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Abstract
Tabular foundation models have shown strong per-
formance across various tabular learning tasks via
in-context learning, offering robust generalization
without any downstream finetuning. However,
their inference-time costs remain high, particu-
larly for larger datasets. To address this, we pro-
pose early-stopping the in-context learning pro-
cess. We achieve this by dynamically evaluat-
ing whether to stop in-context learning after each
Transformer encoder layer. Once stopped, we
decode the embedding using a pre-trained layer-
wise decoder. Experiments across 34 small clas-
sification tasks size show that early stopping in-
context learning accelerates inference by up to
×1.3 with negligible degradation in predictive
performance. To assess scalability, we further
evaluate our method on five larger classification
tasks, achieving speedups of up to ×2.2. Our re-
sults demonstrate the potential of early exiting as
an effective and practical strategy for improving
the efficiency of tabular in-context learning.

1. Introduction
Tabular data is widely present across domains such as fi-
nance or healthcare (Borisov et al., 2022; van Breugel &
van der Schaar, 2024), many of which involve time-critical
decision making. Traditionally, tree-based models like XG-
Boost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017)
or CatBoost (Prokhorenkova et al., 2018) have demonstrated
strong performance on tabular problems, often surpassing
deep learning approaches (Grinsztajn et al., 2022). How-
ever, these models typically require extensive training and
hyperparameter tuning for each downstream task.
Recent research has shifted towards tabular foundation mod-
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els (TFMs) (van Breugel & van der Schaar, 2024), many of
which leverage in-context learning (Brown et al., 2020) to
enable fast adaption with minimal or no task-specific train-
ing. Notable examples include TabPFN (Hollmann et al.,
2025; 2023), TabICL (Qu et al., 2025) or TabDPT (Ma et al.,
2024). These models build on top of the Transformer archi-
tecture (Vaswani et al., 2017) to condition the context data
and perform inference directly on new tasks. However, the
self-attention mechanism scales quadratically with context
size, making inference costly in TFMs.
We investigate whether the in-context learning in TFMs
can be stopped early—without significant loss in perfor-
mance—through an entropy-based early exiting strategy.
Specifically, we pre-train lightweight decoders at each Trans-
former layer on synthetic data and use them to probe the
test sample during inference. Based on the entropy of the
prediction, we determine whether to exit early. This en-
ables inference speedups of up to ×1.3 on small datasets
and up to ×2.2 on larger tasks, with minimal degradation in
performance and without the need for any downstream task-
specific finetuning. Thus, we preserve a key advantage of
TFMs: strong predictive performance without downstream
task-specific finetuning. While early-exit strategies have
been explored in natural language processing (Xin et al.,
2020; Liu et al., 2020; Hou et al., 2020) and vision (Teer-
apittayanon et al., 2016), they remain largely underexplored
in the context of in-context learning. Our work aims to
close this gap and highlights the potential of early exiting
as a practical tool for improving TFM efficiency. Our con-
tributions are: (I) We introduce a simple yet effective
entropy-based early-stopping mechanism for tabular in-con-
text learning. (II) We demonstrate that inference of TFMs
can be sped up by up to ×1.3 on small tasks and ×2.2 on
larger tasks with negligible loss in predictive performance.
(III) Unlike prior early-exit methods, our approach does not
require task-specific finetuning, maintaining the advantages
of in-context learning of TFMs.

2. Related Work
Improving Transformer Efficiency. Improving the com-
putational efficiency of Transformer models (Vaswani et al.,
2017) has been widely studied, particularly natural language
processing. Early exit strategies have been introduced for
encoder-based architectures like BERT (Devlin et al., 2019),
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allowing inference to terminate at intermediate layers with-
out traversing the full model. Notable examples include
DynaBERT (Hou et al., 2020), FastBERT (Liu et al., 2020)
or CascadeBERT (Li et al., 2021). Additional efficiency-
oriented approaches such as quantization (Kim et al., 2021;
Shen et al., 2020; Zafrir et al., 2019) and knowledge distil-
lation (Hinton et al., 2015; Wang et al., 2020; Sanh et al.,
2020), have also been proposed, though they typically in-
volve model compression rather then dynamic inference
control and are therefore related to our work. Our method is
most related to early-exit architectures like DeeBERT (Xin
et al., 2020) and BranchyNet (Teerapittayanon et al., 2016),
but differs in its application to in-context learning. In con-
trast to prior work, which often requires task-specific fine-
tuning to calibrate exit decisions, our approach leverages
a pretrained, fixed exit mechanism that enables efficient
inference.

Tabular In-Context Learning. In-context learning (ICL)
(Brown et al., 2020) has recently been adapted to tabular data
through several distinct approaches. One prominent line of
work interprets ICL as approximate Bayesian inference over
tabular tasks (Xie et al., 2021; Müller et al., 2022; Reuter
et al., 2025), leading to the development of Transformer-
based foundation models such as TabPFN (Hollmann et al.,
2023; 2025), TabICL (Qu et al., 2025) or TabDPT (Ma et al.,
2024).

3. Method
We propose a straightforward yet effective early-exit mech-
anism for tabular in-context learning. Our method can be
used with any TFM; for this study, we use TabPFNv2 (Holl-
mann et al., 2025). Our approach introduces pre-trained,
layer-specific decoders into the Transformer (Vaswani et al.,
2017) architecture, enabling dynamic termination of the
forward pass during inference. At each layer, we decide
whether to exist early based on prediction entropy, as il-
lustrated in Figure 1. Crucially, our method requires no
task-specific finetuning and preserves the zero-shot capa-
bilities of the base model. All exit points are trained on
synthetically generated data from a prior.

Method Motivation. We investigate whether intermediate
layers of TabPFN can produce useful predictions prior to
the final layer. As shown in Figure 2, activations from ear-
lier layers, when passed through the final decoder, already
yield non-trivial performance—albeit typically suboptimal
compared to the last layer. This indicates that significant
predictive information emerges well before the end of the
forward pass. To better leverage these early representations,
we pre-train dedicated decoders for each Transformer layer,
enabling flexible early exits.

Layer-Specific Decoder Pretraining. We modify the

original TabPFN (Hollmann et al., 2025) architecture by
attaching a decoder to each encoder layer, as illustrated in
Figure 1. Each intermediate decoder shares the architecture
of the original TabPFN decoder, but is trained indepen-
dently. To enable generalization across tasks, we pre-train
each decoder on synthetic datasets sampled from the prior
introduced by Müller et al. (2023)1. During training, the
Transformer backbone is frozen, and only the decoder cor-
responding to the current exit layer is optimized. For the
final layer, we retain the original TabPFN decoder. In total,
each decoder is trained on approximately 820,000 synthetic
datasets. Details of the data generation and training proce-
dure are provided in Appendix A.

Early Stopping Based on Prediction Entropy. At in-
ference time, we perform early stopping based on the
predictive uncertainty of each layer’s decoder, similar
to BranchyNet (Teerapittayanon et al., 2016) and Dee-
BERT (Xin et al., 2020). After each Transformer layer, all
test samples are passed through the corresponding decoder,
and we compute the entropy of their predictive distributions.
We then average the entropies across the test set and com-
pare the result to a predefined threshold τ . If the average
entropy falls below τ , the model exits early and outputs
the corresponding predictions. Otherwise, the forward pass
continues to the next layer. The threshold τ is a dataset spe-
cific, tunable hyperparameter. Importantly, as all decoders
are pre-trained, no adaption to downstream tasks is needed,
thus making our method a cheap and efficient addition to
the standard forward pass of TabPFN. A detailed overview
of our proposed algorithm is specified Appendix B.

4. Experiments
We evaluate our method on two categories of classification
tasks to assess its effectiveness across dataset sizes. First,
we benchmark on 34 small-scale binary classification tasks
from the PMLB-mini suite (Knauer et al., 2024) containing
datasets with up to 500 samples2. Second, we assess scala-
bility and inference efficiency on five larger classification
datasets containing up to 5,000 samples, where TabPFN’s
inference latency becomes more critical due to the quadratic
complexity of the self-attention mechanism. We specify all
datasets in Appendix C.1. For all experiments, we report
mean performance over 10-fold cross-validation. We report
details on the hyperparameters for the TabPFN evaluation
in Appendix C.2.

Performance of Intermediate Layers. We investigate
the predictive capacity of intermediate Transformer layers
in TabPFN. To do this, we pre-train a decoder for each layer

1We adapt the pre-training setup specified in: https://
github.com/microsoft/ticl

2All experiments are run on a single NVIDIA RTX 2080 GPU
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Figure 1. Early Exit Strategy for TabPFN. We extend TabPFN with an early-exit mechanism for in-context learning. For each
Transformer layer, we pre-train a dedicated decoder on synthetically generated data from the prior (blue) while keeping the Transformer
layers (green) and the final decoder frozen. During inference, all test samples are passed through each decoder in sequence. If the average
prediction entropy falls below a predefined threshold τ , the forward pass is terminated early and predictions are returned.

as described in Section 3. For each benchmark dataset,
we terminate the forward pass at each layer and pass the
resulting representation through its corresponding decoder.
We then measure the classification accuracy for each exit
point.

Early Stopping based on Entropy. We evaluate the pro-
posed entropy-based early-exit method as shown in Figure 1.
We test a range of five entropy thresholds τ to control early
exit behavior. For each setting, we report the predictive
accuracy and the average number of Transformer layers
evaluated per inference run. This allows us to quantify the
trade-off between accuracy and computational cost.

Scalability to Larger Datasets. To further evaluate the
scalability of our approach, we test it on larger datasets
containing up to 5.000 samples—settings where TabPFN’s
inference latency becomes particularly critical. Importantly,
since our decoders are pre-trained only on synthetic datasets
with up to ∼ 1.000 samples, this also serves as a test of the
method’s ability to generalize to larger-scale tasks.

5. Results
Intermediate Layers Enable Confident Early Exits.
Figure 2 shows the classification accuracy obtained when
exiting TabPFN at different Transformer layers using their
corresponding pre-trained decoders, compared to using only
the final decoder. Results are averaged over 34 small-scale
datasets from the PMLB-mini (Knauer et al., 2024) bench-
mark. We observe that by pre-training individual decoders
for each layer stabilizes performance across layers, with
several intermediate layers reaching accuracy close to that
of the final layer. This suggests that many inputs can be con-
fidently predicted before completing the full forward pass,
enabling faster inference with negligible loss in accuracy.
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Figure 2. Performance per Layer over 34 Small Datasets with
Individual Decoders and Final Decoder. We report the average
ROC AUC score across 34 small-scale datasets, averaged over
10 folds, along with 95% confidence intervals. We compare two
exit strategies: using the original final decoder at intermediate
layers (blue) and using individually pre-trained decoders specific
to each layer (red). For reference, we also include the full TabPFN
baseline, where inference proceeds through the entire Transformer
(red dashed). Notably, intermediate layers already achieve strong
performance, with layers as early as 5 matching the final layer’s
accuracy when equipped with individual decoders. Moreover,
these layer-wise decoders significantly outperform intermediate
exits routed through the original final decoder.

Entropy-Based Early Exit Trades Accuracy for Effi-
ciency. To validate our early exit strategy, we apply the
entropy-based criterion across a range of thresholds τ . Fig-
ure 3 illustrates the trade-off between runtime savings and
classification accuracy for large datasets, where inference
cost is especially pressing. On larger tasks, thresholds in the
range τ ∈ [0.4, 0.5] yield up to ×2.2 faster inference with
only small accuracy degradation. On small-scale datasets,
thresholds between τ ∈ [0.3, 0.4] already achieve up to
×1.3 speedup with negligible loss in predictive performance
as shown in Table 1. Appendix C contains further evaluation
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Table 1. Impact of Different Entropy Thresholds on Inference Performance. We report ROC AUC, difference in wall-clock runtime
(in seconds) compared to full TabPFN forward pass, and average exit layer across 34 small and 4 large classification datasets for 5 different
entropy thresholds. All values are averaged across datasets.

Small Datasets

Baseline τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5

ROC AUC 0.886± 0.17 0.888± 0.17 0.887± 0.16 0.883± 0.17 0.873± 0.18 0.861± 0.19
Runtime ∆ in (s) — 0.004± 0.00 −0.013± 0.00 −0.044± 0.00 −0.069± 0.00 −0.084± 0.00
Avg. Exit Layer 12.0 11.0 9.8 7.6 6.1 5.3

Large Datasets

Baseline τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5

ROC AUC 0.960± 0.04 0.957± 0.04 0.941± 0.04 0.923± 0.04 0.920± 0.04 0.920± 0.04
Runtime ∆ in (s) — −0.550± 0.51 −1.194± 0.36 −1.369± 0.45 −1.415± 0.32 −1.464± 0.45
Avg. Exit Layer 12.0 9.48 7.02 5.42 5.0 5.0
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Figure 3. Tradeoff between Improved Runtime and Decrease
in Predictive Performance. We report the relative improvements
in runtime as well as the relative decrease in ROC AUC score aver-
aged over 5 large datasets when early stopping based on entropy
for 5 different entropy thresholds. It is trivial to see that a higher
threshold τ leads to higher improvements in runtime, but also leads
to a stronger decrease in terms of predictive performance. Notably,
the gains in terms of relative runtime improvement strongly exceed
the relative performance decrease.

results on small datasets. Across tasks, this allows TabPFN
to preserve its strong predictive accuracy while significantly
improving efficiency. Table 1 provides additional insights:
the average exit layer, actual runtime savings in seconds,
and corresponding accuracy deltas, across both small and
large datasets for a fixed set of threshold values. These re-
sults confirm that our early-exit mechanism adapts flexibly
to varying data scales, maintaining competitive predictive
performance while offering tangible gains in inference ef-
ficiency. We report all discussed metrics, per-dataset in
Appendix E. These findings demonstrate that entropy-based
early exiting offers a practical and cheap mechanism to
accelerate inference in tabular in-context learning without
sacrificing significant predictive quality.

Generalization to Larger Datasets. Table 1 reports de-

tailed results on larger datasets. Early stopping demonstrates
strong potential in this setting, yielding up to ×2.2 faster
inference for thresholds in the range τ ∈ [0.4, 0.5]. While
performance degradation becomes more noticeable—up to
4%—compared to smaller datasets, it remains moderate rel-
ative to the efficiency gains. These results indicate that early
stopping can substantially reduce inference costs even for
large-scale tasks, and pave the way for more refined and
adaptive strategies to maintain performance. At the same
time, these results highlight the ability of the individual
decoders generalize effectively to larger datasets, despite
being trained only on smaller-scale data. Appendix C pro-
vides further insights into the evaluation of all benchmark
datasets.

6. Conclusion
We propose early-exit tabular in-context learning, unlock-
ing dynamic inference stopping for the Tabular Foundation
Model (TFM) TabPFN based on prediction entropy. By
pre-training decoders for each Transformer layer on syn-
thetic data—without the need for any task-specific finetun-
ing—our method introduces minimal overhead while signif-
icantly improving inference efficiency. Experiments across
both small and large classification benchmarks indicate that
many predictions can be confidently made before reaching
the final layer, achieving up to×1.3 faster inference runtime
with only marginal loss in accuracy on small datasets. On
larger-scale tasks this effect is even more pronounced with
inference being up to ×2.2 faster, while still maintaining
near-optimal performance. Our approach retains the zero-
shot generalization and strong predictive performance of
TFMs while mitigating the inference cost associated with
larger input contexts. These results highlight the possibility
of early exiting, progressing towards real-time inference for
tabular in-context learning.
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D. Can Transformers Learn Full Bayesian Inference in
Context?, January 2025. URL http://arxiv.org/
abs/2501.16825. arXiv:2501.16825 [cs].

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. DistilBERT,
a distilled version of BERT: smaller, faster, cheaper
and lighter, March 2020. URL http://arxiv.org/
abs/1910.01108. arXiv:1910.01108 [cs].

Shen, S., Zhen, D., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M., and Keutzer, K. Q-BERT: Hessian Based
Ultra Low Precision Quantization of BERT. Proceedings
of the AAAI Conference on Artificial Intelligence, 34:
8815–8821, April 2020. doi: 10.1609/aaai.v34i05.6409.

Teerapittayanon, S., McDanel, B., and Kung, H.
BranchyNet: Fast inference via early exiting from
deep neural networks. In 2016 23rd International
Conference on Pattern Recognition (ICPR), pp. 2464–
2469, December 2016. doi: 10.1109/ICPR.2016.
7900006. URL https://ieeexplore.ieee.
org/document/7900006.

van Breugel, B. and van der Schaar, M. Why tabular foun-
dation models should be a research priority. In Salakhut-
dinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N.,
Scarlett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learn-
ing (ICML’24), volume 251 of Proceedings of Machine
Learning Research. PMLR, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A., Kaiser, L., and Polosukhin, I. Attention is
all you need. In Guyon et al. (2017).

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and
Zhou, M. MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Trans-
formers. In Advances in Neural Information Processing
Systems, volume 33, pp. 5776–5788. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.
html.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An Ex-
planation of In-context Learning as Implicit Bayesian In-
ference. October 2021. URL https://openreview.
net/forum?id=RdJVFCHjUMI.

Xin, J., Tang, R., Lee, J., Yu, Y., and Lin, J. DeeBERT: Dy-
namic Early Exiting for Accelerating BERT Inference. In
Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J. (eds.),
Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 2246–2251, On-
line, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.204. URL https:
//aclanthology.org/2020.acl-main.204/.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8BERT: Quantized 8Bit BERT. In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive
Computing - NeurIPS Edition (EMC2-NIPS), pp. 36–39,
December 2019. doi: 10.1109/EMC2-NIPS53020.2019.
00016. URL https://ieeexplore.ieee.org/
abstract/document/9463531.

6

https://aclanthology.org/2020.acl-main.537/
https://aclanthology.org/2020.acl-main.537/
http://arxiv.org/abs/2410.18164
http://arxiv.org/abs/2410.18164
iclr.cc
http://arxiv.org/abs/2502.05564
http://arxiv.org/abs/2502.05564
http://arxiv.org/abs/2501.16825
http://arxiv.org/abs/2501.16825
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://ieeexplore.ieee.org/document/7900006
https://ieeexplore.ieee.org/document/7900006
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://aclanthology.org/2020.acl-main.204/
https://aclanthology.org/2020.acl-main.204/
https://ieeexplore.ieee.org/abstract/document/9463531
https://ieeexplore.ieee.org/abstract/document/9463531


Submission and Formatting Instructions for ICML 2025

A. Decoder Pre-Training.
We pre-train each decoder independently on synthetic datasets sampled from the prior, following the prior setup from
(Hollmann et al., 2023). During training, all Transformer components are frozen; only the target decoder is updated. Each
decoder is attached at a specific Transformer layer, receiving its output as input, and trained for a total of 100 epochs.
Detailed training settings are provided in Table 2. Settings for the synthetic datasets from the prior are stated in Table 3. We
train all decoders on a single NVIDIA RTX 2080 GPU.

Table 2. Training Parameters. We report the parameters for
the pre-training setup. We train each decoder for a total of
100 epochs. #Steps/Epoch states the number of synthetically
drawn datasets per epoch from the prior.

Training Parameters Value

Epochs 100
Batch Size 8
#Steps/Epoch 1024
Learning Rate 3e-5

Table 3. Parameters for the Prior. We report the parameters
for the synthetic datasets drawn from the Prior.

Prior Parameters Value

#Samples per Dataset 1152
#Features per Dataset 100
#Max Classes per Dataset 10
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B. Algorithm Details.
Algorithm 1 specifies the implementation of dynamic early exiting in tabular in-context learning.

Algorithm 1 Early-Exit Inference for TabPFN
Input: Table embedding x = (xtrain, ytrain, xtest), threshold τ
for i = 1 to NTransformerLayers do
x← TransformerLayeri(x)
ŷ ← Decoderi(xtest)
p← softmax(ŷ)
H ← −

∑
p log p

if H < τ then
return p

end if
end for
return p
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C. Evaluation Details.
C.1. Datasets

We report details about the used small datasets in Table 4 and large datasets in Table 5.

Table 4. Small Datasets. The datasets used from the pmlb-mini suite (Knauer et al., 2024)

Dataset OpenML ID #Features #Samples #Targets

parity5 40714 5 32 2
analcatdata fraud 40660 11 42 2
aids 346 4 50 2
analcatdata bankruptcy 476 6 50 2
analcatdata japansolvent 467 9 52 2
analcatdata asbestos 459 3 83 2
lupus 472 3 87 2
postoperative-patient-data 40683 8 88 2
analcatdata cyyoung9302 479 10 92 2
analcatdata cyyoung8092 465 10 97 2
analcatdata creditscore 461 6 100 2
molecular-biology promoters 956 57 106 2
analcatdata boxing1 448 3 120 2
mux6 40681 6 128 2
analcatdata boxing2 444 3 132 2
corral 40669 6 160 2
backache 463 32 180 2
prnn crabs 446 7 200 2
sonar 40 60 208 2
biomed 481 8 209 2
prnn synth 464 2 250 2
analcatdata lawsuit 450 4 264 2
SPECT 336 22 267 2
heart-statlog 53 13 270 2
hepatitis 55 19 155 2
breast-cancer 13 9 286 2
hungarian 231 13 294 2
cleve 40710 13 303 2
haberman 43 3 306 2
SPECTF 337 44 349 2
ionosphere 59 34 351 2
colic 27 22 368 2
vote 56 16 435 2
irish 451 5 500 2

C.2. Hyperparameters

We use TabPFNv2 (Hollmann et al., 2025) for all experiments. We use default classification hyperparameters from the paper
evaluation.
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Table 5. Large Datasets. The datasets used from the original TabPFNv2 evaluation. (Hollmann et al., 2025)

Dataset OpenML ID #Features #Samples #Targets

ada 41156 48 4147 2
churn 49791 20 5000 2
phoneme 1489 5 5404 2
Satellite 40900 36 5100 2
sylvine 41146 20 5124 2
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D. Additional Results for Large Datasets and Small Datasets.
We present evaluation results—similar to the evaluation of the small datasets—for large datasets. Figure ?? illustrates the
tradeoff between relative runtime improvement and performance decrease for small datasets. Figure 5 shows the performance
per layer over large datasets.
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Figure 4. Tradeoff between Improved Runtime and Decrease in Predictive Performance. We report the relative improvements in
runtime as well as the relative decrease in ROC AUC score averaged over 34 small datasets when early stopping based on entropy for 5
different entropy thresholds.
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Figure 5. Performance per Layer over 5 Large Datasets with Individual Decoders. We present the performance average ROC AUC
score over 5 large datasets with up to 5k samples averaged over 10 folds as well as the 95% confidence interval. Additionally we present
the baseline of TabPFN when passing through the entire transformer in red. Similar to small datasets, early layers already exhibit strong
performance.
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E. Detailed Results.
We present the per-dataset results of our evaluation of small datasets in Table 6 and for large datasets in Table 8. We further
report the exit layer per dataset, for small datasets in Table 7 and for large datasets in Table 9.
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Table 6. ROC AUC Scores per Dataset over Different Thresholds for Small Datasets. We report ROC AUC scores per dataset for 5
different thresholds. All scores are averages over 10 fold cross validation.

Dataset τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

parity5 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 0.950 ± 0.16 0.725 ± 0.38
analcatdata fraud 0.833 ± 0.24 0.867 ± 0.23 0.800 ± 0.28 0.733 ± 0.31 0.767 ± 0.27
aids 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 0.850 ± 0.32 0.783 ± 0.39
analcatdata bankruptcy 0.967 ± 0.11 0.967 ± 0.11 0.967 ± 0.11 0.967 ± 0.11 0.950 ± 0.16
analcatdata japansolvent 0.933 ± 0.14 0.950 ± 0.11 0.900 ± 0.22 0.900 ± 0.22 0.900 ± 0.22
analcatdata asbestos 0.871 ± 0.15 0.871 ± 0.15 0.872 ± 0.15 0.866 ± 0.15 0.866 ± 0.15
lupus 0.820 ± 0.18 0.820 ± 0.18 0.826 ± 0.17 0.809 ± 0.18 0.728 ± 0.24
postoperative-patient-data 0.356 ± 0.14 0.356 ± 0.14 0.356 ± 0.14 0.384 ± 0.15 0.448 ± 0.19
analcatdata cyyoung9302 0.917 ± 0.16 0.903 ± 0.16 0.896 ± 0.16 0.915 ± 0.16 0.915 ± 0.16
analcatdata cyyoung8092 0.880 ± 0.13 0.896 ± 0.12 0.883 ± 0.14 0.864 ± 0.14 0.864 ± 0.14
analcatdata creditscore 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 0.995 ± 0.02 0.995 ± 0.02
molecular-biology promoters 0.579 ± 0.25 0.585 ± 0.25 0.589 ± 0.27 0.610 ± 0.24 0.601 ± 0.24
analcatdata boxing1 0.879 ± 0.10 0.879 ± 0.10 0.882 ± 0.10 0.892 ± 0.10 0.882 ± 0.10
mux6 1.000 ± 0.00 1.000 ± 0.00 0.990 ± 0.03 0.943 ± 0.10 0.904 ± 0.11
analcatdata boxing2 0.853 ± 0.09 0.855 ± 0.09 0.853 ± 0.09 0.863 ± 0.08 0.822 ± 0.10
corral 1.000 ± 0.00 0.987 ± 0.02 0.979 ± 0.04 0.976 ± 0.04 0.976 ± 0.04
backache 0.701 ± 0.13 0.711 ± 0.15 0.703 ± 0.11 0.700 ± 0.11 0.697 ± 0.11
prnn crabs 1.000 ± 0.00 1.000 ± 0.00 0.999 ± 0.00 0.999 ± 0.00 0.999 ± 0.00
sonar 0.944 ± 0.05 0.944 ± 0.05 0.944 ± 0.05 0.920 ± 0.09 0.902 ± 0.09
biomed 1.000 ± 0.00 0.978 ± 0.02 0.971 ± 0.03 0.973 ± 0.03 0.973 ± 0.03
prnn synth 0.948 ± 0.03 0.945 ± 0.03 0.946 ± 0.03 0.946 ± 0.03 0.946 ± 0.03
analcatdata lawsuit 0.990 ± 0.02 0.990 ± 0.02 0.990 ± 0.02 0.990 ± 0.02 0.990 ± 0.02
SPECT 0.833 ± 0.07 0.834 ± 0.07 0.844 ± 0.08 0.848 ± 0.08 0.848 ± 0.08
heart-statlog 0.908 ± 0.06 0.908 ± 0.06 0.912 ± 0.06 0.911 ± 0.06 0.910 ± 0.06
hepatitis 0.856 ± 0.09 0.864 ± 0.09 0.879 ± 0.08 0.876 ± 0.10 0.879 ± 0.10
breast-cancer 0.728 ± 0.06 0.730 ± 0.06 0.729 ± 0.06 0.738 ± 0.07 0.730 ± 0.07
hungarian 0.908 ± 0.06 0.909 ± 0.06 0.909 ± 0.07 0.912 ± 0.07 0.912 ± 0.07
cleve 0.910 ± 0.05 0.911 ± 0.05 0.912 ± 0.06 0.909 ± 0.06 0.909 ± 0.06
haberman 0.714 ± 0.17 0.714 ± 0.17 0.719 ± 0.16 0.700 ± 0.13 0.697 ± 0.12
SPECTF 0.964 ± 0.04 0.964 ± 0.04 0.951 ± 0.05 0.949 ± 0.04 0.949 ± 0.04
ionosphere 0.983 ± 0.02 0.974 ± 0.02 0.957 ± 0.04 0.949 ± 0.04 0.949 ± 0.04
colic 0.901 ± 0.04 0.900 ± 0.04 0.892 ± 0.04 0.868 ± 0.05 0.869 ± 0.05
vote 0.992 ± 0.01 0.983 ± 0.02 0.979 ± 0.03 0.979 ± 0.03 0.979 ± 0.03
irish 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00
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Table 7. Exit Layer per Dataset over Different Thresholds for Small Datasets. We report the exit layer per dataset for 5 different
thresholds when dynamically early stopping. All exit layers are averages over 10 fold cross validation.

Dataset τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

parity5 10.3 10.0 9.4 7.1 5.3
analcatdata fraud 12.0 10.6 7.1 5.7 5.0
aids 12.0 12.0 12.0 11.2 9.1
analcatdata bankruptcy 11.9 9.8 6.7 5.7 5.0
analcatdata japansolvent 12.0 12.0 6.7 5.6 5.0
analcatdata asbestos 12.0 11.6 7.2 5.0 5.0
lupus 12.0 12.0 11.3 7.9 5.0
postoperative-patient-data 12.0 12.0 12.0 10.6 5.7
analcatdata cyyoung9302 11.3 7.5 5.2 5.0 5.0
analcatdata cyyoung8092 12.0 10.8 5.9 5.0 5.0
analcatdata creditscore 8.0 6.0 5.0 5.0 5.0
molecular-biology promoters 12.0 12.0 11.3 7.1 5.0
analcatdata boxing1 12.0 12.0 11.6 7.7 5.0
mux6 11.9 11.4 10.6 8.5 5.9
analcatdata boxing2 12.0 12.0 12.0 11.0 7.8
corral 9.5 5.9 5.0 5.0 5.0
backache 12.0 8.1 5.0 5.0 5.0
prnn crabs 7.5 6.1 5.0 5.0 5.0
sonar 12.0 12.0 10.9 7.0 5.2
biomed 9.6 6.5 5.1 5.0 5.0
prnn synth 12.0 10.8 5.0 5.0 5.0
analcatdata lawsuit 6.1 5.0 5.0 5.0 5.0
SPECT 12.0 10.3 5.7 5.0 5.0
heart-statlog 12.0 11.4 7.0 5.0 5.0
hepatitis 12.0 6.8 5.0 5.0 5.0
breast-cancer 12.0 12.0 12.0 8.2 5.1
hungarian 12.0 10.0 5.1 5.0 5.0
cleve 12.0 12.0 6.1 5.0 5.0
haberman 12.0 12.0 10.7 5.4 5.0
SPECTF 12.0 12.0 9.2 5.0 5.0
ionosphere 11.3 6.7 5.3 5.0 5.0
colic 12.0 12.0 8.4 5.0 5.0
vote 6.8 5.1 5.0 5.0 5.0
irish 6.4 5.3 5.0 5.0 5.0

Table 8. ROC AUC Scores per Dataset over Different Thresholds for Small Datasets. We report ROC AUC scores per dataset for 5
different thresholds. All scores are averages over 10 fold cross validation.

Dataset τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

ada 0.919 ± 0.02 0.908 ± 0.02 0.9 ± 0.02 0.899 ± 0.02 0.899 ± 0.02
churn 0.919 ± 0.03 0.885 ± 0.03 0.886 ± 0.03 0.888 ± 0.03 0.888 ± 0.03
phoneme 0.969 ± 0.01 0.969 ± 0.01 0.89 ± 0.02 0.877 ± 0.02 0.877 ± 0.02
Satellite 0.987 ± 0.02 0.972 ± 0.02 0.972 ± 0.02 0.972 ± 0.02 0.972 ± 0.02
sylvine 0.992 ± 0.0 0.971 ± 0.0 0.968 ± 0.01 0.965 ± 0.01 0.965 ± 0.01
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Table 9. Exit Layer per Dataset over Different Thresholds for Large Datasets. We report the exit layer per dataset for 5 different
thresholds when dynamically early stopping. All exit layers are averages over 10 fold cross validation.

Dataset τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

ada 12.0 6.0 5.1 5.0 5.0
churn 9.5 6.0 5.5 5.0 5.0
phoneme 12.0 12.0 6.0 5.0 5.0
Satellite 5.9 5.0 5.0 5.0 5.0
sylvine 8.0 6.1 5.5 5.0 5.0
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