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Abstract

There is strong empirical evidence that the state-
of-the-art diffusion modeling paradigm leads to
models that memorize the training set, especially
when the training set is small. Prior methods to
mitigate the memorization problem often lead to
decrease in image quality. Is it possible to obtain
strong and creative generative models, i.e., mod-
els that achieve high generation quality and low
memorization? Despite the current pessimistic
landscape of results, we make significant progress
in pushing the trade-off between fidelity and mem-
orization. We first provide theoretical evidence
that memorization in diffusion models is only nec-
essary for denoising problems at low noise scales
(usually used in generating high-frequency de-
tails). Using this theoretical insight, we propose
a simple, principled method to train the diffusion
models using noisy data at large noise scales. We
show that our method significantly reduces memo-
rization without decreasing the image quality, for
both text-conditional and unconditional models
and for a variety of data availability settings.

1. Introduction
Diffusion models (Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2020) have become a widely used framework
for unconditional and text-conditional image generation.
However, recent works (Carlini et al., 2023; Daras et al.,
2023c; 2024b; Somepalli et al., 2022; 2023; Ross et al.,
2024) have shown that the trained models memorize the
training data and often replicate them at generation time.
This issue has raised important privacy and ethical con-
cerns (Somepalli et al., 2022; Tramèr et al., 2022; Appel
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et al., 2023), especially in applications where the training
set contains sensitive or copyrighted information (Chambon
et al., 2022b;a). Carlini et al. (2023) conjectures that the im-
proved performance over alternative frameworks may come
from the increased memorization (Lee et al., 2024). This
raises the following question:

Can we improve the memorization of diffusion models
without decreasing the image generation quality?

Prior work has shown that the optimal solution to the diffu-
sion objective is a model that merely replicates the training
points (Scarvelis et al., 2023; Biroli et al., 2024; De Bortoli,
2022; Kamb & Ganguli, 2024; Benton et al., 2024). Several
papers have tried to understand the reason behind memo-
rization and transition from memorization to generalization
(Kadkhodaie et al., 2023; Kamb & Ganguli, 2024). For ex-
ample, Kamb & Ganguli (2024) showed that the creativity
in diffusion modeling happens when the models fail to per-
fectly minimize their training loss. As the training dataset
becomes smaller, overfitting becomes easier, memorization
increases and output diversity decreases (Kadkhodaie et al.,
2023; Somepalli et al., 2023; Daras et al., 2023c; Gu et al.,
2023). Text-conditioning is also known to exacerbate mem-
orization (Carlini et al., 2023; Somepalli et al., 2023; 2022)
and text-conditional diffusion models are known to memo-
rize individual training points even when trained on billions
of image-text pairs (Carlini et al., 2023; Daras et al., 2023a).

Related work. Several methods have been proposed to re-
duce the memorization in diffusion models (Somepalli et al.,
2023; Daras et al., 2023c; Wen et al., 2024; Daras et al.,
2024a; Kazdan et al., 2024; Chen et al., 2024). A line of
work proposes sampling adaptations that guide the genera-
tion process away from training points (Kazdan et al., 2024;
Wen et al., 2024; Chen et al., 2024). Wang et al. (2025); Ku-
likov et al. (2023) propose decreasing the receptive field of
the generative model to avoid memorization. Another line
of work corrupts the images (Daras et al., 2023c; 2024b)
or the text-embedding in text-conditioned image models
(Somepalli et al., 2023). Another way of tackling memo-
rization is by using privacy based methods (e.g., differential
privacy based methods (Dockhorn et al., 2022; Lin et al.,
2023; Wang et al., 2024a) ). These methods, while effective
in reducing memorization and improving the privacy, often
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Training image (Wen et al., 2024)
(Wen et al., 2024)

+ Ours

”RISE 24” TriFecta Dishwasher

CANYON CARGO - Outdoor shorts - dark moss

Western Chief Down Hill Trot (Black) Women’s Rain Boots

Figure 1. Qualitative results for reducing the memorization of Sta-
ble Diffusion 2. Combining our method with (Wen et al., 2024)
helps generate novel samples for the above prompts. See Section 3
for our method and Section 5.2 for more details on the experiment.

decrease the image generation quality. Feldman (2020) the-
oretically showed strong trade-offs between memorization
and generalization by showing that memorization is nec-
essary for (optimal) classification. This raises the natural
question of whether this trade-off also applies to generative
modeling.

The need for memorization in (Feldman, 2020) is associated
with the frequencies of different subpopulations (e.g., cats,
dogs, etc.) that appear in the dataset. The key observation
is that the distribution of the frequencies is usually heavy-
tailed (Zhu et al., 2014), i.e., roughly speaking in a dataset
of size n, there will be many classes with frequency around
1/n. This means that the training algorithm will only ob-
serve a single representative from those subpopulations and
cannot distinguish between the following two cases: Case
1. If the unique example comes from an extremely rare
subpopulation (with frequency≪ 1/n), then memorizing
it has no significant benefits, Case 2. If the unique exam-
ple comes from a subpopulation with 1/n frequency, then
memorizing it will probably improve the accuracy on the
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Figure 2. (FID, Memorization) pairs for different values of σtn

used in our proposed Algorithm 1 (presented in Section 3) for
training diffusion models from limited data. The standard DDPM
objective corresponds to σtn = 0 and it is not in the Pareto frontier.
Setting σtn too low or too high reverts back to the DDPM behav-
ior. Values for σtn ∈ [0.4, 4] strike different balances between
memorization and quality of generated images. The models in this
Figure are trained on only 300 images from FFHQ.

entire subpopulation and decrease the generalization error
by Ω(1/n). Hence, the optimal classifier should memorize
these unique examples to avoid paying Case 2 in the error.

The key assumption above seems to break when noise is
added to the images. That is because different subpopu-
lations start to merge and the heavy-tails of the weights’
distribution disappear. Interestingly, diffusion models learn
the (score of the) distribution at different levels of noise.
This indicates that, in principle, it is feasible to avoid mem-
orization in the high-noise regime (without sacrificing too
much quality). Despite that, regular diffusion model train-
ing, e.g., the DDPM (Ho et al., 2020) objective, results
to score functions that have attractors around the training
points, even for highly noisy inputs, as shown in Figure 3.

The discussion above suggests that it should be possible to
train high-quality diffusion models that do not memorize in
the high-noise part of the diffusion. It has been empirically
established that this part controls the structural information
of the outputs and hence the diversity of the generated dis-
tribution (Dieleman, 2024; Li & Chen, 2024). To avoid
memorization in the high-noise regime, we propose a sim-
ple, principled framework that trains the diffusion model
only with noisy data at large noise scales. We give theoret-
ical evidence that the noisy targets used for learning leak
much less information about the training set and further they
are harder to memorize since they are less compressible.

Our contributions:

• We propose a simple framework to train diffusion mod-
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Input images
σ = 17 σ = 8

Outputs of diffusion model trained on 52k images

Outputs of diffusion model trained on 300 images

Outputs of Ambient Diffusion trained on 300 images

Figure 3. Comparison of denoised images under different noise
levels and training conditions. Standard diffusion modeling leads
to overconfident predictions (row 3) even for very highly noised
inputs when it is trained on small datasets. Our algorithm (row
4), has a similar behavior (blurry outputs) to a model trained with
significantly more data (row 1), indicating less memorization.

els that achieve reduced memorization and high-quality
sample generation even when trained on limited data.

• We experimentally validate our approach on various
datasets and data settings, showcasing significantly re-
duced memorization and improved generation quality
compared to natural baselines, in both the uncondi-
tional and text-conditional settings.

• On the theory side, we adapt the theoretical frame-
work of (Feldman, 2020) for studying memorization
to diffusion models. Based on that, we argue about
the necessity of memorizing the training set in differ-
ent noise scales indicating that memorization is only
essential at the low-noise regime.

• We quantify the information leakage of our proposed
algorithm in the high-noise regime showing significant
benefits over the standard diffusion modeling objective.

2. Background and Related Work
2.1. Diffusion Modeling

The first step in diffusion modeling is to design a corruption
process. For the ease of presentation, we focus on the widely
used Variance Preserving (VP) corruption (Ho et al., 2020;
Song et al., 2020). We define a sequence of increasing
corruption levels indexed by t ∈ [0, 1], with:

Xt =
√
1− σ2

tX0 + σtZ, Z ∼ N (0, Id), (1)

where the map σt := σ(t) is the noise schedule and X0

is drawn from the clean distribution p0. We remark that
our framework extends to other noise schedules, diffusion
models (Song & Ermon, 2019; Daras et al., 2023b; Bansal
et al., 2022; Karras et al., 2022) and flow matching (Lipman
et al., 2022; Liu et al., 2022; Albergo et al., 2023).

Our ultimate goal is to sample from the unknown distri-
bution p0. The key idea behind diffusion modeling is to
learn the score functions, defined as ∇ log pt(·), for differ-
ent noise levels t, where Xt ∼ pt. The latter is related
to the optimal denoiser E[x0|Xt = xt] through Tweedie’s
formula (Efron, 2011):

∇ log pt(xt) =

√
1− σ2

tE[x0|Xt = xt]− xt

σ2
t

. (2)

The conditional expectation is typically learned from the
available data with supervised learning over some paramet-
ric class of models H = {hθ : θ ∈ Θ}, using the training
objective:

J(θ) = Ex0
E(xt,t)|x0

[
∥hθ(xt, t)− x0∥2

]
. (3)

Post training, the score function ∇ log pt(xt) is approxi-
mated by plugging the optimal solution of (3) to (2). Alter-
natively, one can train directly for the score function using
the noise prediction loss (Ho et al., 2020; Vincent, 2011):

J(θ) = Ex0,xt,t

[ ∥∥∥∥∥sθ(xt, t)−
√

1− σ2
t x0 − xt

σ2
t

∥∥∥∥∥
2 ]

.

(4)

Given access to the score function for different times t,
one can sample from the distribution of p0 by running the
process (Song et al., 2020):

dx =

(
−x− (dσt/dt)σt

1 + σ2
t

∇ log pt(xt)

)
dt. (5)

2.2. Memorization in Diffusion Models

The first expectation of (3) is taken over the distribution of
x0. The underlying distribution of x0 is continuous, but in
practice we only optimize this objective over a finite distri-
bution of training points. Prior work has shown that when
the expectation is taken over an empirical distribution p̂0,
the optimal score can be written in closed form (Scarvelis
et al., 2023; Biroli et al., 2024; De Bortoli, 2022; Kamb &
Ganguli, 2024; Benton et al., 2024). Specifically, the opti-
mal score for the empirical distribution, which corresponds
to a finite amount of examples S, can be written as:

ŝ∗(xt, t) =
1

σ2
t

1∑
x0∈S N (xt;

√
1− σ2

t x0, σtI)
·

·
∑
x0∈S

(
√
1− σ2

t x0 − xt) N (xt;
√

1− σ2
t x0, σtI) .
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attraction to x0 weight of attraction

Intuitively, each point x0 in the finite sample S (i.e., the
empirical distribution p̂0) is pulling the noisy iterate xt

towards itself, where the weight of the pull depends on the
distance of each training point to the noisy point. The above
solution will lead to a diffusion model that only replicates
the training points during sampling (Scarvelis et al., 2023;
Kamb & Ganguli, 2024). Hence, any potential creativity
that is observed experimentally in diffusion models comes
from the failure to perfectly optimize the training objective.

2.3. Ambient Score Matching

One way to mitigate memorization is to never see the train-
ing data. Recent techniques for training with corrupted data
allow learning of the score function without ever seeing a
clean image (Daras et al., 2024b; 2023a; Kawar et al., 2023;
Bai et al., 2024; Wang et al., 2024b; Rozet et al., 2024).
Consider the case where we are given samples from a noisy
distribution ptn (where tn stands for t-nature) and we desire
to learn the score at time t for t > tn. The Ambient Score
Matching loss (Daras et al., 2024b), defined as:

Jambient(θ) = Extn
E(xt,t)|xtn

[∥∥∥∥ σ2
t − σ2

tn

σ2
t

√
1− σ2

tn

hθ(xt, t)

+
σ2
tn

σ2
t

√
1− σ2

t

1− σ2
tn

xt − xtn

∥∥∥∥2]
, (6)

can learn the conditional expectation E[x0|xt] (similar to
Equation (3)) without ever looking at clean data from p0.
The intuition behind this objective is that to denoise the
noisy sample xt, we need to find the direction of the noise
and then rescale it appropriately. The former can be found
by denoising to an intermediate level tn and the rescaling en-
sures that we denoise all the way to the level of clean images.
Once the conditional expectation E[x0|xt] is recovered, we
get the score by using Tweedie’s Formula.

We remark that this objective can only be used for t >
tn. While there are ways to train for t ≤ tn without any
clean data (e.g. see (Daras et al., 2023a; 2024b; Bai et al.,
2024; Wang et al., 2024b; Rozet et al., 2024)), this leads to
performance deterioration unless a massive noisy dataset is
available (Daras et al., 2024a). For what follows, we refer
to Eq.(3) as the DDPM training objective and to Eq.(6) as
the Ambient Diffusion training objective for noisy data.

3. Method
We are now ready to present our framework for training
diffusion models with limited data that will allow creativity
without sacrificing quality. Our key observation is that the
diversity of the generated images is controlled in the high-
noise part of the diffusion trajectory (Dieleman, 2024; Li &

Chen, 2024). Hence, if we can avoid memorization in this
regime, it is highly unlikely that we will replicate training
examples at inference time, even if we memorize at the low-
noise part. Our training algorithm can “copy” details from
the training samples and still produce diverse outputs.

Our training framework is presented in Algorithm 1. It
works by splitting the diffusion training time into two parts,
t ≤ tn and t > tn, where tn

1 (t-nature) is a free parameter
to be controlled. For the regime, t ≤ tn, we train with the
regular diffusion training objective, and (assuming perfect
optimization) we know the exact score, which is as given in
Section 2.2. To train for t > tn, we first create the set Stn

which has one noisy version of each image in the training
set. Then, we train using the set Stn and the Ambient Score
Matching loss introduced in Section 2.3.

It is useful to build some intuition about why this algorithm
avoids memorization and at the same time produces high-
quality outputs. Regarding memorization: 1) the learned
score function for times t ≥ tn does not point directly
towards the training points since Ambient Diffusion aims
to predict the noisy points (recall that the optimal DDPM
solution points towards scalings of the training points) and
2) the noisy versions xtn are harder to memorize than x0,
since noise is not compressible. At the same time, if the
dataset size were to grow to infinity, both our algorithm
and the standard diffusion objective would find the true
solution: the score of the underlying continuous distribution.
In fact, Algorithm 1 learns the same score function for times
t ≤ tn as DDPM. This contributes to generating samples
with high-quality details, copied from the training set.

4. Theoretical Results
4.1. Information Leakage

In this section, we attempt to formalize the intuition of why
our proposed algorithm reduces memorization of the dataset.
We start by showing the following Lemma that characterizes
the sampling distribution of our algorithm for t = tn.

Lemma 4.1 (Ambient Diffusion solution at tn). Let Stn

be the noisy training set as in L1 of Algorithm 1. For a
fixed Stn , let p̂tn be the distribution at time t = tn that
arises by using the score of Algorithm 1 in the reverse
process of Eq.(5) initialized at N (0, Id). It holds that
p̂tn = 1

|Stn |
∑

xtn∈Stn
δ(x− xtn).

For the proof, we refer to Section D.1.1. This Lemma
extends the result of Kamb & Ganguli (2024) from the stan-
dard diffusion objective of Eq.(3) to the training objective of
Eq.(6). Given this result, we can compare the information
leakage of Ambient Diffusion at time tn compared to the

1We often use the symbol n for sample size; the notation tn is
unrelated to the size n.
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optimal distribution q̂tn learned by DDPM at that time.

Lemma 4.2 (Information Leakage). Consider point x0 ∼
N (µ,Σ), a set A of size m generated i.i.d. by p̂tn (optimal
ambient solution at time tn with input x0) and a set D of size
m generated i.i.d. by q̂tn (optimal DDPM solution at time
tn with input x0). Then the mutual information satisfies:

I(D;x0) = m · I(A;x0) =
m
2 log det(

1−σ2
tn

σ2
tn

Σ+ I).

For the proof, we refer to Section D.1.2. The above means
that DDPM leaks much more information about the train-
ing point compared to Ambient Diffusion, when asked to
generate a collection of samples from the model at time
tn. Another way to see it, is that given m samples from
DDPM at time tn, one can get an estimator for x0 with error
poly(1/m), while with Ambient Diffusion, no consistent
estimation is possible. As expected, as σtn ≈ 0, then no
noise is added to create Stn and hence the mutual informa-
tion blows up. On the other extreme, as σtn ≈ 1, then the
models reveal no information about the original point. If the
dataset contains multiple points, similar results about the
mutual information can be obtained (see Section D.1.3).

The above indicate that Ambient Diffusion can only mem-
orize the noisy images. Our justification for the improved
performance in practice is that memorizing noise is much
harder since noise is not compressible. Even if the noisy
images are perfectly memorized, they do not contain enough
information to perfectly recover the training set (as shown
above) and hence creativity will emerge. A possible con-
jecture is that under reasonable smoothness assumptions
the concatenation of Ambient Diffusion (i.e., of a non-
memorized trajectory (up to tn)) and of DDPM (i.e., of
a memorized one (from tn to 0)) will not lead to memorized
outputs. Under this conjecture, controlling the high noise
case is all you need to decrease memorization, and this is
what our algorithm achieves. Showing some non-trivial
lower bound between the distribution learned by our algo-
rithm and the distribution learned by DDPM is a challenging
theoretical problem that remains to be addressed.

4.2. Connections to Feldman (2020)

In the previous section, we discussed ways to reduce the
memorization. In this section, we consider what is the price
to pay for reduced memorization, i.e., we analyze the trade-
off between memorization and fidelity.

While there is significant amount of empirical research on
connections between memorization and generation for diffu-
sion models, our rigorous theoretical understanding is still
lacking. In terms of theory, there are many works studying
memorization-generalization trade-offs for machine learn-
ing algorithms (Feldman, 2020; Feldman & Zhang, 2020;
Brown et al., 2021; Attias et al., 2024; Cheng et al., 2022;
Livni, 2024; Brown et al., 2022) with several connections

to differential privacy and stability in learning (Feldman,
2020; Russo & Zou, 2019; Xu & Raginsky, 2017; Bousquet
& Elisseeff, 2002; Steinke & Zakynthinou, 2020; Bassily
et al., 2018). Our work studies this trade-off in diffusion
models, inspired by the work of (Feldman, 2020).

Section Overview. To facilitate the understanding of this
Section, we provide an overview of the results. In Section
4.2.1, we define the distribution to be learned as a mixture of
distributions of subpopulations (e.g., dogs, cats, etc.) with
unknown mixing weights. This distribution is learned given
a finite set Z of size n and we are interested in the general-
ization error of the trained model (at some fixed noise scale
σt). In Theorem 4.3 we express this generalization error
into two terms, one of which is the error of the algorithm
for populations that are seen only once during training. We
consider that the trained model “memorizes” when the error
of these rare examples is small. Due to the error decompo-
sition, generalization is related to the memorization error
and its multiplying constant τ1 that appears in Theorem 4.3.
In Section 4.2.3 we analyze how this constant changes for
different noise levels under the assumption of (Zhu et al.,
2014; Feldman, 2020) that the mixing weights are heavy-
tailed. We argue that when the noise level is small, τ1 is
large and due to the decomposition, the only way to achieve
good generalization is to memorize. For high noise levels,
τ1 becomes smaller and hence it is in principle possible to
achieve generalization without excessive memorization.

4.2.1. SUBPOPULATIONS MODEL OF FELDMAN (2020)

Let us consider a continuous data domain X ⊆ Rd (e.g.,
images). We model the data distribution as a mixture of
N fixed distributions M1, ...,MN , where each component
corresponds to a subpopulation (e.g., dogs, cats, etc.). For
simplicity, we follow Feldman (2020) and assume that each
component Mi has disjoint support Xi (this can be relaxed,
see Remark B.3). Without loss of generality, let X = ∪iXi.

We will now describe the procedure of (Feldman, 2020) that
assigns frequencies to each subpopulation of the mixture.

1. Consider a list of frequencies π = (π1, π2, ..., πN ).
2. For each component i ∈ [N ] of the mixture, select

randomly and independently an element pi from π.
3. Finally, to obtain the mixing weights, we normalize

the elements p1, ..., pN , i.e., the weight of component
i is Di =

pi∑
j∈[N] pj

.

We denote by Dπ the distribution over the mixing coeffi-
cients tuple (D1, ..., DN ). A sample D ∼ Dπ is just a list
of the normalized frequencies of the N subpopulations. If
D ∼ Dπ , then we can define the true mixture as

MD(x) =
∑
i∈[N ]

Di Mi(x) .
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mixing weight of class i distribution of class i

The above random distribution corresponds to the subpopu-
lations model introduced by Feldman (2020).

4.2.2. ADAPTATION TO DIFFUSION

As explained in the Background Section 2, one way to train
a generative model in order to generate from the target MD

is to estimate the score function ∇x logMDt for all levels
of noise indexed by t. For the analysis of this Section, we
consider the case of a single fixed t. We define learning
algorithms A as (potentially randomized) mappings from
datasets Z to score functions sθ ∼ A(Z).

As in Feldman (2020), we are interested about the expected
error of A conditioned on dataset being equal to Z ∈ Xn as

err(π,A|Z) = ED∼Dπ(·|Z)Esθ∼A(Z)errMD
(sθ) ,

where D ∼ Dπ is a (random) collection of mixing weights
and errMD

(sθ) = Ex0∼MD
L(sθ;x0) for some loss function

L is the expected loss of the score function sθ under the
true population MD. The results we will present shortly are
agnostic to the choice of L, but the reader should think of L
as the noise prediction loss used in (4) for a fixed time t.

The quantity err(π,A|Z) measures the generalization error
of the score function of the learning algorithm A conditional
on the training set being Z. We will show that the population
loss of an algorithm given a dataset Z is at least:

1. its loss on the unseen part of the domain, i.e., the popu-
lation loss in X \ Z plus

2. its loss on the elements of Z that belong to subpopu-
lations that are represented only once in Z (i.e., the
dataset contains a single image of a dog or a single
image of a car). This loss, denoted by errZ(A, 1),
is scaled up by a coefficient τ1, which expresses the
”likelihood” of having such subpopulations.

Typically, we define:

τ1 =
Eα∼π[α

2(1− α)n−1]

Eα∼π[α(1− α)n−1]
,

where π is the marginal distribution π(a) = PrD[Di = a].
Note that, because the random process of picking the mixing
weights is run independently for any i ∈ [N ], the marginal
is the same across different i’s (and hence we omit the index
i from π). We are now ready to present our result.

Theorem 4.3 (Informal, see Theorem B.2). It holds that

err(π,A|Z) ≥ errunseen(π,A|Z) + τ1 · errZ(A, 1) .

The above result can be extended to subpopulations repre-
sented by 2 or more examples in Z (see Appendix B). The
above inequality relates the population error of the model
with its loss on some parts of the training set. The crucial

parameter that relates the two quantities is the coefficient
τ1. If the coefficient τ1 is large, it means that if the model
does not fit the ”rare examples” of the dataset, it will have
to pay roughly τ1 in the generalization error. As shown
by (Feldman, 2020), τ1 is controlled by how much heavy-
tailed is the distribution of the frequencies of the mixture
model. This is the topic of the next section, where we also
investigate the effect of adding noise to the training set.

4.2.3. HEAVY TAILS AND THE ROLE OF NOISE

In this section, we are going to formally explain what it
means for the frequencies of the original dataset to be heavy-
tailed (Zhu et al., 2014; Feldman, 2020). This heavy-tailed
structure will then allow us to control the generalization
error in Theorem 4.3. We will be interested in subpopula-
tions that have only one representative in the training set Z
(these are the examples that will cost roughly τ1 in the error
of Theorem 4.3). We will refer to them as single subpop-
ulations. For this to happen given that |Z| = n, it should
be roughly speaking the case where some frequencies Di

are of order 1/n. The quantity that controls how many of
the frequencies Di will be of order 1/n is the mass that the
distribution π(a) = PrD[Di = a] assigns to the interval
[1/(2n), 1/n]. Typically, we will call a list of frequencies π
heavy-tailed if

weight

(
π,

[
1

2n
, 1/n

])
= Ω(1) . (7)

In words, there should be a constant number of subpopula-
tions with frequencies of order O(1/n). This definition is
important because it can then lower bound the value τ1 in
Theorem 4.3 and hence it can lower bound the generaliza-
tion loss of not fitting single subpopulations.
Lemma 4.4 (Informal, see Lemma B.4 and Lemma 2.6 in
(Feldman, 2020)). Consider a dataset of size n and assume
that π is heavy-tailed, as in (7). Then τ1 = Ω(1/n).

On the contrary, when π is not heavy-tailed, τ1 will be
small and hence generalization is not hurt by not memo-
rizing (see Lemma B.5). Next, we are going to inspect
how the noise scale affects the heavy-tailed structure of
the frequencies and hence the value of τ1. For an illus-
tration, we will consider the most standard model, that
of a mixture of Gaussian subpopulations (similar results
are expected for more general population models; we
note that the previous results can be naturally adapted for
the GMM and other cases, see Remark B.3 and the dis-
cussion in (Feldman, 2020)). Let us consider a density
q0 =

∑N
i=1 wiN (µi, I) =

∑
i wiNi. We will say that two

components Ni,Nj are ϵ-separated if TV(Ni,Nj) > 2ϵ
and can be ϵ-merged if TV(Ni,Nj) ≤ ϵ. If Ni and Nj are
merged, we consider that the new coefficient is wi + wj .

Lemma 4.5 (Informal, see Section B.4). Consider the GMM
density q0 and let qt be the density of the forward diffusion

6
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Table 1. FID and Memorization results comparing DDPM and
Algorithm 1. Memorization is measured as DINOv2 similarity be-
tween generated samples and their nearest training neighbors. We
achieve same or better FID with significantly lower memorization.

# Train Images
300 1k 3k

DDPM Ours DDPM Ours DDPM Ours

C
IF

A
R

-1
0 FID 25.1 23.91 10.46 10.36 14.73 14.26

S>0.9 78.96 44.84 75.86 69.08 53.40 52.24
S>0.925 67.2 20.22 57.98 47.26 11.92 11.36
S>0.95 56.56 9.64 43.44 26.34 0.08 0.06

FF
H

Q

FID 16.21 15.05 12.26 11.3 6.42 6.46
S>0.85 63.38 49.68 55.36 32.08 21.58 20.08
S>0.875 55.48 40.01 43.82 17.48 4.98 4.53
S>0.9 47.86 29.86 33.92 7.52 0.46 0.42

Im
ag

eN
et FID ——– 50.2 47.19 40.66 39.87

S>0.9 ——– 54.72 26.68 32.86 28.40
S>0.925 ——– 41.66 15.56 12.32 9.44
S>0.95 ——– 25.86 5.54 6.08 4.02

process at time t with schedule σt ∈ [0, 1]. Consider any
pair of componentsNi,Nj in q0 with total variation Cij for
some absolute constant Cij and let N t

i ,N t
j be the associ-

ated distributions in qt.

• (Low Noise) If σt ≤
√
1− (2ϵ/Cij)2, then N t

i ,N t
j

are ϵ-separated.
• (High Noise) If σt ≥

√
1− (ϵ/Cij)2, thenN t

i ,N t
j are

ϵ-merged with coefficient wi + wj .

For a more formal treatment, we refer to Section B.4. The
above Lemma has the following interpretations. If the noise
level is small, the originally separated subpopulations (at
t = 0) will remain separated. This implies that if the fre-
quencies (i.e., the mixing weights) were originally heavy-
tailed (as in the above discussion), they will remain heavy-
tailed even in the low-noise regime, i.e. Lemma 4.4 applies
(τ1 is large). On the other side, as we increase t, the clusters
start to merge and the heavy-tailed distribution of the mix-
ing coefficients becomes lighter (until all the clusters are
merged into a single one). Hence, τ1 will be small. This con-
ceptually indicates that there is no reason for memorizing
the training noisy images xt (and hence the original images
x0 which do not appear during training).

5. Experiments
5.1. Memorization in Unconditional Models

We start our experimental evaluation by measuring the mem-
orization and performance of unconditional diffusion mod-
els in several controlled settings. Specifically, we train
models from scratch on CIFAR-10, FFHQ, and (tiny) Im-
ageNet using 300, 1000 and 3000 training samples. For
each one of these settings, we compute the Fréchet Incep-

tion Distance (Heusel et al., 2017) (FID) between 50,000
generated samples and 50,000 dataset samples as a measure
of quality. Following prior work (Somepalli et al., 2022;
2023; Daras et al., 2023c), we measure memorization by
computing the similarity score (i.e., inner product) of each
generated sample to its nearest neighbor in the embedding
space of DINOv2 (Oquab et al., 2023). For all these experi-
ments, we compare the performance of Algorithm 1 against
the regular training of diffusion models (see Eq.(3)).

Choice of tn. Our method has a single parameter tn that
needs to be controlled. We argue that there is an interval
(tmin, tmax) that contains reasonable choices of tn. Setting
tn too low, i.e., (tn ≤ tmin), essentially reverts back to
the original algorithm that produces memorized images of
good quality. But also, setting tn too high, i.e., tn ≥ tmax,
will also lead to memorization as there is more time in
the sampling trajectory (the interval [0, tmax]), where we
use the memorized score. Values in the range (tmin, tmax)
achieve low memorization and strike good balances in the
quality-memorization trade-off.

Decreasing memorization without sacrificing quality.
Most of the prior mitigation strategies for memorization
often decrease the image generation quality. Here, we ask:
how much do we need to memorize to achieve a given im-
age quality? To answer this, we tune the value tn to train
models using Algorithm 1 that match the FID obtained by
DDPM, and we measure their memorization levels. To
report memorization, we use three thresholds in the similar-
ities of DINOv2 embeddings that semantically correspond
to: i) potentially memorized image, ii) (partially) memo-
rized image, and, iii) exact copy of an image in the training
set. The thresholds are tuned separately for each dataset
to express these semantics. We present analytic results for
300, 1k and 3k training images from CIFAR-10, FFHQ and
(tiny)-ImageNet in Table 12. As shown, for the same or
better FID, our models achieve significantly lower memo-
rization levels. This leads to the surprising conclusion that
models learned by the DDPM loss are not Pareto optimal
for small datasets. That said, the benefit from our algorithm
in both FID and memorization shrinks as the dataset grows.

Other points in the Pareto frontier. So far, our goal was
to reduce memorization while keeping FID the same as
DDPM. However, by appropriately tuning the value tn, we
can achieve other points in the Pareto frontier that achieve
varying trade-offs between memorization and quality of
generated images. We present these results for a model
trained on 300 images from FFHQ in Figure 2. We see that
setting σtn ∈ [0.4, 4] corresponds to Pareto optimal points,
while setting the value of tn too low or too high brings us

2For tiny ImageNet, we do not report results in the 300 samples
setting since there are 200 different classes and so for some of the
classes we do not observe any samples.
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Table 2. Comparison between DDPM, our Algorithm 1 and results obtained by training with only corrupted data (masking or additive
Gaussian noise). As shown, our algorithm achieves low memorization since it uses noisy data in the high-noise regime, but it also achieves
low FID (contrary to the algorithms only using corrupted data) as it can copy the high-frequency details from the training samples.

Metric # Training Images

300 1k 3k
DDPM Masking Noise Ours DDPM Masking Noise Ours DDPM Masking Noise Ours

FID 16.21 23.40 27.92 15.05 12.26 15.73 25.57 11.3 6.42 7.44 16.28 6.46
Sim > 0.85 63.38 53.73 29.12 49.68 55.36 38.74 14.83 32.08 21.58 19.74 12.08 20.08
Sim > 0.875 55.48 41.37 18.73 40.01 43.82 22.94 9.37 17.48 4.98 4.56 3.32 4.53
Sim > 0.9 47.86 30.34 10.60 29.86 33.92 10.08 6.49 7.52 0.46 0.43 0.36 0.42

back to the DDPM performance, as expected. For σtn = 4,
we almost match the FID that DDPM gets with 1000 images,
while we only use 300 images for training, establishing our
Algorithm as much more data-efficient than DDPM. We
also compute the Frechet distance using Dinov2 and report
the result in 3. The result shows that our method improves
the quality of generated images.

Table 3. FDDinoV2 Scores for Baseline and Our Method

Method FDDinoV2

Baseline 353.19
Ours (σ=0.1) 347.21
Ours (σ=0.25) 344.60
Ours (σ=0.3) 358.23
Ours (σ=0.4) 371.81
Ours (σ=0.5) 382.03

Mean and median similarity of generated samples. To
understand the average similarity of the generated samples
to the training samples, we also calculate the mean and
median of the similarity score of 50,000 generated samples
in the same setting as in Figure 2 (300 training samples
from FFHQ). We report our results in Table 4. We see that
the mean and median similarity of generated samples is
significantly lower for our method.

Table 4. Comparison of Mean and Median Similarity Values

Method Mean Median

DDPM 0.8826 0.8931
Ours (σ = 0.1) 0.8854 0.8748
Ours (σ = 0.25) 0.8518 0.8491
Ours (σ = 0.3) 0.8473 0.8475
Ours (σ = 0.4) 0.8287 0.8292
Ours (σ = 0.5) 0.8060 0.8069

Comparison with other mitigation strategies. For com-
pleteness, we include comparisons with two other mitigation

strategies that reduce memorization in the unconditional set-
ting. These methods are known to achieve lower memoriza-
tion but at the expense of FID. We compare with a model
trained on linearly corrupted data (random inpainting), as
in the work of (Daras et al., 2023c), and a model trained
with only noisy data as in (Daras et al., 2024b). We present
the results in Table 2. As shown, our algorithm produces
superior behavior as it achieves lower memorization for the
same or better FID. The superior performance comes from
the ability our method has to generate high-frequency de-
tails, contrary to the existing methods that only use solely
noisy data and are not capable of such behavior.

5.2. Memorization in Text-Conditional Models

We continue our evaluation in text-conditional models. Here,
the primal source of memorization is the text-conditioning
itself. Wen et al. (2024) observe that for certain trigger
prompts, the prediction of the network always converges
to the same training point, independent of the image ini-
tialization. Our method mitigates image memorization by
training with noisy images, so by itself, it cannot mitigate
memorization that arises from the text-conditioning. How-
ever, we will show that when we combine our method with
strategies that mitigate the impact of text memorization, we
achieve state-of-the-art results in memorization reduction
while keeping the quality of the generated images high.

Following prior work (Somepalli et al., 2023), we finetune
Stable Diffusion on 10k image-text pairs from a curated
subset of LAION (Schuhmann et al., 2022) and we measure
image quality and memorization of the resulting models. We
compare with existing state-of-the-art methods for reducing
memorizing arising from the text-conditioning. Specifically,
we compare with the work of Somepalli et al. (2023) where
corruption is added to the text-embedding during training
and with the work of Wen et al. (2024) where the model is
explicitly trained to pay attention to the visual content (for
details, we refer the reader to the associated papers).

We include all the results in Table 5. As shown, the combi-
nation of our work with existing methods achieves state-of-
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Table 5. Memorization and FID results for text-conditional models.
Sim denotes the average similarity between a generated sample and
its nearest neighbor in the dataset, while 95% is the 95% percentile
of the similarities distribution. CLIP measures the image-text
alignment. The combination of our method with existing methods
from Somepalli et al. (2023) (S23) and Wen et al. (2024) (W24)
achieves strong CLIP/FID results with reduced memorization.

Method Sim 95% CLIP FID

Without text mitigation:
Baseline 0.378 0.649 0.306 18.18
Ours 0.373 0.636 0.305 18.34

Text mitigation:
S23 0.319 0.573 0.302 20.55
S23+ ours 0.308 0.547 0.306 21.30
W24 0.208 0.300 0.293 21.44
W24+ ours 0.192 0.267 0.293 20.74

the-art memorization performance while performing on par
in terms of image quality. As expected, without any text-
mitigation our algorithm fails to improve significantly the
memorization since the model remains heavily reliant on the
text-conditioning, effectively ignoring the visual content.

6. Limitations, Conclusion and Future Work
Our work provides a positive note on the rather pessimistic
landscape of results regarding the memorization-quality
trade-off in diffusion models. We manage to push the Pareto
frontier in various data availability settings for both text-
conditional and unconditional models. We further provide
theoretical evidence for the plausibility of generation of
diverse structures without memorization. We remark that
our method does not come with any privacy guarantees or
optimality properties and that despite some encouraging
first theoretical evidence an end-to-end analysis for the pro-
posed algorithm is currently lacking. We believe that these
constitute exciting research directions for future research.
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A. Our Algorithm
In this section, we present the pseudo-code of our algorithmic approach, which combines DDPM and Ambient Diffusion.
Details about the approach appear in Section 3.

Algorithm 1 Algorithm for training diffusion models using limited data.

Require: untrained network hθ, set of samples S, noise level tn, noise scheduling σ(t), batch size B, diffusion time T

1: Stn ← {
√

1− σ2
tnx

(i)
0 + σtnϵ

(i)|x(i)
0 ∈ S, ϵ(i) ∼ N (0, Id)} ▷ Noise the training examples at a specified level.

2: while not converged do
3: Form a batch B of size B uniformly sampled from S ∪ Stn

4: loss← 0 ▷ Initialize loss.
5: for each sample x ∈ B do
6: ϵ ∼ N (0, I) ▷ Sample noise.
7: if x ∈ Stn then
8: xtn ← x ▷ We are dealing with a noisy sample.
9: t ∼ U(tn, T ) ▷ Sample diffusion time for noisy sample.

10: xt ←
√

1−σ2
t

1−σ2
tn

xtn +

√
σ2
t−σ2

tn

1−σ2
tn

ϵ ▷ Add additional noise.

11: loss← loss +
∥∥∥∥ σ2

t−σ
2
tn

σ2
t

√
1−σ2

tn

hθ(xt, t) +
σ2
tn

σ2
t

√
1−σ2

t

1−σ2
tn

xt − xtn

∥∥∥∥2 ▷ Ambient Score Matching loss.

12: else
13: x0 ← x ▷ We are dealing with a clean sample.
14: t ∼ U(0, tn) ▷ Sample diffusion time for clean sample.
15: xt ←

√
1− σ2

t x0 + σtϵ ▷ Add noise.
16: loss← loss + ∥hθ(xt, t)− x0∥2 ▷ Regular Denoising Score Matching loss.
17: end if
18: end for
19: loss← loss

B ▷ Compute average loss.
20: θ ← θ − η∇θloss ▷ Update network parameters via backpropagation.
21: end while

B. Subpopulations Model and Connections to Diffusion Models
In this section, we present a more extensive exposition of the framework of the work of (Feldman, 2020). Moreover, we
adapt this framework to diffusion models.

B.1. Subpopulations Model of Feldman (2020)

Let us recall the subpopulations model of (Feldman, 2020). Let us consider a continuous data domain X ⊆ Rd. We
model the data distribution as a mixture of N fixed distributions M1, ...,MN , where each component corresponds to a
subpopulation. For simplicity, we follow Feldman (2020) and assume that each component Mi has disjoint support Xi (we
can relax this condition, see Remark B.3). Without loss of generality, let X = ∪iXi. We will now describe the procedure of
(Feldman, 2020) that assigns frequencies to each subpopulation of the mixture.

1. First consider a (fixed) list of frequencies π = (π1, π2, ..., πN ).

2. For each component i ∈ [N ] of the mixture, we select randomly and independently an element pi from the list π.

3. Finally, to obtain the mixing weights, we normalize the weights p1, ..., pN , i.e., the weight of component i is Di =
pi∑

j∈[N] pj
.

We summarize the above as follows:
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Definition B.1 (Random Frequencies (Feldman, 2020)). For the mixing weights, we first consider a list of subpopulation
frequencies π = (π1, ..., πN ). The procedure is the following: we randomly pick pi from the list π for any index i ∈ [N ] and
then we normalize (pi/

∑
j pj denotes the frequency of subpopulation i). We denote by Dπ the distribution over probability

mass functions on [N ] induced by the above procedure.

A sample D ∼ Dπ is just a list of the frequencies of the N subpopulations.

We also denote by π the resulting marginal distribution over the frequency of any single element in i, i.e.,

π(a) = Pr
D∼Dπ

[Di = a] . (8)

Hence, if D ∼ Dπ , then we can define the true mixture as

MD(x) =
∑
i∈[N ]

DiMi(x) .

The above random distribution corresponds to the subpopulations model introduced by Feldman (2020). Intuitively the
choice of the random coefficients for the mixture corresponds to the fact that the learner does not know the true frequencies
of the subpopulations.

B.2. Adaptation of (Feldman, 2020)’s Result to Diffusion Models

As explained in the Background Section 2, one way to train a generative model is to estimate the score function ∇ logMDt

for all levels of noise indexed by t. For the analysis of this Section, we consider the case of a single fixed t. We define
learning algorithms A as (potentially randomized) mappings from datasets Z to score functions sθ ∼ A(Z). We further
define the expected error of A conditioned on dataset being equal to Z ∈ Xn (eventually Z will be drawn i.i.d. from MD) as

err(π,A|Z) = ED∼Dπ(·|Z)Esθ∼A(Z)errMD
(sθ) ,

where D ∼ Dπ is a random list of frequencies according to Definition B.1 and errMD
(sθ) = Ex0∼MD

L(sθ;x0) for some
loss function L. The results we will present shortly are agnostic to the choice of loss function L, but the reader should think
of L as the noise prediction loss used in (4) for a fixed time t.

We remark that the quantity err(π,A|Z) measures the generalization error of the output score function (according to loss
function L) of the learning algorithm A conditional on the training set being Z. We will relate this generalization error
with the loss in the training set. Recall that any subpopulation i ∈ [N ] of the mixture is associated with a domain Xi (and
Xi ∩Xj = ∅ for i ̸= j).

Let n be the training set size. For any ℓ ∈ [n], consider all the subpopulations Iℓ ⊆ [N ] such that Xi ∩ Z = ℓ
for i ∈ Iℓ; in words, i ∈ Iℓ if there are exactly ℓ representatives of cluster i in the dataset Z. We can now define
Zℓ = {x ∈ Xi ∩ Z : i ∈ Iℓ} ⊆ Z. Note that the sets Z1, ..., ZN partition the training set Z. For ℓ ∈ [n], we define

errnZ(A, ℓ) = Esθ∼A(Z)

∑
x∈Zℓ

Mix(x)L(sθ;x) . (9)

Here ix ∈ [N ] is the unique index of the component whose support contains x. In words, errnZ(A, ℓ) is the loss of the
algorithm A evaluated on the elements of the training set Z that belong to subpopulations will exactly ℓ representatives in Z.

We show the following result, which is an adaptation of a result of (Feldman, 2020) and relates the population loss with the
empirical losses errnZ(A, 1), ..., errnZ(A,n).

Theorem B.2. Fix a number of samples n. Let {Mi}i∈[N ] be densities of subpopulations over disjoint subdomains
{Xi}i∈[N ]. Let π be the fixed list of frequencies as in Definition B.1 and let π̄N the marginal distribution of (8). For any
learning algorithm A and any fixed dataset Z ∈ Xn, it holds that

err(π,A|Z) = errunseen(π,A|Z) +
∑
ℓ∈[n]

τℓ · errnZ(A, ℓ) , (10)

where
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1. errunseen(π,A|Z) corresponds to the expected Z-conditional loss of the algorithm A on the points that do not appear
in the training set Z.

2. τℓ is a coefficient that corresponds to the weight of having subpopulations with exactly ℓ representatives. Given Dπ

and ℓ ∈ [n], we define

τℓ =
Eα∼π[α

ℓ+1(1− α)n−ℓ]

Eα∼π[αℓ(1− α)n−ℓ]
.

For the proof we refer to Section D.2.1. The optimal algorithm A∗ (without any bound on the complexity of the score
function class) is the one that minimizes the RHS in Theorem B.2, which means that

• for any ℓ, errnZ(A∗, ℓ) = 0 and

• errunseen(π,A
∗|Z) is as small as possible.

The above general form relates the population error of the model with its loss on the training set. The crucial parameters that
relate the two quantities are the coefficients τ1, ..., τn. If the coefficient τ1 is large, it means that if the model does not fit
the training examples that appear once in the dataset (”rare examples”), it will have to pay roughly τ1 in the generalization
error. As shown by (Feldman, 2020), τ1 is controlled by how much heavy-tailed is the distribution of the frequencies of the
mixture model. This is the topic of the next section, where we also investigate the effect of adding noise to the training set.
Remark B.3 (Gaussian Mixture Models). Subpopulations are often modeled as Gaussians. If the probability of the overlap
between the subpopulations is sufficiently small (the means are far), then one can reduce this case to the disjoint one by
modifying the components Mi to have disjoint supports while changing the marginal distribution over Z by at most δ in the
TV distance.

B.3. Heavy-Tailed Distributions of Frequencies

In this section, we are going to formally explain what it means for the frequencies of the original dataset to be heavy-tailed
(Zhu et al., 2014; Feldman, 2020). This heavy-tailed structure will then allow us to control the generalization error in
Theorem 4.3. Following Feldman (2020), we will assume that the mixing coefficients D1, ..., DN are drawn from a
heavy-tailed distribution since this is the case in most datasets (Feldman, 2020; Feldman & Zhang, 2020). We will be
interested in subpopulations that have only one representative in the training set Z (these are the examples that will cost
roughly τ1 in the error of Theorem 4.3). We will refer to them as single subpopulations. For this to happen given that
|Z| = n, it should be roughly speaking the case where some frequencies Di are of order 1/n.

The quantity that controls how many of the frequencies Di will be of order 1/n is the marginal distribution π(a) =
PrD[Di = a]. We first note that the expected number of singleton examples is determined by the weight of the entire tail of
frequencies below 1/n in π. In particular, one can show (see (Feldman, 2020)) that the expected number of singleton points
is at least

n

2
· weight(π, [0, 1/n]) , where

weight(π, [0, 1/n]) := ED∼D

∑
i∈[N ]

Di1{Di ∈ [0, 1/n]}

 = N · Ea∼π[a1{a ∈ [0, 1/n]}] .

The above weight function essentially controls how heavy-tailed our distribution over frequencies is. Typically, we will call
a list of frequencies π heavy-tailed if

weight

(
π,

[
1

2n
, 1/n

])
= Ω(1) .

In words, there should be a constant number of subpopulations with frequencies of order 1/n. This definition is important
because it can then lower bound the value τ1 in Theorem 4.3 and hence it can lower bound the generalization loss of not
fitting single subpopulations.
Lemma B.4 (Lemma 2.6 in (Feldman, 2020)). For any π, it holds that τ1 ≥ 1

5n · weight(π, [
1
3n ,

2
n ]).

As an illustration, if π is the Zipf distribution and the number of clusters N ≥ n then τ1 = Ω(1/n) and weight(π, [0, 1/n]) =
Ω(1) (see (Feldman, 2020) for more examples). On the contrary, when π is not heavy-tailed, τ1 will be small.
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Lemma B.5 (Lemma 2.7 in (Feldman, 2020)). Let π be a frequency prior such that for some θ ≤ 1/(2n),
weight(π, [θ, t/n]) = 0, where t = ln(1/(θβ)), β = weight(π, [0, θ]). Then τ1 ≤ 2θ.

The above lemma indicates that when the frequencies are not heavy-tailed then τ1 is small (and hence generalization is not
hurt by not memorizing).

B.4. The Effects of Noise

In this section we analyze the effect of adding noise to the training set. We distinguish two cases: the low noise regime and
the high noise regime.

Low Noise Regime. When the noise level is small, the originally separated subpopulations (at t = 0) will remain separated.
This implies that if the frequencies of the subpopulations were originally heavy-tailed (as in the above discussion), they
will remain heavy-tailed even in the low-noise regime. This will imply that some clusters will be represented by singletons
(ℓ = 1) and any algorithm that satisfies errnZ(A, 1) ̸= 0 has to pay τ1 · errnZ(A, 1) in the population error with τ1 being
lower bounded as in Lemma B.4. We interpret errnZ(A, 1) ≈ 0 as evidence for memorization. To be more concrete, we
will need the following definition that is a smooth generalization of single representative of a subpopulation.
Definition B.6. We will say that a subpopulation C has an ϵ-smoothed single representative in a set of points S belonging
to C if for any x, x′ ∈ S, it holds that ∥x− x′∥ ≤ ϵ.

Intuitively this means that if there are more than one images in the training set Z from C, they are all very close to each
other. This will be the case in diffusion with low noise.
Lemma B.7 (Subpopulations Remain Heavy-Tailed). Consider an example x0 ∈ Rd that is the unique representative of a
subpopulation j ∈ [N ] in the training set Z with ∥x0∥ ≤ poly(d). Consider m noisy copies {xi

t}i∈[m] of x0 at noise level
t : xi

t =
√
1− σ2

t x0 + σtz
i
t, z

i
t ∼ N (0, Id) . Then the subpopulation j has a poly(1/d)-smoothed single representative in

the set {xi
t}i∈[m] for σt = poly(1/d) with probability at least 1−m exp(−d/2).

The proof appears in Section D.2.2. The above lemma implies that if the original dataset contains various well separated
images (in the sense that correspond to representatives of single subpopulations), then after adding noise to each one of
them (and even if we create multiple copies for each example), the clusters will remain separated when σt is small. This
implies that the single subpopulations remain and Lemma B.4 applies (τ1 is large).

For an illustration, let us consider the GMM density function q =
∑N

i=1 wiN (µi, I). It is a standard calculation to see that
at time t, the pdf of the forward diffusion process is qt =

∑N
i=1 wiN (

√
1− σ2

t µi, I), which means that the clusters are
starting to concentrate around 0 as t→ 1 and the images from different subpopulations are starting to look more and more
indistinguishable (since the TV distance between the components is contracting with t). We will say that two components
N ,N ′ are ϵ-separated if TV(N ,N ′) > 2ϵ.
Lemma B.8 (Clusters Are Separated in Low Noise). Any pair of Gaussians with original total variation C = 1/600 will be
ϵ-separated at noise scale σt ≤

√
1− (2ϵ/C)2.

For the proof, see Section D.2.3.

High Noise Regime. As we increase t, we add more and more noise to the images. This means that the clusters start to
merge and the heavy-tailed distribution of the mixing coefficients becomes lighter (until all the clusters are merged into
a single one). To illustrate this phenomenon, we will consider a mixture of Gaussians, which is the standard model for
clustering tasks (we expect similar behavior for more general mixture models). Let us again consider the density function
q =

∑N
i=1 wiN (µi, I). Also, let the pdf of the forward diffusion process be qt =

∑N
i=1 wiN (

√
1− σ2

t µi, I). We will say
that two components N ,N ′ can be ϵ-merged if TV(N ,N ′) ≤ ϵ.

Lemma B.9 (Clusters Merge in High Noise). Any pair of Gaussians with original total variation C = 1/600 will be
ϵ-merged at noise scale σt ≥

√
1− (ϵ/C)2.

For the proof, see Section D.2.3. As the clusters are getting merged, then their coefficients are added up and their distribution
is no more heavy-tailed. Hence, Lemma B.5 implies that τ1 will be small. This conceptually indicates that there is no reason
for memorizing the training noisy images xt (and hence the original images x0 which do not appear during training).

Given the above discussion, we reach the conclusion that if the frequencies of the original subpopulations are heavy-
tailed then, in the low-noise regime, the training set will have single subpopulations and, in that case, fitting these single
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representatives is required for successful generalization. However, in the high-noise regime, the noisy training set does
not have isolated examples and, in principle, there is no reason to memorize its elements (and hence even elements of the
original set). We believe that this discussion sheds some light on the nature of memorization needed for optimal generative
modeling and motivates our training Algorithm 1 that avoids memorization only in the high-noise regime.

C. Noisy data training of stable diffusion using v-prediction
The variance-preserving forward process defines the following transition probability distribution:

p(Xt = xt|X0) = N (xt;αtX0, σ
2
t I) and p(Xt = xt|Xs) = N (xt; (αt/αs)Xs, σ

2
t|sI).

where σ2
t|s = (1− α2

tσ
2
s

σ2
tα

2
s
)σ2

t . Let tn be the noise scale corresponding to the noisy data and the noisy data xtn from the clean
data x0 has the probability distribution p(Xtn = xtn |X0) = N (xtn ; αtnX0, σ

2
tnI). In this case, the following Lemma

holds.

Lemma C.1. E[Xtn |Xt] =
αtnσ

2
t|tn

σ2
t

E[X0|Xt] +
αtσ

2
tn

σ2
tαtn

Xt.

Proof. Let pt(·) denote the probability density of the random variable Xt. Observe that Xt = αtX0+σtZ. Using Tweedie’s
formula, we have

∇ log pt(Xt) =
αtE[X0|Xt]−Xt

σ2
t

.

Additionally, the random variable Xt = (αt/αtn)Xtn + σt|tnZ. Using Tweedie’s formula, we can write the score function

∇ log pt(Xt) =
(αt/αtn)E[Xtn |Xt]−Xt

σ2
t|tn

.

Using the above two equations, we have

(αt/αtn)E[Xtn |Xt]−Xt

σ2
t|tn

=
αtE[X0|Xt]−Xt

σ2
t

E[Xtn |Xt] =
αtnσ

2
t|tn

αtσ2
t

(αtE[X0|Xt]−Xt) +
αtnXt

αt
=

αtnσ
2
t|tn

σ2
t

E[X0|Xt] +
αtσ

2
tn

σ2
tαtn

Xt

.

Lemma C.2. Predicting αtZ − σt

(Xtn−
αtσ

2
tn

σ2
t αtn

Xt)

αtnσ2
t|tn

σ2
t

gives us that the optimal v-prediction.

D. Proofs
D.1. Technical Details about Information Leakage

D.1.1. PROOF OF LEMMA 4.1

Proof. The distribution of the training data conditioned on the dataset Stn is q0(x) = 1
n

∑
xtn∈Stn

δ(x− xtn). To obtain
iterates at time t, we add additional noise to points xtn ∈ Stn . Particularly, the following relation holds for any t ∈ (tn, T ]:

XAmb
t =

√
1− σ2

t

1− σ2
tn

Xtn +

√
σ2
t − σ2

tn

1− σ2
tn

ϵ , ϵ ∼ N (0, I) .

This induces a distribution for each time t:

qt(x|Stn) =
1

n

∑
xtn∈Stn

N (x;

√
1− σ2

t

1− σ2
tn

xtn ,
σ2
t − σ2

tn

1− σ2
tn

· I) .
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The score of the Gaussian mixture qt is given by

sAmb
t (x|Stn) =

1
σ2
t−σ2

tn

1−σ2
tn

∑
xtn∈Stn

(√
1− σ2

t

1− σ2
tn

xtn − x

) N (x;

√
1−σ2

t

1−σ2
tn

xtn ,
σ2
t−σ

2
tn

1−σ2
tn

· I)

∑
y∈Stn

N (x;

√
1−σ2

t

1−σ2
tn

y,
σ2
t−σ2

tn

1−σ2
tn

· I)
.

Since the reverse flow of Eq.(5) provably reverses the forward diffusion (Song et al., 2020), the distribution q←0 equals the
empirical data distribution q0, which is a sum of delta functions on the noisy training set Stn .

D.1.2. PROOF OF LEMMA 4.2

Proof. For two random variables X,Y , recall that I(X;Y ) = H(X) +H(Y ) −H(X,Y ), where H(X) is the entropy
of X and H(X,Y ) is the joint entropy of X and Y. Without loss of generality, let µ = 0. Let x0 ∼ N (0,Σ). For the
Ambient Diffusion at time tn, conditional on the noisy point being xtn , the optimal distribution learned is δ(x− xtn), where

xtn =
√

1− σ2
tnx0 + σtnZ. Note that n i.i.d. draws from this distribution (denoted by A) are identical and hence

I(A;x0) = I(xtn ;x0) .

Now observe that
x0 ∼ N (0,Σ)

and
xtn ∼ N (0, (1− σ2

tn)Σ + σ2
tnI) .

Moreover, for the random column vector ζ = [x0, xtn ]
⊤, we have that E[ζζ⊤] =

 Σ
√

1− σ2
tnΣ√

1− σ2
tnΣ (1− σ2

tn)Σ + σ2
tnI

 .

Now it remains to control the mutual information of Gaussians. Given that Σ−1 exists, we note that det(E[ζζ⊤]) =
det(Σ) · det(σ2

tnI). We can hence write

I(xtn ;x0) =
1

2
log

det(E[x0x
⊤
0 ])det(E[xtnx

⊤
tn ])

det(E[ζζ⊤])
=

1

2
log

det((1− σ2
tn)Σ + σ2

tnI)

det(σ2
tnI)

. (11)

This simplifies to
1

2
log det

(
I +

1− σ2
tn

σ2
tn

Σ

)
,

where
1−σ2

tn

σ2
tn

corresponds to the signal-to-noise ratio. (An equivalent way to see the above, is by taking the conditional

distribution xtn |x0, which has covariance σ2
tnI , and hence directly get (11).)

On the other side, for DDPM, the learned distribution is N (
√

1− σ2
tnx0, σ

2
tnI). Let X1 be a single draw from that

distribution. Hence, m i.i.d. draws S from that measure correspond to mutual information

I(S;x0) = m · I(X1;x0) = m · I(xtn ;x0) .

This concludes the proof.

D.1.3. ADDITIONAL BOUNDS ON MUTUAL INFORMATION FOR AMBIENT DIFFUSION

The following lemma gives a bound on the mutual information of a generated set of size m from Ambient Diffusion at time
tn given a training set of size N. On the other side, the mutual information of the DDPM solution at time t-nature should be
m times larger.

Lemma D.1. Consider a dataset S of size N drawn i.i.d. from N (µ, I). Consider the optimal ambient solution at time tn
with input S. Consider a set A of size m generated i.i.d. by that distribution. Then I(D;S) ≤ md/2 · log(1/σ2

tn).
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Proof. Let Xi be N i.i.d. draws from N (µ, I). For each i, let Yi = (1 − σ2
tn)Xi + σtnZi for some independent normal

Zi ∼ N (0, I). We know that the optimal ambient solution is the empirical distribution

P (y) =
1

N

∑
i

δ(y − Yi) ,

conditioned on the realization of the noisy dataset Y = {Y1, ..., YN}.

By the data processing inequality, we know that I(A;S) ≤ I(Y ;S). Since Yi are generated all in the same way and
independently, we can write

I(Y ;S) =
∑
i

I(Yi;Xi) = mI(Y1;X1) .

We have that I(Y1;X1) = H(Y1)−H(Y1|X1). Recall that X1 ∼ N (µ, I) and Y1|X1 ∼ N ((1−σ2
tn)X1, σ

2
tnI). Moreover,

note that Y1 ∼ N ((1− σ2
tn)µ, I). These imply that

H(Y1) =
d

2
log(2πe)

(since it has identity covariance) and

H(Y1|X1) =
d

2
log(2πeσ2

tn) .

This means that

I(Y1;X1) =
d

2
log(1/σ2

tn) .

This concludes the proof.

D.2. Technical Details about the Subpopulations Model

D.2.1. PROOF THEOREM B.2

Proof. For each subpopulation with exactly ℓ representatives, we put in the set XZ#ℓ those representatives. Observe that
the collection of sets {XZ#ℓ} partitions Z for ℓ ∈ {1, ..., n}. Set XZ = ∪ℓ∈[n]XZ#ℓ. The unseen points correspond to the
set XZ#0.

With this notation in hand, we define

errnZ(A, ℓ) = Esθ∼A(Z)

∑
x∈XZ#ℓ

Mix(x)L(sθ, x) .

where ix is the index of the unique component whose support contains x. We have that

err(π,A|Z) = ED∼DX
π (·|Z)Esθ∼A(Z)

∑
x∈X

MD(x) · L(sθ, x) .

We now decompose X = XZ ∪XZ#0 and write

err(π,A|Z) =
∑

x∈XZ

ED,sθ [MD(x) · L(sθ, x)] +
∑

x∈XZ#0

ED,sθ [MD(x) · L(sθ, x)] .

Let us first deal with the second term. For any x ∈ XZ#0, it holds

ED,sθ [MD(x) · L(sθ, x)] = ED∼DX
π (·|Z)MD(x) · Esθ∼A(Z)L(sθ, x),

because the way we choose D is independent of the random variable L(sθ, x) which only depends on the way the algorithm
picks the score function given the dataset.
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Set p(x, Z) = ED∼DX
π (·|Z)MD(x). Hence, from the elements that do not appear in Z, we get a contribution∑

x∈XZ#0

p(x, Z) · Esθ∼A(Z)L(sθ, x) . (12)

Let us now deal with the elements appearing in Z. Fix ℓ ∈ [n]. For any x ∈ XZ#ℓ, we have that

ED,sθ [MD(x) · L(sθ, x)] = ED∼DX
π (·|Z)[MD(x)] · Esθ∼A(Z)L(sθ, x) ,

since the random variables L(sθ, x) and MD(x) are independent given Z. By Lemma 2.1 in (Feldman, 2020) and since
the supports of the components M1, ...,MN are disjoint, we know that ED∼DX

π (·|Z)[MD(x)] = E[D(ix)Mix(x)] =
E[D(ix)]Mix(x) = τℓMix(x), where ix is the index of the component whose support contains x. Hence, we have that∑
x∈XZ

E[MD(x) · L(sθ, x)] =
∑
ℓ∈[n]

∑
x∈XZ#ℓ

τℓ ·Mix(x) · Esθ∼A(Z)L(sθ, x) =
∑
ℓ

τℓ ·
∑

x∈XZ#ℓ

Mix(x)Esθ∼A(Z)L(sθ, x)

In total, we have shown that

err(π,A|Z) =
∑
ℓ∈[n]

τℓ · errnZ(A, ℓ) + errunseen(π,A|Z) .

This completes the proof.

D.2.2. PROOF OF LEMMA B.7

Proof of Lemma B.7. We have that the i-th noisy example can be written as xi
t =

√
1− σ2

t x
i
0 + σtz

i
t. Let us set σt =

o(1/∥x0∥)) = poly(1/d). Using Taylor’s approximation for
√
1− x around x = 0 (

√
1− x = 1− x/2− o(x)) , we can

write
∥xi

t − (1− poly(1/d))x0 − poly(1/d)zit∥ ≤ ϵ ,

for some ϵ = poly(1/d) sufficiently small. This means that

∥xi
t − x0∥ ≤ ϵ+ poly(1/d)∥x0∥+ poly(1/d)∥zit∥

By Gaussian concentration, we have that

Pr
zi
t

[∥zit∥ >
√
d] ≤ exp(−d/2) .

Let us define the bad event Em which corresponds to ”subpopulation j does not have a poly(1/d)-smoothed single
representative in the set {xi

t}i∈[m] for σt = poly(1/d)”. A union bound over the m noisy examples gives that

Pr
z1
t ,...,z

m
t

[Em] ≤ m · exp(−d/2) .

D.2.3. PROOFS OF LEMMA B.8 AND LEMMA B.9

Proofs of Lemma B.8 and Lemma B.9. The proof relies on the fact that when the total variation distance between two
identity-covariance Gaussians is smaller than an absolute constant, then the total variation is up to constants characterized
by the distance between the means (Arbas et al., 2023). When the original total variation is at most 1/600, (Arbas et al.,
2023) shows that

TV(N (µ, I),N (µ′, I)) = Θ(∥µ− µ′∥) .

The lemmas follow by noting that the densities of N (µi, I),N (µ′i, I) at noise scale σt (denoted as Nt,N ′t ) satisfy

Nt = N (
√

1− σ2
t µ, I), N ′t = N (

√
1− σ2

t µ
′, I) .
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Since
√
1− σ2

t ≤ 1, the means are contracting and so TV(Nt,N ′t ) ≤ 1/600. Also:

TV(Nt,N ′t ) ≤ ∥µt − µ′t∥/
√
2 =

√
1− σ2

t · ∥µ− µ′∥/
√
2 .

If we want to make this quantity at most ϵ, it suffices to take σt ≥
√
1− 2(ϵ/∥µ− µ′∥)2.

For the other side, by (Arbas et al., 2023), TV(Nt,N ′t ) ≥ ∥µt − µ′t∥/200 =
√
1− σ2

t ∥µ− µ′∥/200. (we assume that the
original variation is smaller than 1/600 and we contract it by adding noise). If this should be at least 2ϵ, then it should be
that σt ≤

√
1− 2002(2ϵ/∥µ− µ′∥)2. This concludes the proof.

E. Experimental Details.
For all of our experiments regarding unconditional generation, we use the Adam optimizer with a learning rate of 0.0001,
betas (0.9, 0.999), an epsilon value of 1e-8, and a weight decay of 0.01. The model for FFHQ and CIFAR-10 is trained for
30,000 iterations with a batch size of 256 and the model for Imagenet is trained for 512 batch size for 80,000 iterations. For
experiments on the Imagenet dataset, we train a class-conditional model.

For FFHQ and CIFAR-10 experiments, we randomly sample 300, 1000 and 3000 samples from the complete dataset to
create the dataset with limited size. We use Tiny Imagenet dataset which consists of 200 classes (Le & Yang, 2015). We
sample 5 images randomly from each class to create a dataset consisting of 1000. Similarly, we sample 15 images from each
class to create a dataset consisting of 3000 images. For the unconditional and conditional generation experiments, we used
with the implementation of (Karras et al., 2022) and default parameters of the implementation.

For text-conditioned experiments, we use the implementation of (Somepalli et al., 2023) and implement additional baseline
(Wen et al., 2024) and our method in the implementation. Similar to previous works, we use LAION-10k dataset to train
the stable diffusion v2 model for 100000 number of iterations using batch size 16. We use the final checkpoint after the
complete training to evaluate the memorization, clipscore and fidelity. For the text-conditioned experiments, we tried adding
nature noise at noise scale {25, 50, 100} and chose the model with best image quality.

F. Images generated using our method
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Figure 4. Images generated using a model trained with our method on 300 samples
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Figure 5. Images generated using a model trained with our method on 1000 samples
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Figure 6. Images generated using a model trained with our method on 3000 samples
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