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ABSTRACT

We present a lifelong audio-video masked autoencoder that continually learns
the multimodal representations from a video stream containing audio-video pairs,
while its distribution continually shifts over time. Specifically, we propose two
novel ideas to tackle the problem: (1) Localized Alignment: We introduce a small
trainable multimodal encoder that predicts the audio and video tokens that are
well-aligned with each other. This allows the model to learn only the highly
correlated audiovisual patches with accurate multimodal relationships. (2) Forget-
robust multimodal patch selection: We compare the relative importance of each
audio-video patch between the current and past data pair to mitigate unintended
drift of the previously learned audio-video representations. Our proposed method,
FLAVA (Forget-robust Localized Audio-Video Alignment), therefore, captures
the complex relationships between the audio and video modalities during training
on a sequence of pre-training tasks while alleviating the forgetting of learned
audiovisual correlations. Our experiments validate that FLAVA outperforms the
state-of-the-art continual learning methods on several benchmark datasets under
continual audio-video representation learning scenarios.

1 INTRODUCTION

Multimodal learning is an important problem for various real-world applications, as many realistic
data types are inherently multimodal, consisting of multiple modalities, such as text-image (Liao
et al., 2022; Lee et al., 2023), text-video (Li et al., 2018; Villegas et al., 2022; Hu et al., 2022b), and
audio-video (Korbar et al., 2018; Xiao et al., 2020) pairs. While most language-vision learning (Li
et al., 2020; Yan et al., 2023; Liu et al., 2023) require alignments across the modalities via human-
annotated descriptions/explanations, audiovisual domain (Zhou et al., 2019; Gong et al., 2023) has
a unique and practical advantage that it does not require additional labels as most videos naturally
come with accompanying audios. Thanks to this property, audio-video multimodal learning models
can leverage web-scale raw videos (e.g., YouTube, TikTok, Instagram, etc.) for training with minimal
human efforts in data preprocessing, and have achieved impressive success in learning effective
audio-video multimodal representations (Tang et al., 2022; Huang et al., 2022a; Lin et al., 2023).

Despite the success, most audio-video models still struggle to learn from real-world data since they
assume that the distribution of incoming multimodal data is static. However, in real-world scenarios,
the model should handle a dynamic shift of audio-visual data distribution when training on videos,
as the agent’s surroundings can continuously change over time, with past environments no longer
relevant. For example, in Figure 1, we illustrate a scenario where people are conversing outdoors.
Initially, the data includes human voices and visuals of human interaction (yellow). However, as a
volcanic eruption takes place, the data shifts to erupting sounds and mountain visuals (red).

Learning audio-video data with continuously changing semantic categories is a nontrivial problem due
to two critical challenges: 1) sparse spatiotemporal correlation between the audio-video pairs, and 2)
representational forgetting of audio-video relationships. First, we find that only a few objects/regions
(i.e., sound sources) in a video are strongly correlated with audio and vice versa (Figure 2 (b)). Audio-
video representation models also suffer from the problem of forgetting not only the representations
for each domain (audio and video), but also their correlations. For instance, the model may initially
learn the correct correlation in the audio-video data pair of cars’ engine sound (Figure 2 (b)), but
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Figure 1: Example of data distribution shift. Audio-visual data distribution dynamically shifts after an event.

after learning on a sequence of tasks1, it forgets the learned cross-modal correlation and highlights
inaccurate regions: the middle caption in the video and an unnecessarily large region in the audio
spectrogram (Figure 2 (c)). Note that this forgetting becomes more severe for multimodal models
since the modalities are sparsely intertwined, as discussed above, and the unintended knowledge shift
in an audio-video relationship captured via inter-modal attention could make the model misunderstand
the environments/tasks (Please see Figure 3).
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(a) Raw data

(b) Sparse audiovisual correlation

(c) Multimodal correlation forgetting (DER++)

(d) Multimodal correlation forgetting (Ours)

Figure 2: Visualization of cross-attention maps.:
(a) presents raw data pair. (b) shows cross-
attention maps at the end of the corresponding
task. Subsequently, we pre-train the model with a
series of tasks after (b). While DER++ attends to
entirely different parts (orange circle) in (c), our
method maintains consistent attention as shown in
(d). More examples are in Figure 17.

To overcome these challenges in learning multiple
audio-video representations continuously, we pro-
pose FLAVA (Forget-robust Localized Audio-Video
Alignments), a novel method that dynamically har-
nesses audio-video attention maps generated by a
small trainable multimodal encoder to capture in-
terrelated audio-video patches. Furthermore, our
method compares attention maps from the ongoing
task with those from previous time steps to identify
forget-robust patches in order to preserve accurate
audio-video correlation on previous semantic con-
cepts while training on new data. As a result, we can
visually see that the past audio-video semantics are
sustained in Figure 2 (d). To the best of our knowl-
edge, this is the first work that addresses a contin-
ual representation learning problem for audio-video
tasks and identifies the crucial challenges that the
new problem has. We validate our approach on VG-
GSound and AudioSet datasets against recent audio-
video representation learning methods equipped with
recent continual learning approaches. Our FLAVA out-
performs such strong baselines by 1.52%p, 1.80%p,
and 0.31%p in accuracy on the downstream audio-
to-video and video-to-audio zero-shot retrieval and
audiovisual classification task.

We summarize our contributions threefold:

• We introduce a practical problem of audio-video representation learning on continuously chang-
ing its data distributions, which poses new critical challenges: sparse spatiotemporal correlation
between the audio-video pairs and representational forgetting of audio-video relationships.

• We propose a novel method, Forget-robust Localized Audio-Video Alignments (FLAVA), to
adaptively capture sparse audio-video attention to learn accurate audio-video relationships while
mitigating forgetting from previously learned relationships without requiring task identification.

• We demonstrate the efficacy of our proposed method on multiple retrieval and classification tasks
against strong baselines, and provide extensive in-depth analyses with visualizations.

2 RELATED WORK

Audiovisual understanding Self-supervised learning on audiovisual data aims to learn transferable
representations that can be applied to a variety of audio-image/video downstream tasks, including
action recognition/event classification (Nagrani et al., 2021; Lee et al., 2021), sounding object

1We use task and category interchangeably in the manuscript.

2



Under review as a conference paper at ICLR 2024

localization (Qian et al., 2020; Hu et al., 2022a; Liu et al., 2022), and multimodal retrieval (Gong
et al., 2023; Huang et al., 2022a). Inspired by the success of Masked AutoEncoders (MAE) in visual
pre-training (He et al., 2022), recent audiovisual representation learning adopts masked modeling for
comprehending audiovisual semantics (Tang et al., 2022; Gong et al., 2023). TVLT (Tang et al., 2022)
adopts the MAE structure and incorporates audiovisual matching to predict whether audio and visual
data originated from the same video. CAV (Gong et al., 2023) introduces an efficient way of combining
the MAE with audiovisual contrastive learning, which pulls matching audiovisual pairs closer and
pushes non-matching pairs apart. Their methods assume that the distribution of the input data is fixed
and does not shift during training. However, in the real world, a machine/agent will continuously
encounter new (i.e., changing distribution) audio-video tasks/semantics. If not well managed, the
methods will suffer severe performance degradation if they encounter the aforementioned shift in
multimodal continual learning, a challenging and realistic scenario for multimodal learning.

Multimodal continual learning Continual learning (CL) (Kirkpatrick et al., 2016; Rebuffi et al.,
2017; Ahn et al., 2019) refers to a learning paradigm in which a model learns an unlimited number
of different tasks/domains in a sequential manner. It aims to continuously adapt to new tasks while
preserving or improving previously learned knowledge/skills, which is crucial in deploying an AI for
real-world usage. A number of works have addressed supervised learning for vision tasks (Zenke
et al., 2017; Yoon et al., 2018; Lee et al., 2020), and very recently, a few approaches have been
explored continual learning with self-supervised learning (Madaan et al., 2022; Cossu et al., 2022;
Fini et al., 2022; Yoon et al., 2023), and multimodal learning (Yan et al., 2022; Pian et al., 2023).
IncCLIP (Yan et al., 2022) introduced the technique which employs a generative model to make
pseudo-negative text data for self-supervised image-text continual learning. AV-CIL (Pian et al.,
2023) tackled the problem of supervised continual learning for audio-video tasks. However, training
these models requires dense human annotations, such as text or audiovisual labels. They also require
task boundary information to know when new tasks are introduced during continual learning. On the
other hand, our proposed FLAVA focuses on lifelong pre-training of audio-video multimodal models
without any human-effort labels or task boundary information.

3 CONTINUAL AUDIO-VIDEO REPRESENTATION LEARNING

3.1 PROBLEM STATEMENT

To tackle real-world multimodal continual learning scenarios where the task/category of surrounding
audiovisual information continuously changes over time, we introduce a learning paradigm that aims
to train a model on a sequence of T disjoint unsupervised audio-video datasets D = {Di}Ti=1. Note
that we assume a task-free (or task-agnostic) setup (Aljundi et al., 2019b) where the model performs
the pre-training and inference without the explicit knowledge of task boundaries, which is challenging
yet realistic because the model does not need any human guidance. For training the i-th task, the
model iteratively samples B audio-video pairs (X i

a,X i
v) ∼ Di

2. Here, Xa ∈ RB×t×f represents the
audio spectrogram with time (t) and frequency (f ) dimension, and the corresponding video clip
Xv ∈ RB×T×C×H×W consists of T successive frames, where C, H , and W indicate the dimension of
its channel, height, and width, respectively. Let xa ∈ RB×M×p×p and xv ∈ RB×N×p×p be patches of
audio and video inputs with the patch size of p, where M= |t/p|·|f/p| and N= |T |·|H/p|·|W/p|.
We obtain D-dimensional embedding patches a and v given the audio-video mini-batch as follows:

xa = patchfy (Xa, p) , xv = patchfy (Xv, p) ,

a = Conv2d (xa,w) , v = Conv2d (xv,w) ,
(1)

where w denotes the weights of a convolutional layer, a ∈ RB×M×D, and v ∈ RB×N×D. We
then pretrain the model fθ,i−1, which is pre-trained on consecutive datasets {Dj}i−1

j=1, with (a,v)
in order to learn task-specific representations from Di. Following the recent works on audio-
visual representation learning (Gong et al., 2023; Huang et al., 2022a), we adopt two loss terms,
reconstruction loss for masked inputs and masked contrastive loss, denoted as ℓr and ℓc, respectively.
In the end, we update the model weights on audio-video embeddings (a,v) by minimizing the

2For the rest of the paper, unless otherwise stated, we omit the task index for brevity.
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Figure 3: Cross-attention maps obtained by matched or unmatched data pairs. (a) Visualization of raw
data pairs. (b) Cross-attention maps when the pairs are matched. (c) Cross-attention with past audio and video
(unmatched). We highlight inaccurate attention in orange circles. Please see Figure 16 for more examples.

following objective: L = ℓr + λℓc, where λ denotes a hyperparameter for balancing the two losses.
The detailed mathematical expressions of the two loss functions are explicated in Appendix C.

3.2 FORGETTING OF THE ALIGNMENT BETWEEN AUDIO-VISUAL MODALITIES

Based on our findings in Figure 2, we raise two challenges in continual audio-video representation
learning: sparse spatiotemporal correlation and representational forgetting of audio-video relation-
ships. In this section, we perform further investigations to gain a better insight into the root cause of
the forgetting of audio-video multimodal representation. Let (Xa, Xv) be an audio-video pair of the
current task, and (Xp

a , X
p
v ) be from the previous time steps. We visualize the cross-attention maps of

(Xa, Xv) in Figure 3 (b) and compare it with the cross-attention of (Xa, X
p
v ) (Figure 3 (c) Left) and

(Xp
a , Xv) (Figure 3 (c) Right). In both modalities, the cross-attention maps with the past data often

concentrate on misleading locations when the past data is largely different from the current task. For
instance, if the current and past videos both describe human activities but with different audio sources
(people participating in sports, playing cello), cross-attention maps associated with past data tend to
focus on objects that are not concerned with the current task (Figure 3 (c) Left). This suggests that
the model may incorrectly learn audio-video relationships for new data distribution depending on
learned multimodal knowledge, which makes the learned audio-video correlation drift to a spurious
correlation. Moreover, training a model on the current task potentially results in losing the past
multimodal alignment, since previous audio-video correlation is susceptible to being overwritten by
the spurious audio-video correlation from the current task.

4 LIFELONG AUDIO-VIDEO MASKED AUTOENCODER WITH FLAVA

To overcome critical challenges in earlier sections, we introduce a novel lifelong audio-video masked
autoencoder, dubbed Forget-robust Localized Audio-Video Alignments (FLAVA). We introduce a
lightweight trainable audio-video matching (AVM) module to direct the model to focus on locally
aligned audio-visual regions (§4.1). Next, we propose the selection process to identify forget-
robust patches (§4.2). Finally, we introduce our selective and forget-robust continual audio-video
pre-training framework (§4.3). The overview of our framework is illustrated in Figure 4.

4.1 LOCALIZED AUDIO-VIDEO ALIGNMENT WITH AUDIO-VIDEO MATCHING MODULE

In this section, we explain our approach to obtain the importance score, which guides the model to
focus on locally aligned (i.e. highly correlated) audio-video patches. Let (õa, õv) be an audio-video
representation by audio/video encoders and µ(q,k;θ) be an Audio-Video Matching module (AVM),
parameterized with θ. We pass them through our AVM module to measure the cross-attention
between different modality embeddings. For computing an audio-to-video attention map, õa is
treated as a query, and õv acts as a key and value, and for video-to-audio attention map, they operate
oppositely. This process generates keys and queries for õa and õv , denoted as (ka, qa), and (kv, qv),
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Figure 4: Overview of our approach. Our method harnesses cross-modal attention maps from the AVM
module to compute importance scores in order to identify highly correlated patches (Localized Audio-Video
Alignment). Comparing the attention maps created by the current queries with those generated by past queries,
we generate a pruning probability matrix that compares the relative importance of each patch between the current
task and past tasks (Forget-robust multimodal patch selection). Finally, we select patches to continually
pre-train the model (Multimodal patch selection for continual masked modeling).

respectively. Therefore, we can measure cross-attention for each modality as follows:

Aa=Softmax (µθ(qv,ka))=Softmax
(
qvk

⊤
a /β ∗

√
d
)
,

Av=Softmax (µθ(qa,kv))=Softmax
(
qak

⊤
v /β ∗

√
d
)
,

(2)

where β is the temperature hyperparameter and Aa ∈ RB×H×N×M , Av ∈ RB×H×M×N . Here, H
denotes the number of heads, and the detailed structure of AVM module is illustrated in Appendix D.

These audio and video cross-attention maps associated with each other imply the multimodal signifi-
cance; that is, the highlighted audio/video embedding queries (i.e., input patches) from the attention
indicate that they are more closely associated with the paired modality data than other embeddings.
Then, we can compute the importance score matrices, Ia∈RB×M , Iv∈RB×N as follows:

Ia = MeanPool (Aa) , Iv = MeanPool (Av) , (3)

These matrices illustrate the correlation between each patch and its corresponding modality pair,
where higher values in the matrices signify the greater significance of the corresponding patches.

4.2 FORGET-ROBUST MULTIMODAL PATCH SELECTION

Next, we identify the most informative and forget-robust subset from audio-video patches to use
them in learning strongly correlated audio-video representations in a continual learning process,
which requires a careful balance between retaining previous knowledge and adapting new multimodal
correlations. Thus, we suggest exploiting attention maps activated by data from the current and
previous timesteps to understand the relative importance of each patch to the current and past tasks.
The process of calculating current and past attention maps is summarized in Equation 4. We aim
to select κa audio and κv video patches, where κa = M · ρa and κv = N · ρv. Here, ρa and ρv
represent sampling ratios of audio and video data, respectively. First, we extract locally aligned
patches using sorted indices Sa = argsort(Ia) and Sv = argsort(Ia). With these sorted
indices, we collect discriminative keys (k̂a, k̂v) (Equation 4 line 1) and compute weighted mean
queries (q̂a, q̂v) from the AVM module using Ia, and Iv respectively as the input (Equation 4 line 2-3).
Subsequently, we utilize the discriminative keys and queries to compute new attention maps, denoted
as Âa=µθ(q̂v, k̂a, β=1)∈RB×H×κa , Âv =µθ(q̂a, k̂v, β=1)∈RB×H×κv . In order to assess the
relative importance of current data and past data, we further compute past-data-induced attention
maps Âp

a=µθ(q̂
p
v , k̂a, β=1), Âp

v=µθ(q̂
p
a, k̂v, β=1), by combining the past discriminative queries

q̂p
a, q̂p

v from the rehearsal memory and the current discriminative keys (Equation 4 line 4). In the
end, we obtain the attention reflecting inter-task cross-modality for continual representation learning.

k̂n[i, :, j] = kn[i, :,Sn[i, j]], I
s
n[i, j] = In[i,Sn[i, j]],

q̂m[i, :, k] = qm[i, :,Sm[i, k]], i = 1, . . . , B, j = 1, . . . , κn, k = 1, . . . , κm,

q̂m = MeanPool (q̂m,weight=Is
m) ,

Ân = µθ(q̂m, k̂n, β=1), Âp
n = µθ(q̂

p
m, k̂n, β=1), where (n,m)∈{(a, v), (v, a)}.

(4)
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For the purpose of assessing the relative importance, we concatenate the audio (Âa, Âp
a) and

video attention maps (Âv, Âp
v), respectively. Subsequently, we apply Softmax normalization for

each index, resulting in pruning probability matrices Pa and Pv. Each index value of Pa and Pv

approaches one if the corresponding patch exhibits a higher correlation with past data. Consequently,
indices with higher values would be more likely to be candidates for pruning. The above procedure is
expressed as follows:

Pn = MeanPool
(
Softmax

(
[Ân, Â

p
n]
))

, where n∈{a, v}. (5)

4.3 MULTIMODAL PATCH SELECTION FOR CONTINUAL MASKED MODELING

Based on the importance score Ia and pruning probability Pa for audio inputs, now we can find the
most helpful audio patches to learn. In order to preserve the local correlation among audio patches by
temporal continuity, we select audio patches in time chunks. To measure the audio patch importance
time-wise, we reshape the audio importance score of i-th sample Ia,i into a time-frequency shape
of |t/p|×|f/p|. The reshaped map is then averaged along the frequency dimension, resulting in
It
a,i ∈ R|t/p|. For Pa,i, we first apply Bernoulli probability distribution to generate Fa,i, which is an

indicator matrix for pruning. Then, we reshape Fa,i and sum over frequency dimension to obtain the
number of pruning indices in the temporal domain, denoted as F t

a,i ∈ R|t/p|.

We subsequently process It
a,i to estimate the audio patch importance within time chunks. To do

so, we apply average pooling to It
a,i with a kernel size denoted as Lc, where Lc is set to a default

value of 4. This operation yields Ic
a,i, which indicates the importance of each time chunk to select

time chunks based on their importance score, we employ multinomial probability distribution with
weights from Ic

a,i to extract time chunk indices tselect. We then iterate through tselect to select time
chunks using Ic

a,i and F t
a,i until the number of selected audio patches reaches κa. By iterating the

above process through all the samples, we generate forget-robust audio patch indices in the minibatch,
denoted as S̃a ∈ RB×M . The details of audio patch selection are summarized in Algorithm 2.

Next, we utilize the importance score Iv and pruning probability Pv for video inputs in an effort to
generate forget-robust video patch indices. In contrast to the aforementioned audio patch selection,
the video patch selection process does not need additional constraints. Instead, we employ a
straightforward approach by initializing zero for each element in Iv corresponding to indices with a
True value in Fv based on a Bernoulli distribution defined by Pv , to create Ĩv . Then, we subsequently
apply a multinomial probability distribution with weights from Ĩv, and finally obtain S̃v ∈ RB×N ,
which is forget-robust video patch indices. The process can be expressed as follows:

Ĩv[i, j] =

{
0 if Fv[i, j]

Iv[i, j] otherwise
, i = 1, . . . , B, j = 1, . . . , N,

S̃v = Multinomial
(
Ĩv,
)
,

(6)

Finally, based on S̃a, S̃v, we select κa, κv of audio, video patches to gather new input (x̂a, x̂v).
By substituting (xa, xv) into (x̂a, x̂v), we enable the model to better focus on learning audio-video
relationship with more efficiency. The final patch selection is performed as follows:

x̂a[i, j] = xa[i, S̃a[i, j]], x̂v[i, j] = xv[i, S̃v[i, k]], i = 1, . . . , B, j = 1, . . . , κa, k = 1, . . . , κv, (7)
With selected patches, we perform continual pre-training based on the DER++ framework with the
penalty loss (ℓp), which encourages the model to maintain the features of the rehearsal memory
during future training while mitigating their drifts. Hence, our final pre-training objective is L =
ℓr + λℓc + αℓp, where α is a hyperparameter for the penalty loss.

Efficient utilization of the rehearsal memory is important in rehearsal-based continual learning,
particularly in audio-video continual learning scenarios due to the substantially larger size of videos
compared to images. The effective storage of past data can notably augment the diversity of data
within the memory. To address this, we propose FLAVA+, an extension of FLAVA, where its memory
stores the selected patches instead of raw data. The introduction of FLAVA+ represents a distinct and
complementary direction to FLAVA, demonstrating the efficacy of efficient memory utilization.

The proposed patch selection (yellow background) and the weight update process (gray background)
are summarized in Algorithm 1.
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Algorithm 1 Foget-robust Localized Audio-Video Alignment (FLAVA)

input Dataset {Dt}Tt=1, transformer model fθ VAM module hΘ, rehearsal memoryM.
1: for task Tt = T1, . . . , TT do
2: for batch (xa, xv) ∼ Dt do
3: ka, qa,Aa, kv, qv,Av ← AVM-ATT(xa, xv) ▷ AVM Attention in Eq. 10
4: Ia, Iv ← IMPORTANCE(Aa, Av) ▷ Importance measure in Eq. 3

5: k̂a, q̂a, k̂v, q̂v ← SORT(ka, qa, Ia, kv, qv, Iv) ▷ Core information in Eq. 4

6: ##FLAVA##
7: xp

a,x
p
v, q̂

p
a, q̂

p
v , I

p
a , I

p
v ,P

p
a ,P

p
v ←M ▷ Load past data

8: Pa, Pv ← PRUNE-PROB(k̂a, q̂v, q̂
p
v , k̂v, q̂a, q̂

p
a) ▷ Pruning probability in Eq. 4, 5

9: x̂a, x̂
p
a ← AUDIO-SELECT([xa,x

p
a], [Ia, I

p
a ], [Pa,P

p
a ]) ▷ Audio selection in Alg. 2, Eq. 7

10: x̂v, x̂
p
v ← VIDEO-SELECT([xv,x

p
v], [Iv, I

p
v ], [Pv,P

p
v ]) ▷ Video selection in Eq. 6, 7

11: M←M∪ (xa,xv, q̂a, q̂v, Ia, Iv,Pa,Pv) ▷ Rehearsal memory update

12: ##FLAVA+##
13: x̂p

a, x̂
p
v, q̂

p
a, q̂

p
v ←M ▷ Load past data

14: Pa, Pv ← PRUNE-PROB(k̂a, q̂v, q̂
p
v , k̂v, q̂a, q̂

p
a) ▷ Pruning probability in Eq. 4, 5

15: x̂a ← AUDIO-SELECT(xa, Ia,Pa, ) ▷ Audio selection in Alg. 2, Eq. 7
16: x̂v ← VIDEO-SELECT(xv, Iv,Pv) ▷ Video selection in Eq. 6, 7
17: M←M∪ (x̂a, x̂v, q̂a, q̂v) ▷ Rehearsal memory update

18: θ ← θ − η∇fθ (([x̂a, x̂
p
a], [x̂v, x̂

p
v])) ▷ Backbone update

19: Θ← Θ− η∇hΘ ((xa,xv)) ▷ AVM update
20: end for
21: end for

5 EXPERIMENTS

In this section, we experimentally validate the effectiveness of our method in task-free lifelong audio-
video representation learning scenarios, comparing it against recent methods. To accomplish this, we
commence by presenting our experimental setup in §5.1, which encompasses datasets, evaluation
methods, evaluation metrics, and baseline methods utilized for our experiments. Then we present the
experimental results and conduct a comprehensive analysis of these results in §5.2.

5.1 EXPERIMENTAL SETUP

Evaluation Protocol for Audio-Video Continual Pre-Training To test the efficacy of our
method on continual audio-video representation learning, we validate our method over VGGSound
dataset (Chen et al., 2020) and AudioSet (Gemmeke et al., 2017) dataset. Both datasets contain 10s
YouTube videos. For evaluation, we conduct two types of downstream tasks: an audiovisual zero-shot
retrieval task and an audiovisual classification task. The details of the evaluation protocol including
data split, task dataset statistics, and downstream tasks are explicated in Appendix B.

Baselines To quantitatively assess our method, we test the performance of other task-free con-
tinual learning methods in the same setting: ER (Rolnick et al., 2019), MIR (Aljundi et al.,
2019a), DER++ (Buzzega et al., 2020), GMED (Jin et al., 2021), CLS-ER (Arani et al., 2022),
and LUMP (Madaan et al., 2022). The details of the baseline methods are explicated in Appendix A.
Both our method and other baselines utilize reservoir sampling (Vitter, 1985) to sample past instances
from the rehearsal memory. The memory randomly samples and replaces the instances during training.
All methods employ reservoir sampling for memory updates and maintain an identical number of
instances in the memory, except for FLAVA+. FLAVA+ accommodates an increased number of
instances based on sampling ratios (ρa, ρv) to match the memory size of FLAVA. Additionally, we
compare our approach with the model continually pre-trained without any other additional method, de-
noted as Finetune, and the model pre-trained with the entire pre-training datasets, denoted as Multitask.
Each acts as lower-bound and upper-bound in assessing learned representation, respectively.

Evaluation Metrics After each end of pre-training on Dt, we estimate task-specific performances
{acct,i}ti=1, where acct,i denotes the performance of the downstream task associated with Di

7



Under review as a conference paper at ICLR 2024

Table 1: Results of audiovisual zero-shot retrieval task on VGGSound and AudioSet. R@K means top-K recall.
The best and the second best results are highlighted in bold and underline, respectively.

VGGSound AudioSet
Method R@1 R@5 R@10 Avg R@1 R@5 R@10 Avg

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

A
ud

io
-t

o-
V

id
eo

Finetune 0.98 4.16 3.75 11.98 6.17 15.35 3.63 10.50 1.48 2.90 3.84 11.34 5.41 17.83 3.58 10.69
ER 4.09 3.66 11.66 9.17 17.78 10.20 11.18 7.68 4.94 2.97 12.33 7.46 17.60 11.17 11.62 7.20
MIR 4.59 3.14 12.26 8.34 17.51 11.17 11.45 7.55 5.21 2.93 13.16 7.10 18.04 9.14 12.14 6.39
DER++ 4.03 3.62 13.74 6.31 19.79 7.11 12.52 5.68 4.51 3.75 12.15 8.42 16.85 11.86 11.17 8.01
GMED 4.17 2.73 12.01 6.84 18.95 6.33 11.71 5.30 4.71 2.27 12.83 7.45 18.44 9.18 11.99 6.30
CLS-ER 4.61 3.20 14.07 6.77 19.54 8.92 12.74 6.30 4.17 4.50 11.28 11.06 16.85 12.55 10.77 9.37
LUMP 3.56 2.79 11.68 7.65 17.40 8.52 10.88 6.32 3.73 3.03 13.74 5.29 19.50 8.17 12.32 5.50

FLAVA (Ours) 5.34 2.04 15.04 5.20 22.10 5.90 14.16 4.38 5.22 2.26 13.09 7.95 18.75 10.65 12.35 6.95
FLAVA+ (Ours) 5.39 2.71 16.76 5.15 24.18 5.99 15.44 4.62 5.36 4.24 16.76 5.54 23.65 7.44 15.26 5.74

Multitask 6.45 − 20.19 − 29.01 − 18.55 − 8.28 − 24.14 − 33.74 − 22.05 −

V
id

eo
-t

o-
A

ud
io

Finetune 1.22 4.47 4.17 11.23 6.95 14.67 4.11 10.12 1.50 3.23 4.08 10.04 6.33 14.43 3.97 9.23
ER 3.28 3.94 11.30 8.86 16.40 11.37 10.33 8.06 3.70 4.36 10.76 10.34 15.68 15.06 10.05 9.92
MIR 3.54 3.47 11.82 9.11 16.69 12.90 10.68 8.49 4.26 4.59 11.29 9.87 15.97 13.73 10.51 9.40
DER++ 3.49 3.86 13.22 7.09 19.03 9.04 11.91 6.66 4.23 4.50 11.66 10.10 16.24 13.97 10.71 9.52
GMED 3.71 2.61 11.87 6.46 17.20 9.57 10.93 6.21 3.99 4.42 10.65 10.39 15.41 14.78 10.02 9.86
CLS-ER 4.09 3.11 13.30 6.96 19.43 9.68 12.27 6.58 4.25 4.58 9.78 11.65 13.45 17.65 9.16 11.29
LUMP 3.24 3.30 11.02 7.55 16.91 9.13 10.39 6.66 3.13 3.91 10.60 8.63 16.02 12.26 9.92 8.27

FLAVA (Ours) 5.30 2.40 15.43 4.84 21.47 6.70 14.07 4.65 4.49 3.39 12.08 9.00 17.31 12.75 11.29 8.38
FLAVA+ (Ours) 5.86 1.56 17.21 4.09 23.53 6.02 15.53 3.89 5.48 4.06 15.65 7.13 22.29 8.92 14.47 6.70

Multitask 6.85 − 21.93 − 30.63 − 19.80 − 8.05 − 25.81 − 35.60 − 23.15 −

when evaluated with fθ,t. Here, we do not use any task boundary knowledge when estimating
the performance. For the evaluation, we adopt two conventional metrics in continual learning: (1)
Average accuracy(A) is the average accuracy across all tasks after the completion of pre-training on
DT . Hence, it is formulated as A= 1

T
∑T

i=1 accT ,i. (2) Average Forgetting(F) is the metric that
quantifies the average amount of catastrophic forgetting for each task, measured as the difference
between its maximum accuracy and accuracy at the completion of pre-training on DT , calculated as,
F= 1

T −1

∑T −1
i=1 max

t∈{1,...,T −1}
(acct,i − accT ,i).

5.2 QUANTITATIVE ANALYSIS FOR AUDIO-VIDEO CONTINUAL PRE-TRAINING

FLAVA achieves superior Zero-shot Audiovisual Retrieval performance compared to strong
baselines. In order to quantitatively assess the audio-video correlation knowledge learned from
the continual pre-training, we conduct an audiovisual zero-shot retrieval task. Table 1 summarizes
the audio-to-video and video-to-audio retrieval results for both VGGSound and AudioSet. For
all methods, we basically set 2k and 5k for a rehearsal memory size on VGGSound and AudioSet
experiments. For the VGGSound, Both FLAVA and FLAVA+ significantly outperform other baselines,
exhibiting substantial enhancements of 1.52%p, 2.80%p and 1.80%p, 3.26%p in average audio-to-
video and video-to-audio retrieval scores, respectively. In the AudioSet experiments, FLAVA and
FLAVA+ exhibit prominent performance advantages, with 0.03%, 2.94% and 0.58%p, 3.76%p
improvements in average audio-to-video and video-to-audio retrieval scores, respectively. FLAVA
demonstrates competitive performance compared to LUMP in the audio-to-video retrieval task. It is
important to highlight that FLAVA achieves a notably higher R@1 score in the audio-to-video task
than LUMP, where the R@1 score increases only when the audio correctly retrieves its video pair.
These results imply that our approach not only preserves past audio-video correlation but also enables
the model to comprehend the high-level semantics of the audio-video relationship. To conduct a more
rigorous investigation, we perform additional experiments using shuffled task orders in Appendix E.

FLAVA is significantly efficient in terms of GPU Memory and Throughput. Pre-training on the
locally aligned subset of audio-video patches also enhances efficiency during the pre-training phase.
In Table 2, we summarize GPU memory occupancy and throughput estimated during the pre-training
across different methods. Note that FLAVA consumes significantly less GPU memory than baselines,
even surpassing Finetune in efficiency. Compared to DER++, FLAVA achieves an efficiency gain
of 43.59%, further enhancing throughput. Additionally, we emphasize that the additional memory
required to store the importance scores (Ia, Iv) and pruning probabilities (Pa, Pv) in the rehearsal
memory is negligible (+ 0.16 GB) compared to the size of the rehearsal memory itself (∼ 5.47 GB).
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Table 2: Efficiency analysis. GPU memory occu-
pancy (GPU M.) is measured in GB. Throughput
(T.P.) of baselines is measured in sample/sec. Both
are estimated in single V100 with batch size of 9.

METHOD A→V V→A GPU M.↓ T.P. ↑
A ↑ F ↓ A ↑ F ↓

Finetune 3.63 10.50 4.11 10.12 18.34 31.84
ER 11.18 7.68 10.33 8.06 30.95 18.10
MIR 11.45 7.55 10.68 8.49 31.17 5.75
DER++ 12.52 5.68 11.91 6.66 30.95 17.01
GMED 11.71 5.30 10.93 6.21 32.03 5.65
CLS-ER 12.74 6.30 12.27 6.58 32.50 16.20
LUMP 10.88 6.32 10.39 6.66 18.36 23.44

FLAVA 14.16 4.38 14.07 4.65 17.45 17.43

Table 3: Sampling methods. Retrieval results by vari-
ous methods of sampling on VGGSound dataset. LAVA:
Localized audio video alignment in §4.1, FRS: Forget-
robust selection in §4.2.

Method LAVA FRS A→V V→A GPU M.↓ T.P.↑
A ↑ F ↓ A ↑ F ↓

Random − − 12.64 6.46 12.55 6.58 16.63 27.98
MATS − − 12.91 6.55 12.70 6.80 21.30 21.42

FLAVA

− − 12.52 5.68 11.91 6.66 30.95 14.13
✓ − 13.44 5.50 13.27 5.94 17.48 17.45
− ✓ 13.40 5.30 12.94 5.44 17.48 17.08
✓ ✓ 14.16 4.38 14.07 4.65 17.45 17.43

Table 4: VGGSound & AudioSet audiovisual classi-
fication task. The best and the second best results are
highlighted in bold and underline, respectively.

Method VGGSound (Acc) AudioSet (mAP)
A ↑ F ↓ A ↑ F ↓

C
la

ss
ifi

ca
tio

n

Finetune 57.01 (± 0.31) 2.15 (± 0.51) 63.98 (± 0.18) 2.12 (± 0.15)

ER 58.30 (± 0.13) 1.28 (± 0.07) 65.10 (± 0.32) 1.11 (± 0.25)

MIR 58.07 (± 0.30) 1.49 (± 0.19) 65.17 (± 0.20) 0.86 (± 0.06)

DER++ 58.30 (± 0.19) 1.27 (± 0.51) 65.17 (± 0.44) 1.39 (± 0.45)

GMED 58.21 (± 0.18) 1.16 (± 0.38) 65.24 (± 0.07) 0.82 (± 0.17)

CLS-ER 58.34 (± 0.14) 1.22 (± 0.04) 65.21 (± 0.08) 1.17 (± 0.28)

LUMP 58.03 (± 0.24) 1.17 (± 0.14) 65.38 (± 0.23) 1.24 (± 0.23)

FLAVA (Ours) 58.65 (± 0.28) 0.64 (± 0.27) 65.66 (± 0.16) 0.89 (± 0.23)

FLAVA+ (Ours) 59.07 (± 0.14) 0.80 (± 0.34) 66.05 (± 0.28) 0.78 (± 0.27)

Multitask 59.90 (± 0.35) − 67.81 (± 0.12) −

FLAVA outperforms continual learning base-
lines on audiovisual classification tasks. We
conduct the experiment on audiovisual classifi-
cation tasks to evaluate the joint audio-video rep-
resentation from the continual audio-video pre-
training. We follow the same rehearsal memory
size setting in the retrieval task experiments. As
depicted in Table 4, FLAVA and FLAVA+ con-
sistently outperform baselines in both the VG-
GSound and AudioSet datasets, demonstrating
gains of 0.31%p, 0.73%p and 0.28%p, 0.67%p,
respectively. Hence, our method excels at acquir-
ing a superior joint audio-video representation
compared to other baselines. This implies that
minimizing masked reconstruction loss with the locally aligned subset of audio-video patches gives an
advantage in learning the joint audio-video representation. It is noteworthy that the average forgetting
in the classification tasks is small when compared to the average forgetting in zero-shot retrieval tasks.
In order to investigate the forgetting robustness of the audiovisual classification task, we conduct an
ablation study in Appendix E. In addition, we also study the effect of rehearsal memory size, and the
ability of the model to adapt to various audiovisual downstream tasks in Appendix E.

Core components in FLAVA contribute to improving evaluation performance. To validate
the efficacy of our patch selection method, we study the effect of our core components as well
as compare them with an adaptive patch selection method, MATS (Hwang et al., 2022), which
aims to discard redundant patches during video representation learning. Random denotes a simple
random patch selection method. We decompose FLAVA into the Localized audio-video alignment
(LAVA) and Forget-robust selection (FRS). All the methods followed the default sampling ratio and
were built upon DER++. As shown in Table 3, notably, LAVA and FRS outperform all baselines
in VGGSound zero-shot retrieval tasks (Table 1). LAVA enhances the model’s comprehension of
audio-video semantics during pre-training but shows susceptibility to forgetting. In contrast, FRS
demonstrates more robustness in forgetting but has a lower average retrieval score, suggesting a need
for improved guidance in understanding audio-video semantics. MATS also performs competitively,
highlighting the benefit of selecting informative video patches. However, it suffers from severe
forgetting compared to LAVA. We posit that this can be attributed to the learning of redundant
audio patches within MATS, thus shedding light on the potential causes of forgetting as discussed
in §3.2. Random, on the other hand, yields results similar to DER++, suggesting no advantage in
understanding multimodal semantics with random patch selection.

FLAVA can preserve the modality gap between audio and video embeddings even after continual
learning. Recent research in multimodal learning (Liang et al., 2022) reveals that embeddings cluster
by modality in representation space. Such modality-dependent clustering behavior introduces the
concept of modality gap, which refers to the distance between these clusters. A larger modality gap
is generally considered favorable under well-separated modality clusters since it indicates that the
model can distinguish between different modalities effectively. Hence, in the context of continual
audio-video representation learning, maintaining a large modality gap between the two modalities
corresponding to previous tasks is desirable, as deviating from it suggests a departure from the
optimal state. In order to understand the performance enhancements achieved by our approach, we
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Figure 5: Modality gap estimation. (a): Estimation of the modality gap after the completion of each task. (b):
Visualizations of the modality gap corresponding to the music task with the model pre-trained up to the last task
in VGGSound dataset with CLS-ER method (Left) and our method (Right).

estimate the modality gap at the end of each task, utilizing evaluation data from tasks where the
model was trained. The observed changes in the modality gap for the various baselines are presented
in Figure 5 (a). It is notable that FLAVA consistently maintains the highest modality gap compared
to other approaches, which experience substantial performance drops. This decline indicates the
distinction between audio and video embeddings has deteriorated, which supports the performance
improvements in our approach in Table 1 and Table 4. To delve deeper into the maintenance of
the modality gap, we visualize the modality gap using embeddings extracted from the model at
the completion of the last task. In Figure 5 (b), we visualize the task-specific (music, second task)
modality gap and compare the modality gap between CLS-ER and our approach. It is evident that
our approach enables better clustering while preserving a larger modality gap. This observation
elucidates the superior forget-robustness of our approach. Appendix G provides more analysis using
the modality gap including AudioSet and each component of our approach.

6 CONCLUSION

Audio-video multimodal learning is becoming more important due to its ability to leverage web-scale
data with minimal human intervention. Nevertheless, most audio-video models still struggle to
learn from real-world scenarios where the model should handle a dynamic shift of audio-visual
data distribution over time, as the agent’s surroundings can continuously change over time, with
the past environments no longer relevant. In this paper, we investigate the critical challenges in
audio-video representation learning with task-free continual learning scenarios, where the model
continuously learns a course of audio-video multimodal tasks sequentially and cannot access previous
tasks and task oracle both on pre-training and fine-tuning. We empirically observe that the audio-video
models suffer from the issue of sparse spatiotemporal correlation and representational forgetting
of audio-video relationships. To overcome these limitations, we propose a novel continual audio-
video multimodal representation learning method for the first time that adaptively captures sparse
audio-video attention to learn accurate audio-video relationships while mitigating forgetting from
previously learned relationships without requiring task identification.

7 REPRODUCIBILITY STATEMENT

Our codes are based on the publicly available RepLAI (Mittal et al., 2022), TVLT (Tang et al., 2022),
and CAV (Gong et al., 2023). The experimental setup and details can be found in §5 and Appendix A.
We have included our codes in the supplementary material and publicly release our code.
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Appendix
Organization The supplementary file is organized as follows: First, we explain the implementation
details for our experiments in Appendix A. Then, we outline the evaluation protocol of our experiments
in Appendix B. In Appendix C, we elaborate on the audio-video self-supervised objectives used for
pre-training the model. Additionally, Appendix D presents a detailed account of the training procedure
for the VAM module. We provide additional experimental results in Appendix E. Appendix F
showcases the outcomes of our hyperparameter tuning process. Furthermore, in Appendix G, we
conduct more analysis on our experimental results using the modality gap. We present PyTorch-like
pseudo code for audio patch selection in Appendix H. In both Appendix I and Appendix J, we provide
more examples of visualization that show challenges in audio-video lifelong pre-training. Finally,
Appendix K outlines the limitations of our study.

A IMPLEMENTATION DETAILS

Hyperparameter configurations. We referred to the original papers for initial settings of hyperpa-
rameters of continual learning methods. Based on the initial settings, we tune the hyperparameters
for our audio-video continual representation learning. Searched hyperparameters are listed in Ta-
ble 5. In our method, α denotes a multiplier for the penalty loss to minimize the distance between
obtained logits from the buffer instances and their logits stored at the past timestep. We also listed
our pre-training and fine-tuning hyperparameters in Table 6.

Table 5: Continual learning method hyperparameters.

METHOD VGGSound AudioSet

ER - -
MIR C : 5 C : 5
DER++ α : 0.5 α : 1.0
GMED α : 0.1 β : 0.05 γ : 1.0 α : 0.1 β : 0.01 γ : 1.0
CLS-ER λ : 0.1 αS : 0.999 αP : 0.999 rS : 0.6 rP : 0.8 λ : 0.1 αS : 0.999 αP : 0.999 rS : 0.6 rP : 0.8
LUMP λ : 0.1 λ : 0.05
FLAVA (Ours) α : 0.5 β : 0.4 ρa : 0.5 ρv : 0.5 α : 0.5 β : 0.1 ρa : 0.5 ρv : 0.5

Table 6: Audio-Video pre-training and fine-tuning hyperparameters.

Pretrain Finetune

Dataset VGGSound AudioSet VGGSound AudioSet AVE

Optimizer Adam AdamW
Optimizer momentum β1, β2 = 0.95, 0.999

Learning rate 1e-4 5e-4 1e-3
Weight decay 5e-7 5e-6
Learning rate schedule - CosineScheduler
Warmup epochs - 2
Epoch 10 15 15
Batch size 48 36 48 36 12
GPUs 4 A100 or 4 V100 4 Titan X Pascal
Audio Random Time Shifting yes no
Audio Random Noise yes no
Audio Random Time masking no yes no
Audio Random Frequency masking no yes no
Audio Norm Mean -5.081
Audio Norm STD 4.485
Video MultiScaleCrop yes
Video Norm Mean [0.485, 0.456, 0.406]
Video Norm STD [0.229, 0.224, 0.225]
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Baselines. ER (Rolnick et al., 2019) employs rehearsal memory and learns the past data in the
memory during training on the current task to mitigate forgetting. All the baselines below employ the
rehearsal memory to store the subset of past data. MIR (Aljundi et al., 2019a) introduces a strategy
that retrieves data the model is likely to forget during the current task and trains the model with the
retrieved data. To retrieve the data, it pseudo-updates the model with the data in the current step
and finds the mini-batch of past data that gives the highest training loss. DER++ (Buzzega et al.,
2020) matches stored logits in the rehearsal memory from past tasks with the current ones, ensuring
a smoother transition and preventing abrupt changes in the logits during training. In our setting,
we store both audio and video logits in the rehearsal memory and apply the method independently.
GMED (Jin et al., 2021) tackles forgetting by using gradient information to update past data in the
rehearsal memory. The data is updated to maximize interference of the current task to help the model
retain past knowledge. Hence, it virtually updates the model with data from the current step and
calculates the relative gradient by the past data to update the past data. CLS-ER (Arani et al., 2022)
draws inspiration from the complementary learning system theory and maintains two models to retain
short-term memories and long-term memories; one quickly adapts to new tasks and the other is
slowly updated to retrain past knowledge. The slowly updated model transfers retained knowledge to
the adaptable one, ensuring the retention of past information. Lastly, LUMP (Madaan et al., 2022)
integrates past and current data by mixing the two data, rather than replaying the past data together
with data from the current task to handle the forgetting issue. In our setting, we integrate the past and
current video and audio respectively with the same ratio.

B CONTINUAL PRE-TRAINING EVALUATION PROTOCOL

Audiovisual Dataset Configuration In this section, we specify how we design our continual
pre-training experiments using two benchmark datasets: VGGSound and AudioSet. First, in the VG-
GSound dataset, in order to mimic the dynamic shift of data distribution due to environmental change
described in §1, we split the VGGSound dataset into eight tasks based on the category labels (Chen
et al., 2020). Each task dataset consists of 6k-8k video clips from 20 different classes as in Figure 6
(a). We construct a pre-training dataset by combining the unused training dataset in VGGSound with
the AudioSet-20k (Gemmeke et al., 2017), resulting in a total of 104k video clips. Before continual
pre-training. all baselines and our FLAVA initialize the backbone weights using the model pre-trained
on this merged dataset. We took care to exclude the unused VGGSound video samples whose class
labels are present in the tasks during continual pre-training. This measure ensured that the model
did not acquire any task-specific knowledge during this stage. During continual pre-training, we
followed the task sequence: sports→music→vehicle→people→animals→home&nature→others
part1(tools&others)→others part2(remaining others).

Similarly, we divided the AudioSet dataset into seven tasks, following class hierarchy informa-
tion (Gemmeke et al., 2017). Unlike the VGGSound, each task exhibits significant variation in the
number of clips, as demonstrated in Figure 6 (b). Moreover, the number of clips in each task is
much larger than those from the VGGSound tasks. To ensure proper pre-training for the AudioSet
experiments, we pre-trained the model with the entire VGGSound dataset to avoid any potential
performance issues during the initial stages of continual pre-training. To pre-train the model with
imbalanced dataset sizes for each task, we randomly shuffle the pre-train order and follow the task
sequence: human→vehicle→nature→animal→others→home→music.

Comparison between SCL setup and UCL setup To clarify our continual audio-video representa-
tion learning setup, we compare the conventional supervised continual learning with our setting as
shown in Figure 7. The supervised continual learning (Pian et al., 2023; Mo et al., 2023) revolves
around updating a model based on new tasks that introduce unseen classes or domains while ensuring
the preservation of past knowledge within the model. This adaptation requires human-annotated
labels, but acquiring high-quality human annotations is expensive and not scalable to large datasets.

Conversely, unsupervised continual learning (Madaan et al., 2022)(Yan et al., 2022) focuses on
adapting new representations from new datasets with altered data distributions while maintaining the
learned representations from previous tasks. Notably, this approach doesn’t rely on human-annotated
information. In our specific scenario, we align with the principles of unsupervised continual learning.
Our evaluation process involves subjecting the continually pre-trained models to various downstream
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(b) AudioSet CL dataset statistics

VGGSound AudioSet

Category Sports Music Vehicle People Animals Home&nature Others part1 Others part2 Music Human Vehicle Home Nature Others

Train 7737 8000 8000 8000 8000 6807 6639 5390 29144 30073 25865 13924 15373 15848 25416
Evaluate 886 907 906 862 873 837 863 810 1188 1523 1011 680 864 403 1585
Retrieval 119 288 139 209 317 92 85 104 130 145 126 103 81 42 175

(c) Overall statistics

Figure 6: Stastics of Audio-Video datasets (a): We split the VGGSound dataset into 8 tasks, where each subset
dataset consists of similar amounts of video clips. (b): We split the AudioSet into 7 tasks. Unlike the VGGSound
dataset, the number of video clips varies significantly for each task. (c): the number of video clips per each task.
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Figure 7: Comparison with supervised continual learning (SCL) and unsupervised continual learning
(UCL): We illustrate the difference between the SCL setup and the UCL setup that we used in our experiments.

tasks, as illustrated on the right side of Figure 7. This approach allows for a quantitative assessment
of the acquired representations.

Audiovisual downstream task configuration When constructing audiovisual zero-shot retrieval
tasks for model performance evaluation, we refer to the CAV (Gong et al., 2023) for both the
VGGSound and AudioSet experiments. We employ the zero-shot retrieval task in the CAV but
exclude evaluation samples that belong to the classes that are not included in any of the tasks. In
the audiovisual classification task, we follow the same training and evaluation dataset used in the
pre-training. Moreover, in the fine-tuning stage, we freeze the backbone model and connect it to a
randomly initialized linear classification head in order to evaluate the acquired representation.
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Figure 8: Overview of AVM module: The AVM (Audio-Visual Matching) module is self-supervised with the
audio-video matching objective. It classifies if the given audio-video pair is positive(audio and video are from
the same video) or negative(audio and video are from different videos).

C AUDIO-VIDEO SELF-SUPERVISED OBJECTIVES

The backbone Transformer consists of an audio encoder (Ea(·)), a video encoder (Ev(·)), a multi-
modal fusion encoder (Ef (·)), and a decoder (D(·)). Given audio-video data (xa,xv) and corre-
sponding audio-video tokens (a,v), we pre-train the model by minimizing the mask reconstruction
loss ℓr:

ã, ṽ = Ef (Ea (ma ⊗ a) , Ev (mv ⊗ v)) ,

ℓr = ℓra + ℓrv =
1

B

B∑
i=1

[
(D (ãi)−ma,i ⊗ xa,i)

2

|ma,i|
+

(D (ṽi)−mv,i ⊗ xv,i)
2

|mv,i|

]
.

(8)

where ⊗ denotes vector-matrix multiplication while preserving the input’s dimensionality. Random
audio ma and video mask mv are drawn by a binary distribution. In this paper, we set a probability
of 0.8 for masking, consistent with Huang et al. (2022a). Using the unmasked patches, we aim to
learn the model to reconstruct the masked audio and video patches.

In addition, we also minimize masked contrastive loss to learn the semantic relationship between
audio and video representation pairs by pulling those that share the same semantics while pushing the
others. Following by Gong et al. (2023), we pass the masked input tokens to audio and video encoders,
and subsequently map obtained features (i.e., outputs) to the fusion encoder with modality-specific
layer normalization for the masked contrastive learning:

ca = MeanPool (Ef (Ea (ma ⊗ a) , LNa)) , cv = MeanPool (Ef (Ev (mv ⊗ v) , LNv)) ,

ℓc = − 1

B

B∑
i=1

[
log

(
exp(c⊤a,icv,i/τ)∑B
j=1 exp(c

⊤
a,icv,j/τ)

)
+ log

(
exp(c⊤v,ica,i/τ)∑B
j=1 exp(c

⊤
v,ica,j/τ)

)]
(9)

, where τ is temperature hyperparameter, and LNa and LNv indicate modality-specific layer normal-
ization for audio and video each.

D TRAINING OF AUDIO-VIDEO MATCHING MODULE

AVM training procedure. In the following section, we describe the training process of the AVM
module, as illustrated in Figure 8. Given audio-video token pairs (a,v) with the batch size of B, we
propagate token inputs to the frozen encoder for each modality and obtain audio-video representation
pairs (oa,ov). In order to update the module to capture the multimodal correlation between audio
and its video pair, we randomly split them into positive and negative pairs, where we construct
negative pairs by randomly shuffling the audio tokens to pair with unmatched video tokens. Next,
we project the obtained positive and negative pairs into fusion space (õa, õv) through the fusion
encoder. Subsequently, the input pairs are fed into the AVM module. They are projected to keys,
queries, and values for the cross-attention operation, by passing through trainable projection layers.
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Figure 9: Downstream performance on various rehearsal memory sizes. We evaluated downstream task
performances on the pre-trained models with various rehearsal memory sizes on the VGGSound dataset.

The above process can be summarized as follows:

oa,ov=Ea(a), Ev(v), õa, õv=Ef (oa,ov)

qa= õaWQ
a , ka= õaWK

a , va= õaWV
a , qv= õvWQ

v , kv= õvWK
v , vv= õvWK

v ,

Aa=Softmax (µθ(qv,ka, β=1)), Av=Softmax (µθ(qa,kv, β=1)) ,

Va=Aava, Vv=Avvv

(10)

where the projectionsWQ
a , WK

a , WV
a , WQ

v , WK
v , WV

v ∈RD×H×d are trainable parameter matrices;
D=H ∗ d. Va∈RB×H×N×D, Vv∈RB×H×M×D are values highlighted by the cross-attention maps.

Next, we average the values head-wise and token-wise, and concatenate the resulting two values into
va∈RB×2D in order to merge the multimodal information. Then it is passed to fully connected (FC)
layers, which serve as the classification head. These FC layers take va as input, generating a vector
ŷ∈RB that predicts whether each input pair corresponds to a negative of positive pair. For training
the AVM module, we employ the binary cross-entropy loss to classify audio-video pairs, i.e.,

V̂av = Concat (MeanPool (Va) ,MeanPool (Vv)) ,

ŷ = Sigmoid
(
FC(V̂av)

)
, Lavm = −y (log(ŷ)) ,

(11)

Here, y = {0, 1}B represents ground truth labels, with yi taking the value 0 when the ith input
audio-video pair is a negative pair and 1 otherwise. We pre-train the AVM module along with the
backbone model. During the weight update process in the AVM module, the gradient computed from
the audio-video matching objective does not propagate through the backbone encoder. This design
choice ensures exploiting the AVM at a low cost. Moreover, the AVM only increases 3.18% of the
total backbone model size (707.8 MB), which is efficient compared to methods like CLS-ER which
require two backbones during training.

E ADDITIONAL EXPERIMENTAL RESULTS

Effect of rehearsal memory size We explore the impact of rehearsal memory size on the down-
stream task performance and report the results in Figure 9. We find that our method mostly surpasses
baselines in various memory sizes. However, as the memory size decreases, the performance gap in
retrieval tasks also narrows. This shows the necessity of diverse audio-video samples from past time
steps in order to preserve audio-video correlation, underscoring the susceptibility of exemplar-based
methods in the context of continual learning. In the classification task, with a small memory size
(500), baselines except for LUMP show similar average accuracy to that of Finetune, which is 57.01.
However, LUMP and our approach exhibit low sensitivity to variations in memory size. This could
be ascribed to the inherent data augmentation in both methods; LUMP employs a Mixup operation
with the current and past data, while our approach samples a subset of patches from the past data.

Audio patch selection strategy. When executing the selection of audio patches guided by the audio
importance score Ia, our approach involves selecting patches in time-wise segments, following the
procedure detailed in Algorithm 2. As spectrogram patches exhibit local correlation driven by their
temporal continuity (Huang et al., 2022b), the strategy for audio patch selection becomes pivotal in
maintaining these intrinsic properties. The challenge lies in striking a balance between retaining time
continuity and eliminating redundant information within the spectrogram.
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Frequency 13.42 5.51 12.76 6.40
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Figure 10: Variation of audio patch selection. (a): Average retrieval task performance on various time chunk
sizes. (b): Average retrieval task performance on various audio selection methods.
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Figure 11: Audiovisual classification results without MAE loss term. (a): We compare the audiovisual
classification results from the models with the MAE loss term (Finetune, ER) and the models without it (Finetune-
no-mae, ER-no-mae). (b): We visualize changes in the task-specific average classification accuracy of the
sequentially pre-trained model without the MAE loss term.

In pursuit of this balance, we conduct various experiments on the audio patch selection approach.
The width of the time chunk assumes significance; a chunk that is too narrow could disrupt time
continuity, while one that is excessively wide might not concisely capture core information. To
validate our approach and assess the efficacy of time-wise chunk selection, we conduct two distinct
sets of experiments.

The first experiment involves evaluating the model’s performance across varying time chunk widths.
A noteworthy observation from Figure 10 (a): adopting a size of 2 results in a noticeable performance
decline. This potentially signifies the criticality of upholding the local correlation inherent in audio
patches. Moving on to the second experiment, we explore various selection methods, inspired by
the spectrogram masking techniques detailed in (Huang et al., 2022b). We test two variants of audio
patch selection: Frequency indicates an approach of choosing audio patches frequency-wise, while
No-constraint indicates selecting audio patches without any constraints; applying the same patch
selection procedure as in the video patch selection. As shown in Figure 10 (b), time-wise selection
exhibits superior performance compared to alternative audio selection methodologies, meaning that
preserving audio information in time-chunk minimizes loss of audio properties.

Pre-training without MAE objective. We conduct a comprehensive analysis of our classification
results as presented in Table 4, alongside the results reported in Cossu et al. (2022). These results
demonstrate the robustness of the MAE objective against catastrophic forgetting in classification tasks.
To further investigate the findings, we conduct an experiment where we omit the MAE objective
from our pre-training objectives. For this experiment, we follow the same lifelong pre-training
procedure using the VGGSound dataset but exclusively pre-train the model by minimizing the
masked contrastive loss. Subsequently, we fine-tune the model for the classification task using the
same procedure as our main experiments.

In Figure 11 (a), a substantial difference exists between models pre-trained without the MAE loss
(Finetune-no-mae, ER-no-mae) and those pre-trained with the MAE loss (Finetune, ER). The former
degrades an average accuracy with higher forgetting than the latter. Furthermore, in Figure 11 (b), the
task-specific classification accuracy of the former shows a comparably noticeable decline as the model
is sequentially pre-trained on the VGGSound tasks. These findings imply that the representations
learned from the MAE loss are not confined to specific tasks, but rather possess higher transferability
in comparison to those obtained through the masked contrastive loss.
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Table 7: Results of audiovisual zero-shot retrieval task on shuffled VGGSound and AudioSet. The best and the
second best results are highlighted in bold and underline, respectively.

VGGSound AudioSet
Method R@1 R@5 R@10 Avg R@1 R@5 R@10 Avg

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

A
ud

io
-t

o-
V

id
eo

Finetune 0.80 4.15 2.96 12.23 5.05 16.91 2.94 11.10 1.50 4.72 5.49 10.41 9.80 11.91 5.60 9.01
ER 3.89 3.06 12.10 6.55 18.30 7.74 11.43 5.78 4.52 3.16 12.72 6.93 18.83 8.00 12.02 6.03
MIR 4.02 2.97 12.54 6.16 17.99 8.09 11.52 5.74 4.69 2.95 13.22 6.50 18.98 8.81 12.30 6.09
DER++ 4.23 3.35 12.92 7.31 18.62 9.45 11.92 6.70 4.32 4.27 12.29 8.46 18.74 10.18 11.78 7.64
GMED 3.90 2.94 11.51 7.41 17.65 8.87 11.02 6.41 4.70 2.48 12.56 4.55 18.62 5.05 11.96 4.03
CLS-ER 3.94 3.35 12.96 7.19 18.09 10.66 11.66 7.07 5.16 2.97 14.33 6.88 20.24 8.74 13.24 6.20
LUMP 4.06 2.18 13.21 4.66 19.34 5.58 12.20 4.14 4.45 3.40 13.05 6.25 19.45 7.28 12.32 5.64

FLAVA (Ours) 4.72 2.89 14.17 5.74 19.94 5.74 12.94 4.79 4.97 3.47 13.91 5.59 20.30 6.70 13.06 5.25
FLAVA+ (Ours) 4.90 3.19 16.42 4.72 23.49 5.89 14.94 4.60 5.77 3.90 17.51 4.49 23.72 7.07 15.67 5.15

Multitask 6.45 − 20.19 − 29.01 − 18.55 − 8.28 − 24.14 − 33.74 − 22.05 −
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Finetune 0.78 3.77 3.00 11.68 5.21 15.86 3.00 10.44 1.42 5.11 6.54 10.30 10.43 13.48 6.13 9.63
ER 3.57 2.76 11.66 7.67 16.75 10.76 10.66 7.06 4.01 4.31 12.47 7.27 19.32 9.26 11.93 6.95
MIR 3.35 3.15 11.37 7.74 16.62 10.11 10.45 7.00 4.25 3.43 12.92 6.93 19.43 9.78 12.20 6.71
DER++ 4.08 3.10 12.78 9.02 18.77 11.30 11.88 7.81 4.31 4.35 12.60 9.59 18.93 12.27 11.95 8.74
GMED 3.42 3.80 11.45 7.76 17.06 9.94 10.64 7.17 4.20 1.87 12.97 6.04 19.98 8.11 12.38 5.34
CLS-ER 3.49 3.85 12.28 8.05 17.75 11.31 11.17 7.74 4.85 5.48 13.37 9.17 19.69 11.36 12.64 8.67
LUMP 3.98 1.67 12.44 5.17 18.11 7.27 11.51 4.70 4.23 4.06 13.53 6.09 19.27 9.53 12.34 6.56

FLAVA (Ours) 4.18 2.54 13.81 6.56 19.90 8.88 12.63 5.99 4.86 2.92 14.20 6.41 20.00 9.82 13.02 6.38
FLAVA+ (Ours) 5.28 1.81 15.35 6.33 21.97 8.01 14.20 5.38 5.57 3.80 16.67 6.96 23.91 9.28 15.38 6.68

Multitask 6.85 − 21.93 − 30.63 − 19.80 − 8.05 − 25.81 − 35.60 − 23.15 −

Shuffle task orders. In addition to the main experiment results presented in Table 1, we con-
duct supplementary investigations with the intention of enhancing the reliability of our findings.
Specifically, we carry out experiments on shuffled task sequences. For the VGGSound experi-
ment, we randomize the original pre-train task sequence, leading to modified order: music→others
part1→home&nature→sports→others part2→vehicle→animals→people. Likewise, in the case of
the AudioSet experiment, we apply a similar task sequence shuffling, resulting in the following order:
nature→human→home→vehicle→music→animal→others. Note that the VGGSound experiment
is conducted on 36 batch size, unlike the main VGGSound experiment which is conducted on 48
batch size. We present the corresponding audiovisual zero-shot retrieval task results in Table 7. Our
method shows competitive or better performance compared to other baselines, which coincides with
the results in Table 1. This indicates that our method is robust under varying conditions, thereby
enhancing the credibility of our analysis.

Table 8: AVE result. The best
result is highlighted in bold.

Method Acc

AV
E

Finetune 52.56
ER 54.98
DER++ 55.81
GMED 55.98
LUMP 55.06

FLAVA (Ours) 56.68
FLAVA+ (Ours) 56.68

Multitask 57.73

Audiovisual Event Localization. We conduct an audiovisual
event localization (AVE) task to showcase the effectiveness of our
method in precisely aligning audio and video streams. Following the
experimental setup outlined in Lin et al. (2023), we utilize the AVE
dataset (Tian et al., 2018) for the experiment. To assess whether
continually pre-trained models can adapt to the downstream task
involving the unseen dataset, we use model checkpoints obtained
from continually pre-training until the final task (others part2) within
the VGGSound experiment. The training process adheres to the
hyperparameters described in Table 6, wherein the backbone model
remains frozen while training the linear classifier. We present the
summarized result in Table 8. This result demonstrates that our
method surpasses other baseline methods. This underscores the
strength of our method in adapting the downstream task that necessitates a sophisticated grasp of
audio-video alignment at a high level.

Sound Source Localization. To evaluate the model’s ability to detect sound sources within visual
scenes, we perform a sound source localization task with the AVE (Tian et al., 2018) dataset.
Specifically, we use checkpoints of the model continually pre-trained up to the final task (others part2)
within the VGGSound experiment. We follow the same attention map visualization approach in (Gong
et al., 2023), which uses a cosine similarity matrix. Given that the AVE dataset represents unseen data
for the pre-trained models, it allows us to gauge the extent to which the model has acquired general
knowledge of audio-video correlations. The visualization of our findings is presented in Figure 12.
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It is notable that all methods fail to accurately pinpoint the exact location of the sound sources. This
limitation primarily stems from the inherent limitations of the backbone model. In Gong et al. (2023)
Appendix I, the CAV model fails in the sound source localization task. Hence the backbone model
has restricted potential to extend into audiovisual downstream tasks such as audiovisual parsing (Tian
et al., 2020) and audiovisual segmentation (Zhou et al., 2022). Nevertheless, a compelling discovery
emerges from our analysis in Figure 12-(e): the AVM module, continually pre-trained alongside the
backbone, markedly surpasses the backbone model’s capacity in identifying potential sound sources.
It is noteworthy that even though the last pre-training task (others part2) lacks semantic relevance to
the visual semantics portrayed in Figure 12, the AVM module demonstrates effectiveness in detecting
sound sources in the visual scenes. This discovery suggests that the AVM module not only aids in
capturing informative and forget-robust patches but also opens up new possibilities for adapting the
pre-trained models to diverse audiovisual downstream tasks.

F HYPERPARAMTER TUNING RESULTS

Patch sampling ratio. Central to our approach is the identification of tokens that exhibit a high
localized alignment with their corresponding modality pairs while being robust to catastrophic
forgetting of learned representation, enabling the retention of meaningful information. Achieving the
right balance in the sampling ratio is critical: an excessively low sampling ratio hinders the model
from accessing essential data, while an overly high ratio hampers the model’s ability to disregard
redundant or forget-inducing information.

Table 9: Retrieval result by sampling
ratios.

Ratio(%) A→V V→A
A ↑ F ↓ A ↑ F ↓

ρa
37.5 13.76 4.77 13.52 5.53
50 14.16 4.38 14.07 4.65

62.5 13.77 5.04 13.46 5.06

ρv

37.5 13.35 5.57 13.39 5.93
50 14.16 4.38 14.07 4.65

62.5 13.82 4.50 13.53 5.27

For the audio sampling ratio, we systematically assess three
options —37.5%, 50%, and 62.5%— while maintaining the
video sampling ratio ρv at 50%. Table 9 shows that sampling
50% of audio patches ensures high performance compared
to the other sampling ratios. It is noteworthy that the other
sampling ratios still yield competitive performance compared to
the baselines. As we transition to optimizing the sampling ratio
for video patches, we conduct experiments using three sampling
ratios -37.5%, 50%, and 62.5%- alongside the audio sampling
ratio ρa at 50%. As demonstrated in Table 9, employing a 50%
video sampling ratio ensures high performance.

Table 10: Retrieval result by tem-
perature values.

β A→V V→A
A ↑ F ↓ A ↑ F ↓

0.1 13.91 5.42 14.23 4.97
0.4 14.16 4.38 14.07 4.65
0.5 13.37 5.27 13.50 5.84

Inference temperature in AVM module. In our approach, we ac-
tively harness cross-attention maps from the AVM module computed
in Equation 2. During inference, we set the temperature hyperpa-
rameter β to 0.4 for the VGGSound experiments. To examine the
significance of β, we explore a range of the hyperparameter values,
specifically 0.1, 0.4, and 0.5. The results, as summarized in Table 10,
indicate that the optimal temperature values typically reside within
the range of approximately 0.1 to 0.4. This suggests the need for
heightened emphasis on discriminative audio and video patches in order that those patches are more
frequently selected in our selection framework in Equation 6 and in Algorithm 2.

G ADDITIONAL ANALYSIS OF MODALITY GAP

In the main paper, we examine the performance improvements of our approach in the context of
audio-video continual pre-training with respect to the modality gap. In this section, we conduct
a more detailed analysis; covering differences in the modality gap (Figure 13 (a)), exploring the
modality gap within the AudioSet dataset (Figure 13 (b)), and providing additional visualizations of
the modality gap to support the effectiveness of our approach (Figure 13 (c)).

In Figure 13 (a), our approach stands out with the smallest average modality gap difference. However,
our approach does not exhibit high resistance to modality gap fluctuations within the AudioSet
experiment. An interesting observation emerges when comparing the average modality gap difference
with the average forgetting in Table 1; a smaller average modality gap difference seems to correspond
to lower average forgetting in the zero-shot retrieval tasks. This aligns with the relatively high average
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(a) Raw data

(b) Audiovisual attention (CLS-ER)

(c) Audiovisual attention (LUMP)

(c) Audiovisual attention (FLAVA)

(d) Audiovisual attention (FLAVA-AVM)

Figure 12: Sound source localization (a) Examples of raw video frames. (b) (d) We visualize cross-attention
maps using cosine similarity between each video patch and averaged audio embedding. (e) We use the AVM
module continually pre-trained with our backbone to visualize cross-attention maps. The AVM module is much
more effective in capturing potential sound sources compared to the ability of the backbone to capture the
sources.
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Figure 13: Modality gap estimation. (a): Average modality gap difference between the modality gap estimated
at the completion of the last task and the modality gap estimated at the completion of each task. (b): Estimation
of modality gap after the completion of each task (AudioSet).
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Figure 14: Modality gap visualization. (a): Visualizations of the modality gap corresponding to the sports task
with the model pre-trained up to the last task in the VGGSound experiment. (b): Visualization of the modality
gap corresponding to the human task with the model pre-trained up to the last task in the AudioSet experiment.

forgetting of our approach in the AudioSet experiment, suggesting that the modality gap difference
holds potential as a metric for assessing the extent of forgetting in audio-video correlation. Meanwhile,
our approach consistently maintains the highest modality gap in all pre-train tasks (Figure 13 (b)),
which explains the high average accuracy of our approach in the AudioSet retrieval tasks.
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Figure 15: Modality gap estimation for each component of our proposed method. (a): Estimation of
modality gap after completing each task. (b): Average difference in modality gap between the completion of the
last task and the completion of each individual task.
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We take our analysis a step further by visually representing the modality gap. In Figure 14 (a), we
visualize the evaluation of audio-video data pairs from the sports task in the VGGSound experiments.
Similarly, in Figure 14 (b), we visualize data from the human task in the AudioSet experiments. In
both visualizations, we use the models that completed the continual pre-training phase. Remarkably,
our approach consistently yields a larger gap in both cases. This suggests that the modality gap
established from the initial task (sports, human) is effectively maintained, enabling the models to
distinguish between different modalities, ultimately leading to enhanced performance.

We estimate the modality gap of two key components within our proposed method: LAVA (Localized
audio video alignment §4.1) and FRS (Forget robust selection §4.2). The LAVA consistently exhibits
the highest modality gap across the tasks, as depicted in Figure 15-(a). This underscores the
effectiveness of the proposed method in §4.1 in identifying patches that demonstrate high localized
alignment with their modality pairs. Consequently, the LAVA achieves better audio and video
clustering within the multi-modal representation space, resulting in enhanced average accuracy
in Table 3. This observation strongly supports our claim that the method outlined in §4.1 adeptly
selects informative multi-modal patches from raw data.

The FRS illustrates a relatively minor modality gap difference, as indicated in Figure 15-(b). During
the continual pre-training, the modality gap between the audio and video exhibits robustness to the
effect of changing distribution. Hence, the model maintains learned audio-video alignment. This
explains the small average forgetting exhibited by the FRS in Table 3. It affirms our claim that the
method introduced in §4.2 proficiently selects forget-robust patches.

H AUDIO PATCH SELECTION PSEUDO CODE

Algorithm 2 Audio time chunk selection in a PyTorch-like Style.

# I_a: audio patch importance score matrix
# P_a: audio pruning probability matrix
# L_c: audio time chunk size
# kappa_a: target length of audio selection
# num_time: the number of tokens in time dimension
# num_freq: the number of tokens in frequency dimension
def audio_time_chunk_selection(I_a,P_a):

F_a=bernoulli(P_a)
F_a=F_a.reshape(num_time, num_freq)
F_a_t=F_a.sum(dim=1) # # of pruned patches
I_a_t=I_a.reshape(num_time, num_freq)
I_a_t=I_a_time.sum(dim=1) # Time-wise importance
I_a_c=avg_pool(I_a_t, kernel_size=L_c) # Chunk-wise importance
num_chunk=len(I_a_c)
t_select=multinomial(I_a_c, num_samples=num_chunk)
num_tokens=0
for j in range(num_chunk):

t=t_select[j]
num_prune=F_a_t[t*L_c:(t+1)*L_c].sum() # # of pruned patches
num_tokens+=(num_time*num_freq - num_prune) # Count # of patches
if num_tokens > kappa_a:

F_last=F_a[t*L_c:(t+1)*L_c].view(-1)
F_last_accum=cumsum(flip(∼F_last))
prune_tail_idx= F_last_accum == num_tokens-kappa_a
F_last[-(prune_tail_idx+1):]=True # Prune tail of last chunk

F_a[t*L_c:(t+1)*L_c]=F_last.reshape(num_time,num_freq)
for k in range(j+1, num_chunk):

t_prune=t_select[k]
F_a[t_prune*L_c:(t_prune+1)*L_c]=True

break
F_a=F_a.view(-1).float()
S_tilde_a=argsort(F_a) # Forget-robust audio sorted indices
return S_tilde_a
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I VISUALIZATION OF FADING AUDIO-VISUAL ATTENTION

As shown in Figure 2 of the main paper, we tackle the problem of forgetting past audio-video
correlation by visualizing the attention maps. In Figure 17, we provide additional examples that
vividly illustrate the challenge of forgetting past correlation as the model undergoes pre-training on
sequential tasks.

In the top-left example of Figure 17, we observe a video example where a person is engaged in rope
skipping. The initial attention map concentrated on the feet ((b)). However, as the model adapts to
new tasks, the attention map is shifted solely to the person’s face ((c)), implying the gradual erosion
of the correlation between the sound of rope skipping and the corresponding jumping motion. In the
top-right example of Figure 17, the attention map undergoes an intriguing shift towards an unrelated
caption in the first two frames ((c)). Moving on to the middle-left example in Figure 17, the model
initially demonstrates a keen understanding of the xylophone’s location where the sound originates
((b)). However, subsequent training on additional tasks weakens auditory attention, and the model
fails to locate the sounding region ((c)). This challenge becomes more pronounced when multiple
sounding objects are involved. In the middle-right example in Figure 17, we explore a scenario
where a child is singing alongside a man playing the guitar. The initial visual attention map correctly
identifies both the guitar and the child’s mouth. Nevertheless, as the model undergoes continuous
training, the correlation between the singing voice and the child’s visual presence diminishes, and
the model connects the sound with the guitar only ((c)). Similarly, in the bottom-left example
of Figure 17, the visual attention map shifts from the horse to the human, accompanied by the
weakening of auditory attention towards the horse’s clip-clop sound ((b)). Lastly, in the bottom-right
example of Figure 17, despite the presence of only one prominent sounding object, the bird, the visual
attention map is activated at the uncorrelated object. However, our approach successfully mitigates
this forgetting problem, as demonstrated in (d) of the example, where the attention maps remain
consistent with the initial attention maps.

J VISUALIZATION OF SPURIOUS AUDIO-VISUAL ATTENTION BY PAST DATA

In the main paper, we discuss the potential causes of catastrophic forgetting of continual audio-video
representation learning. The observation in Figure 3 suggests that during the continual pre-training,
the model may learn spurious audio-video correlation for new data distributions based on learned
multimodal knowledge, and the current spurious correlation may overwrite the previously learned
correlation. In Figure 16, we provide various examples in order to support our findings.

In the top-left and top-right examples of Figure 16, when exposed to audio involving human sports
activities, attention maps shift from musical instruments ((b)) to human faces in visual regions
((c)). Similarly, in the middle-left example, when given an audio sample of human activities, the
visual attention map shifts from the vehicle ((b)) to the crowds of people ((c)). In the middle-right
and bottom-left examples, the visual attention maps initially focus on the relevant objects for the
corresponding audio ((b)). However, when given completely unrelated audio, the attention maps shift
to meaningless regions ((c)). The bottom-right example shows human conversation and volcanic
eruption. For the current audio-video pair, the attention map is activated in response to both elements,
with the audio attention map primarily focusing on the volcanic eruption sound ((b)). However, when
given a video that consists only of human conversation, the audio attention map shifts to the timeline
where the human conversation happened in the current pair ((c)).

K LIMIATIONS

Our approach involves an extra inference step for patch selection, leveraging the AVM module on
top of the backbone model. While this significantly reduces GPU memory consumption, it does
incur additional computational overhead, yielding a relatively small improvement in throughput. To
address this challenge, one potential solution is to develop a student model that integrates the AVM
module and utilizes knowledge distillation to transfer audio-video representation from the backbone
model. Recognizing the importance of enhancing efficiency, we acknowledge the necessity for future
research to explore effective strategies for leveraging the AVM module. This avenue for improvement
is a key component of our future research agenda.
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Figure 16: Examples of false attention by past data: (a): Visualization of video (left) and audio (right) pairs.
(b): Audio-to-video attention map (left) and video-to-audio attention map(right). (c): Attention maps by past
audio (left) and past video (right). The area of spurious correlation is marked in the orange circle.
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Figure 17: Visualization of cross-attention maps. (a) Examples of raw data pairs. We visualize cross-attention
maps of the pairs in (b). The closer the color is to red, the higher the attention score. While the baseline model
using DER++ attends to entirely different parts as can be seen in (c), our method attends to a similar part even
after being trained on two additional tasks as presented in (d). The wrong attention region is marked in an orange
circle.

27


	Introduction
	Related Work
	Continual Audio-video Representation Learning
	Problem Statement
	Forgetting of the alignment between audio-visual modalities 

	Lifelong Audio-Video Masked Autoencoder with FLAVA
	Localized Audio-Video Alignment with Audio-video Matching Module
	Forget-robust Multimodal Patch Selection 
	Multimodal Patch Selection for Continual Masked Modeling 

	Experiments
	Experimental Setup 
	Quantitative Analysis for Audio-Video Continual Pre-training 

	Conclusion
	Reproducibility statement
	Implementation Details 
	Continual pre-training evaluation protocol 
	Audio-Video Self-supervised objectives 
	Training of Audio-Video Matching module 
	Additional Experimental Results 
	Hyperparamter Tuning Results 
	Additional analysis of modality gap 
	Audio Patch Selection Pseudo Code 
	Visualization of Fading Audio-Visual Attention 
	Visualization of Spurious Audio-Visual Attention by Past data
	Limiations 

