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Abstract

Obtaining no-regret guarantees for reinforcement
learning (RL) in the case of problems with con-
tinuous state and/or action spaces is still one of
the major open challenges in the field. Recently,
a variety of solutions have been proposed, but be-
sides very specific settings, the general problem
remains unsolved. In this paper, we introduce a
novel structural assumption on the Markov deci-
sion processes (MDPs), namely ν´smoothness,
that generalizes most of the settings proposed so
far (e.g., linear MDPs and Lipschitz MDPs). To
face this challenging scenario, we propose two al-
gorithms for regret minimization in ν´smooth
MDPs. Both algorithms build upon the idea
of constructing an MDP representation through
an orthogonal feature map based on Legendre
polynomials. The first algorithm, LEGENDRE-
ELEANOR, archives the no-regret property under
weaker assumptions but is computationally ineffi-
cient, whereas the second one, LEGENDRE-LSVI,
runs in polynomial time, although for a smaller
class of problems. After analyzing their regret
properties, we compare our results with state-of-
the-art ones from RL theory, showing that our
algorithms achieve the best guarantees.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) is a
paradigm of artificial intelligence in which the agent inter-
acts with an environment to maximize a reward signal in
the long term. From the theoretical perspective, a lot of
effort has been put into designing algorithms with small
(cumulative) regret, which is an index of how much the
policies (i.e., the behavior) played by the algorithm during
the learning process are suboptimal. For the case of tabular
Markov decision processes (MDPs), an optimal result was
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first proved by Azar et al. (2017), who showed a bound
on the regret of order rOpH

a

|S||A|Kq, where S is a finite
state space, A is a finite action space, and K is the number
of episodes, and H the time horizon of every episode. This
regret is minimax-optimal, in the sense that no algorithm
can achieve smaller regret for every arbitrary tabular MDP.
Unfortunately, assuming that the state-action space is fi-
nite is extremely restrictive, as the number of states and/or
actions can be huge or even infinite in practice. This is
especially critical for a large variety of real-world scenar-
ios in which RL has achieved successful results, including
robotics (Kober et al., 2013), autonomous driving (Kiran
et al., 2021), and trading (Hambly et al., 2023). These
scenarios are usually modeled as MDPs with continuous
state and/or action spaces, as the underlying dynamics is too
complex to be captured by a finite number of states and/or
actions. It is not by chance that one of the most common
benchmarks for RL algorithms, MUJOCO (Todorov et al.,
2012; Brockman et al., 2016), is composed of environments
characterized by continuous state and action spaces. This
highlights the notable gap between the current maturity of
theory and the pressing needs of practical application. For
this reason, devising algorithms with regret bounds for RL
in continuous spaces is currently one of the most important
challenges of the whole field.

Since, without any further assumption, the RL problem
in continuous spaces is non-learnable,1 the modern litera-
ture revolves around searching for the weakest structural
assumptions under which the problem can be solved effi-
ciently. Linear quadratic regulator (LQR) (Bemporad et al.,
2002) is a model for the environment that is widely used
in control theory, where the state of the system evolves
according to a linear dynamical system and the reward is
quadratic. For the online control of this problem, when the
system matrix is unknown, regret bound of order rOp

?
Kq

were obtained by Abbasi-Yadkori & Szepesvári (2011) for
a computationally inefficient algorithm. This limitation was
then removed by Dean et al. (2018); Cohen et al. (2019).
Linear MDPs (Yang & Wang, 2019; Jin et al., 2020) is a
widespread setting in RL theory where another form of lin-
earity is assumed. Different from LQRs, here the transition
kernel of the MDP can be factorized as a scalar product

1Think for example at searching for a maximum of a noisy
reward function with infinitely many jumps.
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between a feature map φ : S ˆ A Ñ Rd and an unknown
vector of finite measures over S. The reward function is
typically assumed to be linear in the same features. When
the feature map is known, regret bounds of order rOp

?
d3Kq

are possible (Jin et al., 2020). Still, these are two examples
of parametric settings, which do not constitute a reasonable
assumption for general continuous-space MDPs. A much
wider family can be defined by just assuming that small
variations in the state-action pair ps, aq lead to (i) small
variations in the reward function rps, aq (ii) small varia-
tions in the transition function pp¨|s, aq, as it is assumed in
the setting of Lipschitz MDPs (Rachelson & Lagoudakis,
2010). Lipschitz MDPs have been applied to a number of
different settings. Not only do they allow developing the-
oretically grounded algorithms (Pirotta et al., 2015; Asadi
et al., 2018; Metelli et al., 2020), they also help to tackle
generalizations of standard RL, such as RL with delayed
feedback (Liotet et al., 2022) or configurable RL (Metelli,
2022), and auxiliary tasks for imitation learning (Damiani
et al., 2022; Maran et al., 2023). The price of being very
general is paid with a regret bound that is much worse than
that of previous families. Indeed, no algorithm can achieve a
better regret bound than ΩpK

d`1
d`2 q, in terms of dependence

on K, being d the dimensionality of the state-action space.
This entails a huge performance detriment compared with
Linear MDPs and LQRs, where the order of the regret in
K is 1

2 , regardless of the dimension d. In fact, there is
still a large gap in the theory between parametric families
of MDPs and Lipschitz MDPs, and little is known about
what lies in between. One last family of continuous-state
MDPs for which regret bounds exist is that of Kernelized
MDPs (Yang et al., 2020b), where both the reward function
and the transition function belong to a reproducing kernel
Hilbert space (RKHS) induced by a known kernel. In the
typical application to continuous-state MDPs, the kernel is
assumed to come from the Matérn covariance function with
parameter m ą 0. The higher the value of m, the more strin-
gent the assumption, as the corresponding RHKS contains
fewer functions. Coherently, regret bounds for this setting
decrease with m. In particular, it was very recently proved
(Vakili & Olkhovskaya, 2023) that an algorithm achieves
regret rOpK

m`d
2m`d q in this setting, approaching rOp

?
Kq as

m Ñ 8. In this paper, we aim to make one first step to-
wards reaching an analogous result in the general case of
any MDP endowed with some “smoothness” property.

Why Smoothness? The presence of mathematically ele-
gant, smooth functions in real-world phenomena of the most
diverse nature has always been a source of fascination and
philosophical research (Wigner, 1990). Smooth functions,
or even infinitely differentiable functions, play a crucial
role in various scientific and engineering disciplines due to
their versatility and analytical tractability. They are valu-
able tools for modeling complex phenomena and solving

mathematical problems. In physics, for instance, smooth
functions are widely employed to describe the behavior of
physical systems, such as in the context of quantum me-
chanics and electromagnetic field theory (Shankar, 2012;
Born & Wolf, 2013). In engineering, the utility of smooth
functions is evident in control systems and signal process-
ing, where they simplify the analysis and design of dynamic
systems (Oppenheim et al., 1997; Ogata, 2010). Smooth
functions are not just a formalism but a fundamental and
practical mathematical framework for understanding and
manipulating real-world phenomena. The reason why these
functions are ubiquitous in the natural sciences can be at-
tributed to their connection with partial differential equa-
tions. Many natural phenomena can be described by a lim-
ited number of partial differential equations, which have the
characteristic of enforcing strong regularity conditions on
solutions. In particular, thermal, electromagnetic, and wave
phenomena are governed by three well-known different
equations: the heat equation, the Laplace-Poisson equation,
and the D’Alembert equation, respectively (Sobolev, 1964;
Tikhonov & Samarskii, 2013; Salsa & Verzini, 2022). Each
of these is characterized by inherent regularity properties
so that solutions are infinitely differentiable under suitable
boundary conditions.

Our Contributions In this paper, we introduce two very
general classes of MDP based on the notion of ν-smoothness
either applied to the transition model and to the reward
function (Strongly Smooth MDP) or to the Bellman op-
erator (Weakly Smooth MDP) (Section 3). We develop a
novel technique that builds upon results from the theory of
orthogonal functions (specifically, Legendre polynomials)
to design algorithms, LEGENDRE-LSVI and LEGENDRE-
ELEANOR, characterized by different computational costs,
for addressing regret minimization in smooth MDPs (Sec-
tion 4). Then, we provide the theoretical analysis of the
proposed algorithms showing that, under appropriate con-
ditions on smoothness constant ν, they fulfill the no-regret
property with a regret rate depending on ν (Section 5). Fi-
nally, to compare our results with the state-of-the-art theo-
retical RL, we show that (i) our setting includes the most
common classes of problems for which no-regret guarantees
have been shown (ii) general-purpose RL algorithms that
apply to our setting obtain worse regret guarantees than ours
(Section 6). The proofs of all the results presented in the
main paper are reported in Appendix B.

2. Preliminaries
Markov decision processes and policies We consider
a finite-horizon Markov decision process (MDP) (Puter-
man, 2014) M “ pS,A, p, r,Hq, where S “ r´1, 1sdS
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is the state space, A “ r´1, 1sdA is the action space,2

p “ tphu
H´1
h“1 is the sequence of transition functions, each

mapping a pair ps, aq P S ˆ A to a probability distribution
php¨|s, aq over S, while the initial state s1 may be chosen
arbitrarily from the environment; r “ trhuHh“1 is the se-
quence of reward functions, each mapping a pair ps, aq to
a real number rhps, aq, and H is the time horizon. At each
episode k P rKs :“ t1, . . . ,Ku, the agent chooses a policy
πk “ tπk,huHh“1, which is a sequence of mappings from
S to the probability distributions over A. For each stage
h P rHs, the action is chosen according to ah „ πk,hp¨|shq,
the agent gains reward rhpsh, ahq ` ηh, where ηh is a
σ´subgaussian noise independent of the past, and the envi-
ronment transitions to the next state sh`1 „ php¨|sh, ahq.
In this setting, it is useful to define the following quantities.

Value functions and Bellman operators. The state-action
value function (or Q-function) quantifies the expected sum
of the rewards obtained under a policy π, starting from a
state-stage pair ps, hq P S ˆ rHs and fixing the first action
to some a P A:

Qπ
hps, aq :“ Eπ

«

H
ÿ

ℓ“h

rℓpsℓ, aℓq

ˇ

ˇ

ˇ

ˇ

s0 “ s, a0 “ a

ff

, (1)

where Eπ denotes expectation w.r.t. to the stochastic pro-
cess ah „ πhp¨|shq and sh`1 „ php¨|sh, ahq for all
h P rHs. The state value function (or V-function) is de-
fined as V π

h psq :“ Ea„πhp¨|sqrQπ
hps, aqs, for all s P S. The

supremum of the value functions between all the policies
take the name of optimal value functions, and are written as
Q˚

hps, aq :“ supπ Q
π
hps, aq, V ˚

h psq :“ supπ V
π
h psq.

In this work, as often done in the literature, we assume that
the reward is normalized in a way that |Qπ

hps, aq| ď 1 for
every s P S, a P A and h P rHs.3 The evaluation of the
expected return is linked to the notion of Bellman operators.
For a policy π, the corresponding Bellman operator T π is
defined as follows, for every h P rHs and every function
f : S ˆ A Ñ R:

T π
h fps, aq :“ rhps, aq ` E

s1
„php¨|s,aq

a1
„πhp¨|sq

rfps1, a1qs.

Even more crucial for control is the Bellman optimality
operator, which, instead of fixing the policy, chooses the
maximum of f for the next state:

T ˚
h fps, aq :“ rhps, aq ` E

s1„php¨|s,aq

”

sup
a1PA

fps1, a1q

ı

.

Agent’s goal. The agent aims at choosing a sequence of
policies πk in order to minimize the cumulative difference

2Choosing these compacts set is without loss of generality as,
provided a suitable rescaling, any compact set could be used.

3Sometimes it is instead assumed that the reward lies in r´1, 1s

so that the total return is bounded in r´H,Hs.

between the expected return of their policies Jπk and the op-
timal one, given the initial state chosen by the environment.
This quantity takes the name of (cumulative) regret:

RK :“
K
ÿ

k“1

`

V ˚
1 psk1q ´ V πk

1 psk1q
˘

.

Note that if RK “ opKq for any K with some probability,
then, with the same probability, Jπk Ñ supπ J

π as K Ñ

8. An algorithm choosing a sequence of policies with this
property is called no-regret.

Smoothness of real functions. Let Ω Ă r´1, 1sd and f :
Ω Ñ R. We say that f P Cν,1pΩq if there exists a constant
L ă `8 such that f is ν´differentiable (i.e., differentiable
ν times), and for every multi-index α “ pα1, . . . , αdq with
|α| :“

řd
i“1 αi ď ν we have:

@x, y P Ω : |Dαfpxq ´ Dαfpyq| ď L}x ´ y}2, (2)

where the multi-index derivative is defined as follows
Dαf :“ B

α1`...`αd

Bx
α1
1 ...Bx

αd
d

f. The set Cν,1pΩq forms, for ev-
ery value of ν, a normed vector space, and more pre-
cisely, a Banach space (Kolmogorov & Fomin, 1975).
A norm for which this holds is given by }f}Cν,1 :“
max|α|ďν`1 }Dαf}L8

. This definition may seem counter-
intuitive since derivatives up to order ν ` 1 appear, but in
fact, this is because the derivative of a Lipschitz function
is defined almost everywhere, and its L8´norm equals the
Lipschitz constant itself (Rudin, 1974). The most straightfor-
ward case of this definition is given by C0,1pΩq, correspond-
ing to the space of Lipschitz continuous functions, where
the semi-norm } ¨ }C0,1 corresponds exactly to the Lipschitz
constant of a function. The concept of Wasserstein metric
Wp¨, ¨q, a notion of distance for probability measures on met-
ric spaces, is strictly related to Lipschitz functions. For two
measures µ, ζ on a metric space Ω, this distance is defined as
Wpµ, ζq :“ supfPC0,1:}f}C0,1“1

ş

Ω
fpωqdpµ ´ ζqpωq. We

will also make use of the space C8pΩq :“ X8
ν“1Cν,1pΩq

of indefinitely differentiable functions. Despite assuming
a function is C8pΩq seems restrictive, this class includes
polynomial, trigonometric, and exponential functions.

3. Smoothness in MDPs
In this section, we introduce two sets of assumptions con-
cerning the MDP. We start with the simpler one, which we
call Strongly Smooth MDP. This assumption is similar to the
kernelized MDP setting (Yang et al., 2020b), as it bounds
the norm of the transition function and the reward function
in a given space, but without specifying an explicit structure.
Instead of assuming that they belong to a given RKHS, we
limit our assumption to their smoothness.

Assumption 1. (Strongly Smooth MDP). An MDP is a
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Strongly Smooth of order ν if:

@h P rHs @s1 P S, rhp¨, ¨q, phps1|¨, ¨q P Cν,1pS ˆ Aq,

with suph,s1 }phps1|¨, ¨q}Cν,1 , suph,s1 }rhp¨, ¨q}Cν,1 ă `8.

Note that assuming the finiteness of the norms but not the
knowledge of its upper bound, is different from what is
asked in the analogous assumption for kernelized MDPs.

Assuming this form of regularity of the reward function
seems fair. Being very often a human-designed function, we
can expect it to be indefinitely differentiable most of the time.
For what concerns the transition function, this requirement
is more tricky. Indeed, nontrivial transition functions for
deterministic MDPs often take the form pps1|s, aq “ δps1 “

fps, aqq, for some function f : S ˆ A Ñ S. This function
does not satisfy Strong Smoothness, even when f is itself
very smooth, as the Dirac delta δp¨q is not a continuous
function. For this reason, we introduce a more general
assumption, which directly concerns the Bellman optimality
operator.

Assumption 2. (Weakly Smooth MDP). An MDPs is Weakly
Smooth of order ν if, for every h P rHs the Bellman optimal-
ity operator T ˚

h is bounded on Cν,1pSˆAq Ñ Cν,1pSˆAq.

Boundedness over Cν,1pS ˆ Aq Ñ Cν,1pS ˆ Aq means
that the operator cannot output a function that is not Cν,1

when receiving a function from the same set. Moreover,
there exists a constant CT ˚ ă `8 such that }T ˚

h f}Cν,1 ď

CT ˚ p}f}Cν,1 ` 1q for every h P rHs and every function
f P Cν,1pS ˆ Aq. In Appendix B.1, we show that Weak
Smoothness is (much) weaker than Strong Smoothness.

4. Orthogonal Function Representations
Our approach to the solution of Strongly and Weakly
Smooth MDPs is based on the idea of finding a representa-
tion of the state-action space S ˆA such that the problem is
reduced to a Linear MDP in a feature space. To achieve this
result, we will use a particular class of feature maps based
on Legendre polynomials (Quarteroni et al., 2010).

Definition 4.1 (Legendre feature map). Let φL,npxq be
the n-th order Legendre polynomial, we define, for every
N P N, the feature map φL,N : r´1, 1s Ñ RN as follows:

φL,N pxq :“ N´1{2pφL,0pxq, . . . , φL,N pxqq.

The importance of these feature maps, not apparent from
their definition, lies in their orthogonality. In fact, Legendre
polynomials are such that

ş1

´1
φL,ipxqφL,jpxq dx “ δij ,

which is 1 if i “ j, 0 otherwise.4 The multidimensional
4We use Legendre polynomials which are normalized in the

space L2, while some authors normalize them differently.

generalization of this map to r´1, 1sd, which preserves the
orthogonality property, is obtained by a Cartesian product
operation. Precisely, we call the generalization of the Leg-
endre map to r´1, 1sd as rN´1{2φd

L,N px1, . . . , xdq, where
φd

L,N px1, . . . , xdq stacks, in its rN components, all pos-
sible products of Legendre polynomials in the variables
x1, . . . , xd such that the total degree (sum of the degrees of
the single polynomials) does not exceed N (and rN´1{2 is
just a normalization term). A formal definition of the feature
map is given in the following:

LN “ tpg1, . . . , gdq P t0, . . . , Nud :
d

ÿ

i“1

gi ď Nu (3)

φd
L,N px1, . . . , xdq “

˜

d
ź

i“1

φL,gipxiq

¸

pg1,...,gdqPLN

(4)

This definition draws an analogy with Fourier series
(Katznelson, 2004), which are built on another family of
orthogonal functions. As for the Fourier series, we can use a
linear combination of Legendre polynomials to approximate
any smooth function. However, while the convergence of
the Fourier series is only guaranteed for periodic functions,
Legendre polynomials are not affected by this limitation.

4.1. Weakly Smooth MDPs: LEGENDRE-ELEANOR

We start from the most general case, i.e., that of Weakly
Smooth MDPs. We can show that the pair given by an
MDP of this class and our Legendre feature map forms
a process with low inherent Bellman error (Zanette et al.,
2020). Given any feature map φ : S ˆ A Ñ Rd and a
sequence of compact sets Bh Ă Rd for h P rHs, calling
Qθps, aq the function φps, aqJθ, the inherent Bellman error
w.r.t. tBhuh is defined as:

I :“ max
hPrHs

sup
θPBh`1

inf
θ1PBh

}φps, aqJθ1´T ˚Qθps, aq}8. (5)

This definition illustrates, intuitively, that starting from a
Q-function in the span of φ, the Bellman optimality opera-
tor produces another one which is I-close to the span of φ.
We can prove that a Weakly Smooth MDP equipped with a
Legendre feature map φd

L,N has bounded inherent Bellman
error I, where the bound depends on the order of smooth-
ness ν (Theorem 9 in the appendix). Using the Legendre
representation along with ELEANOR (Zanette et al., 2020),
an algorithm designed for MDPs with low inherent Bell-
man error, we can achieve the no-regret property under mild
assumptions. We call the resulting algorithm LEGENDRE-
ELEANOR, and we will theoretically analyze it in Section
5.

4.2. Strongly Smooth MDPs: LEGENDRE-LSVI

In the previous section, we have presented an approach to
solving Weakly Smooth MDPs. Still, the algorithm that
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Figure 1. Curve of the episodic return for the simulation in Section
4.3 with 95% confidence intervals over five random seeds.

we introduced is based on ELEANOR, which is known to
be computationally inefficient (Zanette et al., 2020). A
major challenge in RL is to devise algorithms that are both
no-regret and have a running time polynomial in the task
horizon, problem dimension, and number of episodes. This
motivates the search for a polynomial-time algorithm that
can achieve no regret under the Strongly Smooth assumption.
This is possible thanks to the fact that, when we apply the
Legendre representation of a Strongly Smooth MDP, we get
not only an MDP with low inherent Bellmann error, but a
Linear MDP, for which computationally feasible algorithms,
such as LSVI-UCB (Jin et al., 2020), are known.

We call the resulting algorithm LEGENDRE-LSVI. To an-
alyze its computational complexity, remembering that we
have called rN “

`

N`d
N

˘

ď Nd the dimension of the feature
map used, we can just replace this value in the computa-
tional complexity of LSVI-UCB. As it is well-known that
the time complexity of LSVI-UCB is OpK2H ` rN3KHq,
LEGENDRE-LSVI has polynomial time complexity, pro-
vided that we choose N so that term rN is not exponential
in the relevant quantities.

4.3. Why Orthogonal Features?

The reader may wonder how crucial is the choice of an
orthogonal feature representation. Before moving to the
theoretical analysis that will analytically justify this choice,
in this subsection, we empirically show, on an illustrative
problem, that the use of orthogonal features has beneficial
effects on learning performance. We employ two modified
versions of the LQR, in which the state, after the linear
dynamic transition, is pushed towards the origin in a way
that prevents it from escaping from a given compact set.
Precisely, using the same formalism of the LQR, we have:
sh`1 “ gpAsh ` Bah ` ξhq, rh “ ´sJ

hQsh ´ aJ
hRah,

where gpxq :“ x
1`}x}2

and ξh is a Gaussian noise. As the
support of the Gaussian distribution is the full Rd, after
applying gp¨q, the possible set of new states is the ball of
radius one. We performed two experiments with different

parameter values and with horizon H “ 20, whose details
can be found in the appendix C. In Figure 1, we can see
plots showing the episodic return of the algorithms as a
function of the number of learning episodes. As a learning
algorithm, we can see two “correct” versions of LEGENDRE-
LSVI, which are called Leg(3) and Leg(4), against two
“naı̈ve” versions of the same algorithm, Poly(3) and Poly(4).
For all the algorithms, the number between the brackets
corresponds to the degree of the polynomials used so that
the approximation order and the length of the feature vector
are equal in the two cases. The difference between the
Poly() and the corresponding Leg() algorithm lies in the
fact that the former is the standard basis of multivariate
polynomials (e.g., t1, x, y, x2, y2, xy, . . . u), while the latter
corresponds to the (orthogonal) Legendre basis, for which
theoretical guarantees hold. Using standard polynomials as
feature maps is common in practice. However, the results
show that baselines using Legendre polynomials achieve
much superior episodic return compared with the analog
with standard polynomials, as it is predicted from the theory
behind our results. The latter, in green and blue, failed
to achieve significant learning throughout 500 episodes in
either environment. On the contrary, Leg(3), in orange,
is able to learn a good policy suddenly and subsequently
settles down, obtaining an almost constant return in all the
following episodes. Leg(4) proves to learn more slowly
than Leg(3), but in the first environment, it obtains a higher
return value, while in the second environment, it obtains
a comparable one. These results are consistent with the
theory, as increasing the dimensionality of the feature map
considered and increasing the degree of the polynomial from
3 to 4 has the effect of slowing down learning but improving
the order of approximation to converge to a higher return.

5. Theoretical Guarantees
In this section, we derive the regret bounds for our two
algorithms LEGENDRE-ELEANOR and LEGENDRE-LSVI.
The former is able to achieve the no-regret property for
Weakly Smooth MDPs under the assumption that 2ν ě d´2,
as shown in the following result.

Theorem 1. Let us consider a Weakly Smooth MDP M
with state action space r´1, 1sd. Under the condition that
ν ą d{2 ´ 1, LEGENDRE-ELEANOR initialized with N “

rK
1

d`2pν`1q s, with probability at least 1 ´ δ, suffers a regret
of order at most:

RK ď rO
´

CH
ELEK

3d{2`ν`1
d`2pν`1q

¯

,

where the constant depends only on d and ν and the rO hides
logarithmic functions of K, δ.

The proof is provided in Appendix B.5. The fact that the
regret grows exponentially in H is annoying but unavoid-
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Algorithm W.ly Smooth Lipschitz S.ly Smooth Kernelized LQR LinearMDP

LEGENDRE-ELEANOR (4.1) K
3d{2`ν`1
d`2pν`1q K

3d{2`1
d`2 K

3d{2`ν`1
d`2pν`1q K

3d{2`rms

d`2rms K
1
2 K

1
2

(Jin et al., 2021) K
2ν`3d`2

4ν`4 K
3d`2

4 K
2ν`3d`2

4ν`4 K
2rms`3d

rms K
1
2 K

1
2

(Song & Sun, 2019) ✗ K
d`1
d`2 K

d`1
d`2 K

d`1
d`2 K

d`1
d`2 K

d`1
d`2

LEGENDRE-LSVI (4.2) ✗ ✗ K
2d`ν`1

d`2pν`1q K
2d`rms

d`2rms K
1
2 K

1
2

(Vakili & Olkhovskaya, 2023) ✗ ✗ ✗ K
d`m`1

d`2pm`1q ✗ K
1
2

(Dean et al., 2018) ✗ ✗ ✗ ✗ K
1
2 ✗

(Jin et al., 2020) ✗ ✗ ✗ ✗ ✗ K
1
2

Table 1. Table containing the regret guarantee of each algorithm presented in the main paper for each setting. For convenience, we recall
that Song & Sun (2019); Vakili & Olkhovskaya (2023); Dean et al. (2018); Jin et al. (2020) represent the state of the art for Lipschitz
MDPs, Kernelized MDPs, LQRs and LinearMDPs respectively. On the columns we have the algorithm, and on the rows the setting in
which it is tested. Some specifications are needed: 1) we have only reported the order of the regret in K, ignoring the other parameters of
the problems and the logarithmic terms 2) for the linear MDP setting we have assumed that the feature map is indefinitely differentiable,
an assumption explained in detail in the corresponding section of the main paper 3) for the linear MDP, the algorithms SOTA-Linear and
SOTA-Kern assume to know the feature map, while our algorithm do not have this requirement 4) Kernelized MDP assume Matérn kernel
of order m. As a result of the table, we can see that our algorithm LEGENDRE-ELEANOR is the best performing between the ones having
no-regret guarantees for all the settings: the only algorithms that are able to surpass its performance are designed for settings that are
much more specific.

able. Indeed, we derive a lower bound that shows that any
MDP class that is rich enough to capture Lipschitz MDPs
must have a regret bound which is exponential in H (see
Appendix B.6). No surprise, all related works on Lipschtz
MDPs are affected by the same problem. Apart from that,
Theorem 1 shows the bound we aimed for. In the “good”
regime, where ν ą d{2 ´ 1, we are able to prove a regret
bound that is monotonically decreasing in ν, and approaches?
K for ν Ñ 8. Therefore, our model can cover both gen-

eral (Lipschitz MDPs and Kernelized MDPs) and specific
(LQRs, Linear MDPs) models, with a regret bound that is
adaptive to the higher smoothness.

We now turn to LEGENDRE-LSVI. Its guarantees are re-
stricted to Strongly Smooth MDPs, and it only achieves no
regret under the more demanding requirement ν ě d ´ 1.
Still, its value lies both in its polynomial computational com-
plexity and in its polynomial dependence on the horizon H .

Theorem 2. Let us consider a Strongly Smooth MDP
M with state action space r´1, 1sd. Under the condi-
tion that d ď ν ` 1, LEGENDRE-LSVI initialized with
N “ rK

1
d`2pν`1q s, with probability at least 1 ´ δ, suffers a

regret of order at most:

RK ď rO
´

H3{2K
2d`ν`1

d`2pν`1q

¯

,

where rO hides logarithmic functions of K, δ, and H .

The order of the regret in K is worse than the one of
LEGENDRE-ELEANOR but we still have

?
K in the limit

ν Ñ `8 and, as anticipated, the exponential growth in
H is avoided. The proof is provided in Appendix B.7.

Note that the choice N “ rK
1

d`2pν`1q s makes the run-
ning time polynomial. Indeed, we have seen in Section
4.2 that the latter scales as OpK2H ` rN3KHq, so that
this choice of N allows bound the time complexity as
OpK2H ` K1` 3d

d`2pν`1q Hq “ OpK2Hq.

6. Comparison with Related Literature
Achieving regret or sample complexity guarantees for MDPs
with continuous state and action spaces has been one of the
main challenges of theoretical RL in recent years. Among
the numerous papers dealing with this problem, we provide a
brief overview of the most significant results achieved under
the most common assumptions proposed in the literature.
This way, we show how very different problems studied
so far are included in our setting. The overall inclusion
relationships between the settings are summarized in Figure
2, while the relations between the regret bounds in are shown
in table 1.

6.1. Lipschitz MDPs

Lipschitz MDPs assume that the transition function of the
model, as well as the reward function, are Lipschitz con-
tinuous with constants Lp and Lr, respectively. For the
reward function, this is just expressed by enforcing for all
h P rHs s, s1 P S, a, a1 P A:

|rps, aq ´ rps1, a1q| ď Lrp}s ´ s1}2 ` }a ´ a1}2q.

While, as the transition function maps a state-action pair into
a probability distribution, we need a metric for probability
distribution to define Lipschitzness. This is commonly done
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by means of the Wasserstein metric Wp¨, ¨q (Rachelson &
Lagoudakis, 2010):

Wpphp¨|s, aq, php¨|s1, a1qq ď Lpp}s ´ s1}2 ` }a ´ a1}2q.

Learning in Lipschitz MDPs is a very hot topic (Ortner &
Ryabko, 2012; Sinclair et al., 2019; Song & Sun, 2019;
Sinclair et al., 2020; Domingues et al., 2020; Le Lan et al.,
2021) and many regret bounds of order K

d`1
d`2 have been

proved.

Lipschitz MDPs are Weakly Smooth but not Strongly
Smooth. Lipschitz MDPs represent the most general class
of continuous space MDPs studied in the literature. These
processes are not necessarily Strongly Smooth, as they
include deterministic processes that cannot be Strongly
Smooth due to the discrete nature of the transition function
p. Still, it can be proved that Lipschitz MDPs are Weakly
Smooth for ν “ 0, as shown in the Appendix B.2.

6.2. Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) is a model of the en-
vironment s where the state and action space are S “

RdS ,A “ RdA , and there exist two matrices A P RdSˆdS

and B P RdSˆdA defining the transition model sh`1 “

Ash `Bah ` ξh, where ξh „ N p0,Σq is a Gaussian noise.
Also, there are other two positive semi-definite matrices
Q P RdSˆdS and R P RdSˆdS such that the reward func-
tion is given by rh “ ´sJ

hQsh ´ aJ
hRah. Regret bounds

of order
?
K were obtained for this kind of MDPs Abbasi-

Yadkori & Szepesvári (2011); Dean et al. (2018); Cohen
et al. (2019). This result has been generalized by Kakade
et al. (2020), preserving the optimal

?
K regret order when

the linear dynamics are composed with a known feature
map. Note that, differently from the previous case, the
dimension d of the state-action space does not affect the
regret order, as its dependence in the regret takes the form
polypdS , dAq

?
K.

LQRs are Strongly Smooth for ν “ `8. The
class of LQRs contains only processes which are in-
definitely differentiable. Indeed, the reward function
is quadratic, while the transition one can be written as
phps1|s, aq “ N ps1;Ash ` Bah,Σq. The last function
is 9 exp

`

´ps1 ´ Ash ´ BahqJΣ´1ps1 ´ Ash ´ Bahq
˘

,
which is indefinitely differentiable is all its variables. For
ν “ `8 our Theorem 6.3 ensures that regret of order

?
K

can be achieved, which is coherent with the results from the
literature.

6.3. Linear MDPs

Linear MDPs are processes satisfying, for every h P

rHs s, s1 P S, a P A: phps1|s, aq “ xµhps1q,φps, aqy,
where φps, aq (resp. µps1q) are fixed functions from S ˆ A

Lipschitz

Weakly Smooth

Strongly Smooth

LQR

Kernelized

Linear

Figure 2. A schematic summarizing relations among families of
continuous space RL problems. Our assumptions correspond to
the red and orange sets.

(resp. S) to Rdφ . Similarly, the reward function factorizes
as rhps, aq “ xθh,φps, aqy, for some vector θh P Rdφ .
For linear MDPs, if the feature map is given, the optimal
regret order of

?
K can be achieved. For example, in (Jin

et al., 2020) the regret takes the form of d3{2
φ K1{2, so that

the order of the regret is not affected by the magnitude of d
or dφ. When the feature map is not known in advance, the
problem becomes significantly harder (Agarwal et al., 2020;
Uehara et al., 2021). In fact, there is currently no work able
to prove regret guarantees for this setting, although sample
complexity guarantees are available.

Linear MDPs are Strongly Smooth. Linear MDPs are
Strongly Smooth with an order ν depending on the smooth-
ness of the feature map φ (see Appendix B.3). If this func-
tion is handcrafted, such as a polynomial, exponential, or
trigonometric function, we have ν “ `8. The most favor-
able case also happens when φ is a fully connected neural
network with either sigmoid (Narayan, 1997), tanh (Ab-
delouahab et al., 2017), or softplus (Zheng et al., 2015)
activation function, as these activations are all infinitely dif-
ferentiable. Instead, using ReLU (Schmidt-Hieber, 2020) ac-
tivation, which is only Lipschitz continuous, leads to ν “ 0.
Applying our theorem ensures that when using a feature
map that is indefinitely smooth, LEGENDRE-LSVI has a
regret order of

?
K, even if the feature map is not explicitly

known. This is a very strong result that has independent
interest for the literature of linear MDPs.

6.4. Kernelized MDPs

Kernelized MDPs are built on a completely different as-
sumption with respect to the previous methods. In fact, they
start from a given kernel kp¨, ¨q and assume that both the
transition function and the reward function belong to the
RKHS Hk corresponding to the kernel k:

@h P rHs, @s1 P S : rhp¨, ¨q, phps1|¨, ¨q P Hk.

7
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Moreover, as Hk is endowed with a norm } ¨ }Hk
, an upper

bound on the norm of the reward and of the transition func-
tion is assumed to be known. The most common family of
kernels is given by the Matérn kernels, which depend on a
parameter m ą 0. Interestingly, the corresponding Hk gets
smaller the higher value of m, and the function there con-
tained becomes progressively smoother. For this family of
MDPs, a regret bound of order rOpK

m`d
2m`d q is known, which

has been shown to be optimal for both the case m Ñ 0 and
for m Ñ `8 (Vakili & Olkhovskaya, 2023). Other pa-
pers that dealt with this setting are (Chowdhury & Gopalan,
2019; Yang et al., 2020a; Domingues et al., 2021).

Kernelized MDPs are Strongly Smooth. In fact, Ker-
nelized MDPs are just a particular case of Strongly Smooth
MDPs, as directly follows from the fact that functions in
the most studied RKHS are smooth. A general result (Theo-
rem 10.45 from Wendland (2004)) shows that whenever we
have a ν´times differentiable kernel k, the corresponding
RKHS contains only functions that are ν{2´times differen-
tiable, and thus contained in Cν{2´1,1pΩq. The result can
be specialized to the Matérn family of Kernels. We show
in Appendix B.4 that the Matérn kernel of parameter m
generates an RKHS which is contained in Cν´1,1pΩq for
every ν ă m, provided that the domain Ω satisfies some
reasonable assumption there specified.

6.5. Other Structural Assumptions: Comparison with
General-Purpose Algorithms

In recent years, RL theory has seen a rush in searching
for the weakest assumptions under which sample-efficient
RL is possible. These assumptions typically generalize lin-
ear MDPs. In particular, we cite MDPs with low inherent
Bellman error (Zanette et al., 2020), MDPs with Gaussian
noise (Ren et al., 2022), and MDPs with low Bellman-Eluder
dimension (Jin et al., 2021). Another strong structural as-
sumption is introduced in (Du et al., 2021), but no regret
bounds are known for problems of that family.

Among the most general algorithms with regret guarantees
for general RL, there is Algorithm 1 from (Ren et al., 2022).
The latter is built on the idea that if an MDP has a transition
function given by deterministic dynamics plus a Gaussian
noise (like in LQRs, but without the linear structure), we
can exploit the properties of the Gaussian function to our
advantage. Applying this algorithm in the setting of Strongly
Smooth MDPs, with the additional assumption that the noise
is Gaussian, we can prove what follows.

Theorem 3. The regret of Algorithm 1 from (Ren et al.,
2022) in a Strongly Smooth MDP, supposing that the tran-
sition function is given by a deterministic function plus a
Gaussian noise, is bounded, with probability at least 1 ´ δ,

by:
RK ď rO

´

H
3ν`d`3
2ν`2 K

ν`d`1
2ν`2

¯

,

assuming that d ă ν ` 1.

For the proof, see the Appendix B.8. The regret bound is
similar to the one of our LEGENDRE-LSVI from Theorem
6.3. Both ensure no regret if d ă ν ` 1 and are polynomial
in H with very similar exponents, both in K and in H .
Still, the latter result has two major drawbacks: the noise
must be Gaussian, and the algorithm is not computationally
efficient, as opposed to our LEGENDRE-LSVI, which runs
in OpK2Hq time.

Another comparison for our algorithms is GOLF from (Jin
et al., 2021). The latter is guaranteed to work in a setting that
is extremely general, as it only assumes the MDP to have
a low Bellman-Eluder dimension. Therefore, the following
result holds.

Theorem 4. The regret of GOLF on a Weakly Smooth MDP,
provided that d ă 2

3ν ` 2
3 , is bounded, with probability at

least 1 ´ δ, by:

RK ď rO
´

CH
GOLFK

2ν`3d`2
4ν`4

¯

.

The proof is reported in Appendix B.8. This time, no as-
sumption is made more than the fact we are in a Weakly
Smooth MDP. Therefore, the regret bound can be compared
to the one of our LEGENDRE-ELEANOR from Theorem
1. In fact, this result only guarantees no regret under the
strong assumption that d ă 2

3ν ` 2
3 , as opposed to The-

orem 1, which only requires d ă 2ν ` 2. The order in
K is also much better for our algorithm for every possible
smoothness parameter ν, while both suffer exponential de-
pendence on the time horizon, as it was already clear from
the lower bound (see Appendix B.6). Lastly, both GOLF
and LEGENDRE-LSVI are computationally inefficient.

7. Conclusions
In this study, we defined two broad classes of MDPs distin-
guished by varying degrees of smoothness, which generalize
most of the settings for which no-regret RL algorithms exist
in the literature. Furthermore, we introduced two novel al-
gorithms based on the theory of orthogonal functions, which
are able to deal with our general setting, achieving a better
regret guarantee than any previous algorithm having the
same level of generality.

Future works. Despite the generality of our results, it is not
clear if the proposed algorithms are optimal for our general
setting, or if a better regret bound is possible. Therefore, the
main objective of future work is to close this gap, by either
finding a lower bound for the regret of any algorithm or by
proving an improved upper bound.
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A. Notation
In this section, we leave, for the reader’s convenience, two tables of the notations introduced in this paper. We start from one
with standard RL notation:

S State space of an MDP

A Action space of an MDP

H Time horizon of an MDP

ph Transition function of an MDP at step h

rh Transition function of an MDP at step h

H Time horizon of an MDP

K Number of interaction episodes between an MDP and a
learning algorithm

RK Cumulative regret after K episodes

πk
h Policy selected by the algorithm after k episodes for step h

Qπ
hps, aq State-action value function for policy π at step h

Q˚
hps, aq Optimal state-action value function at step h

V π
h ps, aq State value function for policy π at step h

T π
h Bellman operator for policy π at step h

T ˚
h Bellman optimality operator at step h

Then, we have one related to the notation coming from mathematical analysis.

dS Vector space dimension of S
dA Vector space dimension of A
d Vector space dimension of S ˆ A
Dαf Derivative of function f with respect to the multi index α

ν order to smoothness of a function

CνpΩq Space of ν´times differentiable functions

Cν,1pΩq Banach space of ν´times differentiable functions with last derivative which is Lipschitz continu-
ous

} ¨ }Cν,1 Norm in the Banach space Cν,1pΩq, so that }f}Cν,1 :“ max|α|ďν`1 }Dαf}8

Wp¨, ¨q Wasserstein distance between measures

N p¨;x,Σq Multivariate normal distribution of mean x and covariance matrix Σ

I Identity matrix
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Lastly, we have the notation which is specific for our paper and the related works.

Lp Lipschtz constant of the transition function in a Lipschitz
MDP

Lr Lipschtz constant of the reward function in a Lipschitz MDP

φN generic feature map of degree N

φn n´th element of a generic feature map φN

φL,N Legendre feature map of degree N (1 dimension)

φd
L,N Legendre feature map of degree N (d dimensions)

N Degree of a feature map

rN Length of a feature map (“ N if d “ 1)

I inherent Bellman error

θ Linear parameter in a Linear MDP/ Bellman complete MDP

dimEpF , εq Eluder dimension of the function class F with respect to the
threshold ε ą 0

N8pF , εq Covering number of the function class F with respect to the
threshold ε ą 0 in L8 norm

13
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B. Omitted Proofs
B.1. Strongly Smooth ùñ Weakly Smooth

Let us assume an MDP is Strongly Smooth. Indeed, for every function f : S ˆ A Ñ R we have:

T ˚
h fps, aq “ rhps, aq ` E

s1„php¨|s,aq

rmax
a1PA

fps1, a1qs

“ rhps, aq `

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1.

By triangular inequality, this entails:

}T ˚
h f}Cν,1 ď }r}Cν,1 `

›

›

›

›

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1

›

›

›

›

Cν,1

,

where the first term is bounded by assumption, so that we can focus on the second one. If we can apply the theorem of
exchange between integral and derivative, we have, for every multi-index with |α| ď ν:

Dα

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1 “

ż

S
max
a1PA

fps1, a1qDαphps1|s, aq ds1; (6)

In such case, using the abbreviation z “ ps, aq and f̃ps1q “ maxa1PA fps1, a1q we get:

Dα

ż

S
f̃ps1qphps1|z1q ds1 ´ Dα

ż

S
f̃ps1qphps1|z2q ds1 “

ż

S
f̃ps1qpDαphps1|z1q ´ Dαphps1|z2qq ds1

ď

ż

S
f̃ps1qCp}z1 ´ z2}2 ds

1

ď VolpSqCp}z1 ´ z2}2}f̃}8

ď VolpSqCp}z1 ´ z2}2}f}8

ď VolpSqCp}z1 ´ z2}2}f}Cν,1

“ 2dSCp}z1 ´ z2}2}f}Cν,1

where the second step comes from the Strongly Smoothness assumption on ph and the third one from the fact that
maxsPS |maxaPA fps, aq| ď maxsPS maxaPA |fps, aq|. This proves that the norm of the operator T ˚

h f is bounded by
VolpSqCp}f}Cν,1 ` }r}Cν,1 , so that, tanking CT ˚ “ maxt1,VolpSqCpu we have the boundedness of operator T ˚. It
remains to justify Equation 6, by ensuring that we can differentiate under the integral. This holds (Folland, 1999) under the
condition that:

Dg ě 0,

ż

S
gps1qds1 ď `8, @z

ˇ

ˇ

ˇ
Dαf̃ps1qphps1|zq

ˇ

ˇ

ˇ
ď gps1q,

where the derivative is intended w.r.t. z, as before. Taking gps1q “ Cp}f}Cν,1 is already sufficient.

B.2. Lipschitz MDPs are Weakly Smooth but not Strongly Smooth

We only prove that all Lipschitz MDPs are Weakly Smooth, as the fact that they are not always Strongly Smooth can be
proved by simply taking a Lipschitz MDPs that is also deterministic; indeed, no smoothness condition can be imposed if
php¨|s, aq is a Dirac delta.

Theorem 5. Let M “ pS,A, p, r,Hq be a Lipschitz MDP with constants Lr, Lp. Then, the same MDP is Weakly Smooth
for ν “ 0.

14
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Proof. Let f P C0,1pS ˆ Aq (which corresponds to the space of Lipschitz functions). We start from:

T ˚
h fps, aq “ rhps, aq ` E

s1„php¨|s,aq

rmax
a1PA

fps1, a1qs

“ rhps, aq `

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1.

By triangular inequality we have:

}T ˚
h f}C0,1 ď }r}C0,1 `

›

›

›

›

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1

›

›

›

›

C0,1

“ maxt1, Lru `

›

›

›

›

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1

›

›

›

›

C0,1

.

We have now to evaluate the second part. Indeed, we can bound the infinity norm in this way:
›

›

›

›

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1

›

›

›

›

8

ď }f}8,

so that we have only to bound its Lipschitz constant to bound its norm in C0,1. We have:

ˇ

ˇ

ˇ

ˇ

ż

S
max
a1PA

fps1, a1qphps1|s1, a1q ds1 ´

ż

S
max
a1PA

fps1, a1qphps1|s2, a2qds1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

S
max
a1PA

fps1, a1q
`

phps1|s1, a1q ´ phps1|s2, a2q
˘

ˇ

ˇ

ˇ

ˇ

ď Wpphp¨|s1, a1q, php¨|s2, a2qqLippmax
a1PA

fq

ď Wpphp¨|s1, a1q, php¨|s2, a2qqLippfq

ď Wpphp¨|s1, a1q, php¨|s2, a2qq}f}C0,1

ď Lp}f}C0,1p}s1 ´ s2}2 ` }a1 ´ a2}2q,

the second passage being valid by definition of Wasserstein distance, the third since the Lipschitz constant of maxa1PA f is
at most equal to the one of f , the fourth by definition of } ¨ }C0,1 norm and the last one by definition of Lipschitz MDP. This
proves that:

›

›

›

›

ż

S
max
a1PA

fps1, a1qphps1|s, aq ds1

›

›

›

›

C0,1

ď maxt1, Lpu}f}C0,1 .

Overall, this entails:

}T ˚
h f}C0,1 ď maxt1, Lru ` maxt1, Lpu}f}C0,1 ,

which proves the boundedness of the operator T ˚
h .

B.3. LinearMDPs are Strongly Smooth

Theorem 6. Let M “ pS,A, p, r,Hq be a Linear MDP with feature map φ. Then, the same MDP is Strongly Smooth for
an order ν corresponding to the smoothness of φ.

Proof. By definition, the Linear MDP satisfies, @h P rHs s, s1 P S, a P A,

rhps, aq “ xθh,φps, aqy phps1|s, aq “ xµhps1q,φps, aqy.

Assuming that the feature map φ P Cν,1pS ˆ A,Rdφq (this is the space of functions S ˆ A Ñ Rdφ such that each of the
dφ components is in Cν,1pS ˆ Aq), we have:
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• rh P Cν,1pS ˆ Aq, being a linear combination of dφ functions in Cν,1pS ˆ Aq. Moreover, }rh}Cν,1 ď

}θh}1 maxi“1,...,dφ }φi}Cν,1 .

• For every s1, phps1|¨, ¨q P Cν,1pS ˆ Aq for the same reason, and sups1PS }phps1|¨, ¨q}Cν,1 ď

sups1PS }µps1q}1 maxi“1,...,dφ }φi}Cν,1 .

As, for linear MDPs, it is assumed that maxt}θ}2, }µps1q}2u ď
a

dφ (Jin et al., 2020; Uehara et al., 2021), this ends the
proof.

B.4. Kernelized MDPs are Strongly Smooth

In this section, we are going to prove that under the cone property, a standard assumption in mathematical analysis, any
RKHS with Matérn kernel contains function that are smooth up to a certain degree.
Proposition 7. Let km be the Matérn kernel of order m ą 1. Then, if the domain Ω satisfies the cone property (see
Definition 1 in (Dlotko, 2014)), the corresponding RKHS Hkm Ă Cν´1,1pΩq for every ν ă m.

Proof. We will actually prove a stronger statement, that is Hkm
Ă CνpΩq. First, we apply Corollary A.6 from (Tuo &

Jeff Wu, 2016), which, under the condition tm ` d{2u ą d{2, which is automatically verified being m ą 1, ensures that

Hkn Ă Wm`d{2pΩq,

where Wm`d{2pΩq denotes the Sobolev space of order m ` d{2, containing functions that have m ` d{2 derivatives in
L2pΩq. Therefore, we can apply theorems that embed Sobolev spaces into spaces of continuous functions to get the result.
Precisely, from Proposition 2 in (Dlotko, 2014), we have, for each j such that 2pm ` d{2 ´ jq ą d,

Wm`d{2pΩq Ă CjpΩq.

By taking j “ ν, we have 2pm ` d{2 ´ νq “ d ` 2pm ´ νq ą d, so that

Wm`d{2pΩq Ă CνpΩq,

provided that Ω satisfies the cone property. This ends the proof.

B.5. Proof of the regret bound for LEGENDRE-ELEANOR (Theorem 1)

Before coming to the actual proof, it is necessary to introduce a result from approximation theory (Schultz, 1969; Bagby
et al., 2002; Pleśniak, 2009). We start with a simple lemma of functional analysis, which allows us to draw a relation
between the space Cν,1 we have defined in this article and the more common Cν`1.
Lemma 1. Let f P Cν,1pRdq. Then, for every ε ą 0, there is fε P Cν`1pRdq such that

}f ´ fε}L8 ď ε

and }fε}Cν,1 ď }f}Cν,1 .

Proof. Fix ε ą 0,and let ε1 “ }f}
´1
Cν,1ε. Let χpxq be the standard mollifier in Rd:

χpxq “

#

Cexp
´

1
}x}2´1

¯

}x} ă 1

0 }x} ě 1
,

For a constant C such that the function integrates to one. If we define χε1 pxq :“ 1
ε1dχpx{ε1q, we can take

fε1 pxq :“ f ˚ χε1 pxq “

ż

Rd

fpyqχε1 px ´ yq dy.

By the properties of convolution, as χp¨q is C8, the function fε1 pxq P C8pRdq. Then, we have
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• The bound on the norm difference:

}f ´ fε1 }L8 “ }f ˚ δ0pxq ´ f ˚ χε1 pxq}L8

ď }f}Cν,1Wpδ0p¨q, χε1 p¨qq

“ }f}Cν,1

ż

Rd

}x}χε1 pxqdx

ď ε1}f}Cν,1 “ ε.

Where δ0p¨q is the Dirac’s delta, the second passage is valid by definition of Wassertein distance thanks to the fact that
the Lipschitz constant of f is bounded by }f}Cν,1 , and the last is due to the fact that χε1 p¨q has integral 1, support in a
ball of radius ε1, and center in the origin.

• The bound on the derivatives: for every |α| ď ν ` 1,

}Dαfε1 }L8 “ }χε1 ˚ Dαf}L8 ď }Dαf}L8 ,

the last being valid since χε1 has integral one. Therefore,

}fε1 }Cν,1 “ max
|α|ďν`1

}Dαfε1 }L8 ď max
|α|ďν`1

}Dαf}L8 “ }f}Cν,1 .

This ends the proof.

One key ingredient of our next results will be a theorem from approximation theory. This theorem, which is built on a family
of result known as Jackson’s theorems, ensures that we are able to approximate smooth functions with polynomials, with an
error that is lower the more continuous derivative the function has.

Theorem 8. For every ν, d P N, there is a constant Jd,ν such that for every function f : r´1, 1sd Ñ R in Cν,1pr´1, 1sdq it
holds, for N ą ν,

DpN P PN : }f ´ pN }L8 ď 2Jd,ν}f}Cν,1N´ν´1,

where PN is the space of multivariate polynomials of degree at most N . Moreover, }pN }Cν,1 ď 3Jd,ν}f}Cν,1 .

Proof. This proof will be based on Theorem 1 from (Bagby et al., 2002), which says that, for any function in Cν`1 with
compact support (r´1, 1sd in our case), there is a polynomial pN P PN such that, for every multi-index α such that
|α| ď ν ` 1,

}Dαf ´ DαpN }L8 ď Jd,νN
|α|´ν´1ωf,νpN´1q, (7)

where Jd,ν is a constant, which we can impose to be ą 1 without loss of generality, and ωf,ν`1p¨q is the ν´modulus of
continuity, defined as

ωf,ν`1pδq :“ sup
|α|ăν`1

sup
}x´y}2ďδ

|Dαfpxq ´ Dαfpyq|.

This theorem cannot be applied on f , which is not in Cν`1pr´1, 1sdq, therefore we apply it on the mollified function fε
obtained from Lemma 1. Note that

ωfε,ν`1pδq ď 2 sup
|α|ăν`1

}Dαfε}L8 ď 2}fε}Cν,1 ď 2}f}Cν,1 ,

where the last inequality is from Lemma 1. This allows us to see that, taking α “ 0 (the zero multi-index) in Equation 7,

}fε ´ pN }L8 ď 2}f}Cν,1Jd,νN
´ν´1. (8)

Moreover, taking the other values of α results in
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@α : |α| ď ν ` 1, }Dαfε ´ DαpN }L8 ď 2}f}Cν,1Jd,ν . (9)

These two results allow us to obtain the thesis: applying the triangular inequality to Equation 8, by Lemma 1,

}f ´ pN }L8 ď }fε ´ f}L8 ` }fε ´ pN }L8 ď ε ` 2}f}Cν,1Jd,νN
´ν´1.

Since this is valid for every ε ą 0, we obtain }f ´ pN }L8 ď 2}f}Cν,1Jd,νN
´ν´1, proving the first statement. As for the

second statement, applying the triangular inequality to Equation 9 leads to

}pN }Cν,1 “ max
|α|ďν`1

}DαpN }L8

ď max
|α|ďν`1

}Dαfε}L8 ` }Dαfε ´ DαpN }L8

ď max
|α|ďν`1

}Dαfε}L8 ` 2}f}Cν,1Jd,ν (Equation 9)

ď 3}f}Cν,1Jd,ν ,

Where we have used lemma 1 in the last passage to bound max|α|ďν`1 }Dαfε}L8 , and also the fact that Jd,ν ě 1.

The main part of the proof of Theorem 1 revolves around showing that Weakly Smooth MDPs paired with Legendre
representation map have low inherent Bellman error with respect to some sequence of sets Bh. Recall the definition of
inherent Bellman error:

I :“ max
hPrHs

sup
θPBh`1

inf
θ1PBh

}φps, aqJθ1 ´ T ˚Qpθqps, aq}L8 .

where Qθps, aq is the function φps, aqJθ.

Theorem 9. Let M be a Weakly Smooth MDP. Let us consider the pair pM,φd
L,N q given by the MDP and the Legendre

feature map of degree N . There is a sequence of compact sets Bh Ă RĂN such that the inherent Bellman error of pM,φd
L,N q

w.r.t. tBhuh satisfies, for N ą ν,

I ď 2Jd,νCT ˚

ˆ

p3Jd,νCT ˚ qH ´ 1

3Jd,νCT ˚ ´ 1
` 1

˙

N´ν´1,

where Jd,ν is the constant from Theorem 8.

Proof. First thing, we have to define the sequence of compact sets Bh Ă RĂN . We define

Bh :“
!

θ P RĂN : }φd
L,N p¨, ¨qJθ}Cν,1 ď Bphq

)

, (10)

for a constant Bphq to be defined later.

Now, for every θ P Bh`1, we have

T ˚Qpθqps, aq “ T ˚φd
L,N ps, aqJθ.

Note that, being φd
L,N ps, aqJθ the scalar product between a constant and a vector of polynomials, it is also C8. Moreover,

by definition of Bh`1, we have, for all θ P Bh`1,

}φd
L,N p¨, ¨qJθ}Cν,1 ď Bph ` 1q.
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So, having assumed that the process is Weakly Smooth of order ν,

}T ˚φd
L,N p¨, ¨qJθ}Cν,1 ď CT ˚

`

}φd
L,N p¨, ¨qJθ}Cν,1 ` 1

˘

ď CT ˚ pBph ` 1q ` 1q . (11)

Applying Theorem 8, this entails the existence of a polynomial pN P PN such that

}T ˚φd
L,N p¨, ¨qJθ ´ pN p¨q}L8 ď 2Jd,νCT ˚ pBph ` 1q ` 1qN´ν´1. (12)

If we prove that there is θ1 P Bh such that pN p¨q “ φd
L,N p¨, ¨qJθ1, then we have proved that the inherent Bellman error is

bounded by the right hand side of equation (12). The fact that this θ1 P Bh exists follows from two considerations:

1. As the set tφd
L,N p¨, ¨qiu

ĂN
i“1 is a basis for the vector space of d´variate polynomials of degree N , there is θ1 P RĂN such

that pN p¨q “ φd
L,N p¨, ¨qJθ1.

2. From Theorem 8 we also have }pN }Cν,1 ď 3Jd,νCT ˚ pBph ` 1q ` 1q.

Therefore, from the second point, it is sufficient that the value of Bphq in the definition of Bh satisfies

Bphq ě 3Jd,νCT ˚ pBph ` 1q ` 1q ,

which is in particular satisfied by the choice

Bphq “

H´h
ÿ

τ“1

p3Jd,νCT ˚ qτ “
p3Jd,νCT ˚ qH´h`1 ´ 1

3Jd,νCT ˚ ´ 1
´ 1 (13)

substituting this value into equation (12), we get

I ď 2Jd,νCT ˚

ˆ

p3Jd,νCT ˚ qH ´ 1

3Jd,νCT ˚ ´ 1

˙

N´ν´1,

which ends the proof.

Now that we have proved Theorem 9, it is sufficient to apply the results of the literature for the case of MDPs with low
inherent Bellman error (Zanette et al., 2020) to achieve a regret bound. For our convinience, we report here this result

Theorem 10. (Assumption 1 and Theorem 1 from (Zanette et al., 2020)) Let pM,φq be a pair MDP-feature map that satisfy
the low-inherent Bellmann error assumption with respect to a sequence of sets tBhuHh“1 (see (5)). Assume that,

1. |Qπ
hps, aq| ď 1 for every h, s, a and every policy π.

2. }φps, aq}2 ď 1 for every s, a.

3. The reward noise is 1´subgaussian.

4. The sets tBhuHh“1 are all compact and define Nh :“ supθPBh
}θ}22.

Then, the regret of ELEANOR applied on pM,φq satisfies, with probability at least 1 ´ δ

RK ď rO
˜

H
ÿ

h“1

Nh

?
K `

H
ÿ

h“1

?
NhIK

¸

We can pass trough this result to achieve a regret bound for every Weakly Smooth MDP.
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Theorem 11. Let us consider a Weakly Smooth MDP M with state action space r´1, 1sd. Under the condition that
ν ą d{2 ´ 1, LEGENDRE-ELEANOR, with probability at least 1 ´ δ, suffers a regret of order at most:

RK ď rO
´

CH
ELE

´

rN
?
K ` N´ν´1

a

rNK
¯¯

,

where the constant depends only on d and ν and the rO hides logarithmic functions of K, δ.

Proof. By design of the algorithm, to prove the regret bound we have to show that the couple given by the MDP pM,φd
L,N q

satisfies the assumptions of theorem 10 and then apply its regret bound. Here, we report, point by point, why every
assumption is verified.

1. The fact that |Qπ
hps, aq| ď 1 is assumed.

2. The feature map satisfies, for every s P S, a P A,

}φd
L,N ps, aq}2 “ rN´1{2

›

›

›

›

›

#

φL,N1px1q ˆ φL,N2px2q . . . φL,Nd
pxdq :

d
ÿ

i“1

Ni ď N

+
›

›

›

›

›

2

ď rN´1{2

g

f

f

e

ĂN
ÿ

i“1

1 “ 1.

The last inequality being valid due to the fact that Legendre polynomials are bounded in r´1, 1s.

3. Follows from the sub-Gaussianity of the noise and the fact that the state-action value function of every policy is
bounded.

4. This is the only difficult point. We start proving that the sets Bh, defined as in Equation (10) are compact. Let Bphq be
defined as in Equation (13). By the Heine-Borel theorem (Rudin, 1974), a subset of RĂN is compact is and only if it is
closed and bounded. We start proving the closure, as we get boundedness from free by the norm inequality proved later.
Let tθnun Ă Bh such that θn Ñ θ. Then,

}φd
L,N p¨, ¨qJpθ ´ θnq}Cν,1 “ max

|α|ďν`1
}Dαφd

L,N p¨, ¨qJpθ ´ θnq}L8

ď max
|α|ďν`1

sup
s,a

|Dαφd
L,N p¨, ¨qJpθ ´ θnq|

ď max
|α|ďν`1

sup
s,a

}Dαφd
L,N p¨, ¨qJ}2}θ ´ θn}2

“ max
|α|ďν`1

}}Dαφd
L,N p¨, ¨qJ}2}L8 }θ ´ θn}2

where we have used the Cauchy-Schwartz inequality. Now, note that φd
L,N p¨, ¨qJ is a vector valued function with any

component being a Legendre polynomial, so C8 in particular. Thus, max|α|ďν`1 }}Dαφd
L,N p¨, ¨qJ}2}L8 is bounded

and we have

}φd
L,N p¨, ¨qJpθ ´ θnq}Cν,1 ď max

|α|ďν`1
}}Dαφd

L,N p¨, ¨qJ}2}L8

loooooooooooooooooomoooooooooooooooooon

ă`8

}θ ´ θn}2
loooomoooon

Ñ0

Ñ 0.

Moreover, we have, by reverse triangular inequality,

}φd
L,N p¨, ¨qJθ}Cν,1 ď inf

n
}φd

L,N p¨, ¨qJpθ ´ θnq}Cν,1 ` }φd
L,N p¨, ¨qJθn}Cν,1
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ď inf
n

}φd
L,N p¨, ¨qJpθ ´ θnq}Cν,1 ` Bphq

“ Bphq.

Where we have used the fact that θn P Bh to bound }φd
L,N p¨, ¨qJθn}Cν,1 , and the fact that }φd

L,N p¨, ¨qJpθ´θnq}Cν,1 Ñ 0

to ensure that infn }φd
L,N p¨, ¨qJpθ ´ θnq}Cν,1 “ 0. This proves that θ P Bh, which means that the set is closed.

The norm inequality follows from the fact that the Legendre polynomials form an orthogonal basis of L2pS ˆ Aq.
Indeed we have, by definition, that @θ P Bh, }φd

L,N p¨, ¨qJθ}L8 ď }φd
L,N p¨, ¨qJθ}Cν,1 ď Bphq.

Being in a bounded domain S ˆ A Ă r´1, 1sd, the L8 norm is stronger that the L2 one, and precisely we have
} ¨ }L2 ď

a

V olpS ˆ Aq} ¨ }L8 . Therefore, we have

@θ P Bh, }φd
L,N p¨, ¨qJθ}L2 ď

a

V olpS ˆ AqBphq. (14)

Here the definition Legendre polynomials plays a crucial role: as tφd
L,N p¨, ¨qiu

ĂN
i“1 is an orthogonal sequence normalized

in L2 to rN´1{2, it follows from Parseval’s theorem (Rudin, 1974) on the Hilbert space L2pS ˆ Aq that we can bound
}φd

L,N p¨, ¨qJθ}L2 . Indeed,

}φd
L,N p¨, ¨qJθ}L2 “

›

›

›

›

›

›

ĂN
ÿ

i“1

rφd
L,N sip¨, ¨qθi

›

›

›

›

›

›

L2

pParq
“

g

f

f

e

ĂN
ÿ

i“1

}rφd
L,N sip¨, ¨q}2L2θ2i

“ rN´1{2

g

f

f

e

ĂN
ÿ

i“1

θ2i

“ rN´1{2}θ}2.

Where at passage pParq we have used Parseval’s theorem, exploiting the fact that the rN components of φd
L,N are

all orthogonal in L2pS ˆ Aq, by definition of Legendre polynomials, and have been normalized to rN´1{2. Note that
Parseval theorem works also for infinite components, but here we are considering a function φd

L,N p¨, ¨qJθ which is
a linear combination only of the first rN elements of the Legendre basis, so that all the following components are
identically zero.

Substituting this result into Equation 14, we have

}θ}2 ď
a

V olpS ˆ AqBphq rN1{2.

Having the additional term
a

V olpS ˆ AqBphq multiplying rN1{2 has the effect of enlarging the regret of the same
quantity, which still does not depend on N .

For this reason, Theorem 1 from Zanette et al. (2020) results in the following regret bound in high probability

RK ď rO
´

a

V olpS ˆ AqBp1q

”

H rN
?
K ` I

a

rNK
ı¯

,

which, once Theorem 9 is applied to bound the inherent Bellman error, leads to

RK ď rO

ˆ

a

V olpS ˆ AqBp1q

„

H rN
?
K ` 2Jd,νCT ˚

ˆ

p3Jd,νCT ˚ qH ´ 1

3Jd,νCT ˚ ´ 1
` 1

˙

N´ν´1
a

rNK

ȷ˙

.
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Grouping all the constants independent of N and K, we get the factor

2
a

V olpS ˆ AqBp1qHJd,νCT ˚

ˆ

p3Jd,νCT ˚ qH ´ 1

3Jd,νCT ˚ ´ 1
` 1

˙

ď CH
ELE,

for a suitably large constant CELE only depending on d and ν.

At this point, it is easy to achieve the regret bound in the form of Theorem 1: from a regret bound in the form of theorem 11,
we can substitute the value of N “ rKβs to achieve

RK ď rO
´

Kdβ
?
K ` K´βpν`1qKdβ{2K

¯

.

Imposing that the exponents are equal leads to dβ` 1
2 “ 1`βpd{2´ν´1q ùñ βpd{2`ν`1q “ 1

2 ùñ β “ 1
d`2pν`1q

.
Substituting in the regret bound, we get precisely

RK ď rO
´

K
3d{2`ν`1
d`2pν`1q

¯

,

which is the statement of Theorem 1.

B.6. Lipschitz MDPs have regret bound exponential in H

In this section we prove that every regret bound for algorithms in the Lipschitz MDP setting must grow exponentially with
the time horizon H . The proof strategy is the following: we start from an instance of a Lipschitz bandit problem with
a Lipschitz constant that is exponential in H , and show that this can be reduced to a standard Lipschtz MDP (where all
Lipschitz constants are independent on H). Since it has been shown that the regret bound in a Lipschitz bandit problem is
proportional to the Lipschitz constant, this shows that the regret of the Lipschitz MDP is also exponential in H .

Theorem 12. The regret in a Lipschtz MDP is at least of order RT “ ΩpL
dpH´2q

d`2
p K

d`1
d`2 q.

Proof. Let f : r´1, 1sd Ñ r´1, 1s be an 2LH´2
p ´Lipschtz function and η a noise bounded in r´1, 1s.

Define rf :“ pL´H`2
p {2qf, rη :“ pL´H`2

p {2qη, so that rf : r´1, 1sd Ñ r´L´H`2
p {2, L´H`2

p {2s is a 1{2´Lipschitz function
and rη a noise bounded in r´L´H`2

p {2, L´H`2
p {2s. Define the following MDP:

• The state and action space coincide: S “ A “ r´1, 1sd{2. In this way, S ˆ A “ r´1, 1sd

• The starting state is r0, . . . 0s almost surely.

• The transition function is defined in the following way:

– For h “ 1, p1ps1|s, aq “ δps1 “ aq, so that the first action becomes the second state.

– For h “ 2, p2ps1|s, aq “ δps1p1q “ rfps, aq ` rηq
śd{2

i“2 δ0ps1piq
q, meaning that the next state has the first coordinate

equal to rfps, aq plus the noise η, and all the other ones set to zero. Note that this is coherent with the definition of
f , which goes r´1, 1sd{2 “ S ˆ A Ñ R.

– For h “ 2, . . . H we have phps1|s, aq “ δps1 “ Lpsq, so that the next state is the previous one times a constant
(note that, by the bounds on rf, rη, the state never hits the boundary).

• The reward function rh is zero for the first H ´ 1 time steps, and rHps, aq “ sp1q, the first component of the state.

By definition, it is easy to check that the MDP is Lipschtz with Lp “ Lp and Lr “ 1.

In this very peculiar MDP, where only the first two actions a1 and a2 matter, the return can be expresses as a function of
them. Precisely, since the reward is only given at the last time step, we have
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Returnpa1, a2q “ LH´2
p p rfpa1, a2q ` rηq “

1

2
pfpa1, a2q ` ηq.

In this way, we have shown that the return for this Lipschitz MDP corresponds exact to the feedback in the Lipschitz bandit
problem with reward function rf{2 (which is LH´2

p -LC) and noise η{2.

This shows that any Lipschitz bandit problem with Lipschtz constant LH´2
P can be reduced to to a Lipschtz MDP with

constants bounded independently of H . Therefore, the regret on the latter problem is as most as high as the one of the

former one. As the regret of the latter is well-known to be of order ΩpL
d

d`2K
d`1
d`2 q “ ΩpL

pH´2q d
d`2

p K
d`1
d`2 q, the proof is

complete.

B.7. Proof of the regret bound for LEGENDRE-LSVI (Theorem 6.3)

For our convenience, we recall here the main result about Linear MDPs that we are going to use to prove our regret bound.

Theorem 13. (Assumption B + thm. 3.2 from (Jin et al., 2020)). Let pM,φq a pair MDP-feature map with φ : SˆA Ñ RĂN ,
µp¨q : S Ñ RĂN a vector of signed measures and ζ a positive number that satisfy, for any s, a, s1, h,

1. }φps, aq}2 ď 1 and }µps1q}2 ď

a

rN

2. }θh}2 ď

a

rN

3. TVpphp¨|s, aq ´ xφps, aq,µhp¨qyq ď ζ

4. |rhps, aq ´ xφps, aq,θhy| ď ζ

Then, algorithm LSVI-UCB satisfies, for every δ ą 0, with probability at least 1 ´ δ

RK ď rOpH3{2
rN3{2

?
K ` ζNHKq,

where rO hides quantities that are logarithmic in H,K,N, δ.

We now have to prove that any Strongly Smooth MDP equipped with a Legendre feature map becomes a LinearMDP.

Theorem 14. Let us consider a Strongly Smooth MDP M with state action space r´1, 1sd. Under the condition that
d ď ν ` 1, LEGENDRE-LSVI, with probability at least 1 ´ δ, suffers a regret of order at most:

RK ď rO
´

H3{2
rN3{2

?
K ` H3{2N´ν´1

rNK
¯

.

where rO hides logarithmic functions of K, δ, and H .

Proof. By design of the algorithm, to prove the regret bound we have to show that the couple given by the MDP and the
Legendre feature map forms a ζ´approximate LinearMDP, so that LSVI-UCB is guaranteed to work. To prove that the
MDP is a ζ´approximate LinearMDP we have to satisfy the assumptions to apply theorem 13. The first step is to show
what are the two components µh and θh in our setting. Indeed, by assuming that the MDP is Strongly Smooth,

@h P rHs @s1 P S, rhp¨, ¨q, phps1|¨, ¨q P Cν,1pS ˆ Aq,

with suph,s1 }pps1|¨, ¨q}Cν,1 :“ Cp ă 8 and suph,s1 }rp¨, ¨q}Cν,1 :“ Cr ă `8. Theorem 8 ensures that

@s1 P S, @h P rHs, DpN P PN : }phps1|¨, ¨q ´ pN p¨q}L8 ď 2Jd,νCpN
´ν´1,

@h P rHs, DpN P PN : }rhp¨, ¨q ´ pN p¨q}L8 ď 2Jd,νCrN
´ν´1.

As the set tφd
L,N ps, aqiu

ĂN
i“1 is a basis for the vector space PN of d´variate polynomials of degree N , we can define

µhps1q P RĂN and θh P RĂN to be the coefficients such that
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@s1 P S, @h P rHs : }phps1|¨, ¨q ´ φd
L,N p¨, ¨qJµhps1q}L8 ď 2Jd,νCpN

´ν´1, (15)

@h P rHs : }rhp¨q ´ φd
L,N p¨, ¨qJθh}L8 ď 2Jd,νCrN

´ν´1. (16)

Now we just have to prove that the four assumtpions of theorem 13 hold,

1. The norm bound on the feature map follows exactly as in the proof of Theorem 11. For every s P S, a P A,

}φd
L,N ps, aq}2 “ rN´1{2

›

›

›

›

›

#

φL,N1
px1q ˆ φL,N2

px2q . . . φL,Nd
pxdq :

d
ÿ

i“1

Ni ď N

+
›

›

›

›

›

2

ď rN´1{2

g

f

f

e

ĂN
ÿ

i“1

1 “ 1.

The inequality being valid due to the fact that Legendre polynomials are bounded in r´1, 1s.

2. Since tφd
L,N ps, aqiu

ĂN
i“1 is an orthogonal sequence normalized in L2 to rN´1{2, by Parseval’s theorem (Rudin, 1974),

for all s1 P S, h P rHs,

}µhps1q}2 “ rN1{2}φd
L,N p¨, ¨qJµhps1q}L2

ď rN1{2
a

V olpS ˆ Aq}φd
L,N p¨, ¨qJµhps1q}L8

ď 2 rN1{2
a

V olpS ˆ Aq}phps1|¨, ¨q}L8 ď 2 rN1{2Cp

a

V olpS ˆ Aq.

Where equality is by Parseval’s theorem (cf. proof of Theorem 11), the first inequality from the L2 ´ L8 norm
inequality since S ˆ A is bounded and has finite measure, the second inequality from the second part of Theorem 8,
and the last one by definition of Cp. Analogous steps show that

}θh}2 ď 2 rN1{2Cr

a

V olpS ˆ Aq.

Having proved that maxhPrHs sups1PSt}µhps1q}2, }θh}2u ď 2maxtCr, Cpu
a

V olpS ˆ Aq rN1{2, we have that the
regret of LSVI-UCB given by theorem 13 will just be multiplied by the constant 2maxtCr, Cpu

a

V olpS ˆ Aq.

3. To prove the bound on the total variation difference with the transition function, we just need to apply Equation (15):

TV
`

php¨|s, aq,φd
L,N ps, aqJµhp¨q

˘

ď V olpSq sup
s1PS

|phps1|s, aq ´ φd
L,N ps, aqJµhp¨q|

ď V olpSq sup
s1PS

}phps1|¨, ¨q ´ φd
L,N p¨, ¨qJµhps1q}L8

ď 2V olpSqJd,νCpN
´ν´1.

As usual, the first inequality comes from the L1 ´ L8 norm inequality for finite measure spaces.

4. Lastly, the condition on the difference in norm of reward function and its approximation is proved analogously to the
previous point. Indeed, by Equation 16,

}rh ´ φd
L,N ps, aqJθh}L8 ď 2Jd,νCrN

´ν´1.

All assumptions have been satisfied. Therefore, LSVI-UCB enjoys the regret bound provided by theorem 13, except for the
constant factor mentioned in the second point.

As before, the statement of Theorem 6.3 follows trivially from the last result. Indeed, we can just replace N “ rK
1

d`2pν`1q s

in
RK ď rO

´

H3{2
rN3{2

?
K ` H3{2N´ν´1

rNK
¯

,

to get
RK ď rO

´

H3{2K
2d`ν`1

d`2pν`1q

¯

.
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B.8. Proofs from Section 6.5

The algorithms described in Section 6.5 assume that a function class F (composed of possible feature mappings or
Hypotheses on Q˚) is known. All the regret bounds presented there depend on the covering number of F in L8 norm
(denoted N8), the Eluder dimension (Russo & Van Roy, 2013) of F (denoted dimE), or both. In order to compare our regret
bounds with the ones there obtained, we have to assume that F “ FpBq “ tf P Cν,1pS ˆ Aq : }f}Cν,1 ď Bu. In this way,
the algorithms have access to an upper bound B on “how smooth the MDP is”, which is a small advantage over the standard
setting. We present here a two results bounding the Eluder dimension and the covering number of this function class.

The first result, about the Eluder dimension, is of independent interest, as it shows that the regret bounds for Thompson
Sampling for continuous spaces, which were proved by Grant & Leslie (2020) only for d “ 1, can be extended to arbitrary
dimension. Before coming to the actual theorem about the Eluder dimension, we state a simple result which slightly
generalizes Proposition 6 from (Russo & Van Roy, 2013).

Lemma 2. Define the pεleft, εrightq´Eluder dimension of a function class F as the maximum n P N such that there is a
sequence txiu

n
i“1 Ă X such that

@n0 ď n, Df1, f2 P F , g “ f1 ´ f2 :
n0´1
ÿ

i“1

gpxiq
2 ď ε2left, gpxn0

q ą εright.

Note that, for εleft “ εright, this dimension corresponds to the standard Eluder. Then, if F is a linear class of dimension N
(in the linear sense), we have that its pεleft, εrightq´Eluder dimension is bounded by

C0N
2ε2left ` ε2right

εright
2

«

log

˜

2ε2left ` ε2right

εright
2

¸

` logp1 ` ε´2
left q ` C1

ff

for some constant C.

Proof. We follow the proof of Proposition 6 from (Russo & Van Roy, 2013). The only change occurs in the last step where,

in the fraction 1`x
x we set x “

ε2right

2ε2left
instead of x “ 1

2 .

Theorem 15. Let FpBq “ tf P Cν,1pS ˆ Aq : }f}Cν,1 ď Bu. Then, for every ε ą 0, dimEpF , εq “ rOpB
d

ν`1 ε´d{pν`1qq.

Proof. Let G “ FpBq ´ FpBq Ă Fp2Bq. By definition, to prove that F has an ε´Eluder dimension bounded by n
corresponds to proving that there are no points x1, . . . xn P r´1, 1sd such that

@n1 ď n Dg P G
n1´1
ÿ

i“1

gpxiq
2 ď ε2, gpxD1

q ě ε.

We can reason as follows. Let us divide r´1, 1sd into disjoint hypercubes of side 1{ℓ, for ℓ P N. This can be done with
exactly ℓd hypercubes, that we are going to call tCjuℓ

d

j“1. We start by proving that, under each of the hypercubes, each
function of G is almost linear in some features.

To prove it, note that letting g P G, Definition 1 in (Liu et al., 2021) (originally from Tsybakov, 2008) ensures that for any
fixed y P r´1, 1sd,

@x P r´1, 1sd, |gpxq ´ Typxq| ď 2B}x ´ y}ν`1
8 , Tyrgspxq “

ÿ

|α|ďν

Dαgpyq

α!
px ´ yqα,

where the term Typ¨q corresponds to the Taylor polynomial of order ν centered in y. If we apply this to y “ yj‹ , the middle
points of Cj‹ , we have that, for every x P Cj‹

|gpxq ´ Tyj‹ rgspxq| ď 2B}x ´ yj‹ }ν`1
8

ď 2Bp2ℓq´ν´1,
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where the last inequality comes from the fact that any point of Cj‹ cannot have an ℓ8 distance more than 1{p2ℓq form the
center of the hypercube. Being valid for every x P Cj‹ , this result entails that

}gp¨q ´ Tyj‹ rgsp¨q}L8pCj‹ q ď 2Bp2ℓq´ν´1. (17)

At this point, assuming that there are nind ε´independent points in Cj‹ corresponds to assume that there is a sub-sequence
txiku

nind
k“1 Ă txiu

n
i“1 X Cj‹ such that

@k0 ď nind Dg P G :
k0´1
ÿ

k“1

gpxikq2 ď ε2, gpxk0q ě ε. (18)

Still, applying Equation (17), we have that, whichever the choice of txiku
nind
k“1, denoting with }g}p,x the norm p´of g under

the set txiku
nind
k“1,

g

f

f

e

k0´1
ÿ

k“1

gpxikq2 ´

g

f

f

e

k0´1
ÿ

k“1

Tyj‹ rgspxikq2 “ }gp¨q}2,x ´ }Tyj‹ rgsp¨q}2,x

ď }gp¨q ´ Tyj‹ rgsp¨q}2,x

ď
?
nind}gp¨q ´ Tyj‹ rgsp¨q}8,x

ď 2B
?
nindp2ℓq´ν´1,

where the first step is by the definition of 2´norm, the second from the triangular inequality, the third from bounding the
2-norm with the 8´norm, and the last one from Equation (17). From this follows that any choice txiku

nind
k“1 satisfying

Equation (18) must also satisfy

@k0 ď nind Dg P G :
k0´1
ÿ

k“1

Tyj‹ rgspxikq2 ď pε ` 2B
?
nindp2ℓq´ν´1

loooooooooooomoooooooooooon

εleft

q2, Tyj‹ rgspxk0q ě ε ´ 2Bp2ℓq´ν´1
loooooooomoooooooon

εright

. (19)

Equation (19) corresponds to the pεleft, εrightq´Eluder dimension (defined in lemma 2) of the function class Tyj‹ rgsp¨q : g P

G, with εleft “ ε`2B
?
nindp2ℓq´ν´1 and εright “ ε´2Bp2ℓq´ν´1. For the rest, note that, by definition, tTyj‹ rgsp¨q : g P Gu

is a subset of a vector space spanned by tp¨ ´ yqαuα for every multi-index |α| ď ν. The dimension (in the linear sense) of
this vector space corresponds to

`

ν`d
d

˘

.

Therefore, Lemma 2 (a slight modification of Proposition 6 from (Russo & Van Roy, 2013)) ensures that Equation (19) is
only possible when

nind ď C0N
2ε2left ` ε2right

εright
2

«

log

˜

2ε2left ` ε2right

εright
2

¸

` logp1 ` ε´2
left q ` C1

ff

ď C0Nflog

˜

2ε2left ` ε2right

εright
2

` logp1 ` ε´2
left q ` C1

¸

Where, for readability, we have called flogp¨q “ ¨ logp¨q and C2 “ C
`

ν`d
d

˘

. Letting ρ :“ 2Bp2ℓq´ν´1, the last quantity is
bounded by

nind ď C2Nflog

ˆ

3pε `
?
nindρq2

pε ´ ρq2
` logp1 ` ε´2q ` C1

˙

.

If we take ρ “ ε{maxt2,Ku, for a constant K to be decided later, we get that

nind ď C2flog

ˆ

3pε `
?
nindρq2

pε ´ ρq2
` logp1 ` ε´2q ` C1

˙
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ď flog

ˆ

C2
3ε2p1 `

?
nind{Kq2

pε{2q2
` logp1 ` ε´2q ` C1

˙

ď flog
`

12C2p1 `
?
nind{Kq2 ` logp1 ` ε´2q ` C1

˘

.

If we take K “ r
a

1 ` flog p48C2 ` logp1 ` ε´2q ` C1qs, we can see that the previous inequality does not hold for
nind “ K2. Indeed,

nind ď flog
`

12C2p1 `
?
nind{Kq2 ` logp1 ` ε´2q ` C1

˘

ď flog
`

12C2p1 ` 1q2 ` logp1 ` ε´2q ` C1

˘

“ flog
`

48C2 logp1 ` ε´2q ` C1

˘

ă K2 “ nind.

Therefore, this tells us that, for ρ “ ε{maxt2,Ku and K “ r
a

1 ` flog p48C2 ` logp1 ` ε´2q ` C1qs the number of
independent points cannot be (exactly) K2. This entails, by definition of independence, that nind also cannot be any number
higher than K2, as a longer sequence would entail that the first K2 points are also independent.

With the previous reasoning, we have shown that, for ρ “ ε{maxt2,Ku, each set Cj cannot contain more than K2

ε´independent points. Therefore, the same holds for any subset of Cj , corresponding to ρ ď ε{maxt2,Ku, which
translates in the following bound on ℓ

ε{maxt2,Ku ě 2Bp2ℓq´ν´1 ùñ ℓ ě
1

2

ˆ

2Bmaxt2,Ku

ε

˙
1

ν`1

.

We can just take

ℓ “

S

1

2

ˆ

2Bmaxt2,Ku

ε

˙
1

ν`1

W

,

which implies a total number of hypercubes given by ℓd:

ℓd “

S

1

2

ˆ

2Bmaxt2,Ku

ε

˙
1

ν`1

Wd

ď

ˆ

2Bmaxt2,Ku

ε

˙
d

ν`1

.

In the end, we have proved that, dividing the space r´1, 1sd into this number of hypercubes, no hypercube can contain more
than nind points that form a ε´independent sequence. Thus, the full length n of txiu

n
i“1 is bounded by

n ď nind

ˆ

2Bmaxt2,Ku

ε

˙
d

ν`1

ď K2

ˆ

2Bmaxt2,Ku

ε

˙
d

ν`1

,

with C2 “ C
`

ν`d
d

˘

and K “ r
a

1 ` flog p48C2 ` logp1 ` ε´2q ` C1qs. As all terms B,C, ν are constants not depending
on ε, while K depends on it logathimically, the proof is complete.

As side effect of this theorem, we generalize to the multidimensional case Theorem 3 from (Grant & Leslie, 2020). Thus,
Thompson Sampling (as described in their section 1.2) can now be shown to have a regret guarantee in dimension higher
than one.

Theorem 16. Let FpBq “ tf P Cν,1pS ˆ Aq : }f}Cν,1 ď Bu. Then, for every ε ą 0, logpN8pF , εqq “

OpB
d

ν`1 ε´d{pν`1qq.
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Proof. Example 4 of (Russo & Van Roy, 2013) shows that, if G is a vector space of dimension rN ,

logpN8pG, εqq “ Op rN logpε´1qq.

Unfortunately, the dimension of FpBq, viewed as a subset of a vector space, is `8. Nonetheless, we can rely on our
Theorem 8 to achieve a non-vacuous bound. The latter ensures that, for any f P FpBq,

DpN P PN : }f ´ pN }L8 ď 2Jd,νBN´ν´1,

where PN is the space of multivariate polynomials of degree at most N . To ensure ε{2 “ }f ´ pN }L8 , we need

N ě

ˆ

4Jd,νB

ε

˙1{pν`1q

.

Under this condition, we every ε{2´cover for PN corresponds to a ε´cover for F , so that

dimEpF , εq ď dimEpPN , ε{2q.

Therefore, as the space PN is in fact a vector space of dimension Ñ “
`

N`d
N

˘

« Nd, we have

logpN8pF , εqq ď logpN8pPN , ε{2qq “ OpNd logpε´1qq “ rOpB
d

ν`1 ε´d{pν`1qq.

With this theorem, we can show that some very recent algorithms achieve a nontrivial regret bound for our setting.

Proposition 17 (Restatement of Theorem 3). Let us assume we run Algorithm 1 from (Ren et al., 2022) on a Strongly Smooth
MDP such that the transition dynamics is Gaussian, in the sense that at any time step h we have sh`1 “ fpsh, ahq ` ϵh,
where ϵh „ N p0,Σq. Then, provided that the algorithm knows an upper bound B on }f}Cν,1 , and d ă ν ` 1, its regret is
bounded, with probability at least 1 ´ δ, by

RK ď rO
´

B
d

ν`1H
3ν`d`3
2ν`2 K

ν`d`1
2ν`2

¯

,

where the rO hides a quantity that is logarithmic in K,H,B, δ.

Proof. Under our assumptions we can apply Theorem 5 from (Ren et al., 2022) for F “ tf P Cν,1pS ˆ Aq : }f}Cν,1 ď Bu.
This gives

RK ď rO
ˆ

H3{2
b

KdimEpF , pHKq´1{2q logpN2pF , pHKq´1{2qq

˙

.

Then, by our Theorems 15 and 16,

RK ď rO
ˆ

B
d

ν`1H3{2

b

K1` d
ν`1H

d
ν`1

˙

“ rO
´

B
d

ν`1H
3ν`d`3
2ν`2 K

ν`d`1
2ν`2

¯

.

Proposition 18 (Restatement of Theorem 4). Let us assume we run algorithm GOLF on a Strongly Smooth MDP. Then,
provided that the algorithm knows the constant CT ˚ and d ď 2

3ν ` 2
3 , its regret is bounded, with probability at least 1 ´ δ,

by

RK ď rO
ˆ

C
dH
ν`1

T ˚ K
2ν`3d`2

4ν`4

˙

,

where the rO hides a quantity that is logarithmic in K,CT ˚ , δ.

Proof. We briefly recall the assumptions of the regret bound for GOLF given by (Jin et al., 2021)
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1. Assumption 1: the algorithm knows a set F “ tF1, . . .FHu containing one function class for each time step such that
@h,Q˚

h P Fh.

2. Assumption 2: The class F is closed under Bellmann optimality operator: @f P Fh`1, T ˚f P Fh.

Knowing CT ˚ , it is possible to define a function class F containing all possible candidates for the Q˚ function of the MDP.
In fact, by the definition of Bellman optimality operator, we can see that, for every h,

}Q˚
h}Cν,1 “ }T ˚Q˚

h`1}Cν,1 ď CT ˚ p1 ` }Q˚
h`1}Cν,1q ď

CH´h`1
T ˚ ´ 1

CT ˚ ´ 1
.

Therefore, using the function classes Fh “ tf P Cν,1pS ˆ Aq : }f}Cν,1 ď
CH´h`1

T ˚ ´1

CT ˚ ´1 u allows to satisfy both assumptions 1
and 2 from (Jin et al., 2021).

Theorem 15 from the same paper ensures that

RK ď rO
ˆ

H
b

KdimBEpF ,K´1{2q logpN8pF ,K´1qq

˙

,

a result which is again bounded by Proposition 12 (again from the same paper)

RK ď rO
˜

H
c

K max
h“1,...H

dimEpFh,K´1{2q logpN8pF ,K´1qq

¸

.

Then, by our Theorems 15 and 16, we can bound maxh“1,...H dimEpFh,K
´1{2q ď dimEpFH ,K´1{2q ď

rOpB
d

ν`1Kd{p2ν`2qq and logpN8pF ,K´1qq ď rOpHB
d

ν`1Kd{pν`1qq where B “
CH´h`1

T ˚ ´1

CT ˚ ´1 . Substituting this result,
we get

RK ď rO
˜

C
dH
ν`1

T ˚ H

b

K1`
3d{2
ν`1

¸

“ rO
ˆ

C
dH
ν`1

T ˚ K
2ν`3d`2

4ν`4

˙

,

which ends the proof.

C. Details of the Numerical Simulation
In section 4.3, we have performed a numerical simulation on a modified version of the Linear Quadratic Regulator (LQR).
Both environments took the form

sh`1 “ gpAsh ` Bah ` ξhq,

rh “ ´sJ
hQsh ´ aJ

hRah,

where gpxq :“ x
1`}x}2

. Moreover, in both cases the dimension of the state space corresponds to 2, and the one of the action
space to 1. Also, we have in both cases

B “

„

1
1

ȷ

Q “

„

1 0
0 1

ȷ

R “ r0.2s.

what changes is the matrix A, which determines most of the dynamics of the system. For this matrix, we have

Left experiment: A “

„

0.7 0.7
´0.7 0.7

ȷ

Right experiment: A “

„

0 1
1 0

ȷ

.

C.1. Practical details

Finally, we report some the details on how the computation was performed in the paper. These are important to ensure the
truthfulness of the results and the claims based on empirical validation.
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Training Details. The algorithms were implemented in PYTHON3.7. Each experiment was executed using five random
seeds (corresponding to the first five natural numbers), and the computations were distributed across five parallel processes
using the JOBLIB library. The total computational time for the first experiment was of 189935 seconds, more than two days
and four hours.

Compute. We used a server with the following specifications:

• CPU: 88 INTEL(R) XEON(R) CPU E7-8880 V4 @ 2.20GHZ CPUS,

• RAM: 94,0 GB.

As mentioned, we parallelized the computing for the five different random seeds, therefore only five of the 88 cores were
actually used.
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