, 0d,d−dℓ), where W̄ℓ ∈ Rd×dℓ for any ℓ ∈ [L].
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Therefore, plugging this in Eq. (42) yields that
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As a result, det(Σ
1
2

ℓ+1Σ̄
−1
n+1,ℓΣ

1
2

ℓ+1) = det(Idℓ +σ
2
ℓ+1W̄

⊤
ℓ

(
Σ−1
ℓ −Σ−1

ℓ Σ̄t,ℓ−1Σ
−1
ℓ

)
W̄ℓ). This allows

us to move the problem from a d-dimensional one to a dℓ-dimensional one. Then we use the inequality
of arithmetic and geometric means and get that
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To get the last inequality, we use derivations similar to the ones we used in Eq. (41). Finally, the
desired result in obtained by replacing Eq. (39) by Eq. (45) in the previous proof in Appendix D.5.

D.7 ADDITIONAL DISCUSSION: LINK TO TWO-LEVEL HIERARCHIES

The linear diffusion Eq. (16) can be marginalized into a 2-level hierarchy using two different strategies.
The first one yields,

ψ∗,L ∼ N (0, σ2
L+1BLB

⊤
L ) , (46)

θ∗,i | ψ∗,L ∼ N (ψ∗,L, Ω1) , ∀i ∈ [K] ,

with Ω1 = σ2
1Id +

∑L−1
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ and Bℓ =

∏ℓ
k=1 Wk. The second strategy yields,

ψ∗,1 ∼ N (0,Ω2) , (47)

θ∗,i | ψ∗,1 ∼ N (ψ∗,1, σ
2
1Id) , ∀i ∈ [K] ,

where Ω2 =
∑L
ℓ=1 σ

2
ℓ+1BℓB

⊤
ℓ . Recently, HierTS (Hong et al., 2022b) was developed for such

two-level graphical models, and we call HierTS under Eq. (46) by HierTS-1 and HierTS under
Eq. (47) by HierTS-2. Then, we start by highlighting the differences between these two variants of
HierTS. First, their regret bounds scale as

HierTS-1 : Õ
(√

nd(K
∑L
ℓ=1 σ

2
ℓ + Lσ2

L+1

)
, HierTS-2 : Õ

(√
nd(Kσ2

1 +
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ℓ=1 σ

2
ℓ+1)

)
.

When K ≈ L, the regret bounds of HierTS-1 and HierTS-2 are similar. However, when K > L,
HierTS-2 outperforms HierTS-1. This is because HierTS-2 puts more uncertainty on a single
d-dimensional latent parameter ψ∗,1, rather than K individual d-dimensional action parameters
θ∗,i. More importantly, HierTS-1 implicitly assumes that action parameters θ∗,i are conditionally
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independent given ψ∗,L, which is not true. Consequently, HierTS-2 outperforms HierTS-1.
Note that, under the linear diffusion model Eq. (16), dTS and HierTS-2 have roughly similar regret
bounds. Specifically, their regret bounds dependency on K is identical, where both methods involve
multiplying K by σ2

1 , and both enjoy improved performance compared to HierTS-1. That said,
note that Theorem 4.1 and Proposition 4.2 provide an understanding of how dTS’s regret scales
under linear link functions fℓ, and do not say that using dTS is better than using HierTS when
the link functions fℓ are linear since the latter can be obtained by a proper marginalization of latent
parameters (i.e., HierTS-2 instead of HierTS-1). While such a comparison is not the goal of this
work, we still provide it for completeness next.

When the mixing matrices Wℓ are dense (i.e., assumption (A3) is not applicable), dTS and
HierTS-2 have comparable regret bounds and computational efficiency. However, under the
sparsity assumption (A3) and with mixing matrices that allow for conditional independence of ψ∗,1
coordinates given ψ∗,2, dTS enjoys a computational advantage over HierTS-2. This advantage
explains why works focusing on multi-level hierarchies typically benchmark their algorithms against
two-level structures akin to HierTS-1, rather than the more competitive HierTS-2. This is also
consistent with prior works in Bayesian bandits using multi-level hierarchies, such as Tree-based
priors (Hong et al., 2022a), which compared their method to HierTS-1. In line with this, we also
compared dTS with HierTS-1 in our experiments. But this is only given for completeness as
this is not the aim of Theorem 4.1 and Proposition 4.2. More importantly, HierTS is inapplicable
in the general case in Eq. (1) with non-linear link functions since the latent parameters cannot be
analytically marginalized.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 SWISS ROLL DATA

Fig. 5 shows samples from the Swiss roll data and samples from generated by the pre-trained diffusion
model for different pre-training sample sizes.

(a) Diffusion pre-trained on 50 sam-
ples from the Swiss roll dataset.

(b) Diffusion pre-trained on 103

samples from the Swiss roll dataset.
(c) Diffusion pre-trained on 104

samples from the Swiss roll dataset.

Figure 5: True distribution of action parameters (blue) vs. distribution of pre-trained diffusion model
(red).

E.2 DIFFUSION MODELS PRE-TRAINING

We used JAX for diffusion model pre-training, summarized as follows:

• Parameterization: Functions fℓ are parameterized with a fully connected 2-layer neural
network (NN) with ReLU activation. The step ℓ is provided as input to capture the current
sampling stage. Covariances are fixed (not learned) as Σℓ = σ2

ℓ Id with σℓ increasing with ℓ.

• Loss: Offline data samples are progressively noised over steps ℓ ∈ [L], creating increasingly
noisy versions of the data following a predefined noise schedule (Ho et al., 2020). The NN
is trained to reverse this noise (i.e., denoise) by predicting the noise added at each step. The
loss function measures the L2 norm difference between the predicted and actual noise at
each step, as explained in Ho et al. (2020).
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• Optimization: Adam optimizer with a 10−3 learning rate was used. The NN was trained
for 20,000 epochs with a batch size of min(2048, pre-training sample size). We used CPUs
for pre-training, which was efficient enough to conduct multiple ablation studies.

• After pre-training: The pre-trained diffusion model is used as a prior for dTS and compared
to LinTS as the reference baseline. In our ablation study, we plot the cumulative regret of
LinTS in the last round divided by that of dTS. A ratio greater than 1 indicates that dTS
outperforms LinTS, with higher values representing a larger performance gap.

E.3 QUALITY OF OUR POSTERIOR APPROXIMATION

To assess the quality of our posterior approximation, we consider the scenario where the true
distribution of action parameters is N (0d, Id) with d = 2 and rewards are linear. We pre-train a
diffusion model using samples drawn from N (0d, Id). We then consider two priors: the true prior
N (0d, Id) and the pre-trained diffusion model prior. This yields two posteriors:

• P1 : Uses N (0d, Id) as the prior. P1 is an exact posterior since the prior is Gaussian and
rewards are linear-Gaussian.

• P2 : Uses the pre-trained diffusion model as the prior. P2 is our approximate posterior.

The learned diffusion model prior matches the true Gaussian prior (as seen in Fig. 7a). Thus, if our
approximation is accurate, their posteriors P1 and P2 should also be similar. This is observed in
Fig. 7b where the approximate posterior P2 nearly matches the exact posterior P1.

(a) Gaussian distribution vs. diffusion model pre-
trained on 103 samples drawn from it.

(b) Exact posterior P1 vs. approximate posterior
P2 after n = 100 rounds of interactions.

Figure 6: Assessing the quality of our posterior approximation.

E.4 BOUND COMPARISON

Here, we compare our bound in Theorem 4.1 to bounds of LinTS from the literature.
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(a) Comparing our bound to the frequentist bound
of LinTS in Abeille & Lazaric (2017).
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(b) Comparing our bound to the standard Bayesian
bound of LinTS.

Figure 7: Comparing our bound to the frequentist and Bayesian bounds of LinTS.

F BROADER IMPACT

This work contributes to the development and analysis of practical algorithms for online learning to
act under uncertainty. While our generic setting and algorithms have broad potential applications,
the specific downstream social impacts are inherently dependent on the chosen application domain.
Nevertheless, we acknowledge the crucial need to consider potential biases that may be present in
pre-trained diffusion models, given that our method relies on them.

G LIMITATIONS AND FUTURE RESEARCH

We designed diffusion Thompson sampling (dTS); for which we developed both theoretical and algo-
rithmic foundations in numerous practical settings. We identified several directions for future work.
Exploring other approximations for non-linear diffusion models, both empirically and theoretically.
For theory, future research could explore the advantages of non-linear diffusion models by deriving
their Bayes regret bounds, akin to our analysis in Section 4. Empirically, investigating our and other
approximations in complex tasks would be interesting. Additionally, exploring the extension of this
work to offline (or off-policy) learning in contextual bandits (Swaminathan & Joachims, 2015; Aouali
et al., 2023a) represents a promising avenue for future research. Our work focused on contextual
bandits, laying the groundwork for future exploration into reinforcement learning. This exploration
can also be done from both practical (empirical) and theoretical angles. Finally, while our method,
which approximates rewards using a Gaussian distribution, worked well for linear rewards and those
following a generalized linear model, its effectiveness in real-world, complex scenarios needs further
testing.

H AMOUNT OF COMPUTATION REQUIRED

Our experiments were conducted on internal machines with 30 CPUs and thus they required a moder-
ate amount of computation. These experiments are also reproducible with minimal computational
resources.
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