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Abstract

Egocentric hand-object motion generation is crucial for immersive AR/VR
and robotic imitation but remains challenging due to unstable viewpoints, self-
occlusions, perspective distortion, and noisy ego-motion. Existing methods rely on
predefined 3D object priors, limiting generalization to novel objects, which restricts
their generalizability to novel objects. Meanwhile, recent multimodal approaches
suffer from ambiguous generation from abstract textual cues, intricate pipelines for
modeling 3D hand-object correlation, and compounding errors in open-loop predic-
tion. We propose MEgoHand, a multimodal framework that synthesizes physically
plausible hand-object interactions from egocentric RGB, text, and initial hand pose.
MEgoHand introduces a bi-level architecture: a high-level “cerebrum” leverages a
vision language model (VLM) to infer motion priors from visual-textual context
and a monocular depth estimator for object-agnostic spatial reasoning, while a
low-level DiT-based flow-matching policy generates fine-grained trajectories with
temporal orthogonal filtering to enhance stability. To address dataset inconsistency,
we design a dataset curation paradigm with an Inverse MANO Retargeting Net-
work and Virtual RGB-D Renderer, curating a unified dataset of 3.35M RGB-D
frames, 24K interactions, and 1.2K objects. Extensive experiments across five
in-domain and two cross-domain datasets demonstrate the effectiveness of MEgo-
Hand, achieving substantial reductions in wrist translation error (86.9% ) and joint
rotation error (34.1%), highlighting its capacity to accurately model fine-grained
hand joint structures and generalize robustly across diverse scenarios.

1 Introduction

The egocentric perspective is humanity’s native mode of interaction, directly reflecting how we
perceive and engage with the world [7, 17, 48]. It provides rich contextual cues that are often lost in
third-person observations, such as the alignment of gaze and hand motion and the real-time visual-
motor feedback that guides manipulation [39]. Generating hand-object motions from first-person
views is fundamental for many applications. In AR/VR, it enables precise virtual-real alignment
[17,30,40,37,36], while in robot learning, it facilitates natural imitation from human demonstrations
[27, 47,43, 46]. Despite its significant potential, predicting hand-object interactions from egocentric
perspectives remains highly challenging [20]. First, continuous camera motion from head-mounted
setups causes unstable and shifting viewpoints, disrupting spatial consistency. Second, frequent
self-occlusions by the user’s own body often hide the hands or objects, leading to missing visual
information. Third, the close distance from the camera introduces strong perspective distortion
and rapid scale changes, complicating spatial perception. Finally, distinguishing intentional hand
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Figure 1: MEgoHand stands as the starting point for generating high-quality motion sequences of
hand-object interactions, conditioned on egocentric RGB images, textual instructions, and given
initial MANO hand parameters.

movements from head-induced ego-motion requires models to reason under partial observations and
sparse visual cues.

Existing methods largely ignore the challenges of first-person perspectives because they typically
rely on predefined 3D object attributes (e.g., mass, geometry) to model hand-object interactions
(HOI) [49, 34, 8, 6]. However, their performance significantly degrades when dealing with novel
or unknown objects. Recent efforts have begun to address these limitations of first-person vision
and reduce dependence on explicit object models. SIGHT-Fusion [16] mitigates occlusion by
segmenting hands and objects in egocentric RGB inputs, but the lack of textual guidance often
leads to ambiguous action generation. In contrast, the multimodal LatentAct [31] incorporates
visual and textual information along with 3D contact points, enabling more context-aware modeling.
Nevertheless, the complex pipeline required for contact map generation limits its feasibility in real-
world applications. Furthermore, these methods adopt an open-loop prediction strategy based solely
on the first frame. Without corrective feedback, errors caused by viewpoint shifts and occlusions
accumulate over time, ultimately leading to cascading failures in interaction prediction.

To address the aforementioned challenges, we propose MEgoHand, a Multimodal Egocentric Hand-
Object Motion Generation approach. Given a textual instruction, an RGB image, and an initial hand
pose, MEgoHand synthesizes high-fidelity, physically plausible motion sequences applicable to real-
world scenarios. It adopts a bi-level architecture. The High-Level module leverages a vision-language
model (VLM) to infer motion priors from visual perception, task understanding, and intent-behavior
alignment. Furthermore, to enhance spatial understanding of hand-object relationships without
relying on object-specific priors, we incorporate a monocular depth estimator that encodes RGB
images into a dense depth representation. The Low-Level module generates fine-grained hand
trajectories via a DiT-based flow-matching policy, effectively modeling temporal uncertainty and
ensuring motion continuity. To mitigate observation noise induced by egocentric camera motion, the
model performs frame-wise prediction of trajectories over the next [ frames, followed by Temporal
Orthogonal Filtering (TOF) decoding strategy to enhance temporal coherence and stability.

Additionally, we notice that despite the abundance of egocentric hand-object interaction datasets,
inconsistencies in language instructions, annotation quality, and pose representations pose significant
challenges to unified training. To address these issues, we develop a standardized preprocessing
pipeline comprising an Inverse MANO Retargeting Network for pose normalization and a Vir-
tual RGB-D Renderer for generating aligned depth maps. Based on this framework, we curate a
multimodal dataset containing 3.35M RGB-D frames, 24K interaction trajectories, and 1.2K objects.

Our experiments show that our MEgoHand achieves SOTA performance across five in-domain and
two cross-domain datasets, reducing hand translation and joint rotation errors by 86.9% and 34.1%,
respectively. After Procrustes alignment, joint and mesh vertex errors decrease to 0.424 cm and 0.409
cm, corresponding to 71.2% and 71.9% relative improvements over strong baselines. These results



highlight MEgoHand’s effectiveness in modeling fine-grained hand joint structures and its strong
generalization capability across domains.

The main contributions of this paper are as follows: (1) We propose MEgoHand, the first framework
to leverage vision-language models for motion prior inference in egocentric hand-object interactions,
augmented with a monocular depth module for object-agnostic spatial reasoning. (2) To address
dataset inconsistencies, we design a standardized pipeline with an Inverse MANO Retargeting
Network and a Virtual RGB-D Renderer to unify poses and generate aligned depth maps, producing
a 3.35M-frame multimodal dataset with 24K interactions and 1.2K objects for unified training
and evaluation. (3) MEgoHand outperforms baselines on five in-domain and two cross-domain
benchmarks, substantially reducing hand translation and joint rotation errors, demonstrating its
effectiveness in fine-grained articulation and robust generalization.

2 Related Work

2.1 Hand Object Interaction Prediction

Recent advances in hand-object interaction prediction have explored diverse input modalities and
generative paradigms to model semantically meaningful and physically plausible behaviors. Object-
centric methods such as GEARS [49] and MACS [34] improve motion realism by explicitly modeling
physical properties, such as mass and geometry. Similarly, DiffH20 [8] and Text2HOI [6] condition
motion prediction on textual descriptions, but still require object-specific information. This reliance
on predefined object parameters limits their ability to generalize to novel or unseen objects. In contrast,
image-based methods avoid explicit object modeling by learning from visual cues. For example,
SIGHT-Fusion [16] predicts hand motion from egocentric images using contact-guided diffusion,
demonstrating resilience to occlusions, though it still requires accurate object detection. Moreover,
multimodal fusion approaches have shown notable advantages in modeling hand-object interactions.
Representative works such as GROOT [4] integrate vision, language, and action modalities for human-
like control, while HandsOnVLM [3] leverages textual semantics and visual grounding for hand
motion planning. Among them, LatentAct [31] is most relevant to our goal of 3D hand motion
generation. It jointly predicts 3D hand trajectories and contact maps from a monocular RGB image,
textual action descriptions, and 3D contact points. However, its reliance on an intricately tailored
process to generate contact maps hinders its practicality in real-world applications.

2.2 Hand Pose Reconstruction

3D hand pose estimation serves as a critical foundation for hand-object interaction prediction by
providing accurate 6D pose initialization, enabling physically plausible motion forecasting through
spatiotemporal constraints. Current approaches can be broadly classified into image-based and
video-based methods. Image-based techniques include HaMeR [28], which scales transformer
architectures for pose estimation; Hamba [10], which employs Mamba-based state-space modeling
to capture joint dependencies; and SimHand [22], which reduces annotation dependence through
contrastive similarity learning. Video-based methods, by contrast, enhance temporal coherence by
incorporating motion priors—for example, HMP [1 1] applies VAE-regularized latent optimization
with AMASS priors, while Deformer [14] leverages part-aware deformation-field transformers for
dynamic modeling. Beyond isolated hand reconstruction, Hold [13] is the first category-agnostic
method for joint articulated hand-object reconstruction from monocular videos, using a compositional
implicit model with hand-object constraints.

In addition, egocentric videos, captured from head- or body-mounted cameras, pose distinct challenges
for 3D hand pose estimation due to dynamic viewpoints, frequent self-occlusions, and ego-motion
artifacts, factors that distinguish them from third-person perspectives. Recent solutions, such as
HaWor [45], which employs SLAM-based motion decoupling, and HaPTIC [42], which leverages
4D cross-view attention to ensure temporal consistency, address these difficulties by modeling
the complex spatiotemporal dependencies inherent in first-person views. In our study, we focus
on egocentric video scenarios where accurate first-frame 3D hand pose estimation serves as the
kinematic anchor for subsequent interaction prediction.



3 Methodology

3.1 Problem Formulation

We represent the hand using the MANO model [32], which is parameterized by hand shape parameters
(shape feature 3 and finger rotations #) and wrist pose parameters (rotation r and translation t). To
ensure smooth and continuous rotation modeling, we adopt the 6D rotation representation [50] for
6 and t. A MANO hand is represented as h = [0; 3;;t] € R!?9 where § € R1°*6 3 € R0 €
R'*6 ¢ € R3. Given a task description 7T, visual observation Vy, and the initial Ay, the goal is to
predict a sequence of future MANO parameter sequences over [ time steps. V. consists of possible
RGB frame Z;, and depth frame Dy.

Hi = {hk+1, hkt2, - hit1} = MEgoHand (T, Vi, hy). (1)
1. Text Encoding 2. Visual Encoding 3. Hand Motion Generation
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Figure 2: During inference, the system prompt and task instruction are encoded using a frozen
VLM tokenizer. At each timestep, an RGB image is processed by a pretrained depth estimator to
obtain a metric depth map. The RGB and depth images are then combined and encoded into a visual
embedding, which—together with the text embedding—is input to the frozen VLM. A DiT-based
motion generator receives this multimodal representation along with the initial hand parameters to
predict relative future hand motion. During training, the depth encoder, VLM vision encoder, and
DiT head are finetuned.

3.2 Cerebrum: Multimodal Perception & Understanding

Robust hand motion generation in hand-object interaction demands recognition of target objects in
cluttered scenes and reasoning about contact. Traditional approaches depend on explicit object models
[49, 34, 8, 6] or intricate modeling of hand-object relationships [31], which can limit adaptability
and scalability. In this work, we utilize VLMs for their strong generalizability, enabling automatic
extraction of task-relevant semantics and interaction patterns directly from visual observations and
textual instructions—without relying on predefined object models. And additionally, to complement
the limited 3D spatial understanding of VLMs, we further incorporate a monocular metric depth
estimation module that supplies geometric context essential for interaction planning.

VLM Backbone. The core of MEgoHand is built upon Eagle-2 [21], a VLM that integrates a
SmolLM2 [ 1] language backbone with a SigL.IP-2 [38] vision encoder, both pre-trained on large-scale
Internet data. The text tokenizer and transformer blocks are frozen, and the vision encoder is trainable.

3D Spatial Understanding. Pre-trained visual encoders are usually effective at 2D semantic under-
standing while struggling with 3D spatial understanding. To address this, we first incorporate depth
into multimodal hand motion generation framework. Specifically, we adopt the monocular metric
depth estimator UniDepthV2 [29] to estimate a depth map from an input RGB image. Once the
estimated depth map is obtained, we need to encode its spatial features. To the best of our knowledge,
there is no existing depth encoder pretrained on large-scale depth datasets. Therefore, we adopt a
ResNet-50 [ 18] encoder pretrained on ImageNet [9]. Although trained on RGB data, we observe
that its low-level priors (e.g., edges and textures) transfer effectively to depth inputs. To meet the
3-channel input requirement of ResNet, we replicate the single-channel depth map across channels.
To finetune the depth encoder, we use mean squared error (MSE) to align the representation of
predicted and ground-truth depth maps. Finally, an additive fusion module combines visual features



27 and depth features 2P into a unified representation 2%, which interacts with semantic features
x7 via cross-modal attention in the Eagle-2 LLM. The resulting output z7 PZ captures both the
hand-object correlation and the task requirement, enabling holistic understanding and action planning.

3.3 Cerebellum: Hand Motion Generation via Flow Matching

Conditioned Hand Motion Generation. After the VLM encodes the task instruction 7, an RGB
frame 7, and a depth map D, into a latent representation 2} P!, a DiT-based motion generator is
employed to produce a future motion sequence #H,, of length /, a trunk of MANO parameters. This
generation is conditioned on the initial MANO parameters hj, because providing an initial hand
configuration reduces ambiguity related to hand shape and dexterity, resulting in more realistic and
intention-consistent motion sequences. The predicted motion trunk is supervised using a conditional

flow matching loss [23, 24]:
L7(0) = Epag, hy 2701y q(07 190) Ve (HE o, 2 P1) —u(HE | HR) ] @)

where w(H[|Hi) = € — Hi,e ~ N(0,I). The subscript k£ denotes motion timestep, and the
superscript 7 € [0, 1] denotes a flow matching timestep which is sampled from a beta distribution
biased toward lower (noisier) values during training. During inference, hand motions are generated by
integrating the learned vector field from 7 = 0 to 7 = 1, starting from Gaussian noise H) ~ N (0, I).
The integration follows the forward Euler method:

M0 = HE + 6 - vg(HE b, 2101, ¥

where 0 is the integration step size. Please refer to Appendix A.3 for more details. In practice, all
transformations are computed in the camera frame so that we can conveniently estimate initial hand
using modern detectors [28, 45]. Additionally, we predict the relative wrist transformation to the
initial pose and repeat the initial shape parameter J as part of the output for each timestep.

Smooth Decoding Strategy. To ensure temporal coherence in the generated motion sequences,
we propose Temporal Orthogonal Filtering (TOF), a training-free decoding strategy to denoise
predicted rotation sequences. At each timestep, we query the motion generator to produce overlapping
motion chunks. Let Ri, i denote the wrist rotation matrix and translation vector at timestep
k generated during the query at timestep ¢ > 0. To suppress high-frequency jitter, a temporal
convolution with uniform weights aggregates all rotation and translation estimates corresponding to

the same timestep k. The resulting translation is given by ty = Zizl fllj*t /1. The resulting convolved
rotation [y, is then projected onto the closest valid SO(3) manifold via Singular Value Decomposition

(SVD), producing the smooth output Rj. The process of TOF is formalized in Equation (4). We can
freely adjust the frequency of the query to balance inference speed and generation quality.

Rk = arg min HR Ry

l
1,
=UV", where USV' =SVD(Ry), N @
RESO(3) B ( =1 E: L

4 Datasets Integration

Despite the abundance of egocentric hand-object interaction datasets, inconsistencies in language
instructions, annotation quality, and hand pose representations hinder unified training. To address
these discrepancies, we systematically integrate and preprocess large-scale public datasets into a
unified and standardized training corpus.

Inverse MANO Retargeting: Some early datasets, such as FPHA [15], only provide 3D hand joint
positions 7213 captured using wearable sensors instead of MANO parameters. The world-frame
coordinates of 21 hand keypoints correspond to the output of the MANO model and cannot be
directly used as inputs for MEgoHand or as supervision signals for motion generation. To utilize
these datasets, we introduce an Inverse MANO Retargeting Network ¢, which recovers the MANO
parameters from joint coordinates. A straightforward approach would be to employ end-to-end
supervised learning. However, this method fails completely in practice, as even minor deviations in
hand shape—particularly for the shape vector f—can lead to severely distorted hand geometry and
huge reconstruction errors. To overcome this, we propose a novel two-stage iterative training strategy,
along with a self-reconstruction loss. As shown in Figure 3a, we first prioritize optimizing the hand
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shape, and upon convergence, shift focus to refining the wrist pose. A gating signal o is used to
switch between the two loss functions £1 and L5, where o0 = 1 indicates that £, has converged, and
0 otherwise. The objective is in Equation (5):

[,1 = wlﬁshape (¢(])a 9, 6) + Erecon (MANO(¢(]))7])7
LQ = w2£pose (¢(])7 r, t) + Acrecon (MANO(¢(]))7J)» (5)
Ly =0L1+ (1 —0)Lo.

We pretrain the ¢ using 10K paired samples of MANO parameters and joint coordinates covering
diverse hand motions, sourced from TACO [25] and OakInk?2 [44]. This enables us to reuse the
Inverse MANO Retargeting Network to annotate datasets that only provide hand joint positions. For
more details on the pretraining process, please refer to Appendix A.2.

Virtual RGB-D Rendering. Effective training of the depth encoder requires paired RGB-D data
captured from the same egocentric viewpoint. However, many existing datasets, such as ARCTIC
[12], HOT3D [2], and Oaklnk?2 [44], provide only RGB image sequences without corresponding
depth maps. To address this limitation, we design a Virtual RGB-D Renderer to synthesize depth
images aligned with the available RGB frames. Given the intrinsic matrix K, extrinsic transformation
T, and object points P,, € RY>* in homogeneous world coordinates, we render the depth map D
in the camera view by first transforming points to the camera frame: P, = T.,, - P, then projecting
them to pixel coordinates via p,,, = 7 (K - (P. @ Z.)), where Z. = (P.)z and 7 (-) denotes taking
the first two components and rounding to the nearest integers. For each pixel (u,v) = puv® within
the image bounds and with Z > 0, the depth map is updated as D[v, u] = min(D][v, u], Zél)) to
retain the closest surface. We render depth maps for both objects and hands (if visible), capturing
accurate hand-object spatial relationships, which are shown to be important in Section 5.

By integrating inverse MANO retargeting and virtual RGB-D rendering, we curate a unified mul-
timodal dataset consisting of 3.35M RGB-D frames, 24K interaction trajectories, covering 1.2K
objects. We only consider right hand motion in this submission.

5 Experiments

5.1 Experiment Setups

Datasets. We include 6 training datasets: TACO, FPHA, HOI4D, H20, HOT3D, and OakInk2.
Among them, FPHA was re-annotated using the inverse MANO network and is exclusive for
evaluation. For the other five datasets, we hold out 10% of the data from each as in-domain evaluation
sets, ensuring no overlap with the training data in terms of action or object categories. Additionally,
to assess generalization to unseen domains, we evaluate on two cross-domain test sets: full ARCTIC
dataset and a 10% partition of the HOLO dataset as mentioned in [31].

Metrics. (1) MPJPE [31]: Mean Per Joint Position Error, the average Euclidean distance between
predicted and ground-truth 3D hand joint positions over all timesteps. (2) MPJPE-PA [31]: Procrustes
Aligned MPJPE, the MPJPE after applying a single transformation (scale, rotation, translation) to
align the predicted and ground-truth joint trajectories. (3) MPVE: Mean Per Vertex Error, the average
Euclidean distance between predicted and ground-truth mesh vertices of the MANO model. (4)



MPVE-PA: Procrustes Aligned MPVE, the MPVE after applying Procrustes alignment to remove
global scale and pose differences. (5) MWTE: Mean Wrist Translation Error, the average Euclidean
distance between predicted and ground-truth 3D wrist translation vectors. (6) MRE: Mean Rotation
Error, the average angular difference between predicted and ground-truth joint rotations for € and
r. Given rotation matrices Ry, R € R6*3%3 for all 16 joints (1 wrist and 15 finger joints), MRE
is defined as MRE = 1 2;6:1 cos™![(trace(R{ ;R ;) — 1)/2], where each Ry j, Ry ; € R3*?
represents the rotation matrix of the j-th joint. MRE provides a continuous measure of rotational
error within the range [0, 7] radians.

Baselines. Among existing approaches, object-centric representation methods [6, 8] are not appli-
cable in our setting because we do not have access to 3D object models. Similarly, hand-centric
representations [35, 4 1] are unsuitable since the hand is not always visible. Recent work, LatentAct
[31], which predicts 3D hand poses and contact maps from a textual action description, a single
RGB image, and 3D hand-object contact points, serves as a strong baseline for our task. It does
not rely on object models and can operate even when the hand is not visible in the input image. In
comparison, MEgoHand takes only a text description and visual observation as inputs. To evaluate
the effectiveness of our approach, we compare Transformer-based LatentAct and its diffusion-based
variant LatentAct-Diff. Furthermore, to analyze different usages of 3D information, we also compare
variants of LatentAct without contact maps and MEgoHand without depth input.

Modalities. To comprehensively evaluate the effects of incorporating different modalities, we explore
several input configurations: (1) MEgoHand-T only takes textual descriptions; (2) MEgoHand-I only
takes RGB images; (3) MEgoHand-ID takes RGB images with depth estimation; (4) MEgoHand-TI
takes text and RGB images; (5) MEgoHand (ours) incorporates text, RGB images, and depth maps
predicted by a foundation depth estimator.

5.2 Evaluation on In-Domain Datasets

Table 1: Average metrics of in-domain evaluation across 5 datasets: TACO, HOI4D, H20, HOT3D,
and OakInk2. The unit for MRE is radians, and the remaining metrics are measured in centimeters.

Method MPJPE| MPJPE-PA] MPVE| MPVE-PA| MWTE| MRE|
LatentAct 7.726 1.478 7.696 1.453 7.221 0.937
— no concat map 8.523 1.481 8.476 1.464 7.813 0.947
LatentAct-Diff 7.819 1.498 7.787 1.483 7.322 0.941
— no concat map 8.802 1.582 8.752 1.564 8.051 0.950
MEgoHand-T 8.328 0.477 8.282 0.460 7.637 0.145
MEgoHand-1 6.269 0.480 6.120 0.457 5.521 0.143
MEgoHand-ID 5.969 0.470 5.920 0.453 5.213 0.137
MEgoHand-TI 5.683 0.476 5.632 0.459 4.889 0.136
MEgoHand (ours) 5.425 0.425 5.381 0.409 4.756 0.123

Evaluation against Baselines. As shown in Table 1, our method consistently and significantly
outperforms the baseline across all evaluation metrics. Notably, it achieves an 86.9% reduction in
mean MRE, resulting in an average rotational deviation of approximately 7 degrees. In contrast,
LatentAct struggles to generate accurate finger joints, likely due to its reliance on a single-view RGB
image and a single 3D contact point—constraints that severely limit its ability to model the intricate
3D hand-object relationship. Our approach addresses these limitations by: (1) leveraging VLMs for
richer contextual understanding, (2) integrating 3D depth estimation to better capture hand-object
contact features, and (3) employing closed-loop prediction with TOF decoding strategy to ensure
temporally consistent and stable forecasting. Notably, after applying global Procrustes alignment, our
method achieves further reductions in joint (MPJPE-PA) and mesh vertex (MPVE-PA) errors to 0.424
and 0.409, corresponding to relative improvements of 71.2% and 71.9% over LatentAct, respectively.
These results demonstrate the superior capability of our approach in modeling hand morphology and
fine-grained pose prediction.

Evaluating the Modality Flexibility of Our Model. We analyze the performance of four variants:
text instructions alone, RGB images alone, RGB images + predicted depth maps, text instructions +
RGB images. As shown in the green section of Table 1, text-only inputs produce the weakest results.



The absence of visual guidance increases translation error by 61% compared to MEgoHand. RGB-
only inputs mitigate this but suffer from ambiguous action patterns, converging to average behaviors
due to insufficient 3D spatial cues. MEgoHand-ID resolves these limitations by integrating depth
maps, enhancing 3D spatial reasoning, and improving all metrics, achieving a 50% lower MPJPE than
LatentAct. To investigate the approaches of incorporating 3D information, we evaluate LatentAct
without its contact map against our MEgoHand-TT variant. Crucially, removing the contact map from
LatentAct degrades its performance (10.3% MPJPE increase), while MEgoHand-TT achieves a 50%
lower error than LatentAct. This indicates that LatentAct critically depends on contact maps, making
it less practical for real-world scenarios.

Evaluation from different datasets. As illustrated in Figure 4, MEgoHand displays a performance
hierarchy: it achieves the strongest results on H20 and OAKINK?2, with MPJPE deviations con-
strained to approximately 3 cm, while exhibiting the weakest performance on HOI4D. We analyze
that HOI4D’s 800 object instances across 610 scenes account for its generalization challenge. H20
and OAKINK?2 feature structured tasks with consistent interaction regions, such as handles and edges,
where stable spatial correlations can be learned to enhance generation.

5.3 Zero-Shot Transfer on Cross-domain Datasets

MEgoHand MEgoHand-TI LatentAct LatentAct - no concat map
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Figure 4: The evaluation of our two methods and two baseline variants on five in-domain (H20,
HOI4D, HOT3D, OAKINK?2, TACO) and two cross-domain datasets (ARCTIC, HOLO), using
MPIJPE as metric (unit: cm, lower is better).

To evaluate our method’s generalization capacity, we conduct a comprehensive analysis of its zero-
shot transfer performance across two cross-domain datasets, spinning object diversity, task complexity,
and scene changes. ARCTIC poses greater challenges through complex dynamic coupling between
articulated objects and hand configurations (e.g., scissor-cutting requiring coordinated finger-blade
kinematics), exposing limitations from our rigid-object training data. Conversely, HOLO features
clearer task segmentation and semantically grounded instructions (e.g., “rotate the screwdriver
counterclockwise’), which help narrow the action search space and partially mitigate domain shift.
Notably, from Table 2, our method achieves SOTA performance with 33.9% and 29.8% MPJPE
improvements over the strongest baselines on ARCTIC and HOLO, respectively, demonstrating
robust cross-domain transfer capabilities in HOI modeling.

5.4 Ablations around Depth

a) Does a pretrained depth estimator make a difference? From Table 3, MEgoHand is compatible
with various pretrained modern depth estimators like DepthAnythingV?2 and UniDepth, achieving
comparable results across metrics. This suggests free plug-and-play use of diverse depth estimators.

b) Do we need real depth supervision? Comparative analysis with the depth-supervision-ablated
variant, here the depth encoder updates solely through motion prediction loss, reveals significant
performance degradation in Table 3. This empirically underscores the insufficiency of final motion
loss alone to learn spatial-aware representations, necessitating real depth supervision.

¢) Metric depth or relative depth? We also compare accurate metric depth and relative depth
inputs for MEgoHand. The results vary in Table 3. We observe in in-domain scenarios, metric depth
can provide consistent scale and distance cues, enhancing 3D spatial understanding. However, in



Table 2: Average metrics of out-of-domain evaluation across 2 datasets: ARCTIC and HOLO. The
unit for MRE is radians, and the remaining metrics are measured in centimeters.

Dataset Method MPJPE| MPIPE-PA| MPVE| MPVE-PA] MWTE| MRE]
LatentAct 11.65 1.975 11.58 1.942 9.920  1.577

— no concat map 12.04 2.023 11.96 1.990 10.25 1.590

LatentAct-Diff 10.98 1.905 10.90 1.870 9.642  1.543

— no concat map 12.27 2.033 12.19 1.999 10.83 1.559

ARCTIC MEgoHand-T 10.17 1.318 10.10 1.306 8.872  0.489
MEgoHand-1 8.964 1218 8.826 1.204 6.985  0.456

MEgoHand-ID 8.316 1.161 8.226 1.144 6.689  0.384

MEgoHand-TI 8.305 1.173 8.194 1.126 6313 0452

MEgoHand (ours)  7.358 1.161 7.268 1.106 5958  0.398

LatentAct 8.341 1.629 8.303 1.606 8.051 1.112

— no concat map 8.682 1.658 8.650 1.635 8.303 1.133

LatentAct-Diff 8.235 1.605 8.196 1.582 7973  1.101

— no concat map 8.492 1.631 8.453 1.609 8.172 1.118

HOLO MEgoHand-T 8.605 0.879 8.572 0.860 8204  0.499
MEgoHand-1 7.525 0.841 7.484 0.819 6.871  0.416

MEgoHand-ID 6.525 0.812 6.484 0.790 5871 0321

MEgoHand-TI 6.054 0.772 6.011 0.750 5485  0.298

MEgoHand (ours)  5.775 0.697 5.747 0.673 5437 0271

cross-domain scenarios, metric depth is more sensitive to variations in drastic camera parameters
alternation, leading to a performance drop.

Table 3: The ablation studies of MEgoHand variants across evaluation datasets and test datasets.

Dataset Method MPJPE| MPIPE-PA| MPVE| MPVE-PA] MWTE| MRE|
MEgoHand 5.425 0.425 5.381 0.409 4.756 0.123

Evaluation — depthanythingv2 5.671 0.475 5.621 0.457 4.895 0.137
Datasets —no depth supervision 5.725 0.492 5.671 0.473 4.900 0.142
— relative depth 5.610 0.444 5.564 0.427 4.895 0.128

MEgoHand 7.358 1.161 7.268 1.106 5.958 0.398

ARCTIC — depthanythingv2 8.240 1.220 8.141 1.203 6.287 0.544
—no depth supervision 8.174 1.140 8.092 1.092 6.608 0.436

— relative depth 7.564 1.121 7.485 1.091 6.082 0.473

MEgoHand 5.775 0.697 5.747 0.673 5.437 0.271

HOLO — depthanythingv2 6.094 0.895 6.055 0.873 5512 0.331
—no depth supervision 6.434 0.835 6.397 0.837 5.889 0.473

— relative depth 5.879 0.663 5.841 0.643 5.418 0.280

5.5 Visualization
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Figure 5: We present visualizations across in-domain (green) and cross-domain (blue) datasets. The
misalignments of ground-truth annotations are attributed to labeling noise and camera calibration
errors. For fair comparison with LatentAct, we provide the initial hand pose and align the motion
predictions of LatentAct to the first frame in a chunk.

iy




Ground
Truth

MEgoHand

LatentAct

'H20
Ground |

Truth

A

. (
MEgoHand

{

0

|
|
'\

LatentAct

Ground
Truth

MEgoHand

LatentAct

Figure 6: Additional visualizations of LatentAct and MEgoHand. Green part is sampled from
training sets. Blue part is sampled from evaluation sets. The Yellow part is sampled from testing sets.

We decode the generated MANO parameters into hand mesh vertices and visualize the projections
overlaid on the original RGB videos. As illustrated in Figure 5, MEgoHand consistently outperforms
LatentAct with more accurate hand poses and finer geometric alignment, particularly in wrist pose
and finger joint rotations. We analyze that metric depth inputs play an important role in the generation
of higher precision. Besides, we observe that if no hand is visible in the initial frame, LatentAct
struggles to predict precise shape parameters 3. This emphasizes the significance of initial hand
parameters. Please refer to Appendix B.2 for more visualizations.

6 Conclusion & Limitation

We introduce MEgoHand, a multimodal framework for egocentric hand motion generation that
integrates initial hand parameters, textual instructions, and RGB images to predict realistic hand-object
interaction motion sequences. The hierarchical design combines a vision-language model and depth
estimation for semantic understanding and 3D reasoning. A DiT-based motion generator conducts
closed-loop prediction, enhanced by Temporal Orthogonal Filtering for temporal consistency. To
address data scarcity, we curate a million-scale HOI dataset by leveraging inverse MANO retargeting
and virtual RGB-D rendering. As an initial attempt to unify vision language models with 3D reasoning
for motion generation, MEgoHand demonstrates strong generalization, achieving SOTA results on
five in-domain and two cross-domain datasets.

Limitation. Some limitations can be addressed in future research. Utilizing our pretrained inverse
MANO retargeting network to annotate a broader range of HOI datasets or adopting modern hand
pose detectors [28, 45] to label in-the-wild human videos can further improve data scale, which is
promising towards better results.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction (see Section 1) accurately
reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the necessary information required to reproduce the main
experimental results. Details regarding model architecture, training settings, and evaluation
protocols are provided throughout the paper. Please refer to Section 5.1 and Appendix A for
implementation details and experimental setups.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: All codes and documents are included in the supplementary materials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are provided in Section 5.1, including data splits
and evaluation protocols. The hyper-parameters and their selection are detailed in Appendix
A.l.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide detailed evaluation results in Section 5.2 and Section 5.3, including
error bars shown in Figure 4, to assess the robustness and statistical reliability of our
experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix A.6.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix D.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We introduce the original datasets in Appendix A.5.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: All datasets and codebases used in this study is open-sourced.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Implementation Details

A.1 Hyperparameters

We report important hyperparameters used for MEgoHand training in Table 1.

Table 1: Hyperparameters of MEgoHand Training.

Hyperparameter Value

Prediction Trunk Sizel 16
Integration Step Size § 0.1

Gradient steps 50,000
Batch size 64
Learning Rate 3e-4
Optimizer AdamW
Adam 3, 0.95
Adam S, 0.999
Adam € le-8

LR scheduler cosine
Weight Decay le-5
Warmup Ratio 0.05
VLM text tokenizer frozen
VLM vision encoder unfrozen
DiT unfrozen

A.2 Inverse MANO Pretraining

Architecture. The model architecture of the Inverse MANO Retargeting Network consists of
PointNet encoder with 3-layer MLPs.

Training Parameters. We set w; = 4.0 and wy = 5.0 for £ and L respectively. Lghape and Lrecon
are both L1 loss, supervising shape feature 3, translation ¢ or rotation in 6D representation 6, .

Visualization. Figure 1 shows using Inverse MANO Retargeting Network ¢ to label FPHA dataset.

Figure 1: We forward the MANO model to convert the outputs of Inverse MANO Retargeting
Network ¢ to hand meshes, which are projected to the original frames in FPHA with the help of
camera intrinsics and extrinsics.
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A.3 Flow Matching

Recent work in high-resolution image and video synthesis has shown that flow matching can achieve
strong empirical performance when combined with a simple linear-Gaussian (or optimal transport)
probability path, given by:

q(H[Hi) = N (THi, (1 = 7)°1).

In practice, the network is trained by sampling random noise ¢ ~ N(0,I), computing the "noisy
actions" H] = 7Hy, + (1 — 7)e, and then training the network outputs v (H, h, 21 P1) to match
the denoising vector field:

u(”H,ﬂH;@) =€ — Hk.

The action expert uses a full bidirectional attention mask, so that all action tokens attend to each other.
During training, we sample the flow matching timestep 7 from a beta distribution that emphasizes
lower (noisier) timesteps. At inference time, we generate actions by integrating the learned vector
field from 7 = 0 to 7 = 1, starting with random noise HY ~ A(0,I). We use the forward Euler
integration rule:

HIT = HE + Svg(HE, hi, 2L PT),

where § is the integration step size. We use 10 integration steps (corresponding to ¢ = 0.1) in our
experiments. Note that inference can be implemented efficiently by caching the attention keys and
values for the prefix g, 2 P1 and only recomputing the suffix corresponding to the hand motion for

each integration step.

A.4 Vision Language Model

Visual inputs are resized to 224 x 224 and encoded by SigLIP-2 with pixel shuffle [33], producing 64
spatially-aware visual tokens per frame, denoted as 2. In parallel, textual instructions are processed
by SmolLM2 to extract semantic representations x” , facilitating cross-modal alignment.

A.5 HOI Datasets

Resources. We utilize a variety of publicly available egocentric hand-object interaction datasets
in our experiments. Below is a brief description of each dataset along with its official website for
reference:

* H20: A large-scale egocentric dataset featuring hand-object interactions with both RGB
and depth modalities. https://taeinkwon.com/projects/h20/

* HOI4D: A dataset of human-object interactions, capturing fine-grained manipulation across
various tasks. https://hoi4d.github.io/

* HOT3D: A dataset for hand-object tracking and manipulation with accurate annotations.
https://facebookresearch.github.io/hot3d/

* OAKINK?2: A comprehensive benchmark for large-scale egocentric manipulation with
articulated object models. https://oakink.net/v2/

* TACA: A task-oriented dataset for contact-aware human-object interaction analysis. https:
//taco2024.github.io/

* ARCTIC: A richly annotated dataset for tracking hand-object contact and motion in ego-
centric scenarios. https://arctic.is.tue.mpg.de/

* HOLO: A large-scale dataset of household manipulation tasks captured in real-world
environments. https://holoassist.github.io/#HoloAssist

Format. Our training corpora are built upon the LeRobot [5] dataset format, a widely used standard
in the open-source robotics community and interaction learning community. Developed by Hugging
Face, LeRobot is designed to make it easier to work with demonstration-based learning by offering a
unified structure for storing, sharing, and utilizing demonstration data. Its popularity stems from its
adaptability and the rich ecosystem of pretrained models and datasets available on the Hugging Face
hub. The LeRobot format combines several well-established file types to ensure efficient storage and
accessibility:
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» Tabular Data: States, actions, and metadata are stored in Parquet files, which provide
compact columnar storage and rapid access. This structure supports fast filtering and
slicing—critical for training modern machine learning models.

* Visual Data: Observations in the form of videos (MP4) or image sequences (PNG) are
referenced in the Parquet files, significantly reducing storage requirements while preserving
accessibility.

* Metadata: Supplementary information such as dataset statistics and episode indexing is
stored in JSON format, allowing structured, machine-readable access to dataset characteris-
tics.

Demonstration sequences are organized into episodes, where each frame captures synchronized
observations and corresponding actions. Observations typically include visual inputs (e.g.,
observation.images.*) and internal states (e.g., observation.state), while actions encode
control directives. This episodic structure supports a wide range of learning paradigms. For imitation
learning, the data enables supervised prediction of actions from observations. For reinforcement
learning, it facilitates evaluation and optimization of decision-making strategies under varied state-
action contexts. This standardized data format not only enhances reproducibility and interoperability
across learning systems but also lowers the barrier to entry for researchers by providing a clean
interface to high-quality interaction datasets.

While the LeRobot format provides a solid foundation, our work introduces several extensions to
accommodate richer modality integration. We augment the standard format with the following
components:

* Modality Configuration: A modality. json file is introduced within the meta directory
to explicitly define the structure of the initial state and action vectors. This configuration
maps each vector component to its semantic meaning and includes additional metadata
relevant to each modality.

* Fine-Grained Semantic Decomposition: Departing from the monolithic vector approach
of the original format, we decompose both state (initial hand state) and action (future hand
motion trunk) vectors into semantically interpretable components—such as 6, 3, r, and
t—each annotated with its own data type, valid range, and transformation rules.

e Multi-Annotation Integration: The dataset format is extended to support multiple forms
of annotations, such as task descriptions, validity indicators, and success labels. These
annotations follow the LeRobot practice of storing indices in the Parquet files, with the
corresponding content stored in auxiliary JSON files.

* Rotation Representation Specification: To ensure correct processing of rotational com-
ponents during training, we require explicit declaration of the rotation representation used
(e.g., quaternion, Euler angles, or axis-angle) for each relevant field.

These enhancements collectively enable more structured learning from complex demonstration data,
with explicit modality definitions and robust support for multimodal supervision.

Preprocessing. For FPHA, we pretrain Inverse MANO Retargeting Network to label MANO
parameters. For ARCTIC, HOT3D and OAKINK2, we adopt virtual RGB-D rendering to produce
high-quality metric depth images in advance. All RGB and depth images are resized to 256 x 256. It
is worth noting that we split longer sequences to short clips (<500 steps) with the same task instruction
for training and testing.

A.6 Computation

Resources. MEgoHand is trained using 8x80GB NVIDIA A800 GPUs over approximately 24 hours.
All evaluations and visualizations are performed on a single 80GB A800 GPU for around three hours.

Efficiency. We evaluated the end-to-end inference performance for generating a 16-frame sequence
on a single RTX 4090 GPU. MEgoHand is over 2x faster and uses nearly 50% less VRAM than the
strong LatentAct baseline. This superior efficiency is a direct result of our novel architectural design,
which eliminates the need for the expensive online contact map computation. Instead, MEgoHand
leverages a lightweight, pre-trained depth estimation module that implicitly captures geometric cues
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while operating at a fraction of the computational cost. This design not only reduces inference latency
and memory footprint but also enhances robustness across diverse interaction scenarios, making it
well-suited for real-time AR/VR and robotic applications.

Table 2: End-to-end inference performance efficiency for generating a 16-frame sequence on a single
RTX 4090 GPU.

Method Inference Time| FPST VRAM Usage|
LatentAct 156ms 6.4 10.8GB.
MEgoHand (Ours) 74ms 13.5 5.8GB

A.7 Smooth Decoding

t=0 t=1 t=2 t=3 t=4 t=5 t=6
@@HEE
00O @
o H =
nininiEiElE

Figure 2: Illustration for smoothing predicted transformations.

Decoding Strategy. As illustrated in Figure 2, at ¢ = 0 MEgoHand receives initial hand MANO
parameters, a egocentric RGB observation, and a depth map to predict trunk ¢ = 1 - - - [. The predicted
wrist pose is relative to the initial hand pose and the predicted B is repeated from initial 5. Then at
t = 1, similarly, the predicted wrist pose t = 2-- - [+ 1 is relative to the wrist pose predicted at t = 1,
and so on. After converting all relative transformations to absolute transformations, we average all
predictions at the same timestep to get smoother transformations.

Visualization. From Figure 3 we can see that smooth decoding stategy is effective in mitigating jitter.

t=60 t=100

MEgoHand
without
Smooth

Decoding

MEgoHand

Figure 3: Frames randomly sampled from task "Stir the bowl with spatula” of TACO. Without
decoding strategy, the predicted trajectory exhibits more fluctuations.
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B Additional Visualizations

B.1 Zero-Shot Depth Estimation & Virtual Depth Rendering

In Figure 4, we visualize the zero-shot depth estimation of UniDepthV2 [29] and the virtual depth
rendered from object models. Three datasets (OAKINK2,HOT3D,ARCTIC) are involved, as there
are no real depth frames in these datasets.

Zero-Shot Depth Estimation Virtual Depth Rendering H o

. I

OAKINK2
Zero-Shot Depth Estimation Virtual Depth Rendering
S
HOT3D ] [
Zero-Shot Depth Estimation Virtual Depth Rendering
ARCTIC
[ |

Figure 4: Colorbars indicate the absolute depth values (unit: m). The depth values of all depth
frames fall within [0, 2].

B.2 HOI hand motion Generation
We visualize more clips of policy inference in Figures 6 and 5. MEgoHand is superior to baseline

LatentAct in most cases.

C Empirical Results

We report the average metrics of MEgoHand in each dataset in Table 3.

Table 3: Average metrics across evaluation (TACO, HOI4D, H20, HOT3D, OakInk?2) and testing
datasets (ARCTIC, HOLO). The unit for MRE is radians; the remaining metrics are measured in
centimeters.

Dataset MPJPE MPJPE-PA MPVE MPVE-PA MWTE MRE

H20 3.013 0.352 2.969 0.334 2450  0.099
HOI4D 8.958 0.856 8.933 0.826 8462 0.213
HOT3D 6.437 0.236 6.352 0.228 5.045  0.086
OAKINK2  3.424 0.217 3.380 0.205 2.837  0.071
TACO 4.936 0.358 4.899 0.346 4465 0.131
ARCTIC 7.358 1.161 7.268 1.106 5958  0.398
HOLO 5.775 0.697 5.747 0.673 5437 0.271
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Figure 5: Additional visualizations of LatentAct and MEgoHand. Green part is sampled from
training sets. Blue part is sampled from evaluation sets. The Yellow part is sampled from testing sets.

D Social Impact

MEgoHand forwards an important step toward universal hand-object motion generation from multiple
modalities including task instruction, RGB observation, depth image, and initial conditions. There
are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.
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