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Abstract

Protein-protein interaction (PPI) represents a central challenge within the biology field, and
accurately predicting the consequences of mutations in this context is crucial for drug design
and protein engineering. Deep learning (DL) has shown promise in forecasting the effects of
such mutations but is hindered by two primary constraints. First, the structures of mutant
proteins are often elusive to acquire. Secondly, PPI takes place dynamically, which is rarely
integrated into the DL architecture design. To address these obstacles, we present a novel
framework named Refine-PPI with two key enhancements. First, we introduce a structure
refinement module trained by a mask mutation modeling (MMM) task on available wild-type
structures, which is then transferred to produce the inaccessible mutant structures. Second,
we employ a new kind of geometric network, called the probability density cloud network
(PDC-Net), to capture 3D dynamic variations and encode the atomic uncertainty associated
with PPI. Comprehensive experiments on SKEMPI.v2 substantiate the superiority of Refine-
PPI over all existing tools for predicting free energy change. These findings underscore the
effectiveness of our hallucination strategy and the PDC module in addressing the absence
of mutant protein structure and modeling geometric uncertainty.

1 Introduction

Proteins seldom act in isolation and typically engage in interactions with others to perform a wide array of
biological functions (Phizicky & Fields, 1995; Du et al., 2016). One illustrative instance involves antibod-
ies, which belong to a protein category within the immune system. They identify and attach to proteins
found on pathogen surfaces and trigger immune responses by interacting with receptor proteins in immune
cells (Lu et al., 2018). Accordingly, it is crucial to devise approaches to modulate these interactions, and a
prevalent strategy is to introduce amino acid mutations at the interface (see Fig. 1). However, the space of
possible mutations is vast, making it impractical or prohibitive to conduct experimental tests on all viable
modifications in a laboratory setting (Li et al., 2023). Thus, computational techniques are required to guide
the recognition of desirable mutations by forecasting their mutational effects on binding strength, commonly
measured by the change in binding free energy termed ∆∆G.

The past decade has witnessed the great potential of deep learning (DL) techniques (Rives et al., 2021;
Min et al., 2022) in biological science, such as protein design (Tang et al., 2024a;b; Wu et al., 2024b;a;
2025), folding classification (Hermosilla et al., 2020), model quality assessment (Wu et al., 2023b), and
function prediction (Gligorijević et al., 2021). These DL algorithms also surpass conventional approaches in
computing ∆∆G and can be roughly divided into biophysics- and statistics-based kinds. In particular, the

1

https://openreview.net/forum?id=GGHk5ukO6t


Published in Transactions on Machine Learning Research (03/2025)

Mutations
Antigen

Antibody
Geometric Deep Learning Optimized Antibody

Figure 1: Geometric deep learning is applied to optimize the antibody sequences and achieve desired prop-
erties (e.g., better affinity and specificity).

former depends on sampling from energy functions and consequently faces a trade-off between efficiency and
accuracy (Schymkowitz et al., 2005; Leman et al., 2020). Meanwhile, statistical-based methods are limited by
the selection of descriptors and cannot take advantage of the growing availability of protein structures (Alford
et al., 2017).

Despite DL’s fruitful progress in identifying ∆∆G, their efficacy encounters various obstacles. First is the
absence of the mutant complex structure. Due to the long-standing consensus that protein function is
intricately related to its structure, an emerging line seeks to encode protein structures using 3D-CNNs or
GNNs (Jing et al., 2020; Satorras et al., 2021; Wu et al., 2021a; 2023a; 2021b), but typically relies on
experimental structures like Protein Data Bank (PDB). Their performance deteriorates significantly when
fed low-quality or noisy protein structures (Huang et al., 2024). Regrettably, in antibody optimization,
obtaining mutant structures is an insurmountable obstacle, and the exact conformational variations upon
mutations are unknown. While groundbreaking approaches such as Alphafold (Jumper et al., 2021) and
Alphafold-Multimer (Evans et al., 2021) have brought a revolution in directly inferring protein structures
from amino acid sequences, they struggle to accurately forecast the structure of antibody-antigen complexes
compared to monomers (Ruffolo et al., 2023). As an alternative, some scientists turn to energy-based protein
folding tools like FoldX (Delgado et al., 2019) to sample mutant structures, which show finite efficacy and
dramatically increase overall computational time (Cai et al., 2023). The second limitation is the overlook
of existing DL on the fundamental thermodynamic principle. Proteins exhibit inherent dynamism, critical
for biological functions and therapeutic targeting (Miller & Phillips, 2021; Wu et al., 2022a; Wu & Li,
2023). Many real-world observations are not solely dependent on a single structure but influenced by the
equilibrium distribution (Ganser et al., 2019). For example, inferring biomolecule functions involves assessing
the probabilities associated with various structures to identify metastable states.

Figure 2: Performance of Refine-PPI on
SKEMPI.v2 compared to other energy-
based or pretrained baselines.

To overcome these barriers, we introduce Refine-PPI (see
Fig. 3) with two key innovations for the mutation effect pre-
diction problem. First, we devise a masked mutation modeling
(MMM) strategy and propose to predict the mutant structure
and ∆∆G simultaneously. Refine-PPI combines the prediction
of structure and the prediction of free energy change into a
joint training objective rather than relying on external soft-
ware to sample mutant structures. This offers several distinct
advantages. On the one hand, the predicted mutant struc-
ture exhibits significant differences from the wild-type struc-
ture, providing crucial geometric information related to the
change in binding free energy. On the other hand, MMM not
only enables inference of the most likely equilibrium conforma-
tion of the mutant structure but also encourages graph mani-
fold learning with the denoising objective Godwin et al. (2021).
Besides, ∆∆G implicitly conveys extra information about the
structural difference before and after the mutation. Collective
training with ∆∆G would promote the efficiency of structure prediction. Second, we introduce a new kind of
geometric GNN called PDC-Net to capture the flexibility and dynamics of conformations during the binding
process. Specifically, each particle in a complex is represented as a probability density cloud (PDC) that
illustrates the scale and strength of their motion throughout the interaction procedure. Then, an aligned
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Figure 3: A. The overall pipeline of our Refine-PPI. The given wild-type structure and the masked mutant
structure are subsequently fed into weight-shared equivariant neural networks. The masked region is recon-
structed, and the mutation effect is predicted by comparing the features of two resulting complexes. B. The
procedure of deep learning architecture. The particles in the complex are represented as probability density
clouds (PDCs), where each atom moves according to some geometric distributions instead of being immo-
bile. Then, the natural parameters including mean, variance, and co-variance are updated and propagated
throughout PDC-Network.

network is used to propagate the distributions of the equilibrium of molecular systems. A comprehensive
evaluation in the SKEMPI.v2 dataset (Jankauskaitė et al., 2019) proves that our Refine-PPI outperforms
all present methodologies by a significant margin (see Fig. 1) and it is promising to generate absent mutant
structures via a multi-task training scheme.

2 Preliminary and Background

Definition and Notations. A protein-protein complex is a multi-chain protein structure, separated into
two groups. Each group contains at least one protein chain and each chain consists of several amino acids.
The wild-type complex is represented as a 3D graph GWT, constituted of a ligand GWT

L and a receptor GWT
R .

G is composed of a batch of nodes V and edges E . V represents residues or atoms at different resolutions, and
vi ∈ V has several intrinsic attributes such as the initial ψh-dimension roto-translational invariant features
hi ∈ Rψ0 (e.g., atom or amino acid types, and electronegativity) and coordinates xi ∈ R3. E determines the
connectivity between these particles and is divided into internal edges within each component as EL and ER
and external edges between counterparts as ELR. We assume n residues in the entire complex and consistent
residue numbers (i.e.,

∣∣VWT
∣∣ =

∣∣VMT
∣∣ = n). We select four backbone atoms {N,Cα,C,O} and an additional

Cβ to represent each amino acid.

Problem Statement. The mutation effect prediction is to approximate the ground-truth function that
maps from the wild-type structure GWT and mutant information (i.e., where and how some residues mutate
from one type ai ∈ {ACDEFGHIKLMNPQRSTVWY} to the other a′

i) to ∆∆G.
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3 Method

Overview. Refine-PPI (see Fig. 3) has three constituents parameterized by ρ, θ, τ , respectively. The
backbone module hρ(.) encodes the input 3D complex structure, the structure refinement module fθ(.)
geneates the unseen mutant structure, and the predictor gτ (.) estimates the final ∆∆G. The whole pipeline
is described below. To begin with, the wild-type structure GWT and a well-initialized mutant structure G̃MT

(the initialization details will be elucidated later) are fed into hρ(.) to gain their corresponding features
ZWT ∈ Rn×ψ1 and ˜ZMT ∈ Rn×ψ1 , respectively. Then, the imperfect mutant structure G̃MT along with its
first-round representation ˜ZMT is forwarded into fθ(.) for several cycles and acquires the ultimate structure
ĜMT with more robust coordinates x̂MT. Subsequently, the predicted mutant structure ĜMT is encoded by
hρ(.) again, and we can retrieve its second-round updated representation ZMT ∈ Rn×ψ1 . As last, a pooling
layer and gτ (.) are appended to aggregate graph-level representations of both wild-type and mutation-type
noted as HWT ∈ Rψ2 and HMT ∈ Rψ2 based on ZWT and ZMT, and output the predicted free energy change
ŷ.

Mask Mutation Modeling. As GMT is hard to attain, we rely on the accessible GWT to train fθ(.) to
restore the fragmentary structures. To this end, we introduce a mask mutation modeling (MMM) task,
which requires fθ(.) to reconstruct corrupted wild-type structures G̃WT. Here, we consider a single-mutation
circumstance for better illustration where the m-th residue mutates from am to a′

m. Then, a (l + r)-length
segment around this mutation site is masked, denoted as Vmut = {vi}m+r

i=m−l, which starts from the (m− l)-
th residue and ends at the (m + r)-th residue. We aim to recover the structure of this masked region{

xWT}m+r
i=m−l given G̃WT, its representation, and the native amino acid type am. The entire process is

fθ

(
˜ZMT, G̃WT, am

)
→

{
xWT}m+r

i=m−l.

Intuitively, how to corrupt GMT is significant, because the same corruption mechanism will be imposed to
procure the incipient mutant structure G̃MT during inference, serving as a starting point to deduce the final
predicted structure ĜMT. Here, we investigate two strategies to initialize coordinates of the masked regions
Vmut. Firstly, we borrow ideas from denoising-based molecular pretraining methods (Godwin et al., 2021;
Feng et al., 2023) and independently add a random Gaussian noise of zero mean ϵ ∼ N (0,α) to the original
coordinates as x̃WT

i = xWT
i +ϵ, where α determines the scale of the noisy deviation. This denoising objective

is equivalent to learning a special force field (Zaidi et al., 2022).

In addition, we introduce a more challenging mode to corrupt GMT and hypothesize that the mutant regions
Vmut are completely unknown. To be specific, we initialize the coordinates the masked regions

{
xWT}m+r

i=m−l
according to the even distribution between the residue right before the region (namely, vm−l−1) and the
residue right after the region (namely, vm+r+1). Notably, residues immediately preceding or following the
region can be missing, in which case we extend the existing side in reverse to initialize Vmut (see Fig. 6).
The overall process is written as follows:

x̃i =


xm−l−1 + (i−m+ l + 1) xm+r+1−xm−l−1

l+r+2 , if∃vm−l−1, vm+r+1,

xm+r+1 − (m+ r + 1− i) (xm+r+2 − xm+r+1) , if∄vm−l−1,∃vm+r+1,

xm−l−1 + (i−m+ l + 1) (xm−l−1 − xm−l−2) , if∃vm−l−1,∄vm+r+1,

(1)

Noteworthily, both initialization strategies can be easily extended to multiple mutations.

After that, the corrupted wild-type structure G̃WT is sent sequentially to hρ(.) and fθ(.) to restore the
coordinates of the mutant regions masked, resulting in x̂WT. As coordination data usually contains noise,
we take the cue from MEAN (Kong et al., 2022) and adopt the Huber loss (Huber, 1992) instead of the
common RMSD loss to avoid numerical instability. The loss function is defined by comparing to the actual
xi:

Lrefine =
∑

i∈Vmut

1
|Vmut|

lhuber(x̂i,xi). (2)

∆∆G Prediction. We impose the same strategy in MMM to initialize G̃MT based on GWT. Then given
the mutant information a′

m, we utilize weight-shared hρ(.) and weight-shared fθ(.) to acquire the unknown
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mutant structure as p
({

xMT}m+r
i=m−l

∣∣∣∣G̃MT, a′
m, θ, ρ

)
. It is worth noting that the resulting x̂WT does not

carry gradients with no backpropagation at this phase. Later, we leverage GWT and ĜMT to extract their
corresponding representations ZWT and ZMT, separately. ZWT and ZMT are then delivered to gτ (.) to
acquire the predicted change in free energy ŷ. Supervision is realized by the sum of two losses as L =
L∆∆G(y, ŷ) + λLrefine

({
xWT}m+r

i=m−l ,
{

x̂WT}m+r
i=m−l

)
, where λ is the balance hyperparameter. The whole

paradigm illustrated in pseudo-code is put in Algorithm 1.

Algorithm 1 The workflow of our Refine-PPI.
Input: wild-type structure GWT, mutant site and amino acid types am and a′

m; backbone module hρ,
refinement model fθ, head predictor gτ ; number of recycles k, the real free energy change y, loss weight λ
G̃WT

0 , G̃MT
0 ← Equation 1

(
GWT)

▷ Initialize structures
# Training-only
for t = 0, 1, ..., k − 1 do

ZWT
t ← hρ

(
G̃WT
t

)
x̃WT
t+1 ← fθ

(
G̃WT
t ,ZWT

t , x̃WT
t , am

)
end for
Lrefine ← Equation 2

(
x̃WT
k ,xWT)

▷ The MMM loss
for t = 0, 1, ..., k − 1 do

ZMT
t

No grad.←−−−−− hρ
(
G̃MT
t

)
x̃MT
t+1

No grad.←−−−−− fθ
(
G̃MT
t ,ZMT

t , x̃MT
t , a′

m

)
end for
ZWT,ZMT ← hρ

(
GWT)

, hρ
(
G̃MT
k

)
ŷ ← gτ

(
ZWT,ZMT)

L∆∆G ← RMSE(ŷ, y) ▷ The ∆∆G loss
# Backpropagation
ρ, θ, τ ← L∆∆G + λLrefine

3.1 Probability Density Cloud Network

Kinetics in Molecules. Cutting-edge architectures extend networks to Euclidean and non-Euclidean
domains, encompassing manifolds, meshes, or strings. As molecules can be naturally represented as graphs,
graph approaches become dominant in molecular modeling (Schütt et al., 2018; Fuchs et al., 2020; Liao &
Smidt, 2022). Beyond addressing GNNs’ inherent limitations (Wu et al., 2022b), they incorporate geometric
principles like symmetry through equivariance and invariance. However, previous approaches were primarily
designed for static and stable molecules characterized by deterministic and uncertainty-free structures. Here,
we propose to integrate dynamics into geometric GNNs.

Probability Density Cloud. Atoms are never at rest, even at extremely low temperatures (Clerk-
Maxwell, 1873), and exhibit translational, rotational, or vibrational motion. In quantum mechanisms, elec-
trons do not follow well-defined paths like planets around the Sun in classical physics but exist at specific
energy levels and are described by wave functions, the mathematical functions on the probability of finding
an electron in various locations around the nucleus (Schumaker, 1986). Physicists commonly envision an
electron or other quantum particle by depicting their probability distribution around a specific region of
space within an atom or molecule, where the shape and size of orbitals depend on the quantum numbers.

Inspired by this phenomenon, we portray particles as PDC showing regions with a higher probability of
finding them. xi are assumed to follow Gaussian as N (µi,Σi). µi ∈ R3 is the place where node i is
most likely to be located, and Σi ∈ R3×3 is an isotropic (or spherical) covariance matrix signifying the
independence upon the coordinate system. Given this premise, we can derive many invariant geometries
that emphasize molecular structural information. The primary variable is the distance dij = ||xi − xj ||2.
As xi and xj are are statistically independent, their difference follows a normal distribution as xi − xj ∼
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N (µi − µj ,Σi + Σj) (Lemons, 2003), and its squared norm denoted as d2
ij exhibits a generalized chi-squared

distribution χ2(.) with a set of natural parameters, comprising (µi − µj ,Σi + Σj). The mean and variance
of χ2(.), denoted as µdij and σdij , are:

µdij
= tr (Σi + Σj) + ||µi − µj ||2,

σdij
= 2 tr (Σi + Σj) + 4(µi − µj)⊤ (Σi + Σj) (µi − µj),

(3)

where tr(.) calculates the trace of a matrix. Furthermore, distributions of other geometric variables can also
be induced. Let xab be the directed vector from xa to xb, and consider triangle nodes (i, j, k), the angle
distribution ∠xijxik can be characterized as the distribution of arccos (xi−xj)·(xj−xk)

|xi−xj ||xj−xk| .

PDC-Net. Our PDC idea can be generalized to any geometric architecture and here we select
EGNN (Satorras et al., 2021) as backbone. Our PDC-Net no longer accepts deterministic geometries dij
and xi, but takes distributions fdij and fxi as ingredients. Its l-th layer, named PDC-L, takes the set
of node embeddings h(l) =

{
h(l)
i

}n
i=1

, edge information E = {EL, ER, ELR}, and geometric feature distri-

butions ν(l) =
{

µ
(l)
i ,Σ

(l)
i

}n
i=1

as input, and outputs a transformation on h(l+1) and ν(l+1). Concisely,
h(l+1),ν(l+1) = PDC-L

[
h(l),ν(l), E

]
, which is defined as follows:

mj→i = ϕe

(
h(l)
i ,h

(l)
j , µ

(l)
dij
, σ

(l)
dij

)
, h(l+1)

i = ϕh

h(l)
i ,

∑
j

mj→i,

 , (4)

µ
(l+1)
i = µ

(l)
i + 1

|N (i)|
∑

j∈N (i)

(
µ

(l)
i − µ

(l)
j

)
ϕµ(mj→i), (5)

Σ(l+1)
i = Σ(l)

i + 1
|N (i)|

∑
j∈N (i)

(
Σ(l)
i + Σ(l)

j

)
ϕσ(mj→i), (6)

where ϕe, ϕh, ϕµ, ϕσ are the edge, node, mean, and variance operations respectively that are commonly
approximated by Multilayer Perceptrons (MLPs). It is worth noting that the mean position of each particle,
denoted as µi, is updated through a weighted sum of all relative differences (µi − µj)∀j∈N (i). Meanwhile,
the variance Σi is updated by a weighted sum of all additions (Σi + Σj)∀j∈N (i). These strategies align with
the calculation of the mean and variance of the difference between two normal random variables. We also
provide another type of mechanism to update the variance and observe a slight improvement in Appendix B.2.
Regarding the initialization of Σ, we explore three different approaches, and details are elucidated in the
Appendix 4.4.1. Moreover, PDC-Net maintains the equivariance property, and the proof can be found in
Appendix D.

4 Results

4.1 Experimental Setups

Data Evaluation is carried out in SKEMPI.v2 (Jankauskaitė et al., 2019). It contains data on changes in
the thermodynamic parameters and kinetic rate constants after mutation for structurally resolved PPIs. The
latest version contains manually curated binding data for 7,085 mutations. The dataset is split into 3 folds
by structure, each containing unique protein complexes that do not appear in other folds. Two folds are used
for train and validation, and the remaining fold is used for test. This yields 3 different sets of parameters
and ensures that every data point in SKEMPI.v2 is tested once. The pretraining data is derived from PDB-
REDO, a database that contains refined X-ray structures in PDB. The protein chains are clustered based
on 50% sequence identity, leading to 38,413 chain clusters, which are randomly divided into the training,
validation, and test sets by 95%/0.5%/4.5% respectively.

Baselines and Metrics. We evaluate PDC-Net against various categories of techniques. The initial kind
encompasses conventional empirical energy functions such as Rossetta Cartesian ∆∆G Park et al. (2016);
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Table 1: Evaluation of ∆∆G prediction on the SKEMPI.v2 dataset.

Method Pretrain Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Energy Function-based
Rosetta – 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX – 0.3789 0.3693 0.3120 0.4071 1.9080 1.3089 0.6582
Supervised-based
DDGPred ✗ 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
End-to-End ✗ 0.3873 0.3587 0.6373 0.4882 1.6198 1.1761 0.7172
Sequence-based
ESM-1v ✓ 0.0073 -0.0118 0.1921 0.1572 1.9609 1.3683 0.5414
PSSM ✓ 0.0826 0.0822 0.0159 0.0666 1.9978 1.3895 0.5260
MSA Transf. ✓ 0.1031 0.0868 0.1173 0.1313 1.9835 1.3816 0.5768
Tranception ✓ 0.1348 0.1236 0.1141 0.1402 2.0382 1.3883 0.5885
Unsupervised or Semi-supervised-based
B-factor ✓ 0.2042 0.1686 0.2390 0.2625 2.0411 1.4402 0.6044
ESM-IF ✓ 0.2241 0.2019 0.3194 0.2806 1.8860 1.2857 0.5899
MIF-∆logit ✓ 0.1585 0.1166 0.2918 0.2192 1.9092 1.3301 0.5749
MIF-Net. ✓ 0.3965 0.3509 0.6523 0.5134 1.5932 1.1469 0.7329
RDE-Linear ✓ 0.2903 0.2632 0.4185 0.3514 1.7832 1.2159 0.6059
RDE-Net. ✓ 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454
DiffAffinity ✓ 0.4220 0.3970 0.6690 0.5560 1.5350 1.0930 0.7440
PPIFormer ✓ 0.4281 0.3995 0.6450 0.5304 1.6420 1.1186 0.7380
Refine-PPI ✗ 0.4475 0.4102 0.6584 0.5394 1.5556 1.0946 0.7517
Refine-PPI ✓ 0.4561 0.4374 0.6592 0.5608 1.5643 1.1093 0.7542

Alford et al. (2017) and FoldX. The second grouping comprises sequence/evolution-based methodologies,
exemplified by ESM-1v Meier et al. (2021), PSSM, MSA Transformer Rao et al. (2021), and Trancep-
tion Notin et al. (2022). The third category includes end-to-end learning models such as DDGPred Shan
et al. (2022) and another End-to-End model that adopts Graph Transformer (GT) Luo et al. (2023) as
the encoder architecture, but employs an MLP to directly forecast ∆∆G. The fourth grouping encompasses
unsupervised/semi-supervised learning approaches, consisting of ESM-IF Hsu et al. (2022) and MIF Yang
et al. (2022). They pretrain networks on structural data and then employ the pretrained representations
to predict ∆∆G. MIF also utilizes GT as an encoder for comparative purposes with two variations: MIF-
∆logit uses the disparity in log-probabilities of amino acid types to attain ∆∆G, and MIF-Network
predicts ∆∆G based on acquired representations. Besides, B-factors is the network that anticipates the
B-factor of residues and incorporates the projected B-factor in lieu of entropy for ∆∆G prediction. Lastly,
Rotamer Density Estimator (RDE) Luo et al. (2023) uses a flow-based generative model to estimate the
probability distribution of rotamers and uses entropy to measure flexibility with two variants containing
RDE-Linear and RDE-Network. DiffAffinity (Liu et al., 2024) utilizes a Riemannian diffusion model
to learn the generative process of side-chain conformations. PPIFormer (Bushuiev et al., 2023) is pretrained
on a newly collected non-redundant 3D PPI interface dataset PPIRef through the mask language modeling
(MLM) technique. More details are in the Appendix A.

Five metrics are used: Pearson and Spearman correlation coefficients, minimized RMSE, minimized MAE
(mean absolute error), and AUROC (area under the receiver operating characteristic). Calculating AUROC
involves classifying mutations according to the direction of their ∆∆G values. In practical scenarios, the
correlation observed within a specific protein complex attracts heightened interest. To account for this,
we arrange mutations according to their associated structures. Groups with fewer than 10 mutation data
points are excluded. Subsequently, correlation calculations are performed for each structure independently,
leading to two additional metrics: the average per-structure Pearson and Spearman correlation
coefficients. Other details are in the Appendix A.
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A. B.

Figure 4: A. Visualization of correlations between experimental ∆∆G and predicted ∆∆G. D. A selected
example of the interface of a predicted mutant structure. B. The scatter plot shows that the recovery error
of the wild-type structure has a positive relation with the error of ∆∆G prediction.

4.2 Comparison with Existing Tools on Mutant Effect Prediction

Tab. 1 documents the results, and performance on subsets of single-mutation and multi-mutation is in Tab. 2
and Tab. 3. It can be seen that our Refine-PPI model is better or more competitive in all regression metrics.
Precisely, it achieves the highest per-structure Spearman and Pearson’s correlations, which are considered
as our primary metrics because the correlation of one specific protein complex is the most important.

Multiple point mutations are often required for successful affinity maturation (Sulea et al., 2018), and
Refine-PPI outperforms DDGPred and RDE-Net by a large margin in the multi-mutation subset. This
stems from the fact that RDE-Net and DDGPred perceive the mutant structures the same as the wild-type
and consequently are not aware of the structural distinction. On the contrary, the mutant structures with
multiple mutations should be more different than those with single mutations, and it becomes more crucial to
detect the variant after the mutation. Refine-PPI anticipates the structural transformation due to mutation
and can connect the structural change with ∆∆G. Notably, Refine-PPI trained from scratch has already
outpassed pretrained methods such as RDE-Net, MIF-Net, and ESM-IF, which enjoy the unsupervised
benefits in PDB-REDO. This further verifies the great success of Refine-PPI.

4.3 Zero-shot Mutant Effect Prediction

To evaluate the effectiveness of Refine-PPI in zero-shot mutant effect prediction, we conducted extensive
experiments on the ProteinGym benchmark (Notin et al., 2024). To obtain structural data, we utilized
AlphaFold-2 to predict the three-dimensional structures of wild-type protein sequences. A notable limita-
tion of Refine-PPI is that it provides mutant structure predictions without directly outputting the prob-
ability distribution over amino acid types. To address this, we integrated ESM-IF with Refine-PPI to
compute final mutant effect scores by coupling structural insights with sequence-based predictions. We
compared Refine-PPI against a comprehensive range of state-of-the-art models, including sequence-based
models, alignment-based models, inverse folding models, and ensemble approaches. The results, summarized
in Table 4, highlight the performance of zero-shot mutant effect prediction on ProteinGym. Key findings
reveal that Refine-PPI outperforms all existing inverse folding methods, achieving the highest Spearman
correlation of 0.411. This represents a 4.5% improvement in rank correlation over the vanilla ESM-IF, sur-
passing even the best-performing sequence-based method, VESPA. These results underscore the robustness
of the MMM and the innovative PDC-Net architecture, which together enhance the predictive capabilities
of Refine-PPI. The superior performance of Refine-PPI demonstrates its capability to integrate structural
and sequence-level insights effectively, providing a significant advancement in the field of zero-shot mutant
effect prediction.

4.4 Correlation between Variance and Atomic Uncertainty

PDC posits that atoms adhere to Gaussian and derives geometric attributes such as distance and angles as
distributions, where Σ determines the magnitude of 3D atomic uncertainty. Here, we justify the correspon-
dence between Σ and positional uncertainty. Notably, experimentally observing and documenting particle

8



Published in Transactions on Machine Learning Research (03/2025)

Table 2: Evaluation of ∆∆G prediction on the multi-mutation subset of the SKEMPI.v2 dataset.

Method Pretrain Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Energy Function-based
Rosetta – 0.1915 0.0836 0.1991 0.2303 2.6581 2.0246 0.6207
FoldX – 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478
Supervised-based
DDGPred ✗ 0.3912 0.3896 0.5938 0.5150 2.1813 1.6699 0.7590
End-to-End ✗ 0.4178 0.4034 0.5858 0.4942 2.1971 1.7087 0.7532
Sequence-based
ESM-1v ✓ -0.0599 -0.1284 0.1923 0.1749 2.7586 2.1193 0.5415
PSSM ✓ -0.0174 -0.0504 -0.1126 -0.0458 2.7937 2.1499 0.4442
MSA Transf. ✓ -0.0097 -0.0400 0.0067 0.0030 2.8115 2.1591 0.4870
Tranception ✓ -0.0688 -0.0120 -0.0185 -0.0184 2.9280 2.2359 0.4874
Unsupervised or Semi-supervised-based
B-factor ✓ 0.2078 0.1850 0.2009 0.2445 2.6557 2.0186 0.5876
ESM-IF ✓ 0.2016 0.1491 0.3260 0.3353 2.6446 1.9555 0.6373
MIF-∆logit ✓ 0.1053 0.0783 0.3358 0.2886 2.5361 1.8967 0.6066
MIF-Net. ✓ 0.3968 0.3789 0.6139 0.5370 2.1399 1.6422 0.7735
RDE-Linear ✓ 0.1763 0.2056 0.4583 0.4247 2.4460 1.8128 0.6573
RDE-Net. ✓ 0.4233 0.3926 0.6288 0.5900 2.0980 1.5747 0.7749
DiffAffinity ✓ 0.4140 0.3877 0.6500 0.6020 2.0510 1.5400 0.7840
PPIFormer ✓ 0.3985 0.3925 0.6405 0.5946 2.1407 1.5753 0.7893
Refine-PPI ✗ 0.4474 0.4134 0.6307 0.5839 2.0939 1.5894 0.7831
Refine-PPI ✗ 0.4558 0.4289 0.6458 0.6091 2.0601 1.554 0.8064

uncertainty within macromolecules, such as proteins, is challenging. All data in PDB or SKEMPI.v2 are
deterministic and uncertainty-free conformations. As a solution, we resort to molecular dynamics (MD)
simulations to simulate atomic motions. Notably, MD approximates atomic motions by Newtonian physics
and can capture the sequential behavior of molecules in full atomic details at a very fine temporal resolution.
We run short-time MD for all complexes in SKEMPI.v2 and calculate the Root Mean Square Fluctuation
(RMSF) alongside the entire trajectory, which numerically indicates positional differences between entire
structures over time. It calculates individual residue flexibility, or how much a particular residue fluctuates
during a simulation.

4.4.1 Initialization of Variance

Table 5: Performance of different initialization methods for
the coordinate variance Σ (without pretraining)

Method Per-Structure
Pearson Spearman

Identity Matrix 0.4422± 0.0033 0.4043± 0.0018
MD Simulations 0.4522± 0.0036 0.4287± 0.0015
Learnable Σ 0.4475± 0.0034 0.4102± 0.0017

We investigate three mechanisms to initialize
Σ. First and naively, we turn all Σi into an
identity matrix I. Second, we leverage RMSF
as the initial Σ. Third, we adopt a learnable
strategy to initialize Σ, where an embedding
layer maps each category of twenty residue
types to their corresponding Σ. Their perfor-
mance is listed in Tab. 5, where the mean and
standard deviation are documented for three
runs. It can be found that MD-based initialization achieves the best Spearman (0.4287), outweighing the
learnable one (0.4102) and the identity matrix (0.4043), emphasizing the efficacy of incorporating simulated
uncertainty into the PDC module. This implies that simulated uncertainty is the optimal choice for this
variance, and learned variance ideally should move towards this simulated uncertainty. However, since MD
simulations are time-consuming and costly, it is prohibited to implement MD during the inference stage each
time. As a consequence, we use the learnable sort in Refine-PPI for subsequent experiments.
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Table 3: Evaluation of ∆∆G prediction on the single-mutation subset of the SKEMPI.v2 dataset.

Method Pretrain Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

Energy Function-based
Rosetta – 0.3284 0.2988 0.3113 0.3468 1.6173 1.1311 0.6562
FoldX – 0.3908 0.3640 0.3560 0.3511 1.5576 1.0713 0.6478
Supervised-based
DDGPred ✗ 0.3711 0.3427 0.6515 0.4390 1.3285 0.9618 0.6858
End-to-End ✗ 0.3818 0.3426 0.6605 0.4594 1.3148 0.9569 0.7019
Sequence-based
ESM-1v ✓ 0.0422 0.0273 0.1914 0.1572 1.7226 1.1917 0.5492
PSSM ✓ 0.1215 0.1229 0.1224 0.0997 1.7420 1.2055 0.5659
MSA Transf. ✓ 0.1415 0.1293 0.1755 0.1749 1.7294 1.1942 0.5917
Tranception ✓ 0.1912 0.1816 0.1871 0.1987 1.7455 1.1708 0.6089
Unsupervised or Semi-supervised-based
B-factor ✓ 0.1884 0.1661 0.1748 0.2054 1.7242 1.1889 0.6100
ESM-IF ✓ 0.2308 0.2090 0.2957 0.2866 1.6728 1.1372 0.6051
MIF-∆logit ✓ 0.1616 0.1231 0.2548 0.1927 1.6928 1.1671 0.5630
MIF-Net. ✓ 0.3952 0.3479 0.6667 0.4802 1.3052 0.9411 0.7175
RDE-Linear ✓ 0.3192 0.2837 0.3796 0.3394 1.5997 1.0805 0.6027
RDE-Net. ✓ 0.4687 0.4333 0.6421 0.5271 1.3333 0.9392 0.7367
DiffAffinity ✓ 0.4290 0.4090 0.6720 0.5230 1.2880 0.9230 0.7330
PPIFormer ✓ 0.4192 0.3796 0.6287 0.4772 1.4232 0.9562 0.7213
Refine-PPI ✗ 0.4474 0.4134 0.6667 0.5338 1.2963 0.9179 0.7431
Refine-PPI ✓ 0.4701 0.4459 0.6658 0.5153 1.2978 0.9287 0.7481

4.4.2 Analysis of Learned Uncertainty
WT 5F4EWT 2QJA

WT 3MZG WT 4UWQ

Figure 5: Visualization of learned uncer-
tainty. A darker color corresponds to a
more flexible protein segment.

Visualization of Learned Variance. We randomly pick up
four PDBs and visualize the learned variance, that is, the mag-
nitude of ||Σi||2 in Fig. 5. Pictures show that particles at the
interface have a smaller variation than those at protein edges.
This aligns with the biological concept that atoms in the bind-
ing surface are less volatile than atoms in other parts of the
complex. This phenomenon confirms that PDC-Net has adap-
tively comprehended the magnitude and strength of entities’
motion during PPIs.

Quantitative Analysis. We also quantitatively investigated
the correlation between the learned variance and the ground
truth uncertainty. A detailed comparison, classified by residues
at and not at the interface, is in Tab. 6. Notably, the ground
truth RMSF at the interface is significantly smaller than that
observed elsewhere. At the same time, the learned Σi exhibits a
parallel pattern, where ||Σi||2 at the interface is much smaller.
This analysis further substantiates that the learned variance
corresponds to atomic uncertainty.

4.4.3 Performance of Uncertainty Prediction with MD Simulations

To further verify the efficacy of our PDC-Net to capture the atomic uncertainty, we propose a more straight-
forward task, where DL models are required to directly predict the simulated uncertainty (i.e., RMSF). On
the one hand, we adopt PDC-EGNN and directly enforce the learnable variance to correspond to the sim-
ulated uncertainty. The loss term is therefore set as MSE(||Σi||2,RMSF). On the other hand, we leverage
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Table 4: Performer of zero-shot substitution on the DMS benchmark. We report the corrected average
of Spearman’s rank correlation, AUC, MCC, NDCG@10%, and top 10% recall between model scores and
experimental measurements on the ProteinGym substitution benchmark.

Model Name Model Type Spearman AUC MCC NDCG Recall
Site-Independent

Alignment-based

0.359 0.696 0.286 0.747 0.201
WaveNet 0.373 0.707 0.294 0.761 0.203
EVmutation 0.395 0.716 0.305 0.777 0.222
DeepSequence 0.419 0.729 0.328 0.776 0.226
EVE 0.439 0.741 0.342 0.783 0.230
GEMME 0.455 0.749 0.352 0.777 0.211
UniRep

Sequence-based

0.190 0.605 0.147 0.647 0.139
CARP (640M) 0.368 0.701 0.285 0.748 0.208
ESM-1b 0.394 0.719 0.311 0.747 0.203
ESM-2 (15B) 0.401 0.720 0.314 0.759 0.208
RITA XL 0.372 0.707 0.293 0.751 0.193
ESM-1v 0.407 0.723 0.320 0.749 0.211
ProGen2 XL 0.391 0.717 0.306 0.767 0.199
VESPA 0.436 0.742 0.346 0.775 0.201
UniRep evotuned

Hybrid Ensemble

0.347 0.693 0.274 0.739 0.181
MSA Transformer 0.434 0.738 0.340 0.779 0.224
Tranception L 0.434 0.739 0.341 0.779 0.220
TranceptEVE L 0.456 0.751 0.356 0.786 0.230
ESM-IF1

Inverse Folding

0.422 0.730 0.331 0.748 0.223
MIF-ST 0.401 0.718 0.311 0.766 0.226
ProteinMPNN 0.258 0.639 0.196 0.713 0.186
Refine-PPI 0.441 0.746 0.343 0.769 0.229

Table 6: Performance of different position variance update methods without pretraining.
Interface Non-Interface Overall

RMSF 0.4945 0.9735 0.8271
||Σi||2 0.6072 0.8940 0.7745

some advanced geometric networks and require them to output RMSF based on the residue feature of the
final layer. The loss is written as MSE(MLP(h(L)),RMSF), where MLP is the abbreviation of the multi-
layer perceptron. A group of baselines are selected for thorough comparison, including SchNet (Schütt et al.,
2018), GVP-GNN (Jing et al., 2020), SE(3)-Transformer (Fuchs et al., 2020), SphereNet (Liu et al., 2021),
TorchMD-Net (Thölke & De Fabritiis, 2021), and EquiFormer (Liao & Smidt, 2022). We run three random
seeds and report the mean and standard deviation of these three runs in Tab. 7. The experiments show that
the PDC module achieves the best performance in understanding the atomic uncertainty and significantly
improves the ability of EGNN to forecast RMSF. This phenomenon illustrates that our design of Σ can be
a good choice to represent and encode atomic uncertainty in the 3D space.

To summarize, though our loss term primarily influences output positions without directly enforcing the net-
work to capture uncertainty information, extensive experiments demonstrate that the theoretical foundation
of our PDC-module design closely connects the concept of atomic uncertainty with the variance of positional
distributions Σ.
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Table 7: Performance on the uncertainty prediction task.
Model MSE
SchNet 0.5214± 0.038
GVP-GNN 0.2807± 0.025
SE(3)-Trans. 0.3462± 0.035
EGNN 0.2609± 0.026
TorchMD-Net 0.2011± 0.013
SphereNet 0.1688± 0.021
EquiFormer 0.1659± 0.022
PDC-EGNN 0.1381± 0.020

4.5 Discussion of Refine-PPI

Table 8: Performance of different coordi-
nate initialization strategies for MMM.

Method Per-Structure
Pearson Spearman

Easy 0.4417 0.4060
Hard 0.4475 0.4102

Ablation Studies. We also conduct additional experiments
to investigate the contributions of each component of our
Refine-PPI and the results are displayed in Tab. 9. It can be
concluded that the introduction of co-training of the structure
refinement and the ∆∆G prediction greatly contributes to the
promotion of all metrics, culminating in an increase of 11.8%
and 15.6% in per-structure Pearson’s and Spearman correla-
tions. Additionally, PDC-Net also brings obvious benefits such as a lower MAE and a higher AUORC. In
Tab. 8, we report the performance of two initialization strategies to corrupt the masked region. The easy
mode (denoising-based) is slightly outpassed by the hard one (surroundings-based).

Table 9: Ablation study of Refine-PPI without pretraining, where we choose the backbone hρ (i.e., Graph
Transformer) as the foundation model for comparison (i.e., No. 1).

No. MMM PDC-Net Per-Structure Overall
Pearson Spearman Pearson Spearman RMSE MAE AUROC

1 ✗ ✗ 0.3708 0.3353 0.6210 0.4907 1.6199 1.1933 0.7225
2 ✓ ✗ 0.4145 0.3875 0.6571 0.5553 1.5580 1.1025 0.7460
3 ✓ ✓ 0.4475 0.4102 0.6584 0.5394 1.5556 1.0946 0.7517

Visualization of Results. We envision the scatter plot of experimental and predicted ∆∆G and also
draw the relation between the error of wild-type structure recovery and the error of ∆∆G estimation in
Fig. 4. It can be found that, generally, a small error of wild-type structure reconstruction leads to a more
accurate ∆∆G prediction. This indicates that these two tasks are closely related to each other. In addition,
we provide a case study of 16 seed complexes with different numbers of mutations that are well predicted
by our Refine-PPI in Fig. 8. It can be discovered that Refine-PPI can realize a pretty high Spearman of 0.7
even when there are more than three mutations. In addition, we visualize three predicted mutant structures
in the Appendix C.

5 Conclusion

This work proposes a new framework named Refine-PPI to predict the mutation effect. Given that mutant
structures are always absent, we introduce an additional structure refinement module to recover the masked
regions around the mutations. This module is trained simultaneously via mask geometric modeling. In
addition, we notice that protein-protein interactions are a dynamic process, but few prior studies have
considered this characteristic in a deep learning design. To bridge the gap, we present a probability density
cloud (PDC)-Network to capture the dynamics in atomic resolution. Our results highlight the necessity to
adopt a more robust mutant structure and consider dynamics for molecular modeling.
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6 Limitations and Future Work

Despite the success of Refine-PPI in estimating the mutation effect, there is still room left for improvement.
(1) First, Refine-PPI keeps most of the complex stable and merely restores a region around the mutant site.
It is possible that the entire complex can be significantly different upon mutation. Therefore, a promising
future direction would be to enlarge the mask region. (2) Furthermore, previous studies demonstrate the
benefit of structural pretraining to dramatically expand the representation space of DL models. We expect
to implement MMM with more experimental structures other than PDB (e.g., Alphafold-Database) and
transfer the knowledge to predict free energy change. (3) Last but not least, side chains are critical to the
specificity and affinity of PPIs. Accurate modeling of side chains is essential for predicting how mutations
might alter binding free energy and interaction dynamics. Several recent studies (Luo et al., 2023; Liu et al.,
2024) attempt to model the change of side chains upon mutations via diffusion or flow generative approaches.
By focusing solely on the backbone and omitting explicit side-chain modeling, the current framework may
overlook subtle but critical contributions of residue side chains to PPIs, especially in cases where mutations
involve side-chain changes that disrupt or create interactions at the interface. This choice prioritizes capturing
structural flexibility and uncertainty at the global level, which aligns well with our aim of modeling dynamic
interactions. However, omitting explicit side-chain modeling is a limitation in scenarios where fine-grained
side-chain interactions dominate the mutation effect. To address this limitation, we propose several future
directions, such as integrating side-chain flexibility into PDC-Net and refining mutant structures at the
fine-grained side-chain level.
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A Experimental Details

We implement all experiments on 4 A100 GPUs, each with 80G memory. Refine-PPI is trained with an
Adam optimizer without weight decay and with β1 = 0.9 and β2 = 0.999. A ReduceLROnPlateau scheduler
is employed to automatically adjust the learning rate with a patience of 10 epochs and a minimum learning
rate of 1.e−6. The batch size is set to 64 and an initial learning rate of 1.e−4. The maximum iterations are
50K and the validation frequency is 1K iterations. The node dimension is 128, and no dropout is conducted.
As for the structure refinement, the recycle number is set as 3, and the balance weight is tuned as 1.0. We
performed a grid search to find the optimal length of the masked region and found that l = r = 5 is a
good choice. However, different initializations require different optimal hyperparameters, and typically we
can mask longer regions for denoising-based MMM. The pretraining follows a similar training scheme with a
batch size of 32. During pretraining, the data loader randomly selects a cluster and then randomly chooses
a chain from the cluster to ensure balanced sampling. Since no mutant residue exists in PDB-REDO, we
randomly select a seed residue from the chosen chain and adopt the same MMM strategy.

As for the specific model architecture, the backbone module hρ(.) can take the form of any conventional
geometric neural network (e.g., GVP-GNN, EGNN, SE(3)-Transformer, Graph Transformer). Here, we
adopt a one-layer Graph Transformer (Luo et al., 2023) to extract general representations of proteins. The
refinement module fθ(.) needs to output both updated features and coordinates, and therefore we use PDC-
EGNN as fθ(.) in our experiments. Lastly, the head predictor gτ (.) is a simple linear layer that accepts the
concatenation of representations of both wide and mutation types and forecasts the change in free energy.
The total model size of our Refine-PPI is approximately 6M.

A.1 Baselines Implementations

Baselines that require training and calibration using the SKEMPI.v2 dataset (DDGPred, End-to-End, B-
factor, MIF-∆logit, MIF-Network, RDE-Linear, and RDE-Net) are trained independently using the 3 differ-
ent splits of the dataset as described in Section 4.1. This is to ensure that every data point in the SKEMPI.v2
dataset is tested once. Below are descriptions of the implementation of the baseline methods, which follow
the same scheme as Luo et al. (2023) and Bushuiev et al. (2023).

Rosetta (Alford et al., 2017; Leman et al., 2020): The Rosetta version is 2021.16, and the scoring function
is ref2015_cart. Every protein structure in the SKEMPI.v2 dataset is first preprocessed using the relax
application. The mutant structure is built by cartesian_ddg. The binding free energies of both wild-type
and mutant structures are predicted by interface_energy (dG_separated/dSASAx100). Finally, the binding
∆∆G is calculated by subtracting the binding energy of the wild-type structure from the binding energy of
the mutant.

FoldX (Delgado et al., 2019): Structures are first relaxed by the RepairPDB command. Mutant structures
are built with the BuildModel command based on the repaired structure. The change in binding free energy
∆∆G is calculated by subtracting the wild-type energy from the mutant energy.

ESM-1v (Meier et al., 2021): We use the implementation provided in the ESM open-source repository.
Protein language models can only predict the effect of mutations for single protein sequences. Therefore,
the cases where mutations occur in multiple sequences are ignored. The sequence of the mutated protein
chain is extracted from the SEQRES entry in the PDB file. A masked marginal mode is used to score both
wild-type and mutant sequences and use their difference as an estimate of ∆∆G.

PSSM MSAs are constructed from the Uniref90 database for chains with mutation annotations in the
SKEMPI.v2 dataset. Jackhmmer version 3.3.1 is used following the setting in Meier et al. (2021). The
MSAs are filtered using HHfilter with coverage 75 and sequence identity 90. This HHfilter parameter is
reported to have the best performance for MSA Transformer according to Meier et al. (2021). Position-
specific scoring matrices (PSSM) is calculated and the change in probability is used as a prediction of ∆∆G.

MSA Transformer (Rao et al., 2021): We use the implementation provided in the ESM open-source
repository. We input the MSAs constructed during the evaluation of the PSSM to the MSA Transformer.
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We used the mask-marginal mode to score both wild-type and mutant sequences and use their difference as
the prediction of ∆∆G.

Tranception (Notin et al., 2022): We use the implementation provided in the Tranception open-source
repository. We predict mutation effects using the large model checkpoint. Previously built MSAs (not
filtered by HHfilter) are used for inference-time retrieval.

DDGPred (Shan et al., 2022): We use the implementation that follows the paper by Shan et al. (2022).
Since this model requires predicted side-chain structures of the mutant, we use mutant structures packed
during our evaluation of Rosetta to train the model and run prediction.

End-to-End: The end-to-end model shares the same encoder architecture as RDE (Luo et al., 2023). The
difference is that in the RDE normalizing flows follow the encoder to model rotamer distributions, but in
the end-to-end model, the embeddings are directly fed to an MLP to predict ∆∆G.

B-factor: This model predicts per-atom b-factors for proteins. It has the same encoder architecture as
RDE (Luo et al., 2023). The encoder is followed by an MLP that predicts a vector for each amino acid,
where each dimension is the predicted b-factor of different atoms in the amino acid. The amino acid-level b-
factor is calculated by averaging the atom-level b-factors. The predicted b-factors are used as a measurement
of conformational flexibility. They are used to predict ∆∆G using the linear model same as RDE-Linear (Luo
et al., 2023).

ESM-IF (Hsu et al., 2022): ESM-IF can score protein sequences using the log-likelihood. The scoring
function is implemented in the ESM repository. We enable the –multichain_backbone flag to let the model
see the whole protein-protein complex. We subtract the log-likelihood of the wild-type from the mutant to
predict ∆∆G.

MIF Architecture: The masked inverse folding (MIF) network uses the same encoder architecture as
RDE (Luo et al., 2023). Following the encoder is a per-amino-acid 20-category classifier that predicts the
type of masked amino acids. We use the same PDB-REDO train-test split to train the model. At training
time, we randomly crop a patch consisting of 128 residues and randomly mask 10% amino acids. The model
learns to recover the type of masked amino acids with the standard cross entropy loss.

MIF-∆logit: To score mutations, we first mask the type of mutated amino acids. Then, we use the log
probability of the amino acid type as the score. Analogously, we have the score of the wild-type bound
ligand, wild-type bound receptor, wild-type unbound ligand, unbound receptor, mutated bound ligand,
mutated bound receptor, and mutated unbound ligand. Therefore, we use the identical linear model to
RDE-Linear (Luo et al., 2023) to predict ∆∆G from the scores.

MIF-Network: This is similar to RDE-Network (Luo et al., 2023). The difference is that we use the
pre-trained encoder of MIF rather than the encoder of RDE. We also freeze the MIF encoder as we aim to
utilize the unsupervised representations.

DiffAffinity: We leverage its official weights at https://github.com/EureKaZhu/DiffAffinity for pre-
diction of mutant effects. DiffAffinity is distinguished from prior efforts that have predominantly focused on
generating protein backbone structures.

PPIFormer: We use EquiFormer as the backbone and pretrain it on PPIRef. Then the effects of mutations
are predicted via the log odds ratio.

A.2 Visualization of Coordinate Initialization in MMM

To better clarify the initialization of our MMM, we show the process of two different mechanisms (i.e., the
easy denoising-based one and the hard surrounding-based one) in Fig. 6.
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Figure 6: The illustration of coordinate initialization in the MMM task.

B Additional Results

B.1 Performance on Subsets and Case Studies

For better comparison of our Refine-PPI and other baselines, we make a bar plot on per-structure Pearson’s
and Spearman correlations in Fig. 7. We also explicitly document the evaluation results of different methods
on the multi-mutation and single-mutation subsets of the SKEMPI.v2 dataset in Tab. 2 and Tab. 3. It can
be found that with pretraining on PDB-REDO, Refine-PPI achieves the best per-structure metrics on both
multi-mutation and single-mutation subsets. This indicates that Refine-PPI is a more effective tool to screen
and select mutant proteins for desired properties.
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Figure 7: Per-structure Spearman and Pearson correlations of different baseline methods and Refine-PPI.

B.2 Position Variance Update in PDC-EGNN

Notably, the way to update the variance of the positions of different atoms is not unique. Here, we offer
another kind of approach to renew the variance in the layer of PDC-EGNN.

Σ(l+1)
i =

1 + 1
|N (i)|

∑
j∈N (i)

ϕµ(mj→i)

2

Σ(l)
i + 1

|N (i)|
∑

j∈N (i)

ϕµ(mj→i)Σ(l)
j , (7)
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where we leverage the same ϕµ instead of a new ϕσ. Besides, we distribute and square the xi terms because
xi − xj is not independent of xi. Noticeably, this Equation 7 does not damage the equivariance property of
our model. Experiments show that this form of position variance computation performs slightly better in
the mutant effect prediction task (see Tab. 10), with a per-structure Spearman of 0.4490.

Table 10: Performance of different position variance update methods (without pretraining).

Method Per-Structure
Pearson Spearman

Equ. 6 0.4475 0.4102
Equ. 7 0.4490 0.4153

C Visualization of Predicted Structures

Here we provide some instances of mutant structures predicted by our Refine-PPI in Fig. 9. Since the ground
truth mutant structures are inaccessible, we leave it for future work to examine their accuracy.

D Proof of Equivariance

Equivariance is an important characteristic, and here, we demonstrate that PDC-Net strictly follows this
rule of principle. More formally, for any translation vector g ∈ R3 and for any orthogonal matrix Q ∈ R3×3,
the model should satisfy:

h(l+1),
{
Qµ

(l+1)
i + g,Q⊤Σ(l+1)

i Q
}n
i=1

= PDC-L
[
h(l),

{
Qµ

(l)
i + g,Q⊤Σ(l)

i Q
}n
i=1

, E
]
. (8)

We will analyze how the translation and rotation of input coordinates propagate through our model. We
start by assuming that h0 is invariant to the E(n) transformations on the coordinate distributions ν. In
other words, information on the absolute position or orientation of ν0 is not encoded in h0. Then, the
distance between two particles is invariant to translations, rotations, and reflections. This is because,
for the mean of distance µdij , we have tr

(
Q⊤ΣiQ+Q⊤ΣjQ

)
= tr (Σi + Σj) due to the characteristic

of the isotropic matrix and ||Qµ
(l)
i + g − (Qµ

(l)
j + g)||2 = ||Qµ

(l)
i − Qµ

(l)
j ||2 = (µ(l)

i − µ
(l)
j )⊤Q⊤Q(µ(l)

i −
µ

(l)
j ) = (µ(l)

i − µ
(l)
j )⊤I(µ(l)

i − µ
(l)
j ) = ||µ(l)

i − µ
(l)
j ||2. Meanwhile, for the variance of distance σdij

, we
have [Qµi + g − (Qµj + g)]⊤

(
Q⊤ΣiQ+Q⊤ΣjQ

)
[Qµi + g − (Qµj + g)] = (µi−µj)⊤Q⊤ (Σi + Σj)Q(µi−

µj) = (µi − µj)⊤ (Σi + Σj) (µi − µj). Consequently, the output mj→i will also be invariant as the edge
operation ϕe(.) becomes invariant.

Afterward, the equations of our model that update the mean and variance of coordinates x are E(n) equiv-
ariant as well. In the following, we prove their equivariance by showing that a E(n) transformation of the
input leads to the same transformation of the output. Notice that mj→i is already invariant as proven above.
Notably, the translation g has no impact over the variance of coordinates Σ(l)

i . Thus, we want to show:

Qµ
(l+1)
i + g = Qµ

(l)
i + g + 1

|N (i)|
∑

j∈N (i)

(
Qµ

(l)
i + g −

[
Qµ

(l)
j + g

])
ϕµ(mj→i),

Q⊤Σ(l+1)
i Q = Q⊤Σ(l)

i Q+ 1
|N (i)|

∑
j∈N (i)

(
Q⊤Σ(l)

i Q+Q⊤Σ(l)
j Q

)
ϕσ(mj→i).

(9)
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Figure 8: Prediction plots of 16 seed PDBs that are made by Refine-PPI. Four rows correspond to different
numbers of mutations, where the gray belt represents acceptable prediction errors. It can be found that
Refine-PPI can perform well in all circumstances containing one, two, or more mutations.

Its derivation is as follows.
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Figure 9: Examples of predicted structures of mutation-type.
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(11)

Therefore, we have proven that rotating and translating the mean and variance of x(l) results in the same
rotation and translation on the mean and variance of x(l+1).

Furthermore since the update of h(l) only depend on mj→i and h(l) which as saw at the beginning of this
proof, are E(n) invariant, therefore, h(l+1) will be invariant too. Thus, we conclude that a transformation
Qµ

(l)
i + g in µ

(l)
i will result in the same transformation on µ

(l+1)
i while h(l+1) will remain invariant to it so

that h(l+1),
{
Qµ

(l+1)
i + g,Q⊤Σ(l+1)

i Q
}n
i=1

= PDC-L
[
h(l),

{
Qµ

(l)
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i Q
}n
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, E
]

is satisfied.
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