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Abstract

Despite many successful applications of data-driven control in robotics, extracting
meaningful diverse behaviors remains a challenge. Typically, task performance
needs to be compromised in order to achieve diversity. In many scenarios, task
requirements are specified as a multitude of reward terms, each requiring a different
trade-off. In this work, we take a constrained optimization viewpoint on the quality-
diversity trade-off and show that we can obtain diverse policies while imposing
constraints on their value functions which are defined through distinct rewards.
In line with previous work, further control of the diversity level can be achieved
through an attract-repel reward term motivated by the Van der Waals force. We
demonstrate the effectiveness of our method on a local navigation task where a
quadruped robot needs to reach the target within a finite horizon. Finally, our
trained policies transfer well to the real 12-DoF quadruped robot, Solo12, and
exhibit diverse agile behaviors with successful obstacle traversal1.

1 Introduction

Reinforcement Learning (RL) has proven itself as a valuable tool for equipping robotic platforms
with a variety of capabilities. However, the ability of RL to provide a range of diverse solutions for
the same task still remains a challenging frontier.

Given a set of reward functions describing a particular task, our goal is to train a variety of different
skills that solve the same task proficiently. This essentially formulates a constraint optimization
problem as proposed by Zahavy et al. [2022], where the objective is to maximize diversity while
satisfying constraints that guarantee that each skill achieves a certain level of cumulative reward in
comparison to an expert trained with only task rewards.

In this study, we introduce Diversity Optimization under Multiple Near-optimal Constraints (DO-
MiNiC), an adaptive extension to the DOMiNO [Zahavy et al., 2022] framework. DOMiNiC is
particularly effective in environments characterized by a wide variety of constraints, including im-
portant facets such as task-based rewards, safety-oriented regularization, and discretionary auxiliary
rewards – all with different requirements on how much they can be sacrificed.

2 Preliminaries

In the general RL setup, an agent interacts with an environment to maximize the cumulative discounted
reward. From the definition of Markov decision processes (MDPs) [Puterman, 2014], an initial
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Figure 1: The DOMiNiC training scheme. We collect samples in simulation and fit the extrinsic values for
updating the Lagrange multipliers and an intrinsic value function based on eq. (10) (VDW) used for measuring
diversity. These are combined into an aggregate advantage term in eq. (6), ensuring that intrinsic reward is
maximized only after all constraints are satisfied.

state s0 is sampled from a state distribution ρ(s0), then at each time step t, the agent applies an
action at according to a policy π(at|st) given a state st, and receives from the environment a
reward rt ∼ R(st, at) and a next state st+1 ∼ P (st+1|st, at). The performance metric can be
written as vπ = (1 − γ)E[

∑∞
t=0 γ

trt] and the state-action occupancy is defined as dπ(s, a) =
(1− γ)E[

∑∞
t=0 γ

tPπ(st = s)π(a|s)]. The RL objective can be rewritten as maximizing a function
of the occupancy measure maxdπ∈K⟨dπ, r⟩, where ⟨dπ, r⟩ =

∑
s,a dπ(s, a)r(s, a) denotes the inner

product and K is the set of admissible distributions [Zahavy et al., 2021].

Zahavy et al. [2022] studied the Constrained Markov Decision Process (CMDP) formulation, which
seeks to compute a set of policies Πn = {πz}nz=1 that satisfy

max
Πn

Diversity(Πn) s.t. ⟨dπ, re⟩ ≥ αv∗e , ∀π ∈ Πn, (1)

where re and v∗e correspond to the extrinsic reward and optimal extrinsic value. Intuitively, it computes
a set of diverse policies while maintaining a certain level of extrinsic optimality specified by the
optimality ratio α ∈ [0, 1].

As shown in previous work [Zahavy et al., 2021], convex diversity objectives can be optimized by
solving a sequence of standard RL problems, each with an intrinsic reward equal to the gradient of
the objective evaluated at a state-action occupancy dπ of the current iteration:

rzi = ∇dzπ
Diversity(d1π, ..., d

n
π), ∀z. (2)

Based on a distance measure from Abbeel and Ng [2004], Zahavy et al. [2022] modeled the diversity
objective as the maximization of the minimum squared ℓ2 distance between feature expectations of
different skills, namely

max
d1π,...,d

n
π

0.5

n∑
z=1

min
k ̸=z

∥∥ψz − ψk
∥∥2
2
. (3)

More specifically, given a feature mapping ϕ : S → Rn, the feature expectations are defined by
ψz = Edzπ(s)[ϕ(s)]. Furthermore, they also introduced a physically inspired objective based on Van
der Waals (VDW) force, and considered the following optimization objective

max
d1π,...,d

n
π

0.5

n∑
z=1

ℓ2z − 0.2(ℓ5z/ℓ
3
0), (4)

where ℓz = mink ̸=z
∥∥ψz − ψk

∥∥
2
, which allows the level of diversity to be controlled by ℓ0. When

the features are in close proximity ℓi < ℓ0, the repulsive force dominates, whereas when ℓi > ℓ0 the
attractive force prevails.

3 Method

The DOMiNO Zahavy et al. [2022] framework utilizes a single scalar extrinsic value as a metric to
assess the proficiency of learned skills. However, this methodology faces challenges when dealing
with tasks characterized by multiple objectives, as it lacks clarity in discerning which particular
objective may undergo compromise. Moreover, the spectrum of different optimality considerations
cannot be adequately formulated within the single constraint MDP formulation in eq. (1).
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To address these problems, we present Diversity Optimization under Multiple Near-optimal Con-
straints (DOMiNiC) to extend the capacity of this framework to multi-constraint optimization scenar-
ios. More specifically, we categorize the rewards into m different groups. Each constraint group j
has an associated reward rje and an optimality ratio αj . We consider the following formulation:

max
Πn

Diversity(Πn)

s.t. ⟨dπ, rje⟩ ≥ αjvj∗e ∀j ∈ {1, ...,m}, π ∈ Πn,
(5)

where rje is the extrinsic reward and vj∗e is the optimal value of group j. This multi-constraint
formulation allows fine-grained control over different constraint groups, via the parameters {αj}mj=1.
An overview of our framework is shown in fig. 1.

To ensure that the intrinsic reward is maximized only after all constraint groups have been satisfied,
we introduce the following aggregate advantage term

az =
(
1−max

j
σ(µj,z)

)
azi +

∑
j

σ(µj,z)aje, ∀z, (6)

where aje is the extrinsic advantage for reward group j, azi is the intrinsic advantage of skill z, and
σ(µj,z) is the bounded Lagrange multiplier for constraint j and skill z. Note that the aggregate
advantage az → azi when σ(µj,z) → 0 for all constraint groups, i.e., when all constraints are satisfied.

The Lagrange multipliers are updated according to the following loss function, which is designed to
guarantee the satisfaction of all constraint groups:

Lµ =

n∑
z=1

m∑
j=1

E
vj,ze

[
µj,z(αjvj∗e − vj,ze )

]
. (7)

To compute the feature expectations ψz , we use the state-conditioned Successor Features (SFs)
proposed by Barreto et al. [2017], which decouple the environment dynamics from rewards and
facilitate knowledge transfer across tasks. The SFs of a policy π evaluated at a state s are given
by ψz(s) = Ez

[∑∞
i=0 γ

tϕ(st) | s0 = s
]
. Our algorithm relies on the following two properties: i)

feature expectations satisfy ψz = Eρ(s0)[ψz(s0)], where ρ(s0) is the initial state distribution; and ii)
SFs ψz(s) can be trained by a learning process similar to training a value function, using Temporal
Difference (TD) updates [Sutton and Barto, 2018], which minimizes the loss

Lψ =

n∑
z=1

E
πz

∥ϕ(s) + γψz(s′)− ψz(s)∥22 . (8)

At each time step, the intrinsic reward ri is computed from the learned SFs ψ(s) either by the
repulsive force in eq. (3)

rzi (s) = ⟨ϕ(s), ψz − ψz
⋆

⟩, (9)
or from the VDW force in eq. (4)

rzi (s) = (1− (ℓz/ℓ0)
3)⟨ϕ(s), ψz − ψz

⋆

⟩, (10)

where z⋆ = argmink ̸=z
∥∥ψz − ψk

∥∥
2
.

Instead of concatenating the one-hot encoder of discrete skills to the input as in previous work, we
use randomly initialized layer masks for all skill-conditioned neural networks, including the policy,
value functions, and SFs. Before training, a binary mask of the same size as the hidden dimensions is
sampled and fixed for each skill. During training, the mask activation is used to set the output of the
corresponding neural units to zero. Using these masks ensures that individual skills retain distinct
features, mitigating interference and promoting skill diversity within the neural network architecture.
The mask sampling probability is chosen to balance the independence and overlap of neural units
between skills.

In contrast to prior work, our approach employs an on-policy training paradigm, drawing inspiration
from Proximal Policy Optimization (PPO) Schulman et al. [2017]. This choice leads us to utilize
Generalized Advantage Estimation (GAE) Schulman et al. [2015] as our preferred method, as opposed
to the V-trace technique Espeholt et al. [2018] typically associated with off-policy frameworks. We
also introduce a “warm-start” phase to warm up all skills to near-expert level, by pre-training them
solely with extrinsic advantages. The complete pseudocode is provided in Section 6.4.
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4 Experiments

We evaluate our method on Solo12, an open-source quadruped platform Léziart et al. [2021] with
12 degrees of freedom tasked with local navigation and locomotion both in simulation and on real
hardware. We refer the interested reader to Section 6.2 and Section 6.3 for the task definition and
training details.

4.1 Skill Discovery in Local Navigation

Skills
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Figure 2: The top-down view of diverse trajectories of successful obstacle traversal obtained with different ℓ0
values (left: small ℓ0, right: large ℓ0) under the combination [αt, αr, αs] = [0.9, 0.8, 0.7]. Arrows indicate the
yaw angle of the robot at trajectory points. The black squares are the visualization of the box obstacle and the
black circles are the target positions that the robots have to reach.

In our first experiment, we show in simulation that diverse skills can be learned to successfully
navigate to the target position in the presence of obstacles, while achieving a good balance between
task, regularization, and style with optimality ratios [αt, αr, αs] = [0.9, 0.8, 0.7]. In addition,
diversity can be controlled using the intrinsic objective derived from the VDW force in eq. (10).

In the top-down view of fig. 2, the learned skills exhibit different base velocity directions while
moving towards the target and different strategies, including detours and jumping on the box, to
overcome the obstacle. For small values of ℓ0, forcing low diversity, all learned skills converge to the
“shortest path” solution, which is characterized by reaching the target position by jumping on the box
and then jumping down to the target position on the ground.

Figure 3: Obstacle experiment on hardware, we observe that the extracted skills explore different options in
solving the obstacle. We have skills that go over the obstacle, to the right or to the left in different styles. The
green skill is the one closest to the expert, which never takes detours around the box.

4.2 Quality-Diversity Balance

In the this experiment, we perform an extensive grid search on different combinations of optimality
ratios [αt, αr, αs] of the task, regularizer, the style, and different values of ℓ0 in the VDW intrinsic
reward in eq. (10) to evaluate their influence on diversity. The results are shown in fig. 4.

The intrinsic reward in eq. (10), allows us to set a desired level of diversity by ℓ0. On the horizontal
axis, the diversity is plotted by measuring the mean of the closest distance between the feature
expectations ψz evaluated on a uniform initial state distribution ρ(s0). Optimality ratios [αt, αr, αs]
give us the budget of how much extrinsic reward we can sacrifice for a gain in diversity. The vertical
axis shows the percentage of returns achieved relative to the expert.
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Figure 4: The controllability over quality and diversity through different values of optimality ratios [αt, αr, αs]
and ℓ0 from the VDW force objective. The results of a grid search over three different values {0.5, 0.7, 0.9}
for [αt, αr, αs] and four values {10, 20, 30, 40} for ℓ0 are shown as scattered pie plots. The colors on the three
sectors represent different values for each optimality ratio, and the ℓ0 levels are shown as annotations at the
points. For each figure, we fix two of the three optimality ratios and plot the return that corresponds to the
varying term on the vertical axis: top left: [∗, 0.7, 0.9], top right: [0.5, ∗, 0.7], bottom left: [0.5, 0.7, ∗].

Overall, we find good controllability of the diversity via ℓ0 as well as of the quality of the behavior
via the optimality ratios [αt, αr, αs]. It is important to emphasize that with looser constraints (smaller
α) we gain more diversity as shown in all three plots in fig. 4.

In addition to demonstrating controllability, several insights can be derived from fig. 4. First of all,
we notice that the controllability of different reward groups are not entirely independent of each
other. Imposing task and regularizer constraints leads to an over-satisfaction of the style constraint
as shown from the bottom left plot. Second, it is more difficult to control the optimality of the
regularizer group. We hypothesize that different reward terms in the multiplicative structure of the
regularizer might influence each other. Managing the intricate interactions among reward groups and
their sub-components remains a promising direction for future research.

4.3 Hardware Deployment

We deploy our trained policy on the real robot as shown in fig. 3, where the robot manages to choose
diverse trajectories to reach the target behind a box obstacle with a width of 1.4 meters and height of
0.18 meters. Different skills extract diverse ways to traverse the obstacle by either jumping onto it or
taking a detour around it from the left or the right. The policy deployed on hardware was trained with
large optimality ratios for the task and regularizer to ensure good task performance and to fulfill the
action smoothness required on a real system. For estimating the robot base state, a Vicon motion
capture system is used to provide the base position and orientation at 100 Hz, and the velocity is
calculated based on the finite difference. The position of the box obstacle is fixed in the global frame,
so the height scan is created based on the absolute position of the robot.

5 Discussion

We propose DOMiNiC, a framework that effectively controls the trade-off between diversity and
extrinsic rewards with multiple constraints by leveraging the CMDP formulation and incorporating
the Van der Waals force as an intrinsic objective. We successfully train policies with diverse skills
for Solo12, a 12-DoF quadruped robot tasked with locomotion and local navigation. The learned
behaviors exhibit various successful obstacle traversal strategies in the real-world robotic system.
Furthermore, the satisfaction of each constraint group contributes to the achievement of natural
and diverse behaviors, emphasizing the significance of our proposed multi-constraint diversity
optimization framework.
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6 Supplementary Material

6.1 Related Work

We focus on two aspects that are closely related to our work: RL-based control of quadruped robots
and unsupervised skill discovery.

RL-based methods have recently shown their prominent capability in controlling legged systems [Tan
et al., 2018, Hwangbo et al., 2019, Rudin et al., 2022b]. Trained in simulation, RL policies can
achieve great robustness in tracking velocity commands over challenging terrains [Lee et al., 2020,
Kumar et al., 2021, Miki et al., 2022]. However, velocity-commanded policies often converge to a
single behavior exhibiting trotting gaits in the case of quadruped systems. Efforts have been made
to use RL to achieve diverse behaviors by hierarchical control, imitation, and unsupervised skill
discovery. By formulating locomotion as a position-based local navigation task, Rudin et al. [2022a]
has recently shown agile behaviors emerging from RL such as climbing boxes and crossing gaps.
These behaviors have been recently used as motion priors in a hierarchical control structure for
long-horizon navigation tasks Hoeller et al. [2023] that preserves the diversity. Despite the impressive
results, different priors require behavior-specific reward design, which needs a substantial amount of
reward engineering to balance the behavior and regularization for all priors. Alternatively, combining
skill-conditioned policy with imitation objective can largely reduce the extensive reward shaping.
Imitating reference trajectories has shown the ability to generate agile behavior for quadruped robots
such as dog-like hopping [Peng et al., 2020], backflipping [Li et al., 2023b] and walking with two
feet [Fuchioka et al., 2023]. Kang et al. [2023] proposed to condition the locomotion policy on four
phase variables in combination with imitating trajectories from model-based controllers to achieve
different gait patterns on quadruped robots. Despite the skillful locomotion results, imitation-based
methods often require prior knowledge of the robotic system and the resulting behavior is affected by
the quality of the reference trajectories.

As an alternative, unsupervised skill discovery has recently gained research attention in the RL com-
munity, which is often related to maximizing the skill difference across policies that are conditioned
on latent variables. The intrinsic objective can be incorporated into online training to discover diverse
behaviors, and most recently Vlastelica et al. [2023] also proposed a Fenchel-duality approach for
offline skill discovery. Mutual-information-based methods quantify the shared information between
latent variables and the historical states by a skill-conditioned policy and maximize the mutual
information between the skill and states to obtain distinct behaviors from each other [Eysenbach
et al., 2018, Sharma et al., 2019], which has been shown to extract diverse behaviors successfully
in combination with other rewards [Kumar et al., 2020, Li et al., 2023a]. Alternative to the mutual-
information objective, diversity can also be measured by the Euclidean distance in the state or feature
space [Park et al., 2021, 2023]. Li et al. [2023a] combined the imitation objective with unsupervised
skill discovery to extract diverse skills from unlabeled offline demonstrations.

Despite the interesting motions discovered by these methods, acquiring meaningful and task-related
behavior still remains challenging due to the need to balance quality and diversity carefully. Recently,
Zahavy et al. [2022] proposed DOMiNO to combine unsupervised skill discovery with Constrained
Markov Decision Processes (CMDPs) [Altman, 1999, Szepesvári, 2020] to ensure near-expert
task performance as well as diversity in behaviors. CMDPs, which are a crucial part of RL with
implications for safety and risk aversion, are first used to achieve quality-diversity balance.

As an extension to DOMiNO from Zahavy et al. [2022], DOMiNiC focuses on combining CMDPs to
unsupervised skill discovery for real robotic systems. Specifically, we focused on a similar scenario
as Rudin et al. [2022a] in training locomotion policies for quadruped robots with diverse behaviors to
accomplish the local navigation task.

6.2 Quadruped Locomotion and Local Navigation

We demonstrate our method on the task of quadruped locomotion and local navigation in a position-
based framework proposed by Rudin et al. [2022a], where the robot needs to navigate through an
environment of randomly positioned boxes of different dimensions to reach a specified target position
and orientation within a finite time horizon.

The observations of the policy include base linear and angular velocity, joint position and velocity,
gravity vector projected in the base frame, and the height measurement sampled around the robot.
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Random noise is added to these observations to simulate hardware sensor noise. In addition, the
policy observes the previous actions, the three-dimensional target position in the base frame, the
target yaw angle difference from the current base yaw angle, and a time indicator. The action of the
policy is the target joint positions which will be taken by a PD controller and transformed into joint
torques.

We group extrinsic reward terms into three categories: task rt, regularizer rr, and style rs. The task
reward is computed from the distance to the target at the end of an episode, so the robot is free to
choose the trajectory and gait as long as it reaches the target.

The task reward rt consists of the rewards to track the target position and target orientation.

rt = rpos + ryaw. (11)

The position tracking reward is defined using the target position in the base frame x∗b

rpos = (1 + ∥x∗b∥)−1. (12)

The orientation tracking reward is defined using the target yaw angle from the current yaw angle θ∗b

ryaw = (1 + ∥θ∗b∥)−1 · (∥x∗b∥ ≤ 0.25), (13)

which is non-zero when the target position is tracked well.

The regularizer reward rr includes different components to regularize the behavior as well as to ease
sim-to-real transfer

rr = rȧ · rc · rτ · rg · rst, (14)

where rȧ, rc, rτ are used to regularize action rate, non-feet contact and large torques, rg is to regularize
large roll and pitch angles of the base by comparing the projected gravity vector with the global one,
and rst is defined to encourage the robots to have a minimum velocity (not stall) when the target
position is far. Each of them is mapped by an exponential function rx = exp{−∥x/σx∥2}, where x
is the corresponding value and σx is a scaling factor.

The style reward rs comprises rewards aimed at guiding robots to adopt a specific style based on
prior knowledge. Notably, these rewards are not essential to task completion

rs = rft · rmt · rq, (15)

where rft assigns a higher reward when robots face the target, rmt motivates robots to move towards
the target, and rq keeps all joint angles close to the default ones.

By setting large optimality ratios αt, αr for the task and regularizer groups, we intuitively seek skills
that can both track the target and have regularized motion that can be transferred to the real system.
At the same time, we can diversify the locomotion style by setting different optimality ratios αs to
the style group. In principle, the fixed feature mapping ϕ(s) can be chosen arbitrarily, but a careful
selection using either human or learned expertise can lead to favorable outcomes.

6.3 Training Details

All robots are simultaneously trained on terrains with uniformly sampled boxes, characterized by
random sizes within the intervals [0.8, 2.0] meters for length, and [0.0, 0.2] meters for height. Prior
to this, a curriculum of barrier terrains is implemented to warm-start skills with the ability to track
targets and to climb on and off boxes of varying heights, which is consistent with the warm-start
phase discussed earlier. The two terrain types are shown in fig. 5. The curriculum involving increased
heights in barrier terrains is similar to the approach of Rudin et al. [2022b].

In addition to the warm-start phase, we also randomize the mass and friction coefficients, simulate
random pushes on robots, and apply a 15 ms actuator delay to bridge the gap between simulation and
reality.

We train a set of policies for 2000 iterations consisting of 48 simulation steps with 4096 parallel
environments in Isaac Gym [Makoviychuk et al., 2021] including 800 iterations of warm-starting,
which takes about 3 hours using GeForce RTX 3080Ti GPU. Similar to the previous work of Rudin
et al. [2022a], we fix the episode length to 6 seconds and give the task reward rt in the last second.
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Figure 5: Terrain types used for training, left: barrier, right: box. Target positions are depicted as yellow boxes.

6.4 DOMiNiC

The complete pseudocode is given in algorithm 1.

Algorithm 1 DOMiNiC

Require: π: Policy network, vi, {vje}mj=1: intrinsic and extrinsic value networks, ψ(s): SFs network, µ:
Lagrange multipliers, ψz: feature expectations, v̄e: Moving average of extrinsic values.

1: Initialize networks, Lagrange multipliers, rollout buffer B
2: for learning iterations = 1,2, ... do
3: sample latent skill variable z ∼ pz
4: for time step = 0,1,2, ... do
5: collect transition (s, a, s′, ϕ(s), {rje}mj=1) with πz

6: compute ri using eq. (10)
7: fill rollout buffer B with (s, a, s′, ϕ(s), {rje}mj=1, ri)
8: end for
9: compute TD targets for value update,

10: estimate advantages {aje}mj=1, a
z
i for policy update

11: for policy learning epoch = 1,2, ... do
12: sample transition mini-batches b ∼ B
13: compute aggregate advantage using σ(µ) in eq. (6)
14: update π and vi, {vje}mj=1 with PPO objective
15: update SFs network ψ(s) by the loss eq. (8)
16: update feature expectations ψz

17: update moving averages v̄s
18: if not warm start then
19: update µ by the loss eq. (7)
20: end if
21: end for
22: end for
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