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Abstract
We present a theory for the construction of out-
of-distribution (OOD) detection features for neu-
ral networks. We introduce random features
for OOD through a novel information-theoretic
loss functional consisting of two terms, the first
based on the KL divergence separates resulting
in-distribution (ID) and OOD feature distributions
and the second term is the Information Bottleneck,
which favors compressed features that retain the
OOD information. We formulate a variational
procedure to optimize the loss and obtain OOD
features. Based on assumptions on OOD distribu-
tions, one can recover properties of existing OOD
features, i.e., shaping functions. Furthermore, we
show that our theory can predict a new shaping
function that out-performs existing ones on OOD
benchmarks. Our theory provides a general frame-
work for constructing a variety of new features
with clear explainability.

1. Introduction
Machine learning (ML) systems are typically designed un-
der the assumption that the training and test sets are sampled
from the same statistical distribution. However, this often
does not hold in practice. For example, during deployment,
test data may include previously unseen classes. In such
cases, the ML system may produce incorrect results with
high confidence (DeVries & Taylor, 2018). Therefore, it is
crucial to develop methods that enable ML systems to detect
out-of-distribution (OOD) data. Detecting OOD data allows
users to be alerted of potentially unreliable predictions and
enables the system to adapt accordingly. OOD detection has
gained considerable attention recently (Yang et al., 2022).

Recent state-of-the-art (SoA) (Sun et al., 2021; Djurisic
et al., 2022; Ahn et al., 2023; Sun & Li, 2022; Zhao et al.,
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2024; Xu et al., 2023; Zhang et al., 2024) has focused on
identifying descriptors of the data that can distinguish be-
tween OOD and ID data. In particular, feature-shaping
functions have been shown to be promising. In feature
shaping, features, usually from the penultimate layer of a
pre-trained network, are input to a shaping function and
then used to score incoming data. Examples of these ap-
proaches include ReAct (Sun et al., 2021), FS-OPT (Zhao
et al., 2024), VRA (Xu et al., 2023), ASH (Djurisic et al.,
2022). While these approaches have provided advancements
to SoA on several benchmarks, most of these are empirically
driven rule-based methods, and may not generalize well over
new unseen datasets (Zhao et al., 2024). It is thus benefi-
cial to understand under what conditions that these methods
will work so that we may understand when to employ one
method over another. One way to do this is to develop
a theory where one can derive features for OOD detection
(henceforth called OOD features for brevity) as a function of
underlying assumptions (e.g., statistical distributions). This
could potentially offer a way to critically examine existing
methods. It could also potentially enable the systematic
development of new features that may generalize better.

Towards this goal, we develop a theory to formulate OOD
features based on underlying statistical distributions of ID
and OOD distributions. We develop a novel loss functional,
based on information theory, defined on the set of OOD fea-
tures whose optimization yields OOD features as a function
of the underlying statistical distributions. Unlike current
approaches, our OOD features are random and thus fol-
low a statistical distribution. The mean value models the
deterministic shaping features in the literature.

Our loss aims to determine the OOD feature that maxi-
mally separates resulting ID and OOD feature distributions
through the Kullback-Leiber (KL) divergence. As separat-
ing distributions by itself is ill-posed, we propose a novel use
of the Information Bottleneck (IB) (Tishby et al., 2000) as
regularization. In our use, IB seeks compressed features that
preserve the information the data has about OOD, aiming for
a feature representation that contains only the information
necessary for OOD detection. As this loss functional is de-
fined on probability measures (representing the distribution
of the OOD feature), it is an infinite dimensional optimiza-
tion problem, and thus we use the calculus of variations
(Troutman, 2012) to derive the optimization procedure. Our
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theory offers an explanation of several techniques employed
in SoA rule- based approaches, and suggests a new shaping
function that out-performs other shaping functions in SoA.

There have been recent theories for OOD detection (Zhao
et al., 2024; Xu et al., 2023). These works have intro-
duced the novel idea of formulating OOD features through
a loss function rather than empirically driven rule-based
approaches of the past, and motivates our work. In contrast
to the aforementioned works, our theory employs a novel
information-theoretic loss function, which offers several ad-
vantages. Our theory shows how different assumptions on
the OOD distribution lead to different OOD feature shaping
approaches. Our theory is able to more accurately offer
an explanation for properties of several SoA rule-based
approaches as being from different underlying OOD distri-
butions and different regularization (see next section for a
more detailed discussion).

In summary, our contributions are as follows: 1. We intro-
duce a novel theory and framework for deriving OOD fea-
tures from neural networks. This involves the formulation
of OOD features as a variational problem that formulates
OOD features as random features through a novel loss func-
tional that contains two terms, one that maximizes the KL
divergence between the random feature under ID and OOD
distributions and another term, the Information Bottleneck,
which extracts the information from the data that is relevant
for OOD detection. 2. We develop the techniques to op-
timize the loss functional using the calculus of variations,
and specifically derive a computationally feasible algorithm
in the one-dimensional data case. 3. Using our framework,
we show how the OOD shaping functions change based on
various data distributions. We relate the mean value of our
OOD features to existing OOD shaping functions. 4. We
introduce a novel piece-wise linear OOD feature shaping
function predicted through our theory, and show that it leads
to state-of-the-art results on OOD benchmarks.

1.1. Related Work

We briefly review related work; the reader is referred to
(Yang et al., 2022) for a survey. Post-hoc approaches of
OOD detection, which are applied to pre-trained models
without additional training, have focused on constructing
scoring functions to differentiate OOD from in-distribution
data, leveraging confidence scores (Hendrycks & Gimpel,
2018a; Zhang & Xiang, 2023; Liang et al., 2020), energy-
based metrics (Liu et al., 2021; Wu et al., 2023; Elflein et al.,
2021) and distance-based measures (Lee et al., 2018; Sun
et al., 2022). For example, MSP (Hendrycks & Gimpel,
2018a) used the maximum softmax probability as a con-
fidence score. ODIN (Liang et al., 2020) improved OOD
detection by applying temperature scaling and adding small
perturbations to input data before computing the maximum

softmax probability. (Ren et al., 2019) proposes to use the
likelihood ratio, which has been proposed over likelihoods,
which do not work well (Kirichenko et al., 2020). (Lee
et al., 2018) leveraged Mahalnobis distance to compute the
distance between features and classes. KNN (Sun et al.,
2022) uses a non-parametric approach. Energy methods
(Liu et al., 2021) present an alternative to softmax scores by
employing the Helmholtz free energy. Energy scoring has
been adopted by several OOD feature-shaping approaches;
feature-shaping is the focus of our work.

Feature-shaping approaches to OOD detection: Several
methods perform OOD detection by computing features
of the output of layers of the neural network (Sun et al.,
2021; Kong & Li, 2023; Djurisic et al., 2022; Fort et al.,
2021b; Zhao et al., 2024) before being input to a score.
In ReAct (Sun et al., 2021), the penultimate layer outputs
are processed element-wise by clipping large values. It
is empirically noted that OOD data results in large spikes
in activations, which are clipped to better separate the ID
and OOD distributions. BFAct (Kong & Li, 2023) uses
the Butterworth filter to smoothly approximate the clipping.
ASH computes features by sparsifying intermediate outputs
of the network by flooring small values to zero and passing
larger values with possible scaling. DICE (Sun & Li, 2022)
is another approach to sparsification. Different than element-
wise approaches, ASH then does vector processing of the
shaped feature before input to a score. VRA (Xu et al., 2023)
and (Zhang et al.) derive element-wise shaping functions by
an optimization approach.

Optimization-based approaches for feature shaping: (Xu
et al., 2023) formulates a loss function for deterministic
OOD features that aims to separate the means of ID and
OOD feature distributions, and regularization is added to
keep the OOD feature near the identity through the L2 norm.
(Zhao et al., 2024) analyzes a similar loss function but with
point-wise rather than L2 regularization. They further offer
simplifications to remove the reliance on the OOD distri-
bution. These works have introduced the novel idea of
formulating OOD features through a loss function. Our ap-
proach offers several advantages. Over (Zhao et al., 2024),
we present a framework in which we can study the OOD fea-
ture as a function of the underlying OOD distribution. This
shows the implicit assumptions in several existing methods.
In contrast, (Zhao et al., 2024) aims to remove dependence
on the OOD distribution. Our results show that feature
shaping can vary as a function of the underlying OOD distri-
bution. Over (Zhao et al., 2024; Xu et al., 2023), our theory
offers an explanation of qualitative properties of existing
SoA methods. For instance, clipping of large values in OOD
features (of ReAct (Sun et al., 2021)) is associated with a
higher Information Bottleneck (IB) regularization which is
needed for noisier OOD datasets. Negative slope at large
values in (Zhao et al., 2024; Xu et al., 2023) is associated
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with low IB regularization. Also, pruning of small feature
values in (Xu et al., 2023; Djurisic et al., 2022) is associated
with OOD distributions with heavier tails. See Section 4 for
more technical details.

2. Variational Formulation of OOD Features
We formulate OOD features as an optimization problem. For
the sake of the derivation, we will assume that the probabil-
ity distributions of ID and OOD features from the network
are given in this section. In practice, the ID can be estimated
by training data. In Section 4, we will then study the OOD
features under various distributions to show how features
vary with distribution and offer plausible assumptions made
by existing feature shaping approaches. We will also make
reasonable assumptions on the OOD distribution to derive
new prescriptive OOD features for use in practice.

Current OOD features in the OOD literature are computed
by processing features from the neural network through
a deterministic function (e.g., clipping). In contrast, we
propose to generalize that approach by allowing for random
functions. Let Z denote the feature (a random variable) from
the network (penultimate or intermediate layer feature). We
denote by Z̃ the random OOD feature (a random variable)
that we seek to determine. The distribution of Z̃ is denoted
p(z̃|z). Thus, rather than solving for a deterministic function
f(Z), we instead solve for a random feature Z̃ represented
through p(z̃|z) as in Information Theory (Cover, 1999).
Thus, given a feature z, the OOD feature is Z̃ ∼ p(z̃|z).
We will primarily be concerned with the mean value of the
distribution in this paper to relate to other feature shaping
methods. Let X be the random variable indicating the data
(e.g., image, text), and Y be the random variable indicating
in- (Y = 0) and out-of- (Y = 1) distribution data. Note this
forms a Markov Chain Y → X → Z → Z̃. The Markov
Chain property is needed to construct one of the terms of
our loss function, discussed next.

We propose a novel loss functional to design the OOD ran-
dom feature. This loss functional is defined on p(z̃|z). The
first term aims to separate the ID and OOD distributions
of the random feature Z̃. This is natural since we would
like to use the OOD feature to separate the data into in
or out-of-distribution. To achieve this separation, we pro-
pose to maximize the symmetrized KL-divergence between
p(z̃|Y = 0) and p(z̃|Y = 1). Note recent work (Zhao et al.,
2024) also seeks to separate distributions, however, differ-
ently than our approach as only the means of the distribution
are separated. Also, note that p(z̃|Y = y) is a function of
p(z̃|z), the variable of optimization, and thus the KL term
is a function of p(z̃|z). This term is defined as follows:

DKL(p(z̃|z)) = DKL[p(z̃|Y = 1) || p(z̃|Y = 0)]+

DKL[p(z̃|Y = 0) || p(z̃|Y = 1)], (1)

where

DKL[p || q] =
∫

p(x) log
p(x)

q(x)
dx, and (2)

p(z̃|y) =
∫

p(z̃|z)p(z|y) dz. (3)

Note that we have used that p(z̃|z, y) = p(z̃|z) as the
feature is constructed the same for both ID and OOD
data. These equations shows the dependence of the OOD
feature distributions on p(z̃|z). The KL divergence is a
natural choice for separating distributions and a standard
information-theoretic quantity.

Unconstrained maximization of KL divergence is ill-posed,
and regularization is needed. Also, it is possible to reduce
the dimensions of Z to a few dimensions that are maximally
separated but remove information necessary to fully char-
acterize OOD data. Therefore, we need to ensure that Z̃
contains all the information relevant to accurately determine
OOD data. With these considerations, we aim to compress
the dimensions of Z to form a simple/compact feature, but
in a way that preserves the OOD information (contained in
the variable Y ). To achieve this, we adapt the Information
Bottleneck (Tishby et al., 2000). In the Information Bottle-
neck method, the quantization of a random variable X is
considered to form the random variable T in such a way to
preserve information about a random variable Y , where Y
forms a Markov Chain with X . A functional is formulated
such that when minimized forms T . This is precisely the
functional we would like to determine Z̃ (where Z̃ is anal-
ogous to T and Z is analogous to X). The second term of
our functional, following from (Tishby et al., 2000), is

IB(p(z̃|z)) = I(Z; Z̃)− βI(Z̃;Y ), (4)

where I indicates mutual information, and β > 0 is a hy-
perparameter. The first term of (4) is the compression term
that measures the mutual information between Z and Z̃;
this term is minimized and thus the term favors Z̃ to be a
compressed version of Z. The second term maximizes the
mutual information between Z̃ and Y , and thus favors Z̃ to
retain OOD relevant information.

Thus, our combined loss functional is

L(p(z̃|z)) = −DKL(p(z̃|z)) + αIB(p(z̃|z)), (5)

which is minimized to determine the conditional distribution
of Z̃, p(z̃|z), and α > 0 is a hyperparameter. Our goal is
to determine the optimal p(z̃|z), which can then be used
with a score function to determine whether data z is OOD
or not. Note that we are seeking to optimize over the set of
continuous probability distributions, which forms an infinite
dimensional optimization problem. To gain intuition into
the loss functional above, in particular to see that it forms a
well-posed problem and that IB regularization is needed, we
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analyze a simple case with 1D Gaussian distributions that
result in closed form solution in Appendix A. We verify in
the next section that the loss functional, for more complex
distributions/features, yields well-posed problems and hence
result in an optimal solution.

3. Optimization for OOD Features
In this section, we discuss the optimization of the loss func-
tional (5). The loss functional is defined on continuous
probability density functions p(z̃|z), where z, z̃ are continu-
ous. This is an infinite dimensional optimization problem,
and to find the optimal feature one can use the calculus of
variations to determine the gradient of L (Troutman, 2012).
Setting the gradient to zero and solving for the probability
distribution that satisfies the equation gives the necessary
conditions for the optimizer. For our loss, that does not yield
a closed form solution and so we instead use the gradient to
perform a gradient descent.

3.1. Loss Under Element-wise Independence of Feature

Because formulating numerical optimization for general
multi-dimensional distributions is difficult, we make some
simplifications to gain insights to our theory and approach.
Even with these simplifications, we will show that the ap-
proach can explain popular approaches in the literature and
lead to a new state of the art approach. Our first simplifica-
tion (which is similar to element-wise processing assump-
tions made in existing methods, e.g., (Sun et al., 2021; Zhao
et al., 2024)) is to assume that the conditional feature distri-
bution p(z̃|z) can be factorized as p(z̃|z) =

∏n
i=1 p(z̃i|z),

which assumes conditional independence of the components
of z̃ and that each component has the same conditional dis-
tribution. We also assume that p(z|y) =

∏n
i=1 p(zi|y), that

is, the components of z are independent conditioned on
y. Under these assumptions, the optimization of the loss
functional (5) reduces to the optimization of several opti-
mization problems defined on one-dimensional probability
distributions from each feature component (see Appendix B
for details):

argmin
p(z̃i|zi)

Li(p(z̃i|zi)), i ∈ {1, . . . , n}, (6)

where

Li(p(z̃i|zi)) = −DKL[p(z̃i|0) || p(z̃i|1)]−
DKL[p(z̃i|1) || p(z̃i|0)] + α[I(Z̃i;Zi)− βI(Z̃i;Y )]. (7)

Thus, we next provide an optimization procedure for the loss
functionals above, defined on one-dimensional distributions.
For simplicity of notation, we now omit the i subscripts.

3.2. Gradient of Loss Functional

We will use gradient descent to optimize the loss functional.
Since the problem is non-convex, gradient descent is a natu-
ral choice. Given the infinite dimensional problem, we use
the calculus of variations to compute the gradient.

We perform the computation for the gradient of (5) in Ap-
pendix C and summarize the result in the following theorem:
Theorem 3.1 (Gradient of Loss). The gradient of
DKL(p(z̃|z))) (1) with respect to p(z̃|z) is given (up to
an additive function of z) by

∇p(z̃|z)DKL = p(z|0) · [l(z) log l(z̃)− l(z̃)]

− p(z|1) ·
[
l(z)−1 log l(z̃) + l(z̃)−1

]
, (8)

where p(z|y) = p(z|Y = y), p(z̃|y) = p(z̃|Y = y) and

l(z) =
p(z|1)
p(z|0)

, and l(z̃) =
p(z̃|1)
p(z̃|0)

. (9)

The gradient of IB(p(z̃|z)) (4) is given by ∇p(z̃|z)IB =∑
y∈{0,1}

p(y)p(z|y)
[
log

p(z̃|z)
p(z̃)

− β log
p(z̃|y)
p(z̃)

]
. (10)

The gradient of the full loss L in (5) is then

∇p(z̃|z)L = −∇p(z̃|z)DKL + α∇p(z̃|z)IB. (11)

To simplify further and study a model that more closely
resembles OOD feature shaping functions in the literature,
we make the following assumption:

p(z̃|z) ∼ N (µ(z), σc(z)), (12)

where N indicates Gaussian distribution, z̃, z ∈ R and
µ, σc : R → R are the mean/standard deviation. We use
the sub-script c to denote “conditional” to distinguish it
from other sigmas used below. We can think of this model
as random perturbations of a deterministic feature shaping
function µ. The OOD’s feature mean value for a given
network feature z is µ(z). The closer σc is to zero, the closer
the approach is to deterministic feature shaping. Note if the
optimization turns out to result in σc = 0, then deterministic
functions would be optimal. In our numerous simulations,
this does not happen and thus random OOD features appear
to be more optimal. We now compute the gradients with
respect to µ and σc:
Theorem 3.2 (Loss Gradient Under Gaussian Random OOD
Feature (12)). The gradient of the loss (5) under (12) is

∇µL(z) =

∫ ∇p(z̃|z)L(z̃, z)

σ2
c (z)

[z̃ − µ(z)]p(z̃|z) dz̃ (13)

∇σcL(z) =

∫ ∇p(z̃|z)L(z̃, z)

σc(z)

[
(z̃ − µ(z))2

σ2
c (z)

− 1

]
p(z̃|z) dz̃,

(14)

where ∇p(z̃|z)L is given in (11).
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3.3. Numerical Optimization of Loss

We implement a gradient descent algorithm using a dis-
cretization of the continuum equations above. We choose
a uniform discretization of the space of z, i.e., {zi}i ⊂ R.
We represent µ and σc through their samples: µi = µ(zi)
and σc,i = σc(zi). We specify formulas for p(z̃) and p(z̃|y)
under the discretization, which will be required in the com-
putation of the approximation to the gradient:

p(z̃|y) =
∑
i

p(z̃|zi)p(zi|y)∆zi

=
∑
i

1

σc,i
Gσc,i

(z̃ − µi)p(zi|y)∆zi (15)

p(z̃) =
∑
y

p(y)p(z̃|y). (16)

Thus, p(z̃|y) is approximated as a mixture of Gaussians.
The gradient descent is shown in Algorithm 1, which as-
sumes ID and OOD distributions and determines the Gaus-
sian random feature parameterized through µ and σc.

The complexity for this optimization (which is done off-line
in training) is O(NMK) where N is the number of samples
of p(z|y), M is the samples of p(z̃|z) and K is the number
of gradient descent iterations. On a single A100 GPU, this
took less than a minute.

4. A Study of OOD Features vs Distribution
In this section, we study the resulting OOD features based
on various choices of distributions using the algorithm in the
previous section, and relate these choices to OOD feature
shaping techniques that are present in the literature. Note
that while in practice the OOD distribution is unknown, our
theory nevertheless suggests the underlying distributional
assumptions of existing methods. This is useful to under-
stand when these methods will generalize as a function of
the type of OOD data. We will also derive a generic OOD
shaping function, encompassing properties of several distri-
butions, and show that this shaping function can lead to SoA
performance in the next section. Note in practice, we have
observed that distributions from OOD datasets to exhibit
similarities to the distributions studied, see Appendix H. We
will further rationale on studying these distributions below.

For this study, we will assume the assumptions of Sec-
tion 3.3, i.e., that the OOD features are element-wise
independent and that the OOD feature is Gaussian, i.e.,
p(z̃|z) ∼ N (µ(z), σc(z)). We will further assume that the
ID distribution is Gaussian, i.e., p(z|0) ∼ N (µ0, σ). We
make this assumption for simplicity and that features in
network layers can be approximated well with a Gaussian,
as evidenced empirically in (Xu et al., 2023). We will study
three OOD distributions next: Gaussian, Laplacian and a
distribution we propose based on the Inverse Gaussian.

Algorithm 1 1D Gaussian Random Feature Computation

Input: IN/OOD Distributions p(z|y), α, β and learning rate η

Output: Converged mean µi, std σc,i for each i

Initialize: µi = zi, σc,i = const
for n iterations do

for zi do
Compute a discretization of z̃ in its likely range: z̃ji ∈

(µi − kσc,i, µi + kσc,i) where k ≥ 3

for z̃ij do
Compute∇p(z̃|z)L(z̃

i
j , zi) =

p(zi|0) ·
[
l(zi) log l(z̃

i
j)− l(z̃ij)

]
−

p(zi|1) ·
[
l(zi)

−1 log l(z̃ij) + l(z̃ij)
−1

]
+

α
∑

y∈{0,1}

p(y)p(zi|y)
[
log

p(z̃ij |zi)
p(z̃ij)

− β log
p(z̃ij |y)
p(z̃ij)

]

end for
Compute∇µL(zi) =

∑
j

∇p(z̃|z)L(z̃
i
j , zi)

σ2
c,i

(z̃ij − µi)p(z̃
i
j |zi)∆zi

Compute∇σcL(zi) =

∑
j

∇p(z̃|z)L(z̃
i
j , zi)

σc,i

[
(z̃ij − µi)

2

σ2
c,i

− 1

]
p(z̃ij |zi)∆zi

end for
for zi do

µi ← µi − η∇µL(zi)

σc,i ← σc,i − η∇σcL(zi)

end for
end for

Gaussian OOD: First, we study the case of a Gaussian for
the OOD distribution, as its the most common distribution
in probabilistic analysis. Let p(z|1) ∼ N (µ1, σ). For il-
lustration, we choose µ0 = −0.5, µ1 = 0.5 and σ = 0.5
and α = 1.0, β = 10. The resulting converged result of
the optimization for µ and σc is shown in Figure 1 (positive
part). No feature shaping would mean that µ is the identity
map, and σc = 0; this solution is plotted in dashed blue.
Notice that the optimal mean value is not the identity. The
mean indicates that the feature has positive slope for small
values of |z| (similar to (Sun et al., 2021)) and negative
slope for large values of |z| (similar to (Zhao et al., 2024)).
In Appendix E.2, we show that under different distribution
parameters, one can get negative values for small |z| as
in (Zhao et al., 2024). Interestingly, the optimal standard
deviation σc(z) is non-zero, indicating randomness in this
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Figure 1. OOD Gaussian Feature Under Gaussian ID/OOD Distri-
butions. Mean (left), standard deviation (right) of the feature.

case is beneficial in terms of the loss. In fact, in all of our
simulations across distributions and their hyperparameters,
we’ve observed non-zero standard deviation.

In Figure 2(a), we show the effects of the Information Bot-
tleneck weight α. The impact of β on the shape is studied
in Appendix E.1. For α larger (higher regularization), the
mean of the feature becomes flat for |z| large, similar to
clipping that is used in popular methods (Sun et al., 2021;
Xu et al., 2023).1 See Figure 3 for a plot of existing fea-
ture shaping methods. Even under the simplifying Gaussian
assumptions, we see that the our shaping functions have
properties of existing methods.

Laplacian OOD Distribution: Next, we consider the Lapla-
cian distribution for the OOD distribution, i.e., p(z|1) =
1
2b exp (−|z − µ1|/b). The intuition for choosing this dis-
tribution is that it has a heavier tail than the Gaussian, and
thus, is better able to model outliers, and it seems reasonable
OOD data would be considered outliers. We show the result
of the mean of the feature in Figure 2(b). We notice that
when |z| is small, the mean OOD feature is zero, which
indicates a suppression of low values (this is used in VRA
(Xu et al., 2023) and ASH (Djurisic et al., 2022)). Note that
this is consistent across α values, larger values increases the
suppression region. We also see that large values of |z| are
being clipped or suppressed (with larger α) approaching a
zero slope. The jump discontinuity is also present in VRA
and ASH. There also appears to be a positively sloped linear
function for intermediate values of |z|, similar to VRA.

Inverse Gaussian OOD Distribution: Next, we consider
a distribution that may be a distribution that generically
holds for OOD data and can be used in the absence of prior
information of the OOD distribution. If the ID distribu-
tion is Gaussian, we can formulate a distribution that has
high probability outside the domain that the ID distribu-
tion has high probability. To this end, one can consider
a variant of the Inverse Gaussian defined as follows. Let
d(z) = |z − µ0|/σ where µ0, σ are the mean and standard

1Note our approach does not assume energy scoring like SoA,
which changes the scale of the features. However, our approach
uncovers and explains similar shapes irrespective of the score.

deviation of the ID distribution. This is a distance to the ID
distribution. We would like the OOD distribution to have
high probability when d(z) is large, and thus we consider
p(z|1) ∼ IG(d(z);µ1, λ) where IG denotes the inverse
Gaussian distribution:

pIG(x;µ, λ) =

√
λ

2πx3
exp

(
−λ(x− µ)2

2µ2x

)
, (17)

which is plotted in Appendix D. Note that there is some
overlap of this distribution with the ID Gaussian. As noted
in Figure 2(c), the Inverse Gaussian distribution results in
a qualitatively similar OOD feature compared to the Lapla-
cian distribution: suppression of small |z| values and clip-
ping/flattening of large |z| values and a positively sloped
linear function for intermediate values of |z|. For α large
we have flattening similar to clipping and α smaller results
in a negative slope similar to the other distributions.

We summarize key observations. Clipping as done in Re-
Act seems to be a universal property across all the OOD
distributions for large regularization. In the next section
we show that for noiser OOD datasets larger regularization
is beneficial, and so the clipping mitigates noise, which is
noted in (Sun et al., 2021). Next, the OOD distributions
that are heavier tailed result in suppression (zeroing out) of
low |z| values. This is consistent with the VRA and ASH
methods. All distributions yield a positively sloped region
for intermediate values of |z|. Our results suggest ReAct
and FS-OPT may be operating under an implicit Gaussian
OOD assumption for high regularization (ReAct) and low
regularization (FS-OPT). VRA and ASH seem to implicitly
assume heavier tailed OOD distributions.

Piecewise Linear Shaping: The above mean shaping func-
tions (from Gaussian, Laplace and Inverse Gaussian OOD
distributions) all approximately fit in a particular piece-
wise linear function family as shown in Figure 4, where
z1, z2, y0, y1a, y1b,m1,m2 are hyperparameters. Therefore,
in practice, if the distribution is unknown, one can choose
this family of shaping functions that would implicitly as-
sume any of the aforementioned three distributions. Be-
cause many existing SOA methods implicitly make one of
the three distributional assumptions, this family makes more
general distributional assumptions than existing SOA, thus
potentially offering generalization to more OOD datasets
while not being too general so as to lose discriminability. In
the experimental section we explore this family of shaping
functions, and show we can obtain SoA results.

5. Implementation of New OOD Detection
In this section, we provide the implementation details for
our new approaches to OOD detection, using the simplifying
assumptions presented in Section 3. We provide the details
for two cases where the ID/OOD distributions are known
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(a) (b) (c)
Figure 2. The mean of the OOD Gaussian Feature under the Gaussian (left), Laplace (middle) and Inverse Gaussian (right) OOD
distributions for varying weights on the Information Bottleneck, α. For all plots, β = 10. For the Gaussian case, p(z|0) ∼ N (−0.5, 0.5)
and p(z|1) ∼ N (0.5, 0.5). For the Laplace case, p(z|0) ∼ N (0, 0.66) and p(z|1) ∼ Lap(0, 1). In the Inverse Gaussian case,
p(z|0) ∼ N (0, 0.66) and p(z|1) ∼ IG(d(z); 3.3, 15). For visualization purpose, we only show the positive part.

Figure 3. Plot of existing feature shaping functions from SoA meth-
ods: ReAct (Sun et al., 2021), VRA (Xu et al., 2023), FS-Opt (Zhao
et al., 2024), and variants of ASH (Djurisic et al., 2022).

Figure 4. A piece-wise linear family of functions that approxi-
mately encompasses the mean value of our OOD feature shaping
functions across OOD distributions examined in this paper.

and unknown. In the latter case, we apply the piecewise
family of feature shaping derived in the previous section
(Figure 4). We assume that a validation set of ID and OOD
data is available (as in existing literature) and the choices
are given in our experiments section. A trained neural net-
work is also provided. The network feature vectors and their
ID/OOD label for the validation set are {zi, yi}. Consis-
tent with our simplifying assumptions and literature, each
component of the network feature z is processed indepen-
dently and for this paper, they will be processed by the same
shaping function µ.

Off-line-Training: Under the case that the forms of the
ID and OOD distributions are known, the hyperparameters
of the distributions are estimated from the validation set
(rasterizing the vector data). Using the fitted distributions,
Algorithm 1 is run to compute the optimal µ∗, σ∗

c . In the
case that the distributions are unknown, we assume that

the feature shape fits the piecewise family in the previous
section (i.e., the OOD distributions are one of Gaussian,
Laplacian or IG). The hyper-parameters for the piecewise
family are tuned by e.g., minimizing the false positive rate
at true positive rate of 95% (FPR95) metric on the validation
set - this gives the optimal shaping function µ∗.

Online Operation: During operation, the network feature z
is extracted, and then shaped via the function z̃ = µ∗(z) =
(µ∗(z1), . . . , µ

∗(zn)). Subsequently, z̃ is input to a scoring
function (e.g., in this paper, energy score (Liu et al., 2021)),
which is then thresholded to produce the ID/OOD label.

6. Experiments
We validate our theory by comparing our new shaping func-
tion to SoA for OOD detection on standard benchmarks.

Datasets and Model architectures. We experiment
with ResNet-50(He et al., 2016), MobileNet-v2 (Sandler
et al., 2018), vision transformers ViT-B-16 and ViT-L-
16 (Dosovitskiy et al., 2021) with ImageNet-1k (Rus-
sakovsky et al., 2015) as ID data, and benchmark on the
OOD datasets/methods used in (Zhao et al., 2024). For the
ImageNet benchmark, we evaluate performance across eight
OOD datasets: Species (Hendrycks et al., 2022), iNaturalist
(Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou
et al., 2018), OpenImage-O (Wang et al., 2022), ImageNet-
O (Hendrycks et al., 2021), Texture (Cimpoi et al., 2014),
and MNIST (Deng, 2012). Moreover, we also experiment
with CIFAR 10 and CIFAR 100 as ID data, for which we
use a ViT-B-16 (Dosovitskiy et al., 2021) finetuned on CI-
FAR10/100 consistent with (Fort et al., 2021a), and a MLP-
Mixer-Nano model trained on CIFAR10/100 from scratch.
We evaluate eight OOD datasets: TinyImageNet (Torralba
et al., 2008), SVHN (Netzer et al., 2011), Texture (Cimpoi
et al., 2014), Places365 (Zhou et al., 2018), LSUN-Cropped
(Yu et al., 2016), LSUN-Resized (Yu et al., 2016), iSUN

7



A Variational Information Theoretic Approach to Out-of-Distribution Detection

(Xu et al., 2015), and CIFAR100/ CIFAR10 (CIFAR 100
treated as OOD for CIFAR 10, and vice-versa).

We compare our results against the SoA methods across
two categories - penultimate layer element-wise feature
shaping approaches, which our theory currently applies to,
and other methods. Penultimate layer feature shaping ap-
proaches involve element-wise feature shaping functions
applied directly to the penultimate layer of the model be-
fore computing the energy score for OOD detection. Ap-
proaches in this category are: Energy (Liu et al., 2021),
ReAct (Sun et al., 2021), BFAct (Kong & Li, 2023), VRA-
P (Xu et al., 2023) and FS-OPT (Zhao et al., 2024). The
second category, which are not directly comparable to our
approach because they may not involve feature shaping or
additions to feature matching, but are included for reference,
are softmax-based confidence scoring (MSP (Hendrycks &
Gimpel, 2018b)), input perturbation and temperature scaling
(ODIN (Liang et al., 2020)), intermediate-layer shaping and
subsequent processing by following layers (ASH-P, ASH-
B, ASH-S (Djurisic et al., 2022)), or weight sparsification
(DICE (Sun & Li, 2022)).

As in ReAct (Sun et al., 2021), for ImageNet-1k bench-
marks we use a validation set comprising the validation
split of ImageNet-1k as ID data, and Gaussian noise im-
ages as OOD data, generated by sampling from N (0, 1)
for each pixel location, to tune the hyperparameters of our
piecewise linear activation shaping function. For CIFAR
10/100 benchmarks, following ODIN (Liang et al., 2020),
we employ a random subset of the iSUN dataset (Xu et al.,
2015) as validation OOD data for our hyperparameter tun-
ing. As ID validation data for CIFAR10/100 we use the
test splits of the corresponding datasets. The hyperparam-
eters are optimized using Bayesian optimization (Frazier,
2018), by minimizing the FPR95 metric on the validation
set. Resulting hyperparameters are reported in Appendix G.

Metrics. We utilize two standard evaluation metrics, follow-
ing (Sun et al., 2021; Zhao et al., 2024): FPR95 - the false
positive rate when the true positive rate is 95% (abbreviated
as FP), and the area under the ROC curve (AU).

Results. The results on the ImageNet-1k benchmarks
(Table 1) and the CIFAR 10/100 benchmarks (Table 2)
demonstrate that our approach achieves state-of-the-art per-
formance among comparable feature-shaping methods in
the previously mentioned category of methods. Specifically,
when compared to pointwise feature-shaping techniques
such as ReAct, BFAct, VRA-P, and FS-OPT, our method
consistently outperforms these approaches, yielding the best
overall results in this category.

While ASH variants marginally outperform our method in
some cases, it is important to note that ASH employs a fun-
damentally different approach. ASH modifies activations

through intermediate layer pruning and rescaling of features,
which are then routed back into the network for further pro-
cessing, and thereby is not an element-wise feature shaping
approach. Our theory currently does not address this case.

For the vision transformers ViT-B-16 and ViT-L-16, our
method achieves the lowest FP among all competing meth-
ods, providing evidence of generalization across different
architectures. Overall, our results demonstrate that our fea-
ture shaping is highly competitive with the latest SoA, along
with providing a theoretical explanation.

Computational Time: The inference cost of our feature
shaping method is on the order of microseconds for a
256×256×3 image, using PyTorch on an NVIDIA A100-
80GB GPU. This is comparable to other piecewise linear
shaping approaches such as ReAct and VRA.

Regularization as a Function of OOD Data. We study
how IB regularization should be chosen with respect to prop-
erties of OOD data. This is important in practical scenarios.
In particular, we conduct an experiment to suggest higher
IB regularization is beneficial for “noisier” OOD datasets.

To this end, we conduct a series of controlled experiments
using ResNet-50 trained on the ImageNet-1k dataset. We
aim to determine the structure of optimal feature-shaping
functions as a function of noise. We apply additive Gaus-
sian noise N (0, σ) to the ImageNet-1k validation set and
consider them as OOD data. The standard deviation σ used
are {25, 50, 100, 150, 255} to create 5 OOD datasets. Visu-
alizations of this data and activation patterns are shown in
Appendix F. We observe that this data closely resembles
the high variance of activation patterns in OOD datasets as
noted in (Sun et al., 2021), and so our noisy data serves to
mimic OOD data with varying noise levels. By examining
how the learned features adapt under different noise levels,
we gain insights into the relationship between the OOD data
and the IB regularization term for optimal shaping.

In Figure 5, we plot the IB term of the obtained optimal shap-
ing function optimized over hyperparameters at each noise
level. Note we have used the Laplacian OOD distribution to
estimate the IB term (Inverse Gaussian also results in similar
results). It is seen that higher noise levels result in optimal
shaping functions with lower IB values, which correspond
to higher degree of regularization of the IB term in our loss
functional. Thus, noisier OOD datasets require higher IB
regularization for best OOD detection performance.

7. Conclusion and Future Work
We have presented a novel theory for OOD feature construc-
tion. OOD features were computed as the optimizer of a loss
functional consisting of a term maximizing the KL distance
between resulting features under ID and OOD distributions
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ResNet50 MobileNetV2 ViT-B-16 ViT-L-16
Method FP ↓ AU ↑ FP ↓ AU ↑ FP ↓ AU ↑ FP ↓ AU ↑

E
le

m
en

t-
w

is
e

Fe
at

ur
e

Sh
ap

in
g Energy 60.97 81.01 61.40 82.83 73.96 67.65 74.89 70.11

ReAct 42.29 86.54 54.19 85.37 73.82 76.86 76.16 81.07
BFAct 43.87 86.01 52.87 85.78 77.64 80.16 84.02 81.12
VRA-P 37.97 88.58 49.98 86.83 98.39 35.66 99.58 16.70
FS-OPT 39.75 88.56 51.77 86.62 69.52 82.66 72.17 83.23
Ours 35.82 89.36 46.97 87.49 67.73 81.06 66.67 83.92

O
th

er
m

et
ho

ds MSP 69.30 76.26 72.58 77.41 69.84 77.40 70.59 78.40
ODIN 61.56 80.92 62.91 82.64 69.25 72.60 70.35 74.51
ASH-P 55.30 83.00 59.41 83.84 99.36 21.17 99.18 20.27
ASH-B 35.97 88.62 43.59 88.28 94.87 46.68 93.72 38.95
ASH-S 34.70 90.25 43.84 88.24 99.48 18.52 99.42 18.61
DICE 45.32 83.64 49.33 84.63 89.68 71.32 72.38 67.08

Table 1. ImageNet-1k Benchmarking Results. Lower FP is better, higher AU is better. Bold values highlight the best results among
element-wise feature shaping methods. Underlined values indicate best results among other methods.

CIFAR10 CIFAR100

DenseNet101 MLP-N DenseNet101 MLP-N
Method FP↓ AU↑ FP↓ AU↑ FP↓ AU↑ FP↓ AU↑

E
le

m
en

t-
w

is
e

Fe
at

ur
e

Sh
ap

in
g Energy 31.72 93.51 63.95 82.84 70.80 80.22 79.90 75.30

ReAct 82.00 76.46 64.34 81.85 77.00 78.30 79.99 75.87
BFact 84.40 74.39 78.02 72.68 80.27 73.36 80.05 76.58
VRA-P 38.41 92.77 100.00 65.95 67.75 82.72 87.19 66.03
FS-OPT 28.90 94.12 83.87 71.83 65.20 82.39 81.33 74.67
Ours 24.08 95.26 62.67 81.67 64.15 82.00 78.33 73.53

O
th

er
m

et
ho

ds MSP 52.66 91.42 67.01 82.86 80.40 74.75 83.97 73.07
ODIN 32.84 91.94 69.20 69.53 62.03 82.57 78.71 66.47
MLS 31.93 93.51 64.50 82.97 70.71 80.18 82.41 74.52
ASH-P 29.39 93.98 84.39 66.93 68.21 81.11 86.73 65.27
ASH-B 28.21 94.27 93.93 53.00 57.45 83.80 93.63 57.20
ASH-S 23.93 94.41 82.57 68.02 52.41 84.65 89.39 59.63
DICE 29.67 93.27 96.64 52.17 59.56 82.26 95.78 44.48

Table 2. Performance comparison on CIFAR10/100 datasets.
Lower FP is better, higher AU is better. Bold values highlight
the best results among element-wise feature shaping methods. Un-
derlined values indicate best results among other methods.

Figure 5. IB for the optimal hyperparameter optimized shaping
function as a function of the noise level of OOD data. Lower IB
corresponds to a more regularized shaping function.

and a regularization based on the Information Bottleneck.
We have related the optimal features to several element-wise
OOD shaping functions that are used in existing practice,
offering a theoretical explanation and suggesting underlying
distributional assumptions made in these often empirically
motivated approaches. Our theory was shown to lead to a
new shaping function that out-performs existing shaping
functions on benchmark datasets.

There are several areas for future investigation. Firstly, we
have developed the concept of random features, whose mean
value models OOD shaping functions, but only exploited the
mean value algorithmically. Future work will aim to exploit
the OOD feature distribution. Secondly, our theory so far
only explains the OOD feature and not the score function.
We wish to incorporate scores into our theory. Finally, we
wish to explore more general vector shaping functions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Analysis of Loss Function in 1D Gaussian Case
We analytically study the optimization of our loss functional in the case where the ID/OOD distributions of z are Gaussian,
i.e., p(z|y) ∼ N (µy, σy), y ∈ {0, 1}, and the feature is a Gaussian with mean being a linear function and the standard
deviation constant, i.e., p(z̃|z) ∼ N (Wz + b, σc) where W, b ∈ R. The W, b are parameters that are to be optimized, which
specify the OOD feature. This is a relaxation of deterministic shaping function being a linear function. The loss function
shape and various components of the loss are shown in Figure 6. The plot shows the loss terms versus W ; as will be shown
below the loss does not depend on b. It shows that the separation between feature distributions (KL term) increases as
|W | → ∞. On the otherhand, the information bottleneck term increases as |W | → 0. Thus, these terms compete with each
other and the optimal solution is well-defined at a finite |W | > 0. This simple example suggests that the loss functional is
well defined (i.e., has a finite optimum). Notice that without the IB term, there is no optimal value of W .

Next, we derive the components of the loss in analytic form. Based on the assumptions specified in the previous paragraph,
the formulas for the assumed probabilities are:

p(z|y) = 1√
2πσy

exp

(
− 1

2σ2
y

(z − µy)
2

)
(18)

p(z̃|z) = 1√
2πσc

exp

(
− (z̃ −Wz − b)2

2σ2
c

)
. (19)

Under these assumptions, we can calculate the feature distributions:

p(z̃|y) = 1√
2π(σ2

c +W 2σ2
y)

exp

(
− 1

2(σ2
c +W 2σ2

y)
(z̃ −Wµy − b)2

)
, (20)

and note that the joint distribution is

p(z̃, z|y) ∼ N(µz̃,z,Σz̃,z), µz̃,z =

(
Wµy + b

µy

)
, Σz,z̃ =

(
σ2
c +W 2σ2 Wσ2

Wσ2 σ2

)
. (21)

Let us compute the loss of both the KL term and the information bottleneck under this case. First note the formula: if
p ∼ N (µ̂1, σ̂1), q ∼ N (µ̂2, σ̂2) then

DKL(p||q) = log

(
σ̂2

σ̂1

)
+

σ̂2
1 + (µ̂1 − µ̂2)

2

2σ̂2
2

− 1

2
. (22)

Choosing

µ̂1 = Wµ1 + b, (23)
µ̂2 = Wµ0 + b, (24)

σ̂2
1 , σ̂

2
2 = σ2

c +W 2σ2, (25)

we find that

DKL(p(z̃|Y = 1) || p(z̃|Y = 0)) =
σ2
c +W 2σ2 +W 2(µ1 − µ0)

2

2(σ2
c +W 2σ2)

− 1

2
=

W 2(µ1 − µ0)
2

2(σ2
c +W 2σ2)

. (26)

Let us now compute the information bottleneck term. Note the following result: if X,Y ∼ N (µ,Σ), where

Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
, (27)

then
I(X;Y ) = −1

2
log (1− ρ2). (28)

Note that

ΣZ,Z̃ =

(
σ2
c +W 2σ2 Wσ2

Wσ2 σ2

)
; (29)

12



A Variational Information Theoretic Approach to Out-of-Distribution Detection

therefore,

ρZ̃,Z =
Wσ√

σ2
c +W 2σ2

(30)

Thus,

I(Z̃;Z) = −1

2
log

[
1− W 2σ2

σ2
c +W 2σ2

]
= −1

2
log

(
σ2
c

σ2
c +W 2σ2

)
. (31)

Next, we compute

I(Z̃;Y ) = p(Y = 1)

∫
p(z̃|Y = 1) log

p(z̃|Y = 1)

p(z̃)
dz̃ + p(Y = 0)

∫
p(z̃|Y = 0) log

p(z̃|Y = 0)

p(z̃)
dz̃ (32)

= −p(Y = 1)h(p(z̃|Y = 1))− p(Y = 0)h(p(z̃|Y = 0)) + h(p(z̃)) (33)

= −1

2

[
log (2π(σ2

c +W 2σ2)) + 1
]
+ h(p(z̃)), (34)

where we used that
h(N (µ, σ2)) =

1

2

[
log(2πσ2) + 1

]
. (35)

Note that

p(z̃) = p(Y = 1)p(z̃|Y = 1) + p(Y = 0)p(z̃|Y = 0) (36)
= p(Y = 1)G(z̃′;Wµ0 + b, σz̃) + p(Y = 0)G(z̃′;Wµ1 + b, σz̃) (37)

=
1

σz̃
[p(Y = 1)G(z′; 0, 1) + p(Y = 0)G(z′;µ′, 1)] , (38)

where

z′ =
z̃ −Wµ0 − b

σz̃
, σ2

z̃ = σ2
c +W 2σ2, µ′ =

W (µ1 − µ0)

σz̃
. (39)

Thus,

h(p(z̃)) = −
∫

p(z̃) log p(z̃) dz̃ (40)

= −σz̃

∫
p(z′) log p(z′) dz′ (41)

=

∫
G̃(z′) log

[
1

σz̃
G̃(z′)

]
dz′ (42)

= log σz̃ −
∫

G̃(z′) log G̃(z′) dz′ (43)

= log σz̃ + h(G̃), (44)

where
G̃(z′) = p(Y = 1)G(z′; 0, 1) + p(Y = 0)G(z′;µ′, 1). (45)

Therfore,

I(Z̃;Y ) = −1

2

[
log(2πσ2

z̃) + 1
]
+ log σz̃ + h(G̃) (46)

= −1

2
[log(2π) + 1] + h(G̃). (47)

Therefore,

IB(p(z̃|z)) = log

(
σz̃

σc

)
+

β

2
[log(2π) + 1]− βh(G̃). (48)

Finally,

L(p(z̃|z)) = −W 2(µ1 − µ0)
2

2σ2
z̃

+ log

(
σz̃

σc

)
+

β

2
[log(2π) + 1]− βh(G̃), (49)
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Figure 6. Loss function for the 1D Gaussian case. Note µ0 − µ1 = 1, σ = σc = 1, and β = 1. Note L = DKL + αIB where α = 0.5.

where

G̃(z) = p(Y = 1)G(z; 0, 1) + p(Y = 0)G(z;µ′, 1) (50)

σ2
z̃ = σ2

c +W 2σ2 (51)

µ′ =
W (µ0 − µ1)

σz̃
. (52)

We show the plot of this loss function in Figure 6.

B. Simplifying the Loss With Independence Assumptions
We simplify our loss functional under independence assumptions. Specifically, we assume that

p(z̃|z) =
n∏

i=1

p(z̃i|zi) (53)

p(z|y) =
n∏

i=1

p(zi|Y = y). (54)
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Note that

p(z̃|y) =
∫

p(z̃|z)p(z|y) dz (55)

=

∫ ∏
i

p(z̃i|zi)p(zi|y) dz1 . . . dzn (56)

=
∏
i

∫
p(z̃i|zi)p(zi|y) dzi (57)

=
∏
i

p(z̃i|y). (58)

Therefore,

DKL[p(z̃|0) || p(z̃|1)] =
∫

p(z̃|0) log
∏
i

p(z̃i|0)
p(z̃i|1)

dz̃ (59)

=
∑
i

∫
p(z̃|0) log p(z̃i|0)

p(z̃i|1)
dz̃ (60)

=
∑
i

DKL[p(z̃i|0) || p(z̃i|1)], (61)

and by a similar computation, we get that

I(Z̃;Z) =
∑
i

I(Z̃i;Zi) (62)

I(Z̃;Y ) =
∑
i

I(Z̃i;Y ). (63)

Thus, we see that

L(p(z̃|z)) = −DKL[p(z̃|0) || p(z̃|1)] + αIB(p(z̃|z)) =
∑
i

Li(p(z̃i|zi)), (64)

where

Li(p(z̃i|zi)) = −DKL[p(z̃i|0) || p(z̃i|1)] + α[I(Z̃i;Zi)− βI(Z̃i;Y )]. (65)

Therefore, we just need to solve n independent problems:

argmin
p(z̃i|zi)

Li(p(z̃i|zi)), i ∈ {1, . . . , n}. (66)

C. Gradient of Loss Computations
We review the definition of gradient of functionals, which are functions defined on functions, in order to compute gradients
of our loss. First, we define the directional derivative. Let δp(z̃|z) denote a perturbation of p(z̃|z), which is a function of
z̃ with integral zero so that p(z̃|z) + εδp(z̃|z) defines a valid probability (i.e., integrates to 1) for ε small. The direction
derivative is defined as

dL(p(z̃|z)) · δp(z̃|z) = d

dε
L[p(z̃|z) + εδp(z̃|z)]|ε=0 . (67)

The gradient ∇p(z̃|z)L(p(z̃|z)) is the perturbation of p(z̃|z) that satisfies the relation:

dL(p(z̃|z)) · δp(z̃|z) =
∫

∇p(z̃|z)L(p(z̃|z)) · δp(z̃|z) dz. (68)
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C.1. KL Loss Gradient

We look into the optimization of
max
p(z̃|z)

DKL[p(z̃|Y = 1) || p(z̃|Y = 0)], (69)

where DKL is the KL-divergence or relative entropy:

DKL[p || q] =
∫

p(x) log
p(x)

q(x)
dx, (70)

that is we would like to compute Z̃ such that the resulting distributions under in/out data are maximally separated.

We compute the optimizing conditions by computing the variation. First note the following:

p(z̃|y) =
∫

p(z̃|z, y)p(z|y) dz =

∫
p(z̃|z)p(z|y) dz, (71)

where the equality on the right hand side is by assumption - we do not want our feature Z̃ to be dependent on whether the
data is OOD or not. Now we compute the variation:

δDKL · δp(z̃|z) =
∫

δp(z̃|Y = 1) · δp(z̃|z) log
(
p(z̃|Y = 1)

p(z̃|Y = 0)

)
(72)

+ p(z̃|Y = 0)δ

[
p(z̃|Y = 1)

p(z̃|Y = 0)

]
· δp(z̃|z) dz̃. (73)

Let’s compute

δp(z̃|y) · δp(z̃|z) =
∫

δp(z̃|z)p(z|y) dz. (74)

Therefore,

δ

[
p(z̃|Y = 1)

p(z̃|Y = 0)

]
· δp(z̃|z) = δp(z̃|Y = 1)p(z̃|Y = 0)− p(z̃|Y = 1)δp(z̃|Y = 0)

p(z̃|Y = 0)
(75)

=

∫
δp(z̃|z)p(z|Y = 1) dz · p(z̃|Y = 0)−

∫
δp(z̃|z)p(z|Y = 0) dz · p(z̃|Y = 1)

p(z̃|Y = 0)2
. (76)

Therefore,

p(z̃|Y = 0)δ

[
p(z̃|Y = 1)

p(z̃|Y = 0)

]
· δp(z̃|z) =

∫
δp(z̃|z) [p(z|Y = 1)− L(z̃)p(z|Y = 0)] dz, (77)

where

l(z̃) =
p(z̃|Y = 1)

p(z̃|Y = 0)
, (78)

is the likelihood ratio of the distributions of Z̃. Thus,

δDKL · δp(z̃|z) =
∫ ∫

δp(z̃|z) [(1 + log l(z̃)) p(z|Y = 1)− l(z̃)p(z|Y = 0)] dz dz̃, (79)

where

l(z) =
p(z|Y = 1)

p(z|Y = 0)
=

pin(z)

pout(z)
. (80)

Therefore,
∇p(z̃|z)DKL = pout(z) · [(1 + log l(z̃))l(z)− l(z̃)] . (81)
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C.2. Information Bottleneck Gradient

We consider the information bottleneck term:

IB(p(z̃|z)) = I(Z; Z̃)− βI(Z̃;Y ), (82)

where I denotes mutual information. Note that

I(Z; Z̃) =

∫
p(z, z̃) log

p(z, z̃)

p(z)p(z̃)
dz̃ dz =

∫
p(z)p(z̃|z) log p(z̃|z)

p(z̃)
dz̃ dz. (83)

Also,

I(Z̃;Y ) =
∑

y∈{0,1}

∫
p(z̃, y) log

p(z̃, y)

p(z̃)p(y)
dz̃ =

∑
y∈{0,1}

∫
p(z̃|y)p(y) log p(z̃|y)

p(z̃)
dz̃. (84)

Let us compute the variation of these terms:

δI(Z; Z̃) · δp(z̃|z) =
∫

p(z)δp(z̃|z) log p(z̃|z)
p(z̃)

+ p(z)
δp(z̃|z)p(z̃)− p(z̃|z)δp(z̃) · δp(z̃|z)

p(z̃)
dz̃ dz (85)

=

∫
δp(z̃|z)p(z)

[
1 + log

p(z̃|z)
p(z̃)

]
− p(z̃|z)p(z)

p(z̃)

∫
δp(z̃|z′)p(z′) dz′ dz̃ dz. (86)

Let us evaluate the term after the minus sign:∫ ∫ ∫
δp(z̃|z′)p(z̃|z)p(z)

p(z̃)
p(z′) dz′ dz̃ dz =

∫ ∫
δp(z̃|z′)p(z

′)

p(z̃)

∫
p(z̃|z)p(z) dz dz̃ dz′ (87)

=

∫ ∫
δp(z̃|z′)p(z′) dz̃ dz′. (88)

Therefore,

δI(Z; Z̃) · δp(z̃|z) =
∫

δp(z̃|z)p(z) log p(z̃|z)
p(z̃)

dz̃ dz, (89)

∇p(z̃|z)I(Z; Z̃) = p(z) log
p(z̃|z)
p(z̃)

. (90)

Let us compute the variation of the second term in IB:

δI(Z̃;Y ) =
∑

y∈{0,1}

∫
δp(z̃|y)p(y) log p(z̃|y)

p(z̃)
+ p(y)

δp(z̃|y)p(z̃)− p(z̃|y)δp(z̃)
p(z̃)

dz. (91)

Note that

δp(z̃) =

∫
δp(z̃|z)p(z) dz (92)

δp(z̃|y) =
∫

δp(z̃|z)p(z|y) dz̃. (93)

Therefore,

δI(Z̃;Y ) =
∑

y∈{0,1}

∫ ∫
δp(z̃|z)p(y)

[
p(z|y) log p(z̃|y)

p(z̃)
+ p(z|y)− p(z̃|y)p(z)

p(z̃)

]
dz̃ dz (94)

=

∫ ∫
δp(z̃|z)

∑
y∈{0,1}

p(y)

[
p(z|y) log p(z̃|y)

p(z̃)
+ p(z|y)− p(z̃|y)p(z)

p(z̃)

]
dz̃ dz (95)

=

∫ ∫
δp(z̃|z)

∑
y∈{0,1}

p(y)p(z|y) log p(z̃|y)
p(z̃)

dz̃ dz. (96)
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Figure 7. Plot of Inverse Gaussian (IG) distribution, p(z|1) ∼ IG(d(z);µ, λ), under different parameters with a Gaussian (blue). Note
that IG has high probability where the Gaussian does not.

Therefore,

∇p(z̃|z)IB = p(z) log
p(z̃|z)
p(z̃)

− β
∑

y∈{0,1}

p(y)p(z|y) log p(z̃|y)
p(z̃)

(97)

=
∑

y∈{0,1}

p(y)p(z|y)
[
log

p(z̃|z)
p(z̃)

− β log
p(z̃|y)
p(z̃)

]
. (98)

D. Plot of Inverse Gaussian Distribution
In Figure 7, we show a plot of our Inverse Gaussian for various parameters along with a Gaussian. Notice that the IG has
mass complementary to the Gaussian, and thus represents a natural distribution for OOD if the ID is Gaussian.

E. A Study of Our Feature Shaping Over Parameters
In this section, we perform an extended study of feature shaping as a function of parameters of the distributions and the β
parameter in the Information Bottleneck, extending the study in Section 4 of the main paper.

E.1. Feature Shaping Versus β

In Figure 8, we explore how our feature shaping function varies as a function of β for various distributions.

E.2. Feature Shaping Versus Distribution Parameters

In Figure 9, we explore how our feature shaping function varies with different distribution parameters.

F. Visualizations for Additive Gaussian Noise Experiment
Figure 10 shows a visualization of an example ImageNet image and various noise levels added to it to simulate OOD data
for the experiment in Section 6.

Figure 11 visualizes the activations of images from the validation set of ImageNet-1k with different levels of additive
Gaussian noises. From figure 11a, with more noises, the activations are more instable and have more larger spikes. From
figure 11b, the activations shrink more and peak more at small values.
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Figure 8. The mean of the OOD Gaussian Random Feature under the Gaussian (left), Laplace (middle) and Inverse Gaussian (right)
distributions for the OOD distribution. Different curves on the same plot indicate differing weights on the I(Z̃;Y ) component of
the Information Bottleneck term, β. The weight on the IB is fixed to α = 3.0. For the Gaussian case, p(z|0) ∼ N (−0.5, 0.5)
and p(z|1) ∼ N (0.5, 0.5). For the Laplace case, p(z|0) ∼ N (0, 0.5) and p(z|1) ∼ Lap(0, 1). In the Inverse Gaussian case,
p(z|0) ∼ N (0, 0.5) and p(z|1) ∼ IG(d(z); 0.5, 15).

Figure 9. The mean of the OOD Gaussian Random Feature under the Gaussian (left), Laplace (middle) and Inverse Gaussian (right)
distributions for the OOD distribution. Different curves on the same plot indicate different OOD distribution parameters. The weight on
the IB term and weight of its I(Z̃;Y ) component are set as α = 3.0 and β = 10.0. For the Gaussian case, p(z|0) ∼ N (−0.5, 0.5). For
the Laplace case, p(z|0) ∼ N (0, 0.5). In the Inverse Gaussian case, p(z|0) ∼ N (0, 0.5).

(a) σ = 25 (b) σ = 50 (c) σ = 100 (d) σ = 150 (e) σ = 255

Figure 10. Visualization of a sample image from ImageNet validation split under different levels of noise corruption (σ values).
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(a) Activation range of µ± σ (b) Activation range of (min, max)

Figure 11. The network activations of ImageNet with different levels of additive Gaussian noises. The shaded regions in (a) represent one
standard deviation above and below the mean, while those in (b) represent the range of min and max values of activations. With more
noises, activations tend to more instable, smaller range of activation values.
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G. Optimal hyperparameters used in ImageNet and CIFAR benchmarking
We report the optimal hyperparameters for the experiments studied in Section 6 in Table 3.

Model ID Data
Hyperparameters

y0 y1a z1 y1b m1 z2 m2

ResNet-50 ImageNet-1k 0.0 0.0 0.52 0.73 0.61 1.2 -0.3
MobileNet-v2 ImageNet-1k 0.0 0.0 0.55 0.5 0.79 1.49 -0.74
ViT-B-16 ImageNet-1k 0.0 0.0 0.05 1.58 2.0 2.0 -1.0
ViT-L-16 ImageNet-1k 0.0 0.0 0.06 1.76 1.79 2.0 -0.32

DenseNet101 CIFAR 10 0.0 0.0 0.51 0.41 1.18 1.1 0.37
MLP-N CIFAR 10 -0.3 0.25 0.73 0.40 0.10 3.54 1.76

DenseNet101 CIFAR 100 0.0 0.1 1.0 2.0 0.17 1.8 -0.18
MLP-N CIFAR 100 0.0 0.3 0.59 0.4 0.1 4.0 2.0

Table 3. Our optimal hyperparameters for different models and datasets.

H. Empirical Distribution of Network Feature Outputs
In this section, we show the empirical distributions of ID and OOD data for various ImageNet-1k benchmarks. As is shown
in the subsequent figures, some benchmarks/architectures resemble the distribution assumptions analyzed in this paper (e.g.,
Gaussian ID/Gaussian OOD - Figure 12 and Gaussian ID/Laplacian OOD - Figure 13 ), thus showing that these may be
realistic assumptions. On the otherhand, some datasets (Figure 14 and Figure 15) exhibit distributions that do not fit the
distributional assumptions analyzed in this paper. Nevertheless, our novel shaping function still performs well on these
benchmarks, showing that our shaping function may well work even when the data differs from the assumed distributions,
which is important in practice as exact distributions may not be known.
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Figure 12. Distribution of features from the penultimate layer of ViT-B-16. Comparison with In-distribution data (ImageNet-1k) and
different test OOD datasets in the ImageNet-1k benchmark (Zhao et al., 2024). The ID and OOD distributions resemble the positive part
of a Gaussian with different variance.
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Figure 13. Distribution of features from the penultimate layer of ResNet-50. Comparison with In-distribution data (ImageNet-1k) and
different test OOD datasets in the ImageNet-1k benchmark (Zhao et al., 2024). The ID distribution resembles the positive part of a
Gaussian and the OOD resembles the positive part of a Laplacian distribution.
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Figure 14. Distribution of features from the penultimate layer of MobileNet-V2. Comparison with In-distribution data (ImageNet-1k) and
different test OOD datasets in the ImageNet-1k benchmark (Zhao et al., 2024). The ID and OOD both appear Laplacian; although this
does not fit the ID assumption analyzed in this paper, our method nevertheless works well on this benchmark.
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Figure 15. Distribution of features from the penultimate layer of ViT-L-16. Comparison with In-distribution data (ImageNet-1k) and
different test OOD datasets in the ImageNet-1k benchmark (Zhao et al., 2024). The ID and OOD distributions appear Gaussian but with
heavy weight on zeros; although these distributions don’t fit the distributional assumptions in the cases analyzed in the paper, our method
nevertheless performs well on this benchmark.
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