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Abstract

Texts generated by generative models closely001
resemble high-quality human-written texts,002
identifying human and model-generated texts003
presents a significant challenge.To address this,004
we present the Identify the Writer by Writing005
Style (IWWS) model, a novel approach de-006
signed to identify the writing styles of human007
and generative model. To establish a robust008
foundation for research in distinguishing texts009
generated by human and generative model, we010
also propose a comprehensive dataset, Human-011
GenTextify.Experimental results demonstrate012
the superiority of the IWWS model over exist-013
ing methods. It not only achieves high accuracy014
in text source identification but also provides015
insights into the distinctive writing styles that016
characterize human and model-generated texts.017
Our work lays the groundwork for future explo-018
rations into automated text classification and019
opens new avenues for research into the authen-020
ticity.021

1 Introduction022

Since the release of ChatGPT, the gap between023

human capabilities and large language models024

(LLMs) has gradually narrowed(Tang et al., 2023).025

LLMs can achieve human-level performance in026

many fields(Jansen et al., 2022), and the open-027

source community is witnessing a surge in open-028

source models like LLaMA (Touvron et al.,029

2023),Bloom (Workshop et al., 2022) and Chat-030

GLM(Du et al., 2021) . These models are capa-031

ble of generating coherent, fluent, and meaningful032

texts, significantly improving the quality of gener-033

ated text. It is becoming increasingly difficult to034

distinguish their output from human writing, both035

grammatically and semantically, posing consider-036

able challenges to the social information ecosys-037

tem(Ghosal et al., 2023).038

Research(Ueoka et al., 2021) indicates that false039

information generated by state-of-the-art LLMs040

is more credible than that created by humans,041

highlighting the challenge humans face in dis- 042

tinguishing between human and model-generated 043

texts(Spitale et al., 2023). The need for practi- 044

cal identification of model-generated texts has gar- 045

nered widespread attention. One approach involves 046

watermarking generated texts.However, this tech- 047

nique requires modifications to the text generation 048

process that could lower content quality. (Kirchen- 049

bauer et al., 2023).On the other hand, techniques 050

like GPT-zero, DetectGPT(Mitchell et al., 2023), 051

and classifiers from OpenAI(OpenAI et al., 2023) 052

require access to deployed models, leading to sig- 053

nificant costs and resource consumption. More- 054

over, the undisclosed internal mechanisms of many 055

LLMs reduce their interpretability, presenting a 056

challenge for users in understanding the decision- 057

making process and addressing potential biases and 058

errors(Fröhling and Zubiaga, 2021). 059

Thus, this paper explores the feasibility of auto- 060

matically identifying whether fragments are written 061

by humans or generated by large language models 062

using a small model. To achieve this goal, we 063

constructed a comprehensive dataset, HumanGen- 064

Textify, aimed at preserving the core information 065

and context of the data, bridging the text generation 066

differences between humans and large models. We 067

also proposed a multi-dimensional feature fusion 068

framework that considers the grammatical features, 069

semantic coherence, and writing style differences 070

of the text to distinguish between human-written 071

and large language model-generated texts. Further- 072

more, by introducing a new loss function based 073

on contrastive learning, our framework can extract 074

high-quality feature representations from complex 075

text data, providing support for the automatic iden- 076

tification task.Our main contributions include: 077

• We compute the perplexity(PPL) for each to- 078

ken across various text sources by , integrating 079

these scores into the embeddings to enhance 080

text source differentiation; 081
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• Proposing a loss function by constructing082

a similarity matrix and contrastive learning083

which significantly enhances identify perfor-084

mance based on their writing styles;085

• By creating the HumanGenTextify dataset to086

establish a robust foundation for research in087

distinguishing texts generated by human and088

generative model.089

2 IWWS Model090

To identify whether a text is created by a human or091

a generative model, we have proposed the method092

of Identifying the Writer by Writing Style (IWWS).093

The overview is depicted in Figure 1.094

2.1 Centroids for Writing Styles095

Our IWWS model introduces a novel approach to096

identify the writing style of each generation source,097

whether human or model-generated, by calculating098

centroids. A centroid represents the average of all099

embedding vectors belonging to the same genera-100

tion source, effectively capturing the core charac-101

teristics of that group’s writing style. This method102

allows analysis of writing styles by creating a math-103

ematical representation of what distinguishes one104

group’s writing from another’s.105

2.2 Similarity Matrix and Centroids Analysis106

By assessing the distances between each text em-107

bedding and the style centroids of various sources,108

our model is designed to keep each text embedding109

close to its source’s style centroid. The similar-110

ity matrix sji,k aims for higher similarity values111

within the same source and lower values across dif-112

ferent sources. it defined as the cosine similarity be-113

tween each embedding vector eji and all centroids114

ck (1 ≤ j, k ≤ 2 and 1 ≤ i ≤ M ), constructing115

a similarity matrix that defines the relationships116

between each eji and all centroids ck.117

Sji,k = w · cos(eji, ck) + b (1)118

where w and b are learnable parameters. We119

constrain the weight (w > 0) because we desire a120

greater cosine similarity to correspond to a higher121

degree of similarity. Figure 1 illustrates the entire122

process, showcasing features from different text123

sources, embedding vectors, and similarity scores,124

each represented by different colors. This approach125

optimizes the model’s ability to accurately classify126

texts by ensuring embedding vectors are nearer to127

the correct centroid while distancing them from oth- 128

ers, thereby optimizing classification boundaries. 129

This methodological framework underpins the 130

model’s capacity to discern and quantify the nu- 131

anced differences in writing styles across a diverse 132

range of texts, highlighting its potential for appli- 133

cations in identifying the origins of text whether 134

generated by humans or models. 135

We employ the softmax function and cross- 136

entropy loss to refine this process, optimizing the 137

model to ensure that each text sample is accurately 138

classified according to the generation source that 139

best matches its writing style. This reflects the 140

writing style of either humans or generative mod- 141

els(Crothers et al., 2023). 142

Softmax: We set a softmax on Sji,k, where 143

k = 1, 2 to make the output equal to 1 if k = j, 144

otherwise the output is 0. Hence, the loss on each 145

embedding vector eji can be defined as: 146

L(eji) = −Sji,j + log
N∑
k=1

exp(Sji,k) (2) 147

This means that each embedding vector is pushed 148

closer to its style centroid and pulled away from 149

the centroids of other styles. 150

Cross-Entropy: Learning of embedding vec- 151

tors is optimized through the cross-entropy loss. 152

For each embedding vector, the model predicts 153

its similarity scores with all centroids, which are 154

then transformed into a probability distribution us- 155

ing the softmax function. The cross-entropy loss 156

function calculates the difference between this pre- 157

dicted probability distribution and the actual one- 158

hot encoded labels, quantifying the error. During 159

training, by minimizing the cross-entropy loss, the 160

model learns to adjust parameters to ensure embed- 161

ding vectors are closer to the correct centroid while 162

distancing from others, optimizing classification 163

boundaries. 164

L(p, q) = −
∑
i

p(i) log q(i) (3) 165

where, p(i) represents the true distribution of 166

the target categories (0 for human, 1 for model- 167

generated labels), and q(i) represents the probabil- 168

ity distribution predicted by the model. For each 169

sample, the difference between the true labels and 170

the predicted probability distribution is computed. 171

The model adjusts its parameters to minimize this 172

loss, thereby improving the accuracy of predictions 173

for the correct category. 174
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Figure 1: Method overview. Different colors indicate texts/embeddings from different sources..

Figure 2: The loss function.It aims to pull the embedding
closer to the centroid representative of the text’s origin
and push it away from the centroids of other text sources.

2.3 Embedding Enhancement175

We enhance text embeddings by integrating seman-176

tic,syntactic features extracted using a pretrained177

BERT model,and Perplexity (PPL) scores to enrich178

the embeddings. This method involves initially pro-179

cessing text data to capture its inherent semantic180

and syntactic nuances via BERT. Accordingly,to181

further refine embeddings, we incorporate PPL182

scores,aim to leverage the model’s uncertainty in183

text generation as an additional feature,enhancing184

our model’s ability to differentiate between human185

and model-generated texts.186

2.4 Training Method187

Our training approach processes multiple texts si-188

multaneously in batches that include two sources189

of text (human or model-generated), with an aver- 190

age of M texts per source. Initially, semantic and 191

syntactic features of text fragments are extracted 192

using a pretrained BERT model(Pizarro, 2019). 193

These features are then combined with the PPL 194

of the text to construct an enhanced embedding vec- 195

tor that includes PPL information. Feature vector 196

xji (where 1 ≤ j ≤ 2 and 1 ≤ i ≤ M ) represents 197

features extracted from texts of source j. These 198

features are inputted into the network for further 199

processing. 200

3 Experiment 201

3.1 Datesets 202

In our experiments, we utilized the English data 203

provided in Task 1 of the AuTexTification dataset1. 204

Additionally, we created own dataset, Human- 205

GenTextify, by integrating human-written texts 206

from the AuTexTification dataset with texts gen- 207

erated by three large language models (Bloom- 208

7b, ChatGLM-6b, LLaMA2-7b). We developed a 209

dataset for identifying human and generative model 210

texts, emphasizing preserving and enhancing the 211

core information and context of the original texts 212

while introducing new expressions to increase di- 213

versity and authenticity. Our innovative approach 214

involves rewriting existing texts with large lan- 215

guage models rather than merely extracting the 216

first few tokens, addressing the limitations of meth- 217

ods that only use the first five tokens as prompts 218

in capturing the full scope of articles, supporting 219

1https://sites.google.com/view/autextification/data
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Table 1: The Dataset of model-generated dectection task

Datasets Train Test Mean_len Max_len
AuTexTification 33846 21833 305.4 588
HumanGenTextify 35224 21283 288.3 633

Table 2: Performance metrics for text identify methods

Method AuTexTification HumanGenTextify
Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

FT-RoBERTa 77.09 78.13 76.09 80.02 69.15 77.16
TALN-UPF 80.03 74.16 68.16 79.74 75.12 70.50
CIC-IPN-CsCog 64.77 69.50 74.14 70.02 72.23 68.10
IWWS 79.5 78.04 78.13 80.29 76.03 79.26

Table 3: The ERR (%) of text Dectection

Cross-Entropy +Similarity Matrix
8.3 7.18

model generalization, and simulating real text gen-220

eration processes. This dataset aims to reflect real-221

world text generation scenarios, providing a solid222

foundation for distinguishing between human and223

machine-generated texts and offering valuable re-224

sources for exploring the behaviors of human and225

machine text generation. We found that with nu-226

cleus sampling (Holtzman et al., 2019), using a227

top-p of 0.9 and a temperature of 0.7, the models228

generated texts of higher quality.229

3.2 Metrics230

We define our task as a binary classifier, where it is231

commonly believed that examining the ROC curve232

and the Area Under the Curve (AUC) as a perfor-233

mance metric is considered comprehensive. How-234

ever, it is argued in literature(Wu et al., 2023)that235

these metrics alone are insufficient when measur-236

ing the identify accuracy of LLMs. To address this237

problem, we have adopted the Equal Error Rate238

(EER) as our primary metric. A lower EER value239

indicates better effectiveness in minimizing both240

false acceptances and false rejections simultane-241

ously.242

3.3 Results243

Table 2 summarizes the performance metrics using244

different identify methods like FT-RoBERTa,245

TALN-UPF,CIC-IPN-CsCog(Sarvazyan et al.,246

2023) and our writing style.247

On AuTexTification dataset, our IWWS reached248

a precision of 79.5%, a recall of 78.04%, and an F1249

score of 78.13%. The result highlights the outstand- 250

ing performance both precision and recall, particu- 251

larly when compared to other methods such as Fine- 252

tuned RoBERTa and CIC-IPN-CsCog, where our 253

approach showed significant improvement across 254

all metrics. 255

On our HumanGenTextify dataset, the IWWS 256

method achieved a precision of 80.29%, a recall 257

of 76.03%, and an F1 score of 79.26%. Compared 258

to FT-RoBERTa and TALN-UPF, our method had 259

higher precision and F1 scores on this dataset, un- 260

derscoring the effectiveness of our approach in 261

identifying human and machine-generated texts. 262

Table 3 provides a comparative evaluation of 263

EER performance. The initial column reports re- 264

sults utilizing cross-entropy exclusively, while the 265

subsequent column details EER outcomes derived 266

from our IWWS model. We can see our approach 267

yields an EER of 7.18%, an improvement over the 268

conventional method’s EER of 8.3%, marking a 269

reduction of 1.17%. This demonstrates that our 270

method, by integrating multidimensional text fea- 271

tures with an optimized loss function, more effec- 272

tively reduces classification errors. 273

4 Conclusion 274

In this paper,we have introduced the IWWS 275

method, an innovative approach combining 276

perplexity-based embeddings with writing style 277

analysis, to distinguish between human and 278

model-generated texts. Compared to existing 279

models, IWWS demonstrates superior perfor- 280

mance, notably enhancing text source identifica- 281

tion accuracy. Additionally, we propose a new 282

dataset,HumanGenTextify, offers a rich resource 283

for further exploration. 284
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Limitations 358

The limitation of this paper is not succeeded in 359

more refined levels of detection, such as the ability 360

to track and identify texts generated by specific 361

models. Future work could focus on enhancing 362

the precision of detection techniques, thereby en- 363

abling more detailed analysis and recognition of 364

texts from various sources and types. 365
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