
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MARS: MEMORY-ADAPTIVE ROUTING FOR RELIABLE
CAPACITY EXPANSION AND KNOWLEDGE RETENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large pre-trained models (LPMs) serve as universal backbones for vision and
language tasks, but continual learning (CL) with frozen LPMs remains challenging,
since shallow adaptation modules face the stability–plasticity dilemma and are
prone to catastrophic forgetting. To address this problem, we propose MARS
(Memory-adaptive Router with Statistical control), a modular framework that
decouples stable representation from adaptive capacity through three components:
a frozen encoder, a slot-based memory router, and a lightweight classifier. On
this basis, we design two mechanisms: (i) Statistically-Grounded Slot Expansion
(SGSE) formulates expansion as a statistical decision problem, ensuring controlled
growth with guarantees on false alarms and detection delay; (ii) Dual-Stage Con-
trastive–Distillation Adaptation (DCDA) integrates new slots through supervised
contrastive learning and knowledge distillation, preserving prior knowledge with-
out raw replay. Experiments on diverse benchmarks show that MARS achieves
state-of-the-art performance in continual learning with frozen LPMs, combining
adaptability, efficiency, and retention.

1 INTRODUCTION

Large pre-trained models (LPMs) such as CLIP (Radford et al., 2021) and BERT (Devlin et al., 2019)
have transformed modern machine learning. Trained on massive and diverse corpora, they learn
general-purpose representations that transfer well across domains. These representations support
advances in natural language understanding (Brown et al., 2020; Chowdhery et al., 2023), visual
recognition (He et al., 2016; Dosovitskiy et al., 2021), and multimodal reasoning (Radford et al.,
2021; Liu et al., 2023). The success of LPMs has also established them as universal backbones for
downstream applications such as information retrieval, question answering, and zero-shot classifica-
tion. A common approach for efficient adaptation is to freeze the pre-trained backbone and fine-tune
only lightweight task-specific modules (Houlsby et al., 2019; Lester et al., 2021; Hu et al., 2022;
Legate et al., 2023). This parameter-efficient paradigm preserves the generalization ability of the
backbone while reducing both computation and memory costs.

In practical applications, tasks and data arrive sequentially, and models must adapt continually while
retaining prior knowledge. This challenge is studied in continual learning (CL) (Parisi et al., 2019;
De Lange et al., 2021; Wang et al., 2024), which aims to learn from a stream of tasks without
catastrophic forgetting (McCloskey & Cohen, 1989; Ramasesh et al., 2021). At its core lies the
stability–plasticity dilemma: models must remain plastic enough to acquire new information while
stable enough to preserve what has already been learned. In the context of frozen LPMs, this dilemma
is particularly severe. Because adaptation is restricted to shallow modules, plasticity is limited, and
the fixed backbone further amplifies forgetting. As a result, naive parameter-efficient adaptation is
insufficient for long-horizon continual learning.

To mitigate forgetting, continual learning has developed a wide range of strategies. Replay-based
methods (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Buzzega et al.,
2020) revisit stored or generated samples to reduce drift, but they raise privacy concerns and face
scalability issues. Regularization-based approaches (Hinton et al., 2015; Kirkpatrick et al., 2017;
Zenke et al., 2017; Li & Hoiem, 2017; Aljundi et al., 2018) constrain updates to remain close to
past solutions, but their corrective signal weakens as tasks accumulate. Dynamic expansion tech-
niques (Rusu et al., 2016; Yoon et al., 2018; Dong et al., 2024) add new capacity for novel tasks,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

but they often rely on heuristic triggers that may cause uncontrolled growth. Prototype-based meth-
ods (De Lange & Tuytelaars, 2021; Liu et al., 2025; Zhu et al., 2025) compress historical knowledge
into compact memory structures, improving efficiency but showing fragility under distribution shifts.
Although these strategies offer useful insights, they are designed for conventional architectures rather
than frozen LPMs. In parameter-efficient settings, shallow adapters have limited expressive power,
and heuristic retention does not provide formal guarantees.

Recent studies have begun to examine continual learning in the context of large pre-trained models.
Adapter-based approaches (Ke et al., 2021a; Wang et al., 2022) improve efficiency but still suffer
from forgetting as tasks accumulate. In the vision–language domain, methods such as VLM-CIL (Liu
et al., 2023), DIKI (Tang et al., 2024), and CoLeCLIP (Li et al., 2025) highlight both the promise
and the fragility of frozen encoders. Parameter-efficient modules preserve adaptability, but retention
often depends on heuristic replay or task-specific tuning. Recent designs, including dynamic LoRA
ranks and mixture-of-expert adapters (Hu et al., 2022), provide partial relief but still rely on ad-hoc
expansion rules and lack formal guarantees. Together, these efforts underscore a persistent gap:
current methods demonstrate the feasibility of continual learning with frozen LPMs but do not
provide principled mechanisms for expansion and retention.

Encoder Slot Classifier

SGSE + DCDA

Pre-trained Trainable

𝒙𝟏

𝒙𝟐

MaRS

... ...

Tasks Results

Figure 1: The architecture of MARS. Images are
from Tiny-ImageNet (Le & Yang, 2015).

In this paper, we address these challenges by
proposing MARS (Memory-adaptive Router
with Statistical control), a modular framework
for continual learning with frozen LPMs. As
shown in Figure 1, the framework has three com-
ponents: a frozen encoder that provides stable
pre-trained representations, a slot-based mem-
ory router that organizes knowledge into expand-
able capacity units, and a lightweight classifier
that produces task predictions. By decoupling
stable representation from adaptive capacity, the design shifts continual learning control to the routing
layer and avoids costly full-model updates.

On top of this architecture, we propose two complementary mechanisms. The first, Statistically-
Grounded Slot Expansion (SGSE), determines when and where to allocate new slots. Instead of
heuristic triggers, SGSE formulates expansion as a statistical decision problem. Router-aligned
novelty detection (Hendrycks & Gimpel, 2017; Liu et al., 2020) monitors representation coverage,
while confidence bounds (Roberts, 2000; Brown et al., 2001) ensure that slots are added only when
capacity is insufficient, with formal guarantees on false alarms and detection delay. The second,
Dual-Stage Contrastive–Distillation Adaptation (DCDA), controls how new slots are integrated. It
separates representation adaptation from classifier tuning: supervised contrastive learning (Khosla
et al., 2020) aligns new slots in the embedding space, while knowledge distillation (Hinton et al.,
2015; Li & Hoiem, 2017; Guo et al., 2017) and prototype-based regularization (Snell et al., 2017)
preserve prior knowledge without requiring raw replay. Together, SGSE regulates when to expand and
DCDA determines how to adapt, making slot-based routing both principled and retention-guaranteed.
This design addresses the stability–plasticity dilemma in continual learning with frozen LPMs.

In summary, our contributions are threefold: (i) We introduce MARS, a modular framework for
continual learning with large pre-trained models that separates stable representation from adaptive
capacity. (ii) We develop SGSE, a statistically grounded slot-expansion mechanism with formal
guarantees on growth and retention. (iii) We design DCDA, a dual-stage contrastive–distillation
method that integrates new capacity while preserving prior knowledge without raw replay.

2 RELATED WORK

Continual learning studies how to acquire knowledge from a sequence of tasks without catastrophic
forgetting. Core challenges include interference between old and new tasks, distributional shifts in
data or labels, classifier bias toward recently observed classes, and constraints on computation and
memory. Surveys provide comprehensive overviews of these challenges and benchmarks (Parisi et al.,
2019; De Lange et al., 2021; Wang et al., 2024), and consistently emphasize the stability–plasticity
dilemma as a fundamental problem that underlies most continual learning scenarios.
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Early work mitigates forgetting through replay or regularization. Replay-based methods such as
iCaRL (Rebuffi et al., 2017), GEM (Lopez-Paz & Ranzato, 2017), A-GEM (Chaudhry et al., 2019),
and DER++ (Buzzega et al., 2020) rehearse stored or generated samples to reduce drift. While
effective, these methods raise privacy concerns and face scalability limits when storage or generation
is constrained. Regularization-based approaches constrain parameter updates or distill predictions,
including EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), LwF (Li & Hoiem, 2017), and
MAS (Aljundi et al., 2018). These methods are more memory-efficient, but their corrective signal
decays over long horizons or under severe distributional shifts, which limits robustness in practice.

Another direction reduces interference by expanding model capacity or compressing past knowledge.
Structural expansion techniques such as Progressive Neural Networks (Rusu et al., 2016), DEN (Yoon
et al., 2018), and CEAT (Dong et al., 2024) dynamically add parameters for new tasks. However, they
lack principled criteria for when and how much to expand, which often results in uncontrolled growth.
Prototype-based methods instead summarize distributions with compact representations, including
dual-bias frameworks (Zhu et al., 2021), IPC (Liu et al., 2025), and PASS++ (Zhu et al., 2025). These
methods are more efficient in memory and computation, but they rely on heuristic allocation rules
and tend to degrade under distribution shifts, especially in long-horizon learning.

More recently, continual learning with large pre-trained models has gained increasing attention.
Models such as CLIP and BERT provide strong transferable representations, motivating methods
that freeze or partially freeze the backbone while adapting lightweight modules. Examples include
prompt-based approaches such as L2P (Wang et al., 2022), adapter- and prompt-based vision–
language methods (Liu et al., 2023), and parameter-efficient continual learning with CLIP, including
DIKI (Tang et al., 2024) and CoLeCLIP (Li et al., 2025). These works demonstrate the value of frozen
backbones and parameter-efficient adaptation, but they still rely on heuristic expansion strategies and
lack statistically grounded guarantees for retention. This gap motivates MARS, which integrates
SGSE and DCDA as core mechanisms.

3 PROPOSED DESIGN OF MARS

As shown in Figure 1, MARS is designed for continual learning with LPMs. The framework consists
of three components: (i) a frozen encoder f(·) that provides fixed pre-trained features, (ii) a slot-based
memory router that dynamically assigns inputs to expandable memory slots, and (iii) a lightweight
classifier g(·) that produces task predictions. Given an input x, the encoder outputs frozen features
hT = f(x) ∈ RdT . The router then computes routing probabilities that decide which slots should
process the features. Each slot is parameterized by affine transformations (γi,βi) that scale and shift
the features, serving as independent adapters without modifying the encoder.

To ensure stable initialization, all slots are initialized as identity mappings with γi = 1 and βi = 0.
The router aggregates slot outputs into an adapted representation h̃, which the classifier g maps to
logits. The slot count S begins from S0 and expands during training as needed. A central challenge is
determining when to allocate new slots: over-expansion increases cost, while under-expansion leads
to interference and forgetting. To address this, we propose Statistically-Grounded Slot Expansion.

3.1 DESIGN OF STATISTICALLY-GROUNDED SLOT EXPANSION

SGSE formulates slot expansion as a statistical test. It leverages the router, a lightweight component of
the memory module that compares frozen features with slot keys and outputs probabilities indicating
input–slot affinity. By placing statistical bounds on these probabilities, SGSE ensures that new slots
are created only when existing ones cannot reliably cover incoming inputs.

Router-Aligned Novelty Detection. SGSE uses the router to estimate the affinity between each
input and available slots. Given an input xt, the query is computed as

q(xt) = WqhT ∈ Rdk , (1)
where hT = f(xt) are frozen encoder features. Routing then applies cosine–softmax over normalized
keys k̂i = ki/∥ki∥:

pi(xt) =
exp(⟨q̂(xt), k̂i⟩/τr)∑St

j=1 exp(⟨q̂(xt), k̂j⟩/τr)
, q̂ = q

∥q∥ , (2)
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where τr is the softmax temperature. A smaller τr makes slot probabilities sharper, while a larger τr
spreads them more evenly. Following previous practice (Chen et al., 2020), we set τr = 0.07, which
balances confident routing and robustness. We then define the top-slot confidence as

st = max
i≤St

pi(xt), (3)

which measures how confidently the router aligns the input to its best-matching slot. Covered inputs
typically yield st ≈ 1, while novel inputs produce lower st due to distributed probabilities. This
matches confidence-based novelty and out-of-distribution indicators (Hendrycks & Gimpel, 2017).

Proposition 1. Let ct = maxi≤St
⟨q̂(xt), k̂i⟩ and assume St > 1. Then keeping {aj : j ̸= i⋆}

fixed, st is strictly increasing in ct whenever A :=
∑

j ̸=i⋆ e
aj/τr > 0, where i⋆ ∈ argmaxj aj and

aj = ⟨q̂, k̂j⟩.

Proof. Let slot i⋆ attain c = maxj aj and set A =
∑

j ̸=i⋆ e
aj/τr . Then

s(c) =
ec/τr

ec/τr +A
=

1

1 +Ae−c/τr
, (4)

and
ds

dc
=

1

τr
s(c)

(
1− s(c)

)
> 0 (5)

whenever A > 0 (i.e., St > 1).

The monotonicity holds locally under fixed competing similarities, which is the setting used when
assessing how the router’s confidence varies with affinity. This result shows that st is locally
monotone in the similarity score ct, making it a calibrated local statistic for novelty. Unlike heuristic
thresholds, it provides a mathematically justified detector: when the affinity of the top slot decreases
while other similarities are unchanged, st must also decrease. To stabilize slot semantics, MARS
applies slot-weighted affine transformations:

h̃ =
( St∑

i=1

pi γi

)
⊙ LN(hT ) +

( St∑
i=1

pi βi

)
, (6)

where LN(·) is Layer Normalization (Ba et al., 2016). To ensure stable and smooth slot representa-
tions, we maintain slot statistics using router-weighted exponential moving averages (EMA):

µ
(t)
i = (1− α)µ

(t−1)
i + αpi(xt) LN(hT ), (7)

c
(t)
i = (1− α) c

(t−1)
i + αpi(xt), (8)

where α ∈ (0, 1) is the smoothing factor. A smaller α improves stability, while a larger α improves
responsiveness. In practice, α = 0.05 provides a good balance. Anchors are then defined as

ai = γi ⊙
(

µi

max(ci,ς)

)
+ βi, (9)

with ς = 10−5 for numerical stability. Anchors serve as compressed surrogates of past knowledge,
enabling memory-preserving distillation without raw data. By compactly representing past distribu-
tions and leveraging the classifier’s Lipschitz continuity, they provide provable retention guarantees:
features close to an anchor induce bounded changes in predicted probabilities (via Pinsker-type
arguments (Canonne, 2022)). Thus, anchors are theoretically grounded, not heuristic summaries.

Statistical Triggers for Expansion. Although st provides an instantaneous novelty signal, thresh-
olding it directly is unreliable due to noise and non-stationarity. SGSE therefore tracks the (1−ϵ)-
quantile of recent confidences with exponential smoothing:

qt = Quantile1−ϵ

(
{st−k}wk=0

)
, (10)

Qt = βQt−1 + (1− β)qt, (11)
where β ∈ [0, 1) is the smoothing coefficient, and w is the short window used for the empirical
quantile. We set w = 10 and ϵ = 0.1, which offer a practical short-horizon estimate while avoiding
the high variance of very small windows and the excessive lag of larger ones. A larger β provides
smoother but slower adaptation, while a smaller β increases reactivity. We use β = 0.9 to balance
stability and responsiveness.

4
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Theorem 1. If {qt} are i.i.d. with mean q⋆ and variance σ2
q <∞, then

E[Qt] = q⋆ + βt(Q0 − q⋆), (12)

Var(Qt) =
(1− β)2

1− β2
σ2
q , (13)

so Qt → q⋆ in L2. After a mean shift q⋆ → q′ < q⋆ at time τ , the smallest k with E[Qτ+k] ≤ θ for
any θ ∈ (q′, q⋆) satisfies

k =
ln
(E[Qτ ]−q′

θ−q′

)
− lnβ

≤ 1

1− β
ln
(

E[Qτ ]−q′

θ−q′

)
, (14)

so the expected detection delay is O((1− β)−1).

This theorem shows that Qt is an L2-consistent estimate of the long-run quantile and that its detection
delay is predictable, scaling as O((1 − β)−1). To decide expansion, we monitor Bernoulli trials
{st ≥ Qt} and compute the empirical success rate p̂t over n samples. Expansion is triggered if the
one-sided Wilson lower bound drops below a threshold:

LB(p̂t;n, z) =
p̂t +

z2

2n

1 + z2

n

− z

1 + z2

n

√
p̂t(1−p̂t)

n + z2

4n2 . (15)

We adopt the Wilson score interval for binomial proportions (Brown et al., 2001), which provides
better coverage than Wald intervals in small samples. For expansion decisions, we use the Wilson
score test with a short evaluation window of n = 20, a standard default in sequential binomial testing
that remains stable in small-sample settings, together with the one-sided 95% cutoff z = 1.645.
Corollary 1. If the success probability p := Pr(st ≥ Qt) is stationary with p ≥ τ , then for i.i.d.
Bernoulli trials and one-sided Wilson bound with score z (level α = 1− Φ(z)),

Pr
(
LB(p̂t;n, z) < τ

)
≤ α. (16)

Thus, under mild assumptions, the probability of a false expansion per test is at most α.

The Wilson bound converts observations into confidence guarantees, ensuring that false expansion is
provably controlled at level α (Cor. 1). In this way, SGSE provides a statistically calibrated test for
novelty: expansions are data-driven rather than noise-triggered. To accelerate specialization, new
slots are initialized with the mean query of recent low-st samples and identity affine parameters,
yielding about 15% faster convergence and reduced redundancy. This design places new slots in a
representative region of the feature space, avoiding arbitrary starting points far from incoming data.
Takeaways 3.1. SGSE provides a principled solution to balance stability and plasticity in large
pre-trained models. By combining router-aligned novelty detection with statistical triggers, MARS
achieves careful and efficient slot growth. Unlike heuristic thresholds, SGSE offers (i) locally
monotone and calibrated novelty signals (Prop. 1), (ii) provable convergence with predictable
detection delay (Thm. 1), and (iii) explicit false-alarm guarantees (Cor. 1). Together, these results
establish SGSE as a theoretically grounded expansion framework for scalable continual learning
with frozen LPMs.

3.2 DESIGN OF DUAL-STAGE CONTRASTIVE–DISTILLATION ADAPTATION

SGSE determines when to add new slots. The next problem is how to integrate them without forgetting.
This is especially important for LPMs because their frozen backbones cannot absorb new tasks. Then,
we propose Dual-Stage Contrastive–Distillation Adaptation, which separates adaptation into two
stages: representation alignment and knowledge retention. New slots are aligned through contrastive
learning, while old ones are preserved through anchor-based distillation. This design could help to
balance plasticity and stability.

Stage 1: Feature Adaptation (Memory-Only). Given frozen backbone features hT = f(x), the
memory module adapts them as

h̃ = Mem(hT ). (17)

5
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We optimize a supervised contrastive loss (Khosla et al., 2020):

Lsupcon = − 1
N

N∑
i=1

1
|P (i)|

∑
j∈P (i)

log
exp(sim(h̃i, h̃j)/τ)∑
k ̸=i exp(sim(h̃i, h̃k)/τ)

, (18)

where features are normalized, P (i) denotes the set of indices in the mini-batch that share the same
class label as example i, and τ ∈ [0.05, 0.2] is the temperature. A smaller τ makes similarities
sharper, while a larger τ allows more intra-class variation. Following common practice, we set
τ = 0.07. To stabilize adaptation, we add a smoothness term that penalizes drift from frozen features:

Lsmooth = 1
N

N∑
i=1

∥h̃i − hT,i∥22. (19)

The Stage 1 objective can be defined as:

L(1) = Lsupcon + λsmoothLsmooth, (20)

with λsmooth ∈ [0.1, 0.5]. By conducting empirical evaluations, we set λsmooth = 0.3 as it gives the
best balance between discrimination and stability.

During Stage 1, only memory parameters (Wq,K,γ,β) are updated, while the classifier g remains
fixed. Here, Wq is the query projection matrix and K = {ki}Si=1 is the set of slot keys. Each slot key
acts as a semantic center and guides routing. By freezing g, contrastive learning refines the feature
space without shifting classifier boundaries. The contrastive objective increases inter-class separation,
while the smoothness term controls feature drift.

Stage 2: Classifier Tuning (Head-Only). In Stage 2, the memory is fixed and only g is updated.
The main loss is cross-entropy:

LCE = − 1
N

N∑
i=1

log
exp(zi[yi])∑
c exp(zi[c])

, zi = g(h̃i). (21)

We regularize the classifier with two distillation terms. The first is Learning without Forgetting (LwF)
on current inputs:

LLwF = T 2

N

N∑
i=1

KL
(
softmax(zoldi /T ) ∥ softmax(zi/T )

)
, (22)

where zoldi = gold(h̃i) and T ∈ [2, 5] is the temperature. A larger T smooths distributions and high-
lights relative class probabilities (Hinton et al., 2015). It also improves probability calibration (Guo
et al., 2017). We set T = 3, which balances stability and informativeness.

The second term is anchor distillation on slot anchors A:

Lanchor =
T 2

|A|

∑
a∈A

KL
(
softmax(zolda /T ) ∥ softmax(za/T )

)
, (23)

where zolda = gold(a) and za = g(a). Anchors are surrogate prototypes maintained by SGSE. They
store old knowledge without raw replay and follow the idea of prototype learning (Snell et al., 2017).

Therefore, the full Stage 2 objective is

L(2) = LCE + λLwFLLwF + λanchorLanchor, (24)

with λLwF ≈ 1.0 and λanchor ∈ [0.5, 1.0]. These weights reflect the balance between plasticity
(cross-entropy) and stability (distillation). Anchor distillation connects SGSE anchors with the
following theoretical bound:
Theorem 2. Assume: (i) g, gold : RdT →RC are L-Lipschitz in logits, (ii) for all anchors a∈A,
KL

(
softmax(gold(a)/T ) ∥ softmax(g(a)/T )

)
≤ η, and (iii) every old-class feature h̃ lies within

distance δ of some anchor a in feature space. Then for any such h̃,∥∥softmax(gold(h̃)/T )− softmax(g(h̃)/T )
∥∥
1
= O

(√
η + L

T δ
)
, (25)

and the old-class accuracy drop is O
(√

η + Lδ/T
)
.
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Proof. By (ii) and Pinsker’s inequality (Canonne, 2022), the softmax distributions at each anchor
differ by at most O(

√
η) in ℓ1. By (i), logits vary at most Lδ within a δ-ball. After temperature

scaling, this variation adds at most O((L/T )δ) in probability space. By the triangle inequality, the
total deviation is O(

√
η + (L/T )δ), which yields the stated bound.

This theorem shows that anchor-based distillation gives provable retention. If anchors approximate old
features within δ, and if distillation keeps anchor predictions consistent within η, then the deviation
on old-class predictions is tightly bounded. Thus, DCDA preserves knowledge without raw replay
and remains both memory-efficient and theoretically sound.
Takeaways 3.2. MARS avoids raw replay by encoding knowledge into slots and anchors. SGSE
enables principled slot growth, and DCDA integrates new capacity through contrastive alignment and
anchor-based distillation. With the encoder frozen, adaptation remains efficient. Empirically (Sec. 4),
DCDA improves accuracy by up to 20% relative to DER++ (Buzzega et al., 2020), depending on the
dataset. Together, SGSE and DCDA offer a principled solution to the stability–plasticity tradeoff in
continual learning with large pre-trained models.

3.3 COMPUTE AND MEMORY COMPLEXITY

At last, we analyze the computational and storage costs of MARS and show how SGSE keeps growth
both controlled and predictable.

Per-example Overhead. Each forward pass consists of the frozen encoder f(·), followed by the
memory router and the slot-conditioned affine transform. Routing costs O(Stdk) per input because
it computes query–key similarities, and affine adaptation costs O(StdT ). Thus the per-example
overhead is

Time(xt) = O
(
St(dk+dT )

)
= O(StdT ) if dk ≤ dT . (26)

Training is efficient because Stage 1 updates only (Wq,K,γ,β) and Stage 2 updates only g, both of
which are much smaller than the backbone.

Per-slot Cost. Each slot stores a key ki ∈ Rdk , affine parameters (γi,βi) ∈ R2dT , and an anchor
ai ∈ RdT . This amounts to O(dk+dT ) parameters per slot, plus the head |g|. During inference,
routing and adaptation scale linearly with St and remain independent of the frozen encoder |f |.
Lemma 1. With St slots and feature dimension dT , the per-input compute cost is

O
(
St(dk+dT )

)
(reducing to O(StdT ) if dk ≤ dT ), (27)

and the parameter footprint is
O
(
St(dk+dT )

)
+ |g|. (28)

Complexity Control via SGSE. Without regulation, St could grow linearly with stream length T ,
leading to uncontrolled complexity. SGSE avoids this by allowing slot expansion only when there is
statistically significant evidence that existing slots cannot cover new inputs. This mechanism ensures
that growth is linked to true novelty rather than noise. Formally, Cor. 1 shows that the false-expansion
probability per test is at most α, which provides a bound on the expected growth:
Proposition 2. For SGSE with Wilson test level α, evaluated every m samples over a window n≥m,
let T be the stream length, M = ⌊(T − w)/m⌋ the number of tests, and ST the slot count at horizon
T . Then

E[ST ] ≤ S0 +NT + αM, (29)
where NT is the number of true novelty expansions. Moreover, with probability ≥ 1− δ,

ST ≤ S0 +NT + αM +
√

M
2 ln 1

δ . (30)

Theorem 3. Combining Lemma 1 and Prop. 2, the expected per-example cost at time T is

E[Time(xT )] = O
(
(dk+dT )

(
S0 + E[NT ] + αM

))
, (31)

with a high-probability bound of the same form. The parameter footprint satisfies

E[MemT ] = O
(
(dk+dT )

(
S0 + E[NT ] + αM

))
+ |g|. (32)
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Takeaways 3.3. When the number of true novelties NT grows sublinearly with T (for example
O(log T ) or O(T ρ) with ρ < 1), both computation and memory also grow sublinearly, while scaling
linearly with dT and St. In this case, MARS scales smoothly with streaming data and avoids
uncontrolled overhead. In contrast, heuristic expansion methods often cause unbounded slot growth
and lead to linear or even superlinear complexity. By grounding expansion in SGSE’s statistical test,
MARS provides controlled growth with both efficiency and scalability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metric. We evaluate MARS on both vision and NLP tasks using standard benchmarks.
For vision tasks, we adopt CIFAR-100 (Krizhevsky & Hinton, 2009), which contains 100 classes
with 50,000 training images and 10,000 test images of size 32× 32, and Tiny-ImageNet (Le & Yang,
2015), which includes 200 classes with 500 training, 50 validation, and 50 test images per class of size
64× 64. Following standard class-incremental protocols (Han & Guo, 2022; Liu et al., 2024; Pietron
et al., 2025), CIFAR-100 is divided into 10 tasks with 10 classes each, and Tiny-ImageNet into 10
tasks with 20 classes each. For NLP tasks, we use 19 aspect-based sentiment classification (ASC)
datasets adopted in prior work (Ke et al., 2021b), where each dataset corresponds to a product domain
such as laptops, restaurants, cameras, or phones, and is annotated with three sentiment polarities:
positive, neutral, and negative. Each dataset is treated as one task, which enables evaluation of MARS
under diverse domains, different class sizes, and distribution shifts. After training on task t, the
model is evaluated on the test sets of all tasks 1, . . . , t, and the average accuracy Āt =

1
t

∑t
i=1 at,i

is computed, where at,i is the accuracy on task i after learning task t. This produces a trajectory of
average accuracy as tasks accumulate, which typically decreases due to forgetting. Unless otherwise
noted, we report ĀT , the average accuracy after completing the entire sequence. All experiments are
conducted with random seeds {12, 123, 1234} on NVIDIA RTX 5090 GPUs.

Baselines and Settings. We compare MARS with representative continual learning methods,
including EWC (Kirkpatrick et al., 2017), iCaRL (Rebuffi et al., 2017), DER++ (Buzzega et al.,
2020), LDC (Gomez-Villa et al., 2024), and PASS++ (Zhu et al., 2025). To ensure fairness, each
baseline is evaluated under two settings. In the standard setting, the entire backbone is trainable as
in the original method. In the frozen-encoder setting, the backbone is fixed and only lightweight
components such as task-specific heads or adapters are updated. This matches the capacity used by
MARS and avoids bias toward methods that gain mainly from updating a large number of backbone
parameters. Replay-based methods (iCaRL, DER++, PASS++) are restricted to an exemplar budget
comparable to the anchor storage in MARS. In addition, all methods use the same encoder, training
schedule, and evaluation protocol to ensure consistent comparisons.

Implementation Details. For vision benchmarks, we use CLIP (Radford et al., 2021) as the frozen
encoder f(·), with its vision transformer (ViT-B/16) producing features of dimension dT . For NLP
tasks, we use BERT-base (Devlin et al., 2019), also with frozen parameters. On top of the encoder,
the memory router is implemented as a linear projection Wq that maps frozen features into a query
space of dimension dk = 64, which is then compared with the slot key set K = {ki}St

i=1 to compute
routing probabilities. We initialize with S0 = 32 slots, set the quantile momentum to β = 0.9, and
adopt a Wilson score threshold at 95% confidence. Training follows the two-stage DCDA protocol.
In Stage 1 (feature adaptation), we update only the memory parameters (Wq,K,γ,β) for 20 epochs
using supervised contrastive loss with batch size 128 and temperature τ = 0.07, together with a
smoothness tether weighted by λsmooth = 0.3. In Stage 2 (classifier tuning), we fix the memory and
train the classifier g for 20 epochs with cross-entropy loss and two distillation terms. The learning
rate is 0.001, and entropy regularization is optionally applied with coefficient 0.1.

4.2 EXPERIMENTAL RESULTS

Main Results. Table 1 reports the average accuracy across benchmarks. Replay-based methods such
as DER++ and PASS++ outperform regularization-based methods such as EWC, but their reliance
on small exemplar memories causes performance to plateau as the task sequence increases. On
CIFAR-100 and Tiny-ImageNet, these methods converge around 52–54%, while MARS consistently
achieves 56–58%, a relative gain of about 3–5%. On ASC, DER++ and PASS++ stabilize near 74–
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Table 1: Average accuracy of different methods under standard and frozen-encoder settings.

Algorithm CIFAR-100 Tiny-ImageNet ASC
Standard Frozen Standard Frozen Standard Frozen

Fine-tune 30.74±0.43 30.26±0.20 28.32±0.65 28.27±0.43 60.90±0.29 61.30±0.80
EWC 47.84±0.58 47.60±0.40 36.47±0.54 36.38±0.39 70.26±0.66 70.66±0.69

DER++ 52.24±0.66 51.72±0.47 40.99±0.37 40.87±0.16 75.53±0.27 75.91±0.21
LDC 54.14±0.17 53.95±0.48 43.39±0.63 43.41±0.55 75.11±0.60 75.49±0.23

PASS++ 53.67±0.50 52.92±0.52 42.31±0.61 42.53±0.70 74.72±0.20 75.22±0.73
ours 57.33±0.48 57.50±0.54 49.12±0.36 49.46±0.14 79.45±0.25 79.85±0.66
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Figure 2: Ablation study results on Tiny-ImageNet.

75%, whereas MARS reaches 78–79%, showing that it retains domain-specific knowledge without
raw data. LDC also improves over DER, but its gains remain below those of MARS, suggesting
that heuristic consolidation is less effective than statistically grounded slot expansion with anchor
distillation. Another important observation is that the difference between the standard and frozen-
encoder settings is usually within 1–2%, rather than a fixed gap. This shows that improvements do
not come from updating the backbone, but from how models allocate and preserve capacity for new
tasks. By combining statistical slot expansion with dual-stage adaptation, MARS achieves a better
balance between stability and plasticity. Through controlled expansion and anchor-based retention, it
consistently provides higher accuracy under the same memory budget, demonstrating its suitability
for continual learning with large pre-trained models.

Effect of Varying S0. Figure 2(a) shows that the initial slot number S0 strongly influences perfor-
mance. A small S0 (e.g., S0=8) causes accuracy to drop quickly after a few tasks due to limited
capacity and strong interference. Increasing S0 to 16–64 improves performance, with the best results
at S0=32, which maintains higher accuracy across tasks. Enlarging S0 to 128 gives no benefit and
slightly degrades later accuracy, likely from redundant slots and noisy routing. These results confirm
that initialization is important: too few slots reduce plasticity, while too many reduce stability.

Effect of Varying β. Figure 2(b) analyzes the smoothing coefficient β, which controls how the
statistical trigger adapts to shifts in routing confidence. A small β (e.g., 0.5) causes unstable
quantile estimates, leading to premature expansions and lower accuracy. As β increases to 0.7–0.95,
performance improves steadily, with β=0.9 offering the most robust balance. When β is too large
(0.99), the estimator reacts too slowly to distributional shifts, delaying necessary expansions and
harming late-task accuracy. These findings validate our choice of β=0.9, which balances stability
and responsiveness for continual learning.

Validation of Design. Figure 2(c) highlights the complementary roles of SGSE, anchors, and
the two-stage adaptation. Removing SGSE leads to a steep accuracy drop (final accuracy ∼41%),
confirming that statistically grounded slot expansion is essential for maintaining sufficient capacity.
Removing anchors causes a similar decline (final accuracy ∼42%), underscoring their importance
for knowledge retention without replay. Disabling Stage 1 (contrastive feature adaptation) reduces
representation alignment (final ∼43%), while omitting Stage 2 (classifier distillation) yields the
lowest accuracy (final ∼40%), showing that both stages are necessary. Together, these results show
that SGSE, anchors, and dual-stage adaptation work together: SGSE regulates expansion, anchors
preserve knowledge, and dual-stage adaptation balances stability and plasticity.

Anchor Diagnostics. We further examine the behaviour of the anchor space using three empirical
diagnostics. Since anchors and routed features lie in the same feature space RdT , cosine similarity
provides a direct way to assess how each anchor relates to the features assigned to its slot. Across
tasks, these similarity values remain within the range 0.60–0.85 and vary smoothly as new classes are
introduced. To assess temporal stability, we compare each anchor to its counterpart after consecutive
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tasks and obtain stability scores between 0.65 and 0.98, indicating that the updates are gradual rather
than abrupt. A nearest-neighbor inspection further shows that anchors tend to remain associated with
coherent groups of feature patterns, such as vehicles, animals, or background textures. Together, these
diagnostics suggest that the anchor space preserves a stable and interpretable structure throughout the
task sequence. Additional analyses are provided in Appendix A.4.
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Figure 3: Slot growth across tasks.

Slot Growth. We visualize how the number of slots changes
during training on Tiny-ImageNet, CIFAR-100, and ASC in
Figure 3. In all cases, SGSE expands the memory only when
the confidence statistic exceeds the Wilson bound for several
steps. The slot count grows steadily during the early tasks
and then approaches a stable value as learning continues. On
Tiny-ImageNet, the slot count increases from S0 = 32 to
about ST = 49. On CIFAR-100, it reaches approximately
ST = 44. On ASC, it increases to around ST = 58 as more
domains are introduced. These results are consistent with the
theoretical analysis and show that SGSE provides smooth
and controlled capacity expansion.

Table 2: Extended baseline comparisons.
Method CIFAR-100 Tiny-IN ASC

L2P 52.30±0.45 43.80±0.32 73.90±0.51
CODA-Prompt 54.71±0.61 45.10±0.58 74.70±0.44
CLAP4CLIP 55.42±0.50 46.50±0.64 –

MARS 57.50±0.54 49.46±0.14 79.85±0.66

Extended Baseline Comparisons. We include ad-
ditional PTM and PEFT baselines under the same
frozen-encoder protocol. These baselines include
L2P (Wang et al., 2022), CODA-Prompt (Smith
et al., 2023), and a representative CLIP-oriented
method (Jha et al., 2024). All methods use the
frozen CLIP ViT-B/16 backbone and have train-
able components on the order of 106 parameters, ensuring comparable effective capacity. Across all
benchmarks, MARS achieves the highest accuracy. These results show that the gains of MARS come
from statistical slot expansion and anchor-based distillation rather than from prompting strategies.

Table 3: Performance on larger-scale data.
Dataset Best Baseline MARS Final ST

Tiny-ImageNet 46.50±0.64 49.46±0.14 ≈ 49
ImageNet-100 39.67±0.60 42.08±0.53 ≈ 65

Scalability Analysis. We also evaluate the method
on ImageNet-100. MARS reaches 49.46% on
Tiny-ImageNet, which is 2.96 points higher than
the CLIP-oriented baseline. On ImageNet-100,
MARS also performs better than the best frozen-
backbone baseline. During this evaluation, the slot count grows from S0 = 32 to about ST = 65. This
growth remains moderate and shows that SGSE maintains stable and predictable capacity expansion
as the dataset size and complexity increase.

Table 4: Parameter and inference cost.

Metric Baselines MARS
Trainable parameters 0.5M to 0.8M 0.2M

Inference time per batch 7.8ms to 8.1ms 8.5ms
Final accuracy (%) 43.80 to 46.50 49.46

Parameter and Inference Cost. We com-
pare parameter count and inference time on
Tiny-ImageNet with PTM/PEFT baselines under
the frozen-encoder setting (L2P, CODA-Prompt,
CLAP4CLIP). These baselines typically use 0.5M–
0.8M trainable parameters, whereas MARS re-
quires only 0.2M, making it substantially lighter. Despite dynamic expansion, the inference overhead
remains small: MARS reaches 8.5ms per batch, only a minor increase over the baselines’ 7.8–8.1ms.
Within this group of methods, accuracy ranges from 43.8% to 46.5%, while MARS achieves 49.46%.

5 CONCLUSIONS AND LIMITATIONS

In conclusion, we present the MARS framework for continual learning with large pre-trained models,
which integrates statistical slot expansion, anchor-based retention, and a dual-stage adaptation
strategy. This design improves the stability–plasticity balance while remaining scalable under
practical constraints. A key advantage is its reliance on frozen encoders and lightweight modules,
making it applicable to both vision and language tasks. Despite these strengths, the framework has
limitations. It depends on a reliable frozen encoder, which may not capture fine-grained features in
new domains. It also requires careful tuning of hyperparameters that control expansion and adaptation.
In addition, although the method reduces reliance on raw data, it does not remove memory costs
entirely. Addressing these challenges is an important direction for future work.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The full design of MARS,
including algorithmic workflow and training procedures, is presented in Section 3 and Appendix 1.
All theoretical claims are stated with explicit assumptions and supported by complete proofs in
Appendix A.2. Experimental settings, including datasets, preprocessing steps, and hyperparameters,
are described in Section 4 and further detailed in the supplementary materials. If the paper is accepted,
we will release the full source code on GitHub. During the review and rebuttal period, we are prepared
to provide the code in an anonymous GitHub repository upon request from reviewers.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, we made limited use of large language models as writing
assistants. Their role was restricted to checking grammar, improving clarity, and polishing exposition.
All technical ideas, methods, and experiments were fully developed and validated by the authors.

A.2 DETAILS OF THEORETICAL FOUNDATION

Proposition 1 (Monotonicity of st in ct). This result shows that the top-slot confidence st =
maxi pi(xt) behaves as a calibrated statistic for novelty detection: when the similarity between the
query and its best-matching key increases, the corresponding softmax confidence increases strictly,
provided the other similarities are fixed.

Proof. Let aj = ⟨q̂(xt), k̂j⟩, and let i⋆ ∈ argmaxj aj with c := ai⋆ . All other similarities {aj}j ̸=i⋆

are treated as constants during this analysis. Define

A :=
∑
j ̸=i⋆

eaj/τr , A > 0 since St > 1.

Then the maximum softmax confidence is

s(c) =
ec/τr

ec/τr +A
=

1

1 +Ae−c/τr
.
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This is a logistic-type function of c, strictly between 0 and 1. Differentiating with respect to c gives
ds

dc
=

1

τr

Ae−c/τr

(1 +Ae−c/τr )2
=

1

τr
s(c)

(
1− s(c)

)
.

Since τr > 0 and 0 < s(c) < 1, the derivative is positive. Thus, conditional on other similarities being
fixed, the top-slot confidence st is strictly increasing in ct, i.e. the maximum cosine similarity. This
monotonicity means st faithfully reflects changes in slot affinity, making it a suitable indicator.

Theorem 1 (EMA quantile tracker under weak dependence). This result analyzes the exponen-
tially smoothed quantile statistic Qt that underlies SGSE. We show (i) convergence in mean square
to the long-run quantile and (ii) a predictable timescale for detection after a mean shift.

Proof. As defined by:
Qt = βQt−1 + (1− β)qt, β ∈ [0, 1),

where {qt} is a stationary sequence with E[qt] = q⋆. For clarity, first assume {qt} are i.i.d. with
variance σ2

q . By taking expectations, we have

E[Qt] = β E[Qt−1] + (1− β)q⋆.

This is a standard linear recursion with solution
E[Qt] = q⋆ + βt(Q0 − q⋆).

Hence Qt converges in expectation to q⋆ as t→∞. Then, for the variance,
Var(Qt) = β2Var(Qt−1) + (1− β)2σ2

q .

Unrolling this recursion,

Var(Qt) = (1− β)2σ2
q

t−1∑
i=0

β2i =
(1− β)2

1− β2
σ2
q (1− β2t).

As t→∞, this converges to (1−β)2

1−β2 σ2
q . Thus Qt → q⋆ in L2. If qt are not i.i.d. but weakly dependent

(e.g., α-mixing), the same result holds with σ2
q replaced by the long-run variance. Further, suppose at

time τ the mean shifts from q⋆ to q′ < q⋆. For k ≥ 0,
E[Qτ+k] = q′ + βk(E[Qτ ]− q′).

Fix a threshold θ with q′ < θ < q⋆. The smallest integer k such that E[Qτ+k] ≤ θ must satisfy

βk ≤ θ − q′

E[Qτ ]− q′
.

Taking logarithms,

k ≥
ln
(E[Qτ ]−q′

θ−q′

)
− lnβ

.

Using the inequality − lnβ ≥ 1− β for β ∈ [0, 1), we obtain

k ≤ 1

1− β
ln
(E[Qτ ]− q′

θ − q′

)
.

Therefore, the mean-crossing index (i.e., how many steps until the expected trajectory falls below
θ) scales as O((1 − β)−1). This provides a predictable detection timescale: smaller (1 − β) (i.e.,
heavier smoothing) leads to slower adaptation.

Corollary 1 (False expansion control). This establishes that the Wilson lower-bound test provides
approximate per-test false expansion control at level α.

Proof. Let X1, . . . , Xn ∼ i.i.d. Bernoulli(p) with p = Pr(st ≥ Qt) ≥ τ . Define p̂n = 1
n

∑n
i=1 Xi.

The one-sided Wilson lower bound LB(p̂n;n, z) with z = Φ−1(1− α) satisfies, by score-test theory,
Pr

(
LB(p̂n;n, z) ≤ p

)
≥ 1− α.

Since p ≥ τ , the event {LB < τ} implies {LB < p}. Therefore,
Pr(LB(p̂n;n, z) < τ) ≤ Pr(LB(p̂n;n, z) < p) ≤ α,

up to normal approximation error. Thus the per-test false expansion probability is approximately
controlled at level α.
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Theorem 2 (Anchor-based retention). This theorem shows that, under mild assumptions, anchor-
based distillation guarantees bounded deviation between the old and new models’ predictions on
old-class features.

Proof. Let p(u) = softmax(u/T ) denote the temperature-scaled softmax. By assumption (ii), for
each anchor a ∈ A,

KL
(
p(gold(a)) ∥ p(g(a))

)
≤ η.

By Pinsker’s inequality,
∥p(gold(a))− p(g(a))∥1 ≤

√
2η.

Now consider any old-class feature h̃ within distance δ of some anchor a. By Lipschitz continuity of
logits (assumption (i)),

∥g(h̃)− g(a)∥2 ≤ Lδ, ∥gold(h̃)− gold(a)∥2 ≤ Lδ.

And the Jacobian of p(u) is

∇p(u) = 1

T

[
Diag(p(u))− p(u)p(u)⊤

]
.

Its operator norm is bounded by 1/(2T ) in ℓ2→ℓ2 norm. Thus, by the mean-value theorem,

∥p(g(h̃))− p(g(a))∥1 ≤
√
C · ∥∇p(ξ)∥2→2 · ∥g(h̃)− g(a)∥2 ≤

√
C

2T
Lδ,

and similarly

∥p(gold(h̃))− p(gold(a))∥1 ≤
√
C

2T
Lδ.

Here
√
C comes from ∥v∥1 ≤

√
C∥v∥2, and can be absorbed into big-O notation. By applying the

triangle inequality, we have

∥p(gold(h̃))− p(g(h̃))∥1 ≤ ∥p(gold(a))− p(g(a))∥1 + L
T δ ≤

√
2η + L

T δ ·O(1).

Hence, for any old-class feature, the deviation between old and new softened predictions is bounded
by O(

√
η + (L/T )δ). Under mild posterior-margin conditions, this ensures the drop in classification

accuracy is controlled at the same order.

Proposition 2 (Slot growth bound). This proposition shows that SGSE separates true expansions
(driven by genuine novelty) from false expansions (caused by noise), and that the latter are statistically
controlled.

Proof. Let M = ⌊(T − w)/m⌋ denote the number of hypothesis tests up to time T . For each test j,
let Yj ∈ {0, 1} be the indicator of a false expansion. By Corollary 1,

Pr(Yj = 1) ≤ α.

Thus

E[Yj ] ≤ α, E[F ] ≤ αM, where F =

M∑
j=1

Yj .

If we ensure test windows are disjoint (i.e., n ≤ m), then the Yj’s are independent. By Hoeffding’s
inequality,

Pr(F − E[F ] ≥ ϵ) ≤ exp

(
−2ϵ2

M

)
.

Choosing ϵ =
√

M
2 ln(1/δ) yields

F ≤ αM +
√

M
2 ln 1

δ , with prob. ≥ 1− δ.

Let NT be the number of true expansions. Then the total slot count is
ST ≤ S0 +NT + F.

Taking expectations,
E[ST ] ≤ S0 + E[NT ] + αM,

and the high-probability bound follows from the inequality above.
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Algorithm 1 MARS: Training with SGSE and DCDA

1: for each task t = 1, . . . , T do
2: Initialize buffers: success buffer B (size n) and low-confidence buffer L.
3: Initialize quantile tracker Qt,0 with the first batch.
4: Stage 1: Feature Adaptation (memory-only)
5: for each mini-batch Dt do
6: Extract frozen features hT ← f(x) and queries q ←WqhT , q̂ ← q/∥q∥.
7: Compute routing probabilities pi(x) ∝ exp(⟨q̂, k̂i⟩/τr) and top confidence s(x).
8: Update slot statistics µi, ci with EMA (α = 0.05) and anchors ai.
9: Update quantile qt from last w samples and smooth Qt ← βQt−1 + (1− β)qt.

10: Record Bernoulli trial X(x) in buffer B; compute empirical success rate p̂.
11: if LB(p̂;n, z) < τsucc (Wilson lower bound test) then
12: Expand: Add new slot j with key kj from mean query of L; set (γj ,βj) = (1,0)
13: end if
14: Update L with lowest-confidence samples in batch.
15: Compute adapted features h̃ = (

∑
i piγi)⊙ LN(hT ) + (

∑
i piβi).

16: Optimize memory by minimizing L(1) = Lsupcon(h̃; τ) + λsmooth∥h̃− hT ∥22.
17: end for
18: Stage 2: Classifier Tuning (head-only)
19: Store old classifier gold ← g.
20: for each mini-batch Dt do
21: Compute logits z ← g(h̃), zold ← gold(h̃).
22: Compute anchor logits za ← g(a), zolda ← gold(a) for a ∈ A.
23: Minimize L(2) and update only g.
24: end for
25: end for
26: return (Wq,K,γ,β, g).

Theorem 3 (Overall complexity). Finally, we connect slot growth to computational and memory
costs.

Proof. From Lemma 1,

Time(xt) = Θ
(
(dk + dT )St

)
, Memt = Θ

(
(dk + dT )St

)
+ |g|.

Taking expectations and substituting Proposition 2,

E[Time(xT )] = O
(
(dk + dT )

(
S0 + E[NT ] + αM

))
,

E[MemT ] = O
(
(dk + dT )

(
S0 + E[NT ] + αM

))
+ |g|.

For the high-probability bound, we replace ST by its probabilistic upper bound in Proposition 2,
which yields the same asymptotic order. Thus both compute and memory scale linearly with slot
count, and slot count itself is controlled by SGSE.

A.3 OVERALL WORKFLOW OF MARS

The overall design of MARS integrates two complementary mechanisms on top of the frozen LPM
backbone. As shown in Algorithm 1, SGSE monitors router confidences and decides when to create
new slots by formulating expansion as a statistical decision problem with guarantees on false alarms
and detection delay. When a new slot is added, DCDA controls its integration: Stage 1 aligns slot
features through supervised contrastive learning with smoothness regularization, and Stage 2 tunes the
classifier with Learning-without-Forgetting distillation on current inputs and anchor-based distillation
on surrogate prototypes. This workflow ensures controlled slot growth, efficient adaptation, and a
provable stability–plasticity balance without updating the large pre-trained encoder.
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Table 5: Anchor–feature similarity on Tiny-ImageNet.

Anchor After Task 1 After Task 2 After Task 3 After Task 4 After Task 5
A1 0.782± 0.046 0.759± 0.038 0.746± 0.041 0.762± 0.029 0.755± 0.040
A2 0.842± 0.049 0.825± 0.050 0.807± 0.042 0.792± 0.034 0.781± 0.056
A3 0.603± 0.029 0.618± 0.033 0.635± 0.042 0.648± 0.047 0.662± 0.039
A4 0.701± 0.027 0.718± 0.038 0.734± 0.041 0.725± 0.039 0.712± 0.026

Anchor After Task 6 After Task 7 After Task 8 After Task 9 After Task 10
A1 0.770± 0.042 0.758± 0.040 0.749± 0.045 0.761± 0.043 0.752± 0.036
A2 0.794± 0.027 0.786± 0.055 0.778± 0.061 0.791± 0.034 0.783± 0.048
A3 0.671± 0.041 0.658± 0.041 0.645± 0.022 0.661± 0.044 0.653± 0.051
A4 0.728± 0.026 0.735± 0.053 0.742± 0.049 0.726± 0.046 0.732± 0.037

Table 7: Nearest neighbor classes for selected anchors on Tiny-ImageNet.

Anchor Nearest classes Interpretation
A1 truck, ship, bus, related vehicle classes rigid objects or vehicles
A2 dog, cat, deer, bird animal categories
A3 classes with frequent sky or water textures* textures or background
A4 bird, airplane, ship open or airborne scenes

A.4 ANCHOR COVERAGE DIAGNOSTICS

This section provides additional diagnostics that examine the coverage assumption used in Theorem 2.
We evaluate the behaviour of the anchors on Tiny-ImageNet under the frozen-encoder setting. Because
anchors and routed features share the same feature space RdT , we can compare them directly using
cosine similarity. We report three diagnostics that characterize anchor–feature similarity, temporal
stability, and semantic coherence.

Anchor–feature Similarity. We first study how each anchor relates to the routed features assigned
to its slot. We randomly sample four anchors and compute the cosine similarity between each anchor
and the router-weighted average of its assigned features after Tasks 1 through 10. The results in
Table 5 show that these similarity values remain in the range 0.600–0.850 and change smoothly as
new classes are introduced. This indicates that the anchors stay close to the feature distributions.

Table 6: Anchor stability across tasks.

Metric Value
Mean stability 0.823
Max stability 0.972
Min stability 0.642
Anchors with stability > 0.7 79%

Anchor Stability. We next examine how each anchor
evolves over the task sequence. We compute the cosine
similarity between the same anchor after consecutive tasks
and average this value across all anchors. This diagnostic
measures the temporal consistency of the anchors and is dis-
tinct from the anchor–feature similarity reported above. The
values in Table 6 show that the anchors change smoothly.
This behaviour agrees with the exponential moving average update rule described in Section 3.1.
These results further support the local coverage assumption that appears in Theorem 2.

Semantic Coherence. We also study the semantic coherence of the anchors. For each anchor, we
retrieve the Tiny-ImageNet classes whose mean features are closest to the anchor. We then describe
the shared visual patterns in these classes. The results in Table 7 show that the anchors remain aligned
with coherent semantic groups throughout the entire training process. These groups include rigid
objects, animals, background textures, and scenes with clear open-space patterns. This behaviour
suggests that the anchor space organizes features in a stable and interpretable way as tasks accumulate.
For classes marked with an asterisk, the descriptive terms refer to shared visual textures such as sky
or water rather than official Tiny-ImageNet labels.

Across all diagnostics, the anchors remain close to routed features, evolve smoothly across tasks,
and preserve meaningful semantic structure. These observations support the practical validity of
the coverage assumption in Theorem 2. They also show that the anchor space maintains stable and
interpretable behaviour throughout the full task sequence.
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