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Abstract

We propose Characteristic-Neural Ordinary Differential Equations (C-NODEs), a1

framework for extending Neural Ordinary Differential Equations (NODEs) beyond2

ODEs. While NODEs model the evolution of latent variables as the solution to an3

ODE, C-NODE models the evolution of the latent variables as the solution of a4

family of first-order quasi-linear partial differential equations (PDEs) along curves5

on which the PDEs reduce to ODEs, referred to as characteristic curves. This in6

turn allows the application of the standard frameworks for solving ODEs, namely7

the adjoint method. Learning optimal characteristic curves for given tasks improves8

the performance and computational efficiency, compared to state of the art NODE9

models. We prove that the C-NODE framework extends the classical NODE on10

classification tasks by demonstrating explicit C-NODE representable functions11

not expressible by NODEs. Additionally, we present C-NODE-based continuous12

normalizing flows, which describe the density evolution of latent variables along13

multiple dimensions. Empirical results demonstrate the improvements provided14

by the proposed method for classification and density estimation on CIFAR-10,15

SVHN, and MNIST datasets under a similar computational budget as the existing16

NODE methods. The results also provide empirical evidence that the learned17

curves improve the efficiency of the system through a lower number of parameters18

and function evaluations compared with baselines.19

1 Introduction20

Deep learning and differential equations share many connections, and techniques in the intersection21

have led to insights in both fields. One predominant connection is based on certain neural network22

architectures resembling numerical integration schemes, leading to the development of Neural23

Ordinary Differential Equations (NODEs) [5]. NODEs use a neural network parameterization of24

an ODE to learn a mapping from observed variables to a latent variable that is the solution to the25

learned ODE. A central benefit of NODEs is the constant memory cost, where backward passes are26

computed using the adjoint sensitivity method rather than backpropagating through individual forward27

solver steps. Backpropagating through adaptive differential equation solvers to train large NODEs28

will often result in memory outage, as mentioned in [5]. Moreover, NODEs provide a flexible29

probability density representation often referred to as continuous normalizing flows (CNFs). However,30

since NODEs can only represent solutions to ODEs, the class of functions is somewhat limited31

and may not apply to more general problems that do not have smooth and one-to-one mappings.32

To address this limitation, a series of analyses based on methods from differential equations have33

been employed to enhance the representation capabilities of NODEs, such as the technique of34

controlled differential equations [24], learning higher-order ODEs [32], augmenting dynamics [10],35

and considering dynamics with delay terms [55]. Moreover, certain works consider generalizing the36

ODE case to partial differential equations (PDEs), such as in [40, 44]. However, these methods do37

not use the adjoint method, removing the primary advantage of constant memory cost. This leads us38

to the central question motivating the work: can we combine the benefits of the rich function class of39
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PDEs with the efficiency of the adjoint method? To do so, we propose a method of continuous-depth40

neural networks that solves a PDE over parametric curves that reduce the PDE to an ODE. Such41

curves are known as characteristics, and they define the solution of the PDE in terms of an ODE42

[15]. The proposed Characteristic Neural Ordinary Differential Equations (C-NODE) learn both the43

characteristics and the ODE along the characteristics to solve the PDE over the data space. This44

allows for a richer class of models while still incorporating the same memory efficiency of the adjoint45

method. The proposed C-NODE is also an extension of existing methods, as it improves the empirical46

accuracy of these methods in classification tasks and image quality in generation tasks.47

2 Related Work48
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Figure 1: Comparison of traditional
NODE (left) and proposed C-NODE
(right). The solution to NODE is the
solution to a single ODE, whereas C-
NODE represents a series of ODEs that
form the solution to a PDE. Each color
in C-NODE represents the solution to an
ODE with a different initial condition.
NODE represents a single ODE, and can
only represent u(x, t) along one dimen-
sion, for example, u(x = 0, t).

We discuss the related work from both machine learning49

and numerical analysis perspectives.50

2.1 Machine Learning and ODEs51

NODE is often motivated as a continuous form of a Resid-
ual Network (ResNet) [17], since the ResNet can be seen
as a forward Euler integration scheme on the latent state
[48]. Specifically, a ResNet is composed of multiple
blocks where each block can be represented as:

ut+1 = ut + f(ut, θ),

where ut is the evolving hidden state at time t and f(ut, θ)
represents the gradient at time t, namely du

dt (ut). Gener-
alizing the model to a step size given by ∆t, we have:

ut+∆t = ut + f(ut, θ)∆t.

To adapt this model to a continuous setting, we let ∆t → 0
and obtain:

lim
∆t→0

ut+∆t − ut

∆t
=

du(t)

dt
.

The model can then be evaluated through existing numerical integration techniques, as proposed by52

[5]:53

u(t1) = u(t0) +

∫ t1

t0

du(t)

dt
(u(t), t)dt = u(t0) +

∫ t1

t0

f(u(t), t, θ)dt.

Numerical integration can then be treated as a black box, using numerical schemes beyond the
forward Euler to achieve higher numerical precision. However, since black box integrators can take
an arbitrary number of intermediate steps, backpropagating through individual steps would require
too much memory since the individual steps must be saved. Chen et al. [5] addressed this problem by
using adjoint backpropagation, which has a constant memory usage. For a given loss function on the
terminal state of the hidden state L(u(t1)), the adjoint a(t) is governed by another ODE:

da(t)

dt
= −a(t)⊺

∂f(u(t), t, θ)

∂u
, a(t1) =

∂L
∂u(t1)

,

that dictates the gradient with respect to the parameters. The loss L(u(t1)) can then be calculated by54

solving another ODE (the adjoint) rather than backpropagating through the calculations involved in55

the numerical integration.56

However, the hidden state governed by an ODE imposes a limitation on the expressiveness of the57

mapping. For example, Dupont et al. [10] describes a notable limitation of NODEs is in the inability58

to represent dynamical systems with intersecting trajectories. In response to such limitations, many59

works have tried to increase the expressiveness of the mapping. Dupont et al. [10] proposed to solve60

the intersection trajectories problem by augmenting the vector space, lifting the points into additional61

dimensions; Zhu et al. [55] included time delay in the equation to represent dynamical systems of62
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greater complexity; Massaroli et al. [32] proposed to condition the vector field on the inputs, allowing63

the integration limits to be conditioned on the input; Massaroli et al. [32] and Norcliffe et al. [35]64

additionally proposed and proved a second-order ODE system can efficiently solve the intersecting65

trajectories problem.66

Multiple works have attempted to expand NODE systems to other common differential equation67

formulations. Sun et al. [44] employed a dictionary method and expanded NODEs to a PDE case,68

achieving high accuracies both in approximating PDEs and in classifying real-world image datasets.69

However, Sun et al. [44] suggested that the method is unstable when training with the adjoint70

method and therefore is unable to make use of the benefits that come with training with adjoint.71

Zhang et al. [53] proposed a normalizing flow approach based on the Monge-Ampere equation.72

However, Zhang et al. [53] did not consider using adjoint-based training. Long et al. [30, 31], Raissi73

et al. [37], Brunton et al. [3] considered discovering underlying hidden PDEs from data and predict74

dynamics of complex systems. Kidger et al. [24], Morrill et al. [33, 34] used ideas from rough path75

theory and controlled differential equations to propose a NODE architecture as a continuous recurrent76

neural network framework. Multiple works have expanded to the stochastic differential equations77

setting and developed efficient optimization methods for them [16, 22, 23, 25, 26, 28, 29, 49]. Salvi78

et al. [41] considered stochastic PDEs for spatio-temporal dynamics prediction. Additionally, Chen79

et al. [6] models spatio-temporal data using NODEs, and Rubanova et al. [39], De Brouwer et al. [8]80

makes predictions on time series data using NODEs. Physical modeling is also a popular application81

of NODEs, as control problems are often governed by latent differential equations that can be82

discovered with data driven methods [7, 14, 51, 54].83

NODE systems have also been used for modeling the flow from a simple probability density to84

a complicated one [5]. Specifically, if u(t) ∈ Rn follows the ODE du(t)/dt = f(u(t)), where85

f(u(t)) ∈ Rn, then its log likelihood from [5, Appendix A] is given by:86

∂ log p(u(t))

∂t
= − tr

(
df

du(t)

)
. (1)

The trace can be calculated efficiently with a Hutchinson trace estimator [13]. Subsequent work87

uses invertible ResNet, optimal transport theory, among other techniques to further improve the88

performance of CNFs [1, 2, 4, 11, 18, 20, 21, 46, 50, 53]. CNF is desirable for having no constraints89

on the type of neural network used, unlike discrete normalizing flows, which often have constraints90

on the structure of the latent features [9, 36, 38]. CNFs also inspire development in other generative91

modeling methods. For instance, a score-based generative model can be seen as a probability flow92

modeled with an ODE [42, 47].93

3 Method94

We describe the proposed C-NODE method in this section by first providing a brief introduction to95

the method of characteristics (MoC) for solving PDEs with an illustrative example. We then discuss96

how we apply the MoC to our C-NODE framework. We finally discuss the types of PDEs we can97

describe using this method.98

3.1 Method of Characteristics99

The MoC provides a procedure for transforming certain PDEs into ODEs along paths known as100

characteristics. In the most general sense, the method applies to general hyperbolic differential101

equations; however, for illustration purposes, we will consider a canonical example using the inviscid102

Burgers equation. A complete exposition on the topic can be found in [15, Chapter 9], but we103

introduce some basic concepts here for completeness. Let u(x, t) : R × R+ → R satisfy the104

following inviscid Burgers equation105

∂u

∂t
+ u

∂u

∂x
= 0, (2)

where we dropped the dependence on x and t for ease of notation. We are interested in the solution106

of u over some bounded domain Ω ⊂ R× R+. Consider parametric forms for the spatial component107

x(s) : [0, T ] → R and temporal components t(s) : [0, T ] → R+ over the fictitious variable s ∈ [0, T ].108
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Intuitively, this allows us to solve an equation on curves x, t as functions of a variable s which we109

denote (x(s), t(s)) as the characteristic. Expanding, and writing d as the total derivative, we get110

d

ds
u(x(s), t(s)) =

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
. (3)

Recalling the original PDE in (2) and substituting the proper terms into (3) for dx/ds = u, dt/ds =
1, du/ds = 0, we then recover (2). Note that we now have a system of 3 ODEs, which we can solve
to obtain the characteristics as x(s) = us+ x0 and t(s) = s+ t0 as functions of initial conditions
x0, t0. Finally, by solving over a grid of initial conditions {x(i)

0 }∞i=1 ∈ ∂Ω, we can obtain the solution
of the PDE over Ω. Putting it all together, we have a new ODE that is written as

d

ds
u(x(s), t(s)) =

∂u

∂t
+ u

∂u

∂x
= 0,

where we can integrate over s through111

u(x(T ), t(T );x0, t0) :=

∫ T

0

d

ds
u(x(s), t(s))ds

:=

∫ T

0

d

ds
u(us+ x0, s)ds,

using the adjoint method with boundary conditions x0, t0. This contrasts the usual direct integration112

over the variable t that is done in NODE; we now jointly couple the integration through the character-113

istics. An example of solving this equation over multiple initial conditions is given in Figure 1 with114

the contrast to standard NODE integration.115

To provide some intuition for using MoC, we note that MoC most generally applies to hyperbolic116

PDEs. The transport equation is an example of this family of PDEs, which roughly describes the117

propagation of physical quantities through time. Such equations are appropriate for deep learning118

tasks due to their ability to transport data into different regions of the state space. For instance, in a119

classification task, we consider the problem of transporting high-dimensional data points that are not120

linearly separable to spaces where they are linearly separable. Similarly, in generative modeling, we121

transport a base distribution to data distribution.122

3.2 Neural Representation of Characteristics123

In the proposed method, we learn the components involved in the MoC, namely the characteristics124

and the function coefficients. We now generalize the example given in 3.1, which involved two125

variables, to a k-dimensional system. Specifically, consider the following nonhomogeneous boundary126

value problem (BVP)127 {
∂u
∂t +

∑k
i=1 ai(x1, ..., xk,u)

∂u
∂xi

= c(x1, ..., xk,u), on x, t ∈ Rk × [0,∞)

u(x(0)) = u0, on x ∈ Rk.
(4)

Here, u : Rk → Rn is a multivariate map, ai : Rk+n → R and c : Rk+n → Rn be functions128

dependent on values of u and x’s. This problem is well-defined and has a solution so long as129 ∑k
i=1 ai

∂u
∂xi

is continuous [12].130

MoC has historically been used in a scalar context, but generalization to the vector case is relatively131

straightforward. A proof of the generalization can be found in Appendix B.1. We decompose the132

PDE in (4) into the following system of ODEs133

dxi

ds
= ai(x1, ..., xk,u), (5)

du

ds
=

k∑
i=1

∂u

∂xi

dxi

ds
= c(x1, ..., xk,u). (6)

We represent this ODE system by parameterizing dxi/ds and ∂u/∂xi with neural networks. Conse-134

quently, du/ds is evolving according to (6).135
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Following this expansion, we arrive at136

u(x(T )) = u(x(0)) +

∫ T

0

du

ds
(x,u) ds (7)

= u(x(0)) +

∫ T

0

[Jxu] (x,u; Θ2)
dx

ds
( x,u; Θ2) ds,

where we remove u’s dependency on x(s) and x’s dependency on s for simplicity of notation. In137

Equation (7), the functions Jxu and dx/ds are learnable functions which are the outputs of deep138

neural networks with inputs x, u and parameters Θ2.139

3.3 Conditioning on data140

Previous works primarily modeled the task of classifying a set of data points with a fixed differential141

equation, neglecting possible structural variations lying in the data. Here, we condition C-NODE142

on each data point, thereby solving a PDE with a different initial condition. Specifically, consider143

the term given by the integrand in (7). The neural network representing the characteristic dx/ds is144

conditioned on the input data z ∈ Rw. Define a feature extractor function g(·) : Rw → Rn and we145

have146

dxi

ds
= ai(x1, . . . , xk,u;g(z)). (8)

By introducing g(z) in (8), the equation describing the characteristics changes depending on the147

current data point. This leads to the classification task being modeled with a family rather than one148

single differential equation.149

3.4 Training C-NODEs150

After introducing the main components of C-NODEs, we can integrate them into a unified algorithm.151

To motivate this section, and to be consistent with part of the empirical evaluation, we will consider152

classification tasks with data {(zj ,yj)}Nj=1 , zj ∈ Rw, yj ∈ Z+. For instance, zj may be an image,153

and yj is its class label. In the approach we pursue here, the image zj is first passed through a154

feature extractor function g(·; Θ1) : Rw → Rn with parameters Θ1. The output of g is the feature155

u
(j)
0 = g(zj ; Θ1) that provides the boundary condition for the PDE on u(j). We integrate along156

different characteristic curves indexed by s ∈ [0, T ] with boundary condition u(j)(x(0)) = u
(j)
0 , and157

compute the end values as given by (7), where we mentioned in Section 3.2,158

u(j)(x(T )) = u
(j)
0 +

∫ T

0

Jxu
(i)
(
x,u(j); Θ2

) dx

ds

(
x,u(j);u

(j)
0 ; Θ2

)
ds (9)

Finally, u(j)(x(T )) is passed through another neural network, Φ(u(j)(x(T )); Θ3) with input159

u(j)(x(T )) and parameters Θ3 whose output are the probabilities of each class labels for image zj .160

The entire learning is now is reduced to finding optimal weights (Θ1,Θ2,Θ3) which can be achieved161

by minimizing the loss162

L =

N∑
j=1

L(Φ(u(j)(x(T )); Θ3),yj),

where L(·) is a loss function of choice. In Algorithm 1, we illustrate the implementation procedure163

with the forward Euler method for simplicity for the framework but note any ODE solver can be used.164

3.5 Combining MoC with Existing NODE Modifications165

As mentioned in the Section 2, the proposed C-NODEs method can be used as an extension to existing166

NODE frameworks. In all NODE modifications, the underlying expression of
∫ b

a
f(t,u; Θ)dt remains167

the same. Modifying this expression to
∫ b

a
Jxu(x,u; Θ)dx/ds(x,u;u0; Θ)ds results in the proposed168

C-NODE architecture, with the size of x being a hyperparameter.169
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Algorithm 1 C-NODE algorithm using the forward Euler method

for each input data zj do
extract image feature u(s = 0) = g(zj ; Θ1) with a feature extractor neural network.
procedure Integration along s = 0 → 1
for each time step sm do

calculate dx
ds (x,u;g(zj ; Θ1); Θ2) and Jxu(x,u; Θ2).

calculate du
ds = Jxu

dx
ds .

calculate u(sm+1) = u(sm) + du
ds (sm+1 − sm).

end for
end procedure
classify u(s = 1) with neural network Φ(u(x(s = 1)),Θ3).

end for

4 Properties of C-NODEs170

C-NODE has a number of theoretical properties that contribute to its expressiveness. We provide171

some theoretical results on these properties in the proceeding sections. We also define continuous172

normalizing flows (CNFs) with C-NODEs, extending the CNFs originally defined with NODEs.173

4.1 Intersecting trajectories174

As mentioned in [10], one limitation of NODE is that the mappings cannot represent intersecting175

dynamics. We prove by construction that the C-NODEs can represent some dynamical systems with176

intersecting trajectories in the following proposition:177

Proposition 4.1. The C-NODE can represent a dynamical system on u(s), du/ds = G(s, u) :178

R+ × R → R, where when u(0) = 1, then u(1) = u(0) +
∫ 1

0
G(s, u)ds = 0; and when u(0) = 0,179

then u(1) = u(0) +
∫ 1

0
G(s, u)ds = 1.180

Proof. See Appendix B.2.181

4.2 Density estimation with C-NODEs182

C-NODEs can also be used to define a continuous density flow that models the density of a variable183

over space subject to the variable satisfying a PDE. Similar to the change of log probability of NODEs,184

as in (1), we provide the following proposition for C-NODEs:185

Proposition 4.2. Let u(s) be a finite continuous random variable with probability density function186

p(u(s)) and let u(s) satisfy du(s)
ds =

∑k
i=1

∂u
∂xi

dxi

ds . Assuming ∂u
∂xi

and dxi

ds are uniformly Lipschitz187

continuous in u and continuous in s, then the evolution of the log probability of u follows:188

∂ log p(u(s))

∂s
= −tr

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds

)

Proof. See Appendix B.3.189

CNFs are continuous and invertible one-to-one mappings onto themselves, i.e., homeomorphisms.190

Zhang et al. [52] proved that vanilla NODEs are not universal estimators of homeomorphisms, and191

augmented neural ODEs (ANODEs) are universal estimators of homeomorphisms. We demonstrate192

that C-NODEs are pointwise estimators of homeomorphisms, which we formalize in the following193

proposition:194

Proposition 4.3. Given any homeomorphism h : Υ → Υ, Υ ⊂ Rp, initial condition u0, and time195

T > 0, there exists a flow u(s, u0) ∈ Rn following du
ds = ∂u

∂x
dx
ds + ∂u

∂t
dt
ds such that u(T, u0) = h(u0).196

Proof. See Appendix B.4.197
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(a) Adjoint training;
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(b) Backprop through Euler training;

Figure 2: Red: NODE. Blue: C-NODE. Training dynamics of different datasets with adjoint in
Fig. 2a and with Euler in Fig. 2b averaged over five runs. The first column is the training process of
SVHN, the second column is of CIFAR-10, and the third column is of MNIST. By incorporating the
C-NODE method, we achieve a more stable training process in both CIFAR-10 and SVHN, while
achieving higher accuracy. Full-sized figure in supplementary materials.

5 Experiments198

We present experiments on image classification tasks on benchmark datasets, image generation tasks199

on benchmark datasets, PDE modeling, and time series prediction.200

5.1 Classification Experiments with Image Datasets201

We first conduct experiments for classification tasks on high-dimensional image datasets, including202

MNIST, CIFAR-10, and SVHN. We provide results for C-NODE and also combine the framework203

with existing methods, including ANODEs [10], Input Layer NODEs (IL-NODEs) [32], and 2nd-204

Order NODEs [32]. For all classification experiments, we set the encoder of input images for205

conditioning to be identity, i.e., g(z) = z, making the input into C-NODE the original image. This206

way, we focus exclusively on the performance of C-NODE.207

The results for the experiments with the adjoint method are reported in Table 1 and in Figure 2a. We208

investigate the performances of the models on classification accuracy and the number of function209

evaluations (NFE) taken in the adaptive numerical integration. NFE is an indicator of the model’s210

computational complexity, and can also be interpreted as the network depth for the continuous NODE211

system [5]. Using a similar number of parameters, combining C-NODEs with different models212

consistently results in higher accuracies and mostly uses smaller numbers of NFEs, indicating a213

better parameter efficiency. An ablation study on C-NODEs’ and NODEs’ parameters can be found214

in Appendix C.2.The performance improvements can be observed, especially on CIFAR-10 and215

SVHN, where it seems the dynamics to be learned are too complex for ODE systems, requiring a216

sophisticated model and a large number of NFEs. It appears that solving a PDE system along a217

multidimensional characteristic is beneficial for training more expressive functions with less complex218

dynamics, as can be seen in Figures 2a, 2b.219

We also report training results using a traditional backpropagation through the forward Euler solver220

in Figure 2b. The experiments are performed using the same network architectures as the previous221

experiments using the adjoint method. It appears that C-NODEs converge significantly faster than222

the NODEs (usually in one epoch) and generally have a more stable training process with smaller223

variance. In experiments with MNIST, C-NODEs converge in only one epoch, while NODEs converge224

in roughly 15 epochs. This provides additional empirical evidence on the benefits of training using the225

characteristics. As shown in Figures 2a, 2b, compared to training with the adjoint method, training226

with the forward Euler solver results in less variance, indicating a more stable training process. At the227

same time, training with the adjoint method results in more accurate models, as the adjoint method228

uses a constant amount of memory, and can employ more accurate adaptive ODE solvers.229

5.2 Continuous normalizing flow with C-NODEs230

We compare the performance of CNFs defined with NODEs to with C-NODEs on MNIST, SVHN,231

and CIFAR-10. We use a Hutchinson trace estimator to calculate the trace and use multi-scale232
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Dataset Method Accuracy ↑ NFE ↓ Param.[K] ↓

SVHN

NODE 75.28± 0.836% 131 115.444
C-NODE 82.19± 0.478% 124 113.851
ANODE 89.8± 0.952% 167 112.234
ANODE+C-NODE 92.23± 0.176% 146 112.276
2nd-Ord 88.22± 1.11% 161 112.801
2nd-Ord+C-NODE 92.37± 0.118% 135 112.843
IL-NODE 89.69± 0.369% 195 113.368
IL-NODE+C-NODE 93.31± 0.088% 95 113.752

CIFAR-10

NODE 56.30± 0.742% 152 115.444
C-NODE 64.28± 0.243% 151 113.851
ANODE 70.99± 0.483% 177 112.234
ANODE+C-NODE 71.36± 0.220% 224 112.276
2nd-Ord 70.84± 0.360% 189 112.801
2nd-Ord+C-NODE 73.68± 0.153% 131 112.843
IL-NODE 72.55± 0.238% 134 113.368
IL-NODE+C-NODE 73.78± 0.154% 85 113.752

MNIST

NODE 96.90± 0.154% 72 85.468
C-NODE 97.56± 0.431% 72 83.041
ANODE 99.12± 0.021% 68 89.408
ANODE+C-NODE 99.20± 0.002% 60 88.321
2nd-Ord 99.35± 0.002% 52 89.552
2nd-Ord+C-NODE 99.38± 0.037% 61 88.465
IL-NODE 99.33± 0.039% 53 89.597
IL-NODE+C-NODE 99.33± 0.001% 60 88.51

Table 1: Mean test results over 5 runs of different NODE models over SVHN, CIFAR-10, and
MNIST. Accuracy and NFE at convergence are reported. Applying C-NODE always increases
models’ accuracy and usually reduces models’ NFE as well as the standard error.

convolutional architectures as done in [9, 13] 1. Differential equations are solved using the Runge-233

Kutta method of order 5 of the Dormand-Prince-Shampine solver and trained with the adjoint method.234

Although the Euler forward method is faster, experimental results show that its fixed step size often235

leads to negative Bits/Dim, indicating the importance of adaptive solvers. As shown in table 2 and236

figure 3, using a similar number of parameters, experimental results show that CNFs defined with237

C-NODEs perform better than CNFs defined with NODEs in terms of Bits/Dim, as well as having238

lower variance, and using a lower NFE on all of MNIST, CIFAR-10, and SVHN.239

5.3 PDE modeling with C-NODEs240

We consider a synthetic regression example for a hyperbolic PDE with a known solution. Since241

NODEs assume that the latent state is only dependent on a scalar (namely time), they cannot model242

dependencies that vary over multiple spatial variables required by most PDEs. We quantify the243

differences in the representation capabilities by examining how well each method can represent244

a linear hyperbolic PDE. We also modify the assumptions used in the classification and density245

estimation experiments where the boundary conditions were constant as in (4). We approximate the246

following BVP:247 {
u∂u

∂x + ∂u
∂t = u,

u(x, 0) = 2t, 1 ≤ x ≤ 2.
(10)

1This is based on the code that the authors of [13] provided in https://github.com/rtqichen/ffjord
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MNIST CIFAR-10 SVHN
Model

B/D Param. NFE B/D Param. NFE B/D Param. NFE
Real NVP [9] 1.05 N/A – 3.49 N/A – – – –
Glow [27] 1.06 N/A – 3.35 44.0M – – – –
RQ-NSF [11] – – – 3.38 11.8M – – – –
Res. Flow [4] 0.97 16.6M – 3.28 25.2M – – – –
CP-Flow [21] 1.02 2.9M – 3.40 1.9M – – – –
NODE 1.00 336.1K 1350 3.49 410.1K 1847 2.15 410.1K 1844

C-NODE 0.95 338.0K 1323 3.44 406.0K 1538 2.12 406.0K 1352

Table 2: Experimental results on generation tasks, with NODE, C-NODE, and other models. B/D
indicates Bits/dim. Using a similar amount of parameters, C-NODE outperforms NODE on all three
datasets, and have a significantly lower NFE when training for CIFAR-10 and SVHN.

(10) has an analytical solution given by u(x, t) = 2x exp(t)
2 exp(t)+1 . We generate a training dataset by248

randomly sampling 200 points (x, t), x ∈ [1, 2], t ∈ [0, 1], as well as values u(x, t) at those points.249

We test C-NODE and NODE on 200 points randomly sampled as (x, t) ∈ [1, 2] × [0, 1]. For this250

experiment, C-NODE uses 809 parameters while NODE uses 1185 parameters. C-NODE deviates251

8.05% from the test dataset, while NODE deviates 30.52%. Further experimental details can be found252

in Appendix A.3.253

5.4 Time series prediction with C-NODEs254

0 10 20 30 40 50
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Bi
ts

/d
im

C-NODE
NODE

Figure 3: Red: NODE. Blue: C-NODE.
Training dynamics of CNFs on MNIST
dataset with adjoint method. We present
Bits/dim of the first 50 training epochs.

Finally, we test C-NODEs and NODEs on the time255

series prediction problem using the MuJoCo dataset256

[45]. We follow the experimental settings in [39],257

where we define an autoregressive model with the en-258

coder being an ODE-RNN model and the decoder be-259

ing a latent ODE2. As shown in Figure 5, C-NODEs260

achieve lower testing mean squared errors (MSEs).261

After 100 training epochs, C-NODEs achieve 10.14%262

lower testing MSEs than NODEs.263

6 Discussion264

We describe an approach for extending NODEs to265

the case of PDEs by solving a series of ODEs along266

the characteristics of a PDE. The approach applies267

to any black-box ODE solver and can be combined with existing NODE-based frameworks. We268

empirically showcase its efficacy on classification tasks while also demonstrating its success in269

improving convergence using Euler forward method without the adjoint method. Additionally, C-270

NODE empirically achieves better performances on density estimation tasks, while being more271

efficient with the number of parameters and using lower NFEs. C-NODE’s efficiency over physical272

modeling and time series prediction is also highlighted with additional experiments.273

Limitations There are several limitations to the proposed method. The MoC only applies to274

hyperbolic PDEs, and we only consider first-order semi-linear PDEs in this paper. This may be a275

limitation since this is a specific class of PDEs that does not model all data. We also did not enforce276

any particular structure to prevent characteristics from intersecting, which may result in shock waves277

and rarefactions. However, we believe that this is unlikely to happen due to the high dimensionality278

of the ambient space. We additionally note that, compared to ANODE, C-NODE’s training is not as279

stable. This can be improved by coupling C-NODEs with ANODEs or other methods.280

2This is based on the code of Rubanova et al. [39] provide in https://github.com/YuliaRubanova/
latent_ode
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A Experimental Details441

A.1 Experimental details of classification tasks442

We report the average performance over five independent training processes, and the models are443

trained for 100 epochs for all three datasets.444

The input for 2nd-Ord, NODE, and C-NODE are the original images. In the IL-NODE, we transform445

the input to a latent space before the integration by the integral; that is, we raise the Rc×h×w446

dimensional input image into the R(c+p)×h×w dimensional latent feature space3. We decode the447

result after performing the continuous transformations along characteristics curves, back to the448

Rc×h×w dimensional object space. Combining this with the C-NODE can be seen as solving a PDE449

on the latest features of the images rather than on the images directly. We solve first-order PDEs with450

three variables in CIFAR-10 and SVHN and solve first-order PDEs with two variables in MNIST.451

The number of parameters of the models is similar by adjusting the number of features used in the452

networks. We use similar training hyperparameters as [32].453

Unlike ODEs, we take derivatives with respect to different variables in PDEs. For a PDE with k454

variables, this results in the constraint of the balance equations455

∂2u

∂xixj
=

∂2u

∂xjxi
, i, j ∈ {1, 2, ..., k}, i ̸= j.

This can be satisfied by defining the k-th derivative with a neural network, and integrate k − 1 times456

to get the first order derivatives. Another way of satisfying the balance equation is to drop the457

dependency on the variables, i.e., ∀i ∈ {1, 2, ..., k},458

∂u

∂xi
= fi(u; θ).

When we drop the dependency, all higher order derivatives are zero, and the balance equations are459

satisfied.460

All experiments were performed on NVIDIA RTX 3090 GPUs on a cloud cluster.461

A.2 Experimental details of continuous normalizing flows462

We report the average performance over four independent training processes. As shown in Figure 4,463

compared to NODE, using a C-NODE structure improves the stability of training, as well as having a464

better performance. Specifically, the standard errors for C-NODEs on MNIST, SVHN, and CIFAR-10465

are 0.37%, 0.51%, and 0.24% respectively, and for NODEs the standard errors on MNIST, SVHN,466

and CIFAR-10 are 1.07%, 0.32%, and 0.22% respectively.467

The experiments are developed using code adapted from the code that the authors of [13] provided in468

https://github.com/rtqichen/ffjord.469

All experiments were performed on NVIDIA RTX 3090 GPUs on a cloud cluster.470

A.3 Experimental details of PDE modeling471

We want to solve the initial value problem472 {
u∂u

∂x + ∂u
∂t = u,

u(x, 0) = 2x, 1 ≤ x ≤ 2,

where the exact solution is u(x, t) = 2xet

(2et+1) . Our dataset’s input are 200 randomly sampled points473

(x, t), x ∈ [1, 2], t ∈ [0, 1], and the dataset’s outputare the exact solutions at those points.474

For the C-NODE architecture, we define four networks: NN1(x, t) for ∂u
∂x , NN2(x, t) for ∂u

∂t ,475

NN3(t) for the characteristic path (x(s), t(s)), NN4(x) for the initial condition. The result is476

calculated in four steps:477

3This is based on the code of Massaroli et al. [32] provide in https://github.com/DiffEqML/torchdyn
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Figure 4: The training process averaged over 4 runs of C-NODE and NODE. The first row are the
results on MNIST, the second row are the results on SVHN, the third row are the results on CIFAR-10.

1. Integrate ∆u =
∫ t

0
du(x(s),t(s))

ds ds =
∫ t

0
∂u
∂t

dt
ds + ∂u

∂x
dx
ds ds = NN2 ∗ NN3[0] + NN1 ∗478

NN3[1]ds as before.479

2. Given x, t, solve equation ι + NN3(NN4(ι))[0] ∗ t = x for ι iteratively, with ιn+1 =480

x−NN3(NN4(ιn))[0] ∗ t. ι0 is initialized to be x.481

3. Calculate initial value u(x(0), t(0)) = NN4(ι).482

4. u(x, t) = ∆u+ u(x(0), t(0)).483

For the NODE architecture, we define one network: NN1(x, t) for ∂u
∂t . The result is calculated as484

u(x, t) =
∫ t

0
∂u
∂t dt =

∫ t

0
NN1dt.485

All experiments were performed on NVIDIA RTX 3080 ti GPUs on a local machine.486

A.4 Experimental results and details of time series predictions487

A.4.1 Experimental details of time series predictions on MuJoCo dataset488

We follow the experimental setup as described in https://github.com/YuliaRubanova/489

latent_ode. NODE’s training follows the original setup, with the dimension of the recognition490

model being 30, the number of units per layer in each of GRU update networks being 100, the number491

of units per layer in ODE function being 300, the number of layers in ODE function in generative492

and recognition ODE both being 3.493

We use a C-NODE with a dimensionality of 128. The number of units per layer in the network494

describing dx/ds is 12. For the network describing ∂u/∂xi, the dimension of the recognition model495

is 30, the number of units per layer in each of GRU update networks is 100, the number of units per496

layer in the ODE function is 100, the number of layers in ODE function in generative and recognition497

ODE is 1.498
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Figure 5: Red: NODE. Blue: C-NODE. Training dynamics of ODE-RNNs on the MuJoCo dataset
with the “Hopper” model from the Deepmind Control Suit [45]. We present testing mean squared
error (MSE) of training epochs 10 to 100. The C-NODE method achieves lower testing MSE while
having a lower variance.

A.4.2 Experiment results of time series predictions on synthetic dataset499

We test C-NODEs, ANODEs, and NODEs on a synthetic time series prediction problem. We define500

a function by u(x, t) = 2x exp(t)
2 exp(t)+1 , and we sample ũ = u(x, t) + 0.1ϵt, where ϵt ∼ N (0, 1) over501

x ∈ [1, 2], t ∈ [0, 1] to generate the training dataset. We test the performance on t ∈ [n, n + 1]502

with n ∈ {0, 1, . . . , 5}. To make the problem more challenging, x values are omitted, and only t503

values are provided during both training and testing. As shown in Table 3, C-NODE produces more504

profound improvements over NODEs as time increases.505

Time [0,1] [1,2] [2,3] [3,4] [4,5] [5,6]

NODE 0.0322 0.1764 0.4681 0.8093 1.1911 1.6202
ANODE 0.0428 0.0629 0.1248 0.2778 0.5360 0.9252
C-NODE 0.0270 0.0365 0.0582 0.1474 0.3300 0.6054

Table 3: Time series prediction results for NODE, ANODE, and C-NODE at different time intervals.
Errors are testing mean squared errors. Across all time intervals, C-NODE outperforms NODE and
ANODE.

We also test C-NODEs, NODEs, and ANODEs on time series prediction with different levels of506

noise. Specifically, using the same function as above, we form training and testing dataset with507

ϵt ∼ N (0,m), m ∈ {0, 1, . . . , 5}. We test the performance on the time period t ∈ [0, 1].508

Noise Level 0 1 2 3 4 5

NODE 0.0326 0.1784 0.7886 1.9685 3.7530 6.1553
ANODE 0.04 0.1984 0.6035 1.0574 1.4850 2.0593

C-NODE 0.0267 0.1011 0.3294 0.7148 1.2856 2.0834

Table 4: Time series prediction results for NODE, ANODE, and C-NODE at different noise levels.
Errors are testing mean squared errors.

A.4.3 Experimental details of time series predictions on synthetic dataset509

We want to predict u(x, t) = 2·x·et
2·et+1 at different time t, with x ∈ [1, 2], and x being not accessible to510

the network. We also provide the network with the value of u(1, 0).511

We use a 8 dimensional C-NODE network. The result is calculated with512

u(x, t) = u(1, 0) +

∫ t

0

8∑
i=1

∂u

∂zi

dzi
ds

ds.
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NODE is calculated with513

u(x, t) = u(1, 0) +

∫ t

0

∂u

∂t
dt.

In our experiments, C-NODEs use 1221 parameters, ANODEs use 1270 parameters, NODEs use514

1290 parameters.515

All experiments were performed on NVIDIA RTX 3080 ti GPUs on a local machine.516

B Approximation Capabilities of C-NODE517

Proposition B.1 (Method of Characteristics for Vector Valued PDEs). Let u(x1, . . . , xk) : Rk → Rn518

be the solution of a first order semilinear PDE on a bounded domain Ω ⊂ Rk of the form519

k∑
i=1

ai(x1, . . . , xk,u)
∂u

∂xi
= c(x1, . . . , xk,u) on (x1, . . . , xk) = x ∈ Ω. (11)

Additionally, let a = (a1, . . . , ak)
T : Rk+n → Rk, c : Rk+n → Rn be Lipschitz continuous520

functions. Define a system of ODEs as521 

dx
ds (s) = a(x(s),U(s))
dU
ds (s) = c(x(s),U(s))

x(0) := x0, x0 ∈ ∂Ω

u(x0) := u0

U(0) := u0

where x0 and u0 define the initial condition, ∂Ω is the boundary of the domain Ω. Given initial522

conditions x0,u0, the solution of this system of ODEs U(s) : [a, b] → Rd is equal to the solution of523

the PDE in Equation (11) along the characteristic curve defined by x(s), i.e., u(x(s)) = U(s). The524

union of solutions U(s) for all x0 ∈ ∂Ω is equal to the solution of the original PDE in Equation525

(11) for all x ∈ Ω.526

Lemma B.2 (Gronwall’s Lemma [19]). Let U ⊂ Rn be an open set. Let f : U × [0, T ] → Rn be a
continuous function and let h1, h2 : [0, T ] → U satisfy the initial value problems:

dh1(t)

dt
= f(h1(t), t), h1(0) = x1,

dh2(t)

dt
= f(h2(t), t), h2(0) = x2.

If there exists non-negative constant C such that for all t ∈ [0, T ]

∥f(h2(t), t)− f(h1(t), t)∥ ≤ C∥h2(t)− h1(t)∥,
where ∥ · ∥ is the Euclidean norm. Then, for all t ∈ [0, T ],

∥h2(t)− h1(t)∥ ≤ eCt∥x2 − x1∥.

B.1 Proof of Proposition B.1527

This proof is largely based on the proof for the univarate case provided at4. We extend for the vector528

valued case.529

Proof. For PDE on u with k input, and an n-dimensional output, we have ai : Rk+n → R, ∂u
∂xi

∈ Rn,530

and c : Rk+n → Rn. In proposition B.1, we look at PDEs in the following form531

k∑
i=1

ai(x1, . . . , xk,u)
∂u

∂xi
= c(x1, . . . , xk,u). (12)

4https://en.wikipedia.org/wiki/Method_of_characteristics#Proof_for_quasilinear_
Case
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Defining and substituting x = (x1, . . . , xk)
⊺, a = (a1, . . . , ak)

⊺, and Jacobian J(u(x)) =532

( ∂u
∂x1

, ..., ∂u
∂xk

) ∈ Rn×k into Equation (11) result in533

J(u(x))a(x,u) = c(x,u). (13)

From proposition B.1, the characteristic curves are given by

dxi

ds
= ai(x1, . . . , xk,u),

and the ODE system is given by534

dx

ds
(s) = a(x(s),U(s)), (14)

535
dU

ds
(s) = c(x(s),U(s)). (15)

Define the difference between the solution to (15) and the PDE in (11) as

∆(s) = ∥u(x(s))−U(s)∥2 = (u(x(s))−U(s))
⊺
(u(x(s))−U(s)) ,

Differentiating ∆(s) with respect to s and plugging in (14), we get536

∆′(s) :=
d∆(s)

ds
= 2(u(x(s))−U(s)) · (J(u)x′(s)−U′(s))

= 2[u(x(s))−U(s)] · [J(u)a(x(s),U(s))− c(x(s),U(s))]. (16)

(13) gives us
∑k

i=1 ai(x1, . . . , xk,u)
∂u
∂xi

− c(x1, . . . , xk,u) = 0. Plugging this equality into (16)537

and rearrange terms, we have538

∆′(s) = 2[u(x(s))−U(s)] · {[J(u)a(x(s),U(s))− c(x(s),U(s))]

− [J(u)a(x(s),u(s))− c(x(s),u(s))]}.

Combining terms, we have539

∆′ = 2(u−U) · ([J(u)a(U)− c(U)]− [J(u)a(u)− c(u)])

= 2(u−U) · (J(u) [a(U)− a(u)] + [c(U)− c(u)]) .

Applying triangle inequality, we have540

∥∆′∥ ≤ 2∥u−U∥(∥J(u)∥∥a(U)− a(u)∥+ ∥c(U)− c(u)∥).

By the assumption in proposition B.1, a and c are Lipschitz continuous. By Lipschitz continuity, we541

have ∥a(U)− a(u))∥ ≤ A∥u−U∥ and ∥c(U)− c(u))∥ ≤ B∥u−U∥, for some constants A and542

B in R+. Also, for compact set [0, s0], s0 < ∞, since both u and Jacobian J are continuous mapping,543

J(u) is also compact. Since a subspace of Rn is compact if and only it is closed and bounded, J(u)544

is bounded [43]. Thus, ∥J(u)∥ ≤ M for some constant M in R+. Define C = 2(AM + B), we545

have546

∥∆′(s)∥ ≤ 2(AM∥u−U∥+B∥u−U∥)∥u−U∥
= C∥u−U∥2

= C∥∆(s)∥.

From proposition B.1, we have u(x(0)) = U(0). As proved above, we have∥∥∥∥du(x(s))ds
− dU(s)

ds

∥∥∥∥ := ∥∆′(s)∥ ≤ C∥∆(s)∥,

where C < ∞. Thus, by lemma B.2, we have

∥∆(s)∥ ≤ eCt∥∆(0)∥ = eCt∥u(x(0))−U(0)∥ = 0.

This further implies that U(s) = u(x(s)), so long as a and c are Lipschitz continuous.547
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Figure 6: Comparison of C-NODEs and NODEs. C-NODEs (solid blue) learn a family of integration
paths conditioned on the input value, avoiding intersecting dynamics. NODEs (dashed red) integrate
along a 1D line that is not conditioned on the input value and can not represent functions requiring
intersecting dynamics.

B.2 Proof of Proposition 4.1548

Proof. Suppose have C-NODE given by

du

ds
=

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
.

Write out specific functions for these terms to match the desired properties of the function. Define549

initial condition u(0, 0) = u0. By setting550

dx

ds
(s, u0, θ) = 1,

dt

ds
(s, u0, θ) = u0,

∂u

∂x
(u(x, t), θ) = 1,

∂u

∂t
(u(x, t), θ) = −2,

have the ODE and solution,551

du

ds
= 1− 2u0

=⇒ u(s;u0) = (1− 2u0) s

=⇒ u

(
s;

[
0

1

])
=

(
1− 2

[
0

1

])
s =

[
1

−1

]
s.

To be specific, we can represent this system with the following family of PDEs:552

∂u

∂x
+ u0

∂u

∂t
= 1− 2u0.

We can solve this system to obtain a function that has intersecting trajectories. The solution is553

visualized in Figure 6, which shows that C-NODE can be used to learn and represent this function554

G. It should be noted that this is not the only possible solution to function G, as when ∂t/∂s = 0,555

we fall back to a NODE system with the dynamical system conditioned on the input data. In this556

conditioned setting, we can then represent G by stopping the dynamics at different times t as in [32].557

558

B.3 Proof of Proposition 4.2559

The proof uses the change of variables formula for a particle that depends on a vector rather than a560

scalar and it follows directly from the proof given in [5, Appendix A]. We provide the full proof for561

completeness.562
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Proof. Assume
∑k

i=1
∂u
∂xi

dxi

ds is Lipschitz continuous in u and continuous in t, so every initial value563

problem has a unique solution [12]. Also assume u(s) is bounded.564

Want565

∂p(u(s))

∂s
= tr

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds

)
.

Define Tϵ = u(s + ϵ). The discrete change of variables states that u1 = f(u0) ⇒ log p(u1) =566

log p(u0)− log |det ∂f
∂u0

| [38].567

Take the limit of the time difference between u0 and u1, by definition of derivatives,568

∂ log p(u(s))

∂t
= lim

ϵ→0+

log p(u(s+ ϵ))− log p(u(s))

ϵ

= lim
ϵ→0+

log p(u(s))− log |det ∂
∂uTϵ(u(t))| − log p(u(s))

ϵ

= − lim
ϵ→0+

log |det ∂
∂uTϵ(u(s))|
ϵ

= − lim
ϵ→0+

∂
∂ϵ log |det

∂
∂uTϵ(u(s))|

∂
∂ϵϵ

= − lim
ϵ→0+

∂

∂ϵ
log |det ∂

∂u
Tϵ(u(s))| − lim

ϵ→0+

∂

∂ϵ
log |det ∂

∂u
Tϵ(u(s))|

= − lim
ϵ→0+

1

|det ∂
∂uTϵ(u(s))|

∂

∂ϵ
|det ∂

∂u
Tϵ(u(s))|

= −
limϵ→0+

∂
∂ϵ |det

∂
∂uTϵ(u(s))|

limϵ→0+ |det ∂
∂uTϵ(u(s))|

= − lim
ϵ→0+

∂

∂ϵ
|det ∂

∂u
Tϵ(u(s))|

The Jacobi’s formula states that if A is a differentiable map from the real numbers to n× n matrices,569

then d
dt detA(t) = tr(adj(A(t))dA(t)

dt ), where adj is the adjugate. Thus, have570

∂ log p(u(t))

∂t
= − lim

ϵ→0+
tr

[
adj

(
∂

∂u
Tϵ(u(s))

)
∂

∂ϵ

∂

∂u
Tϵ(u(s))

]
= − tr

[(
lim

ϵ→0+
adj

(
∂

∂u
Tϵ(u(t))

))(
lim

ϵ→0+

∂

∂ϵ

∂

∂u
Tϵ(u(s))

)]
= − tr

[
adj

(
∂

∂u
u(t)

)
lim

ϵ→0+

∂

∂ϵ

∂

∂u
Tϵ(u(s))

]
= − tr

[
lim

ϵ→0+

∂

∂ϵ

∂

∂u
Tϵ(u(s))

]
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Substituting Tϵ with its Taylor series expansion and taking the limit, we have571

∂ log p(u(t))

∂t
= − tr

(
lim

ϵ→0+

∂

∂ϵ

∂

∂u

(
u+ ϵ

du

ds
+O(ϵ2) +O(ϵ3) + ...

))
= − tr

(
lim

ϵ→0+

∂

∂ϵ

∂

∂u

(
u+ ϵ

k∑
i=1

∂u

∂xi

dxi

ds
+O(ϵ2) +O(ϵ3) + ...

))

= − tr

(
lim

ϵ→0+

∂

∂ϵ

(
I +

∂

∂u
ϵ

k∑
i=1

∂u

∂xi

dxi

ds
+O(ϵ2) +O(ϵ3) + ...

))

= − tr

(
lim

ϵ→0+

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds
+O(ϵ) +O(ϵ2) + ...

))

= − tr

(
∂

∂u

k∑
i=1

∂u

∂xi

dxi

ds

)

572

B.4 Proof of Proposition 4.3573

Proof. To prove proposition 4.3, need to show that for any homeomorphism h(·), there exists a574

u(s, u0) ∈ Rn following a C-NODE system such that u(s = T, u0) = h(u0).575

Without loss of generality, say T = 1.576

Define C-NODE system577 

du
ds = ∂u

∂x
dx
ds + ∂u

∂t
dt
ds ,

dx
ds (s, u0) = 1,
∂u
∂x (u(x, t)) = h(u0),
dt
ds (s, u0) = u0,
∂u
∂t (u(x, t)) = −1.

Then, du
ds = h(u0)− u0. At s = 1, have578

u(s = 1, u0) = u(s = 0, u0) +

∫ 1

0

du

ds
ds

= u0 +

∫ 1

0

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
ds

= u0 +

∫ 1

0

h(u0) · 1 + (−1) · u0ds

= u0 + h(u0)− u0

= h(u0).

The inverse map will be defined by integration backwards. Specifically, have579

u(s = 0, u0) = u(s = 1, u0) +

∫ 0

1

du

ds
ds

= h(u0)−
∫ 1

0

∂u

∂x

dx

ds
+

∂u

∂t

dt

ds
ds

= h(u0)−
∫ 1

0

h(u0) · 1 + (−1) · u0ds

= h(u0)− h(u0) + u0

= u0.
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Thus, for any homeomorphism h(·), there exists a C-NODE system, such that forward integration for580

time s = 1 is equivalent as applying h(·), and backward integration for time s = 1 is equivalent to581

applying h−1(·).582

C Ablation Study583

C.1 Ablation study on dimension of C-NODE584

We perform an ablation study on the impact of the number of dimensions of the C-NODE we585

implement. This study allows us to evaluate the relationship between the model performance and the586

model’s limit of mathematical approximating power. Empirical results show that as we increase the587

number of dimensions used in the C-NODE model, the C-NODE’s performance first improves and588

then declines, due to overfitting. We have found out that information criteria like AIC and BIC can589

be successfully applied for dimension selection in this scenario.590

In previous experiments, we represent ∂u/∂xi with separate and independent neural networks591

ci(u, θ). Here, we represent all k functions as a vector-valued function [∂u/∂x1, ..., ∂u/∂xk]
T . We592

approximate this vector-valued function with a neural network c(u, θ). The model is trained using593

the Euler solver to have better training stability when the neural network has a large number of594

parameters. Experiment details for the ablation study is as shown in Figures 7, 8, 9.595

596

C.2 Ablation study on number of parameters597

We show C-NODE’s parameter efficiency over NODE with an ablation study on the image classi-598

fication task on the CIFAR-10 dataset. Specifically, under a similar training setup, we experiment599

with C-NODE with 95071, 55855, and 17379 parameters and experiment with NODE with 96044,600

56828, and 17444 parameters. As shown in Figure 10, although C-NODE has more variance in its601

performance, it outperforms NODE along the whole training process in all three cases.602
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Figure 7: The training process averaged over 4 runs of C-NODE with 1, 2, 4, 8, 16, 32, 64, 128, 256,
512, and 1024 dimensions on the MNIST dataset. The first row is the accuracy of prediction, the
second row is the testing error, and the third row is the training error.
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Figure 8: The training process averaged over 4 runs of C-NODE with 1, 2, 4, 8, 16, 32, 64, and 128
dimensions on the SVHN dataset. The first row is the accuracy of prediction, the second row is the
testing error, and the third row is the training error.
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Figure 9: The training process averaged over 4 runs of C-NODE with 1, 2, 4, 8, 16, 32, 64, and 128
dimensions on the CIFAR-10 dataset. The first row is the accuracy of prediction, the second row is
the testing error, and the third row is the training error.
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Figure 10: The training process averaged over four runs of C-NODE with 95071, 55855, and 17379
parameters on the CIFAR-10 dataset, and NODE with 96044, 55855, and 17379 parameters. The first
row is the prediction accuracy, the second row is the testing error, and the third row is the training
error. Blue lines are the results for C-NODE, and red lines are the results for NODE.
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D Algorithm for continuous normalizing flows defined with C-NODE603

We additionally provide algorithms for training and sampling CNFs defined with C-NODEs.

Algorithm 2 Algorithm for training CNFs defined with C-NODE

given probability density function of p(u(s = 0)) = p0(·)
for each input data zj do

Given

[
u(1)

log p(zj)− log p(u(1))

]
=

[
zj
0

]

procedure Integrate from 1 → 0 to get

[
u(0)

log p(zj)− log p(u(0))

]
for each time step sm do

calculate dx
ds (x,u;g(zj ; Θ1); Θ2) and Jxu(x,u; Θ2).

calculate du
ds = Jxu

dx
ds .

calculate −tr( ∂
∂uJxu

dx
ds ) with Hutchinson trace estimator [13].

calculate

[
u(sm+1)

log p(u(sm+1))

]
=

[
u(sm)

log p(u(sm))

]
+

[
du
dt

∂ log p(u(s))
∂s

]
(sm+1 − sm).

end for
evaluate p0(u(0))
calculate log p(zj) = (log p(zj)− log p(u(0))) + log p0(u(0))
optimize log p(zj) with an optimization algorithm (stochastic gradient descent etc.)

end for

604

Algorithm 3 Algorithm for sampling CNFs defined with C-NODE

procedure sample u(s = 0) from base distribution p0(·)
procedure Integrate from 0 → 1 to get u(s = 1)
for each time step sm do

calculate dx
ds (x,u;g(zj ; Θ1); Θ2) and Jxu(x,u; Θ2).

calculate du
ds = Jxu

dx
ds .

calculate u(sm+1) = u(sm) + du
ds (sm+1 − sm).

end for
end procedure
u(s = 1) is our sample from the CNF

27


	Introduction
	Related Work
	Machine Learning and ODEs

	Method
	Method of Characteristics
	Neural Representation of Characteristics
	Conditioning on data
	Training C-NODEs
	Combining MoC with Existing NODE Modifications

	Properties of C-NODEs
	Intersecting trajectories
	Density estimation with C-NODEs

	Experiments
	Classification Experiments with Image Datasets
	Continuous normalizing flow with C-NODEs
	PDE modeling with C-NODEs
	Time series prediction with C-NODEs

	Discussion
	Experimental Details
	Experimental details of classification tasks
	Experimental details of continuous normalizing flows
	Experimental details of PDE modeling
	Experimental results and details of time series predictions
	Experimental details of time series predictions on MuJoCo dataset
	Experiment results of time series predictions on synthetic dataset
	Experimental details of time series predictions on synthetic dataset


	Approximation Capabilities of C-NODE
	Proof of Proposition B.1
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3

	Ablation Study
	Ablation study on dimension of C-NODE
	Ablation study on number of parameters

	Algorithm for continuous normalizing flows defined with C-NODE

