Under review as a conference paper at ICLR 2023

SCALING LAWS VS MODEL ARCHITECTURES:
How DOES INDUCTIVE BIAS INFLUENCE SCALING?

Anonymous authors
Paper under double-blind review

ABSTRACT

There have been a lot of interest in the scaling properties of Transformer models
(Kaplan et al., 2020). However, not much has been done on the front of inves-
tigating the effect of scaling properties of different inductive biases and model
architectures. Do model architectures scale differently? If so, how does induc-
tive bias affect scaling behaviour? How does this influence upstream (pretrain-
ing) and downstream (transfer)? This paper conducts a systematic study of scal-
ing behaviour of ten diverse model architectures such as Transformers, Switch
Transformers, Universal Transformers, Dynamic convolutions, Performers, and
recently proposed MLP-Mixers. Via extensive experiments, we show that (1) ar-
chitecture is an indeed an important consideration when performing scaling and
(2) the best performing model can fluctuate at different scales. We believe that the
findings outlined in this work has significant implications to how model architec-
tures are currently evaluated in the community.

1 INTRODUCTION

There have been a lot recent interest in the scaling properties of Transformer models (Kaplan et al.,
2020;|Hernandez et al.,|2021;Bahri et al.,|2021;[Henighan et al., 2020; Tay et al.,[2021bj;|/Abnar et al.}
2021). However, not much is understood about the scaling properties of different inductive biases
imposed by model architectures. Improvements at a a specific scale (compute, size etc) are often
assumed to transfer to different scales and compute regions (So et alJ, [2019; |Choromanski et al.,
2020; Lan et al.l [2019; Dehghani et al., |2018)) and new research is often presented in a point-wise
fashion with respect to scale. In short, it is not uncommon for new methods to be presented with data
points at very specific or limited compute regions (e.g., base size). We believe that understanding
the interaction between architecture and scaling laws is crucial as designing models that perform
well at diverse scales will likely have significant impact.

This paper is an attempt to understand the effect of inductive bias (architecture) on scaling laws of
language models. To this end, we pre-train and finetune over ten diverse model architectures across
multiple compute region and scales (e.g., from 15M to 40 Billion parameters). In total, we pre-train
and finetune over 100 different models of different architectures and sizes and present insights and
challenges at scaling these ten diverse architectures.

We consider a broad spectrum of models in our extensive experiments. Concretely, we consider
several well-established Transformer variants (Vaswani et al., |2017) such as Evolved Transformer
(So et al., |2019), Universal Transformers (Dehghani et al., 2018) and Switch Transformers (Fedus
et al.,2021)). We also consider lightweight models such as ALBERT (Lan et al., 2019) and/or ef-
ficient Transformers (Tay et al.l 2020) such as Performer (Choromanski et al., 2020) and Funnel
Transformers (Dai et al., |2020). In our comparison, we are also interested in finding out if gen-
eral improvements to the Transformer architectures such as Mixture-of-Softmax (Yang et al., [2017)
and/or Gated Linear Units (Dauphin et al.,|2017}; |Shazeer}, [2020) influence the scaling behaviour of
models. Finally, we also evaluate models outside the family of Transformers including Lightweight
convolutions (Wu et al.| 2019), Dynamic convolutions (Wu et al., [2019) and the recently proposed
MLP-Mixers (Tolstikhin et al., [2021). Figure || illustrates an overview about the experiments we
run.

We also note that scaling these models is not as straightforward as it seems, i.e., there are intri-
cate details of scale that are intertwined with architectural choices which we study in detail in this

Under review as a conference paper at ICLR 2023

-1.44 854

1.6 80|

H
@
I

A" “Shitch XL3

IN]
o
I

Negat}ve Log-PerpIeX|ty
SuperGlue Accuracy

N
o
P>
w
@

2.8 507

-3.0

T T T T T T 1
1.1e+12.2e+12 4.4e+12 8.8e+12 1.8e+13 3.5e+13 7.0e+1B.4e+14 l.le+12.28‘+12 4,4e‘+12 8.Sé+12 1,89‘4—13 3,Se‘+13 7,0e‘+1B,4e+14‘

FLOPS FLOPS

(a) Upstream: Negative Log-Perplexity (b) Downstream: Accuracy

Figure 1: An overview compute-performance (FLOPs vs performance) plot of all the diverse mod-
els and architectures we pretrained and finetuned in this study. Colors represent different model
architectures and size of the circles represent the size of the model (parameters).

paper. For example, a distinct feature of Universal Transformers (and ALBERT) is parameter shar-
ing. Hence, compared with standard Transformers, this architectural choice significantly warps the
scaling behaviour not only with respect to performance but also amongst compute metrics such as
FLOPs, speed and number of parameters (Dehghani et al.| [2021a). Conversely, models such as
Switch Transformers are on the other end of the spectrum with an uncommon relationship between
FLOPs and number of parameters, i.e., they have high parameter to FLOPs ratio. This difficulty
makes navigating this landscape challenging.

Our Contributions and Insights The key contributions of this paper are as follows:

e For the first time, we derive scaling laws for different inductive biases and model architec-
tures. We find that this scaling coefficient differs greatly from model to model. We believe
this is an important consideration in model development. It turns out that amongst all ten
architectures that we consider, the vanilla Transformer has the best scaling behaviour, even
if its absolute performance at each compute region is not the greatest.

e We observe that models that operate well in one compute-scale region is not necessarily
the best in another compute-region. Moreover, we find that certain models have difficulty
scaling despite performing decently (comparably) at lower-compute regions. This has im-
plications, since it is difficult to get the fulll picture of a model’s scalability with pointwise
comparisons at a certain compute-region.

e We find that when it comes to scaling different model architectures, upstream pre-training
perplexity might not correlate well with downstream transfer. Hence, the underlying archi-
tecture and inductive bias is also crucial for downstream transfer.

e We highlight the difficulties of scaling with certain architectures and show that some mod-
els do not scale (or scale with a negative trend). We also find concerning trends where
linear-time attention models such as Performer struggle with scaling up.

2 RELATED WORK

Kaplan et al.|(2020) studied empirical scaling laws of the decoder-only Transformer language mod-
els. They focused on the standard left-to-right language modeling objective with the cross-entropy
loss as the performance metric. One of the main findings is that the loss scales as a power-law
with three major characteristics of the model training: model size, dataset size and the training

Under review as a conference paper at ICLR 2023

compute. Another somewhat surprising finding is that the model shapes such as width or depth of
the Transformer network have minimal effects on the cross-entropy loss for a wide range of scales.
Subsequent works (Henighan et al., 2020; Hernandez et al., 2021) made similar conclusions for
autoregressive generative modeling and for transfer learning, respectively. This finding is also gen-
erally supported by (Tay et al., 2021b) but discrepancies were found for the gap between pretraining
and finetuning - highlighting the fact that observing downstream performance of large language
model is indeed important. In (Tay et al.,[2021b)), the effect of depth was unusually pronounced for
downstream performance.

Raffel et al.| (2019) studied the effect of pre-training objectives, model structures (e.g., encoder-
decoder, decoder-only), pre-training dataset size and training strategy on the transfer learning. They
showed that the downstream performance monotonically increases with the model scale (from 60M
to 11B parameters). While they studied several model structures, the Transformer implementation
is mostly the same as the original Transformer by [Vaswani et al.| (2017). |Conneau et al. (2020);
Goyal et al.| (2021) scaled-up multilingual encoder-only architectures up to 11B parameters while
maintaining the original Transformer implementation. They found that scaling the model improves
its cross-lingual ability. [Fedus et al| (2021} scaled a sparse model based on Mixture of Experts
(MoE) models up to trillion parameters.

While previous studies have repeatedly shown the benefits of scale for language understanding tasks
for both dense and sparse Transformers and cross-lingual abilities, all of these used the same Trans-
former implementation within each studies. With a plethora of improved Transformer architectures
proposed in the literature, it is timely to investigate which of these improved architecture has the
best scaling properties. The main goal of this paper is to systematically study how inductive biases
imposed by these Transformer variants affect the scaling behavior in a shared software and hardware
settings. This is in similar spirit to (Narang et al., 2021) that studies the impact of architectures on
performance. Our analysis extends that of (Narang et al., 2021) to the model scale axis.

3 METHODS
This section outlines our experimental setup.

3.1 MODELS

This section describes the models we evaluate in our experiments. Our models are largely imple-
mented in a sequence to sequence framework (Sutskever et al.,|2014) following the convention of TS
(Raffel et al., 2019). Encoder-decoder models are a natural choice for this experimentation because
they can universally express both encoding and decoding tasks.

Transformer Variants We consider several standard Transformer variants.

e Transformers (Vaswani et al.,[2017) - The basic vanilla Transformer architecture. Our ba-
sic setup considers the T5-style of Transformers (Raffel et al.,[2019)), which largely follows
the vanilla Transformer except that it uses relative attention instead of sinusoidal position
embeddings and pre-layer normalization, i.e. layer normalization is applied before each
sublayer.

o Evolved Transformers (So et al.,[2019) - A transformer architecture learned via AutoML.
The architecture comprises of convolutions and attention. We scale Evolved Transformers
following the same pattern as vanilla Transformers.

o Universal Transformers (UT) (Dehghani et al.| 2018)) - A Transformer architecture with
shared parameters and recurrent-like computation for transform layers. Scaling UTs are
challenging because of parameter sharing. While we are able to also increase dpp or
dmodel, the increase in parameters is of magnitude Nigyers than standard Transformers.
Another axis of exploration is to scale r the number of repeated computation at each UT
layer - this increases computation (number of FLOPs) but does not increase the parameter
size of the model.

e Switch Transformer (Fedus et al., 2021) - a sparsely activated mixture-of-experts archi-
tecture. The Sparse Transformer is another model with an unusual relationship between

Under review as a conference paper at ICLR 2023

number of parameters and compute. When we scale this model uniformly, the number of
parameters easily reaches the ballpark of 40B.

Efficient Transformer Variants These class of models are mainly concerned at reducing compu-
tational costs, memory usage, or parameter count of models.

o Performer (Choromanski et al.| |2020) - A linear time attention model using generalizable
kernel attention. For simplicity, we adopt the relu kernel variant for our experiments. We
scale Performer in the similar fashion (i.e., uniform scaling) as vanilla Transformers.

o Funnel Transformer (FT) (Dai et al., 2020) A Transformer architecture that downsamples
the input sequence across the layer stack. Our implementation uses FT only in the encoder
and reverts to vanilla Transformer in the decoder following |[Narang et al.|(2021)).

e ALBERT (Lanetall[2019) - A lightweight transformer architecture that shares parameters
across all layers and factorizes the embedding and output softmax layers. For our seq2seq
ALBERT, we also share the weights of encoder and decoder.

General Improvements We consider general improvements that are not necessarily tied to Trans-
formers. We select candidates that have shown to do well inNarang et al.| (2021)).

e Mixture of Softmaxes (Yang et al., 2017) - A transformer architecture adopting the MoS
method at the Softmax layer.

e Gated Linear Units with GeLU (GLU-Transformer) - Replacing position-wise feed-
forward-networks in Transformers with Gated Linear Units (Dauphin et al., [2017).

Non-Transformer Architectures We are interested in the scaling behaviour of non-Transformer
based architectures such as convolutions and/or mixer architectures.

o Lightweight Convolutions (Wu et al. 2019) - Lightweight depthwise convolutions that
have shown promise over Transformer architectures.

e Dynamic Convolutions (Wu et al.l [2019) - An extension of the Lightweight Convolution
to create time-dependent kernels.

e MLP-Mixers (Tolstikhin et al) [2021) - Mixers are recently proposed architectures that
learn a lightweight mixing of tokens. Since Mixers have not been used in autoregressive
decoding, we only use token-mixers on the input encoder.

3.2 EXPERIMENT SETUP

Our setup, along with all models, are implemented in Mesh TensorFlow (Shazeer et al., 2018)), a
library with similar interface to TensorFlow but enables distributed model parallelism across multi-
ple workers. For fair comparison, all models are pretrained for 2!° steps on the english C4 corpus
optimized using an inverse square root learning rate with Adafactor (Shazeer & Sternl |2018). All
models use the same SentencePiece tokenizer (Kudo & Richardson, 2018) containing 32K sub-
words. This closely follows the setup in the T5 paper (Raffel et al.l 2019). Finetuning is performed
for 100K steps on a mixture of GLUE (Wang et al.l |2018), SuperGLUE (Wang et al., |2019) and
SQuAD (Rajpurkar et al.,|2016). We evaluate on both upstream (pre-training) validation perplexity
as well as downstream transfer for NLU tasks (GLUE + SuperGLUE + SQuAD) after fine-tuning.
We pretrain and finetune our models with 16 TPU-v3 chips with data parallelism. All large models
have a model parallelism of 2 and XL models have a model parallelism of 8.

Model Sizes We consider several different model sizes for each architecture. For models that are
straightforward to scale, we simply follow the standard convention in |[Raffel et al.| (2019), moving
from small to base, to large and XL. We include a tiny version of each model to observe how different
models behave at lower compute regions. For models where it was not straightforward to scale (e.g.,
Universal Transformers, ALBERT), we tried to scale them in a similar fashion but faced obvious
limitations such as getting ALBERT to have the same number of parameters as T5 XL without
incurring a huge number of cost in terms of FLOPs. For convolutional models, we consider d,odel
to be the hidden size (i.e., channel depth) for the one-dimensional convolution layers. Values such

Under review as a conference paper at ICLR 2023

Negative Log-Perplexity
Negative Log-Perplexity
Negative Log-Perplexity

W wsen s W sz e asen P T T TR TAS YTy Tiemzalin aadz seiz iedn
FLOPS FLOPS FLOPS FLOPS

(a) ALBERT (b) DConv (c) Evolved (d) Funnel

Jase Log Pepesky,
Negative Log-Perplexity,
:Negz;ve La;-Perp;lex\ly;
Negate Log-perlexty,

© FLOPS FLOPS) FLOPS "~ rlors)

(e) Transformer-GLU (f) LConv (g) MLP Mixer (h) MoS Transformer

Negative Log-Perplexity
Negative Log-Perplexity

FLOPS : FLOPS } : FLOPS

(i) Performer (j) Switch Transformer (k) Universal Transformer

Figure 2: Upstream Negative Log-Perplexity of vanilla Transformer compared to other models.

as dyv, Ny then become redundant. Details on scaling detailﬂ of each architecture can be found in
the supplementary material.

3.3 MAIN RESULTS

We report the main results of this paper in Table [T, We report the number of trainable parame-
ters, FLOPs (of a single forward pass) and speed (steps per second). We also report on validation
perplexity (on upstream pre-training) and results on 17 downstream tasks. The results are reported
aggregates of GLUE, SuperGLUE and SQuAD. While we use the same Mesh TensorFlow-based
codebase used by Raffel et al.[(2019) and hence expect our experimental results to match theirs, we
verify that our T5 base does achieve similar results to what is reported in Raffel et al.|(2019).

3.4 DO ALL MODELS SCALE THE SAME WAY?

This section investigates if all model architectures scale in the same way.

Upstream Perplexity Figure[2]reports the scaling behaviour of all models as we increase the num-
ber of FLOPs. We observe that the scaling behaviour of all models are quite unique and distinct,
i.e., most of them are quite different from standard Transformers. Perhaps the biggest finding here is
that most models (e.g., LConv, Evolved) all seem to be on-par or better than standard Transformers
but fail to scale with a higher compute budget. Another interesting trend is that “linear” Transform-
ers such as Performer fail to scale as shown in Figure The pre-training perplexity metric only
decreases by 2.7% going from base to large scale compared to 8.4% of the vanilla Transformer.

!'The largest Switch transformer was scaled in a pretty sub-optimal way. So we don’t think it is representative
of the full potential of the Switch family. Take the last data point of Switch with a pinch of salt.

Under review as a conference paper at ICLR 2023

St

SuperGlue Accuracy
SuperGlue Accuracy

SuperGlue Accuracy
SuperGlue Accuracy

<

cw ssom teen 3
FLOPS

(a) ALBERT (b) DConv (c) Evolved (d) Funnel

FLOPS T M hees FLOPS

SuperGlue Accuracy
SuperGlue Accuracy

SuperGlue Accurac
SuperGlue Accu

D asin shn asbhored 2 seem s 3senoen Tiemati 4adiz el Teny s 706
FLOPS FLOPS FLOPS

(e) Transformer-GLU (f) LConv (g) MLP Mixer (h) MoS Transformer

SuperGlue Accu
SuperGlue Acc:

FLOPS : FLOPS FLOPS

(i) Performer (j) Switch Transformer (k) Universal Transformer

Figure 3: Downstream accuracy of vanilla Transformer compared to other models.

Downstream Transfer Figure [3|reports the scaling curves of all models on downstream transfer.
The overall finding that most models have distinct scaling curves compared to Transformers is also
evident in downstream tasks. It is also noteworthy that most models have a different upstream and
downstream scaling curve. We find that some models such as Funnel Transformer and LConvs that
seem to hold out pretty well on upstream but suffer substantially on downstream. As for Performer,
the performance (disparity) seems to be even greater in downstream as compared to upstream. No-
tably, the SuperGLUE downstream tasks generally require pseudo cross-attention on the encoder,
which models such as convolutions are not equipped to handle (Tay et al.,[2021a). To this end, we
find that certain models may have difficulty learning the downstream tasks despite good upstream

performance.

3.5 ARE THE BEST MODELS AT EACH SCALE DIFFERENT?

Figure[I|shows the Pareto-frontier when plotting compute against upstream and downstream perfor-
mance. Since the colors of the plot represent different models, we can observe that the best model
for every scale and compute region might be different. Moreover, from Figure[3] we can also observe
this. For example, the Evolved Transformer seems to do well against the standard Transformer at
tiny to small region (downstream) but this quickly changes when scaling the model up. We also ob-
serve this with MoS-Transformer where it clearly outperforms vanilla Transformers at some regions

but not at others.

3.6 SCALING LAW FOR EACH MODEL

Table [2] presents the slope of the fitted linear line o for each model across multiple scenarios. We
derive « by plotting F' (FLOPs), U (upstream perplexity), D (downstream accuracy), P (number

Under review as a conference paper at ICLR 2023

Table 1: Results on pre-training and finetuning ten different model architectures. Full results (further
varying hyperparameters of these models) can be found in the Appendix.

Model #Params FLOPs Speed | Neg Log Ppl GLUE SGLUE SQuAD
Transformer Tiny 16M 1.21 38.4 -2.47 69.3 56.9 73.6
Transformer Small 60M 3.70 22.7 -2.02 78.1 65.3 81.9
Transformer Base 223M 114 9.3 -1.75 83.8 74.0 86.3
Transformer Large 738M 343 3.6 -1.61 86.4 78.3 88.6
Transformer XL 2.9B 63.8 1.3 -1.49 87.8 81.5 89.5
Evolved Transformer Tiny 19M 1.31 39.7 -2.45 69.6 57.1 69.6
Evolved Transformer Small 79M 4.23 23.7 -2.04 75.7 66.2 80.2
Evolved Transformer Base 218M 10.2 8.9 -1.79 83.0 70.5 84.8
Evolved Transformer Large 1.0B 49.3 2.1 -1.62 86.2 77.1 88.0
Evolved Transformer XL 2.2B 71.3 0.8 -1.55 87.0 78.3 88.2
Universal Transformer Tiny 11M 1.77 38.1 -2.73 69.8 56.1 62.3
Universal Transformer Small 52M 7.30 18.3 -2.12 76.8 64.2 75.4
Universal Transformer Base 127M 20.3 8.4 -1.91 80.0 67.9 80.1
Universal Transformer Large 283M 27.6 1.6 -1.67 84.0 73.4 85.4
Switch Transformer Tiny 174M 3.25 29.7 -2.01 78.2 63.8 80.7
Switch Transformer Small 460M 4.63 22.3 -1.85 80.3 68.0 82.9
Switch Transformer Base 2.0B 12.7 8.4 -1.66 84.2 74.1 86.5
Switch Transformer Large 3.9B 23.0 4.1 -1.56 84.6 75.8 87.9
Switch Transformer XL 29.6B 433 0.8 -1.62 84.0 75.2 87.5
Performer Tiny 16M 1.14 42.0 -2.88 50.5 48.8 15.0
Performer Small 61M 3.50 39.0 -2.44 57.8 51.1 31.1
Performer Base 224M 10.8 11.7 -2.23 61.4 53.4 37.8
Performer Large 739M 32.8 4.4 -2.16 62.4 52.4 30.8
Funnel Transformer Tiny 16M 1.10 39.9 -2.58 63.4 49.4 54.6
Funnel Transformer Small 61M 2.96 32.7 -2.11 70.0 58.5 75.1
Funnel Transformer Base 223M 8.10 11.9 -1.83 76.3 62.9 81.6
Funnel Transformer Large 739M 22.6 5.0 -1.69 79.8 67.1 83.8
Funnel Transformer XL 2.9B 40.3 1.89 -1.61 79.8 68.0 83.7
ALBERT Small 15M 3.57 42.0 -2.36 73.7 62.0 77.1
ALBERT Base 21M 9.40 16.4 -2.28 69.0 57.2 64.3
ALBERT Large 34M 31.6 5.1 -2.20 62.9 54.1 27.3
MoS-Transformer Tiny 27TM 1.29 39.7 -2.37 70.6 57.9 74.1
MoS-Transformer Small 81M 3.70 26.3 -1.98 79.7 67.1 83.1
MoS-Transformer Base 257TM 114 8.6 -1.70 84.5 73.9 86.8
MoS-Transformer Large 800M 35.0 34 -1.56 86.5 79.7 89.1
MoS-Transformer XL 2.9B 112 1.2 -1.45 88.2 81.4 90.0
GLU-Transformer Tiny 26M 1.29 31.7 -2.35 70.5 57.0 74.2
GLU-Transformer Small 7™M 3.70 26.4 -1.97 79.1 67.4 83.0
GLU-Transformer Base 248M 114 8.6 -1.71 84.6 74.5 87.2
GLU-Transformer Large 748M 35.0 34 -1.56 84.2 74.3 86.2
GLU-Transformer XL 2.85B 61.3 1.0 -1.49 87.6 82.9 89.4
LConv Tiny 1M 1.20 31.2 -2.50 51.1 51.3 49.5
LConv Small 67TM 3.80 12.8 -2.10 71.8 59.9 64.7
LConv Base 210M 10.6 12.8 -1.95 73.8 63.6 70.3
LConv Large 741M 41.0 3.0 -1.76 76.8 65.6 76.3
LConv XL 2.3B 77.0 1.0 -1.75 73.3 64.1 72.9
DConv Tiny 22M 1.39 27.3 -2.46 51.1 48.9 30.2
DConv Small 96M 4.97 19.8 -2.08 68.6 574 64.3
DConv Base 324M 15.3 7.6 -1.90 72.9 60.1 63.7
DConv Large 1.2B 78.0 1.1 -1.82 70.8 58.5 58.2
MLP-Mixer Small 67M 3.83 22.3 -2.15 65.4 55.1 58.7
MLP-Mixer Base 233M 12.4 10.7 -1.90 64.4 58.1 60.5
MLP-Mixer Large 739M 38.3 3.9 -1.73 52.2 47.8 60.9
MLP-Mixer XL 2.86B 48.3 1.2 -1.61 57.3 58.9 65.7

Under review as a conference paper at ICLR 2023

Table 2: Slope of a fitted linear line for each model, when we compare FLOPs vs. upstream per-
formance (F,U), FLOPs vs. downstream performance (F, D), parameter size vs. upstream per-
formance (F, U), parameter size vs. downstream performance (P, D), and finally upstream perfor-
mance vs. downstream performance (U, D).

Model aFU QF,D apU ap D Qy,D
Transformer | 0.54 0.28 0.47 0.24 0.49
GLU-Trans. | 0.49 0.24 0.42 0.22 0.46

LConv 032 013 029 0.11 0.48
Funnel 047 022 038 018 046
Switch 023 014 013 008 0.58

Universal 050 020 056 022 035
ALBERT 008 -0.12 0.13 -021 -1.67
Evolved 044 022 042 021 0.47
Performer 025 005 024 0.05 0.24
MoS-Trans. | 043 0.21 043 020 047
MLP-Mixer | 032 -003 026 0.65 -0.02

of parameters). In general, most values of v depict how well a model scales. For example ag 17 is
plotting FLOPs against Upstream performance. The only exception is oy, p which is a measure of
upstream vs downstream performance. A high o, p value means that the transfer to the downstream
tasks is better as a model scales. Overall, the « value is a metric that represents how well a model
performs relatively across all scales

Analysis of Slope for each Model In general, we find that the vanilla Transformer has the high-
est values of «w. Models such as Evolved Transformer, GLU-Transformer, MoS-Transformer and
Funnel Transformer tend to have similar scaling properties to the vanilla Transformer. The GLU-
Transformer has similar and slightly worse scaling properties to the vanilla Transformer, even if it
was observed to do better in absolute sense on some compute-regions. On the other hand, we also
observe that there are models which are difficult to scale such as LConv, UT, MLP-Mixer and Per-
former. This is even more evident on downstream task. We also note that ALBERT scales (trends)
negativelyﬂ(gets worse) as we scale the model up. On the other hand, the metric ay, p measures how
the downstream performance scales with upstream performance. Overall, the Switch Transformer
does the best on this metric where downstream performance scales well with upstream performance.
Generally, models that make less changes to the main Transformer architecture (GLU-Transformer,
MoS-Transformer) tend to retain similar scaling behaviours and changing the inductive bias also
significantly alters the scaling property of the model.

3.7 DO SCALING PROTOCOLS INFLUENCE MODEL ARCHITECTURES IN THE SAME WAY?

We are interested in how different scaling protocols influence the model architectures. Figure
[] shows the effect of scaling depth of four model architectures (MoS-Transformer, Transformer,
Evolved Transformer and LConv). Figure [5] shows the effect of scaling width on the same four
architectures. Firstly, on upstream (negative log perplexity) curves, we note that while different
architectures have a distinct difference in absolute performance, the scaling trend remains quite sim-
ilar. On downstream, depth scaling (Figure) seems to act equally on most architectures with the
exception of LConv. Meanwhile, for width scaling, it seems that Evolved Transformers scale slightly
better when applying width-scaling. It is also interesting to note that depth-scaling has a much more
substantial impact on downstream scaling as opposed to width-scaling.

3.8 EPILOGUE AND CONCLUSION

In this paper, we conducted extensive experiments, pretraining and finetuning of up to 100 models
ranging from 10 well-established Transformer and non-Transformer architectures. We showed that
different model architectures can have different scaling behaviours and models performing well in
one compute region (or model size) may not do identically well in another compute region.

2This version of ALBERT shares parameters across encoder and decoder which may partially explain why
we had a hard time scaling up.

Under review as a conference paper at ICLR 2023

150 7 ebloza NE36

Evolved NL2

22412 dder12 8.8etl Bet13 3.5e+13 7-0e+13 2.2e412 44e+12 8.80+12 1.8e+13 350413 7.0e+13

FLOPS FLOPS

(a) Upstream Neg. Log-PPL. (b) Downstream Accuracy.

Figure 4: Scaling depth

Evolved FF12K

7ed FFOK FF12K

yw/
volyed Ho})f/

3

SuperGlue Accuracy

LConv FF12K

. Negative Log-Perplexity

LCerV FFOK 67

186

66
-188

65 LConv FFBRonv FF12K
190 onv FF6K LCony EFgKk—=

1.0e+13 12e+13 1.4e+13 1.6e+131.8e412.0e413 2.4e+13 2.8e+13 3.2e+13 106413 1.2e413 14e+13 16e+131.8e+12.0e+13 2.4e+13 2.8e+13 3.2e413
FLOP!

FLOPS

(a) Upstream Neg. Log-PPL. (b) Downstream Accuracy.

Figure 5: Scaling width of FFN

We also showed that model architectures may do well on upstream perplexity but fail to transfer to
downstream tasks. Hence, practitioners should be cautious about developing architectures that not
only scale well with respect to the upstream perplexity, but also based on downstream performance.
While we certainly do not expect researchers to always report model performance across all scales
(especially large-scale), we believe that it is good to keep in mind that architectures can perform
quite differently at different compute regions. Hence, this might be a good dimension to consider
when designing new inductive biases. As such, performing evaluation at a certain compute region
may be insufficient to capture the full picture. It is also good to consider if different inductive biases
will result in different extends of emergent capabilities (Wei et al.| 20225 |Abnar et al., 2020).

We also showed that different model architectures may react differently to different scaling proto-
cols, which further expands on the narrative that comparing and benchmarking these models can be
very challenging (Dehghani et al.| 2021b). When it comes to scaling large models, this paper shows
that novel inductive biases can be indeed quite risky which might explain why most state-of-the-art
large language models [Rae et al| (2021)); |Chowdhery et al.| (2022); Tay et al.| (2022) are based on
relatively vanilla architectures. Our advice is to be cautious when staking an expensive run on a
Transformer architecture that drastically modifies the attention mechanism (e.g., Mixers and Per-
formers are generally high risk options as seen in our experiment results). Finally, we acknowledge
that not every practitioner or researcher would require models that are able to scale to billion of
parameters. In that case, inductive biases that are tailored to small or low compute will be sufficient.

Under review as a conference paper at ICLR 2023

REFERENCES

Samira Abnar, Mostafa Dehghani, and Willem Zuidema. Transferring inductive biases through
knowledge distillation. arXiv preprint arXiv:2006.00555, 2020.

Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of
large scale pre-training. arXiv preprint arXiv:2110.02095, 2021.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jachoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. arXiv preprint arXiv:2102.06701, 2021.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 8440-8451, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.747. URL https:
//www.aclweb.org/anthology/2020.acl-main.747.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V Le. Funnel-transformer: Filtering out sequen-
tial redundancy for efficient language processing. arXiv preprint arXiv:2006.03236, 2020.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 933-941. PMLR, 06-11 Aug 2017. URL http://proceedings.mlr.
press/v70/dauphinl7a.html.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency mis-
nomer. arXiv preprint arXiv:2110.12894, 2021a.

Mostafa Dehghani, Yi Tay, Alexey A Gritsenko, Zhe Zhao, Neil Houlsby, Fernando Diaz, Donald
Metzler, and Oriol Vinyals. The benchmark lottery. arXiv preprint arXiv:2107.07002, 2021b.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, and Alexis Conneau. Larger-Scale Trans-
formers for Multilingual Masked Language Modeling. arXiv e-prints, art. arXiv:2105.00572,
May 2021.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

10

https://www.aclweb.org/anthology/2020.acl-main.747
https://www.aclweb.org/anthology/2020.acl-main.747
http://proceedings.mlr.press/v70/dauphin17a.html
http://proceedings.mlr.press/v70/dauphin17a.html

Under review as a conference paper at ICLR 2023

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, Thibault Fevry, Michael Matena, Kar-
ishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, et al. Do transformer modifications
transfer across implementations and applications? arXiv preprint arXiv:2102.11972, 2021.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep
learning for supercomputers. In Advances in Neural Information Processing Systems, pp. 10414—
10423, 2018.

David So, Quoc Le, and Chen Liang. The evolved transformer. In International Conference on
Machine Learning, pp. 5877-5886. PMLR, 2019.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215, 2014.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020.

Yi Tay, Mostafa Dehghani, Jai Gupta, Dara Bahri, Vamsi Aribandi, Zhen Qin, and Donald
Metzler. Are pre-trained convolutions better than pre-trained transformers? arXiv preprint
arXiv:2105.03322, 2021a.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from
pre-training and fine-tuning transformers. arXiv preprint arXiv:2109.10686, 2021b.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven
Zheng, Neil Houlsby, and Donald Metzler. Unifying language learning paradigms. arXiv preprint
arXiv:2205.05131, 2022.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-mixer: An
all-mlp architecture for vision. arXiv preprint arXiv:2105.01601, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537, 2019.

11

Under review as a conference paper at ICLR 2023

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430, 2019.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax
bottleneck: A high-rank rnn language model. arXiv preprint arXiv:1711.03953,2017.

12

Under review as a conference paper at ICLR 2023

4 APPENDIX

4.1 SCALING DETAILS FOR INDIVIDUAL MODELS

For most models, it was reasonable to follow the uniform scaling method in the main TS5 sizes. At
each size, the hyperparameters are as follows:

Model Ny, dss dmodel dry Ny #Params
Tiny 4/4 1024 256 32 4 16M
Small 6/6 2048 512 32 8 60M
Base 12/12 3072 768 64 12 220M
Large 24/24 4096 1024 64 16 738M
XL 24/24 16384 1024 128 32 3B

Table 3: Table of model configurations. NNy, is the number of layers, d; is the size of the MLP,
dmoder 18 the hidden size of the model. dy, is the size of each key-value vector. Ny is the number
of heads.

Scaling for Switch Transformer For Switch Transformers, we use the following scaling:

Model Np, dyys dmodet dkw Ng Ng #Params
Tiny 4 1024 512 64 12 32 173M
Small 6 2048 512 64 12 32 460M
Base 12 3072 768 64 12 32 2B
Large 24 3072 768 64 12 32 8B
XL 48 3072 768 64 12 128 30B

Table 4: Scaling for Switch Transformer. Ng is the number of experts.

Scaling for Universal Transformer Scaling UTs are generally difficult as described in the main
text. There were two main considerations for scaling UTs. Initially we tried scaling the number of
recurrent operations. However, we found that even with an increase of FLOPS, this does not lead to
improved performance. Overall, the UT model might be pretty slow and therefore a model with the
same hparams as vanilla XL might be infeasible to run. Hence, we explored increasing the width of
the MLPs to 32K to see if UTs would scale in this manner.

Model NR dff dmodel dkv NH #Params
UT Tiny 3/3 1024 128 32 8 11M
UT Small 3/3 2048 512 32 8 52M
UT Base 3/3 3072 768 64 12 127M
UT Large 3/3 32768 1024 64 16 283M

Table 5: Table of model configurations. N is the number of recurrent operations, d ¢ is the size of
the MLP, d,,04c; is the hidden size of the model. dy, is the size of each key-value vector. Ny is the
number of heads.

13

Under review as a conference paper at ICLR 2023

Avert ocony Evolved Funnel
i 2l 5.0

£ £ £

ol S 5l

H B B

Ft g s

H £ H

Negative Log-Perplexty
Negative Log-erplexty

Negative Log-Perplexty

o o o
Eoef Fael 2.
1] 1] 11
ol Sl gl
3 : :
H H H

(b) Number of Parameters

Abert DCor Evolved Funnel

Negative Log-Perlexty
Negate tog-perpiety
Negatve Log-Perlexty

Negative Log-erplexty

mhvoughout

(c) Throughput

1Throughout : voushout

Figure 6: Quality-cost trade of for the upstream Negative Log-Perplexity of vanilla Transformer
compared to other models, with respect to FLOPs, number of parameters, and throughput.

14

Under review as a conference paper at ICLR 2023

(a) FLOPs

Abert DConv

(b) Number of Parameters

H H H |
[N L Ll L
s e
s s tomer

L Swecuescng

Superue sy

R e S
[—

I

Supercie Accraey
R e

T imvoughet - T T imouneut)) VThroughput - Imroughost
Switch TranstormerGLU ur

swcue g

thvougput T imounent ’ o Viniougtout

(c) Throughput

Figure 7: Quality-cost trade of for the downstream SuperGlue Accuracy of vanilla Transformer
compared to other models, with respect to FLOPs, number of parameters, and throughput.
15

Under review as a conference paper at ICLR 2023

ocony

(b) Number of Parameters

(c) Throughput

Figure 8: Quality-cost trade of for the downstream Glue Accuracy of vanilla Transformer compared
to other models, with respect to FLOPs, number of parameters, and throughput.

16

Under review as a conference paper at ICLR 2023

Squad Accura

(b) Number of Parameters

(c) Throughput

Figure 9: Quality-cost trade of for the downstream Squad Accuracy of vanilla Transformer compared
o other models, with respect to FLOPs, number of parameters, and throughput.

17

	Introduction
	Related Work
	Methods
	Models
	Experiment Setup
	Main Results
	Do all models scale the same way?
	Are the best models at each scale different?
	Scaling Law for Each Model
	Do Scaling Protocols influence model architectures in the same way?
	Epilogue and Conclusion

	Appendix
	Scaling Details for Individual Models

