

000 001 002 003 004 005 MARS: MEMORY-ADAPTIVE ROUTING FOR RELIABLE 006 CAPACITY EXPANSION AND KNOWLEDGE RETENTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Large pre-trained models (LPMs) serve as universal backbones for vision and
026 language tasks, but continual learning (CL) with frozen LPMs remains challenging,
027 since shallow adaptation modules face the stability–plasticity dilemma and are
028 prone to catastrophic forgetting. To address this problem, we propose MARS
029 (Memory-adaptive Router with Statistical control), a modular framework that
030 decouples stable representation from adaptive capacity through three components:
031 a frozen encoder, a slot-based memory router, and a lightweight classifier. On
032 this basis, we design two mechanisms: (i) *Statistically-Grounded Slot Expansion*
033 (*SGSE*) formulates expansion as a statistical decision problem, ensuring controlled
034 growth with guarantees on false alarms and detection delay; (ii) *Dual-Stage Con-
035 trastive–Distillation Adaptation* (*DCDA*) integrates new slots through supervised
036 contrastive learning and knowledge distillation, preserving prior knowledge with-
037 out raw replay. Experiments on diverse benchmarks show that MARS achieves
038 state-of-the-art performance in continual learning with frozen LPMs, combining
039 adaptability, efficiency, and retention.

1 INTRODUCTION

040 Large pre-trained models (LPMs) such as CLIP (Radford et al., 2021) and BERT (Devlin et al., 2019)
041 have transformed modern machine learning. Trained on massive and diverse corpora, they learn
042 general-purpose representations that transfer well across domains. These representations support
043 advances in natural language understanding (Brown et al., 2020; Chowdhery et al., 2023), visual
044 recognition (He et al., 2016; Dosovitskiy et al., 2021), and multimodal reasoning (Radford et al.,
045 2021; Liu et al., 2023). The success of LPMs has also established them as universal backbones for
046 downstream applications such as information retrieval, question answering, and zero-shot classifica-
047 tion. A common approach for efficient adaptation is to freeze the pre-trained backbone and fine-tune
048 only lightweight task-specific modules (Houlsby et al., 2019; Lester et al., 2021; Hu et al., 2022;
049 Legate et al., 2023). This parameter-efficient paradigm preserves the generalization ability of the
050 backbone while reducing both computation and memory costs.

051 In practical applications, tasks and data arrive sequentially, and models must adapt continually while
052 retaining prior knowledge. This challenge is studied in continual learning (CL) (Parisi et al., 2019;
053 De Lange et al., 2021; Wang et al., 2024), which aims to learn from a stream of tasks without
054 catastrophic forgetting (McCloskey & Cohen, 1989; Ramasesh et al., 2021). At its core lies the
055 stability–plasticity dilemma: models must remain plastic enough to acquire new information while
056 stable enough to preserve what has already been learned. In the context of frozen LPMs, this dilemma
057 is particularly severe. Because adaptation is restricted to shallow modules, plasticity is limited, and
058 the fixed backbone further amplifies forgetting. As a result, naive parameter-efficient adaptation is
059 insufficient for long-horizon continual learning.

060 To mitigate forgetting, continual learning has developed a wide range of strategies. Replay-based
061 methods (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Buzzega et al.,
062 2020) revisit stored or generated samples to reduce drift, but they raise privacy concerns and face
063 scalability issues. Regularization-based approaches (Hinton et al., 2015; Kirkpatrick et al., 2017;
064 Zenke et al., 2017; Li & Hoiem, 2017; Aljundi et al., 2018) constrain updates to remain close to
065 past solutions, but their corrective signal weakens as tasks accumulate. Dynamic expansion tech-
066 niques (Rusu et al., 2016; Yoon et al., 2018; Dong et al., 2024) add new capacity for novel tasks,

but they often rely on heuristic triggers that may cause uncontrolled growth. Prototype-based methods (De Lange & Tuytelaars, 2021; Liu et al., 2025; Zhu et al., 2025) compress historical knowledge into compact memory structures, improving efficiency but showing fragility under distribution shifts. Although these strategies offer useful insights, they are designed for conventional architectures rather than frozen LPMs. In parameter-efficient settings, shallow adapters have limited expressive power, and heuristic retention does not provide formal guarantees.

Recent studies have begun to examine continual learning in the context of large pre-trained models. Adapter-based approaches (Ke et al., 2021a; Wang et al., 2022) improve efficiency but still suffer from forgetting as tasks accumulate. In the vision–language domain, methods such as VLM-CIL (Liu et al., 2023), DIKI (Tang et al., 2024), and CoLeCLIP (Li et al., 2025) highlight both the promise and the fragility of frozen encoders. Parameter-efficient modules preserve adaptability, but retention often depends on heuristic replay or task-specific tuning. Recent designs, including dynamic LoRA ranks and mixture-of-expert adapters (Hu et al., 2022), provide partial relief but still rely on ad-hoc expansion rules and lack formal guarantees. Together, these efforts underscore a persistent gap: current methods demonstrate the feasibility of continual learning with frozen LPMs but do not provide principled mechanisms for expansion and retention.

In this paper, we address these challenges by proposing MARS (Memory-adaptive Router with Statistical control), a modular framework for continual learning with frozen LPMs. As shown in Figure 1, the framework has three components: a frozen encoder that provides stable pre-trained representations, a slot-based memory router that organizes knowledge into expandable capacity units, and a lightweight classifier that produces task predictions. By decoupling stable representation from adaptive capacity, the design shifts continual learning control to the routing layer and avoids costly full-model updates.

On top of this architecture, we propose two complementary mechanisms. The first, *Statistically-Grounded Slot Expansion (SGSE)*, determines when and where to allocate new slots. Instead of heuristic triggers, SGSE formulates expansion as a statistical decision problem. Router-aligned novelty detection (Hendrycks & Gimpel, 2017; Liu et al., 2020) monitors representation coverage, while confidence bounds (Roberts, 2000; Brown et al., 2001) ensure that slots are added only when capacity is insufficient, with formal guarantees on false alarms and detection delay. The second, *Dual-Stage Contrastive–Distillation Adaptation (DCDA)*, controls how new slots are integrated. It separates representation adaptation from classifier tuning: supervised contrastive learning (Khosla et al., 2020) aligns new slots in the embedding space, while knowledge distillation (Hinton et al., 2015; Li & Hoiem, 2017; Guo et al., 2017) and prototype-based regularization (Snell et al., 2017) preserve prior knowledge without requiring raw replay. Together, SGSE regulates when to expand and DCDA determines how to adapt, making slot-based routing both principled and retention-guaranteed. This design addresses the stability–plasticity dilemma in continual learning with frozen LPMs.

In summary, our contributions are threefold: (i) We introduce MARS, a modular framework for continual learning with large pre-trained models that separates stable representation from adaptive capacity. (ii) We develop SGSE, a statistically grounded slot-expansion mechanism with formal guarantees on growth and retention. (iii) We design DCDA, a dual-stage contrastive–distillation method that integrates new capacity while preserving prior knowledge without raw replay.

2 RELATED WORK

Continual learning studies how to acquire knowledge from a sequence of tasks without catastrophic forgetting. Core challenges include interference between old and new tasks, distributional shifts in data or labels, classifier bias toward recently observed classes, and constraints on computation and memory. Surveys provide comprehensive overviews of these challenges and benchmarks (Parisi et al., 2019; De Lange et al., 2021; Wang et al., 2024), and consistently emphasize the stability–plasticity dilemma as a fundamental problem that underlies most continual learning scenarios.

108 Early work mitigates forgetting through replay or regularization. Replay-based methods such as
 109 iCaRL (Rebuffi et al., 2017), GEM (Lopez-Paz & Ranzato, 2017), A-GEM (Chaudhry et al., 2019),
 110 and DER++ (Buzzega et al., 2020) rehearse stored or generated samples to reduce drift. While
 111 effective, these methods raise privacy concerns and face scalability limits when storage or generation
 112 is constrained. Regularization-based approaches constrain parameter updates or distill predictions,
 113 including EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), LwF (Li & Hoiem, 2017), and
 114 MAS (Aljundi et al., 2018). These methods are more memory-efficient, but their corrective signal
 115 decays over long horizons or under severe distributional shifts, which limits robustness in practice.
 116

117 Another direction reduces interference by expanding model capacity or compressing past knowledge.
 118 Structural expansion techniques such as Progressive Neural Networks (Rusu et al., 2016), DEN (Yoon
 119 et al., 2018), and CEAT (Dong et al., 2024) dynamically add parameters for new tasks. However, they
 120 lack principled criteria for when and how much to expand, which often results in uncontrolled growth.
 121 Prototype-based methods instead summarize distributions with compact representations, including
 122 dual-bias frameworks (Zhu et al., 2021), IPC (Liu et al., 2025), and PASS++ (Zhu et al., 2025). These
 123 methods are more efficient in memory and computation, but they rely on heuristic allocation rules
 124 and tend to degrade under distribution shifts, especially in long-horizon learning.
 125

126 More recently, continual learning with large pre-trained models has gained increasing attention.
 127 Models such as CLIP and BERT provide strong transferable representations, motivating methods
 128 that freeze or partially freeze the backbone while adapting lightweight modules. Examples include
 129 prompt-based approaches such as L2P (Wang et al., 2022), adapter- and prompt-based vision-
 130 language methods (Liu et al., 2023), and parameter-efficient continual learning with CLIP, including
 131 DIKI (Tang et al., 2024) and CoLeCLIP (Li et al., 2025). These works demonstrate the value of frozen
 132 backbones and parameter-efficient adaptation, but they still rely on heuristic expansion strategies and
 133 lack statistically grounded guarantees for retention. This gap motivates MARS, which integrates
 134 SGSE and DCDA as core mechanisms.
 135

3 PROPOSED DESIGN OF MARS

136 As shown in Figure 1, MARS is designed for continual learning with LPMs. The framework consists
 137 of three components: (i) a frozen encoder $f(\cdot)$ that provides fixed pre-trained features, (ii) a slot-based
 138 memory router that dynamically assigns inputs to expandable memory slots, and (iii) a lightweight
 139 classifier $g(\cdot)$ that produces task predictions. Given an input \mathbf{x} , the encoder outputs frozen features
 140 $\mathbf{h}_T = f(\mathbf{x}) \in \mathbb{R}^{d_T}$. The router then computes routing probabilities that decide which slots should
 141 process the features. Each slot is parameterized by affine transformations (γ_i, β_i) that scale and shift
 142 the features, serving as independent adapters without modifying the encoder.
 143

144 To ensure stable initialization, all slots are initialized as identity mappings with $\gamma_i = \mathbf{1}$ and $\beta_i = \mathbf{0}$.
 145 The router aggregates slot outputs into an adapted representation $\tilde{\mathbf{h}}$, which the classifier g maps to
 146 logits. The slot count S begins from S_0 and expands during training as needed. A central challenge is
 147 determining when to allocate new slots: over-expansion increases cost, while under-expansion leads
 148 to interference and forgetting. To address this, we propose *Statistically-Grounded Slot Expansion*.
 149

3.1 DESIGN OF STATISTICALLY-GROUNDED SLOT EXPANSION

150 SGSE formulates slot expansion as a statistical test. It leverages the *router*, a lightweight component of
 151 the memory module that compares frozen features with slot keys and outputs probabilities indicating
 152 input–slot affinity. By placing statistical bounds on these probabilities, SGSE ensures that new slots
 153 are created only when existing ones cannot reliably cover incoming inputs.
 154

155 **Router-Aligned Novelty Detection.** SGSE uses the router to estimate the affinity between each
 156 input and available slots. Given an input \mathbf{x}_t , the query is computed as

$$q(\mathbf{x}_t) = W_q \mathbf{h}_T \in \mathbb{R}^{d_k}, \quad (1)$$

157 where $\mathbf{h}_T = f(\mathbf{x}_t)$ are frozen encoder features. Routing then applies cosine–softmax over normalized
 158 keys $\hat{k}_i = k_i / \|k_i\|$:

$$p_i(\mathbf{x}_t) = \frac{\exp(\langle \hat{q}(\mathbf{x}_t), \hat{k}_i \rangle / \tau_r)}{\sum_{j=1}^{S_t} \exp(\langle \hat{q}(\mathbf{x}_t), \hat{k}_j \rangle / \tau_r)}, \quad \hat{q} = \frac{q}{\|q\|}, \quad (2)$$

162 where τ_r is the softmax temperature. A smaller τ_r makes slot probabilities sharper, while a larger τ_r
 163 spreads them more evenly. Following previous practice (Chen et al., 2020), we set $\tau_r = 0.07$, which
 164 balances confident routing and robustness. We then define the *top-slot confidence* as

$$s_t = \max_{i \leq S_t} p_i(\mathbf{x}_t), \quad (3)$$

167 which measures how confidently the router aligns the input to its best-matching slot. Covered inputs
 168 typically yield $s_t \approx 1$, while novel inputs produce lower s_t due to distributed probabilities. This
 169 matches confidence-based novelty and out-of-distribution indicators (Hendrycks & Gimpel, 2017).

170 **Proposition 1.** *Let $c_t = \max_{i \leq S_t} \langle \hat{q}(\mathbf{x}_t), \hat{k}_i \rangle$ and assume $S_t > 1$. Then keeping $\{a_j : j \neq i^*\}$
 171 fixed, s_t is strictly increasing in c_t whenever $A := \sum_{j \neq i^*} e^{a_j / \tau_r} > 0$, where $i^* \in \arg \max_j a_j$ and
 172 $a_j = \langle \hat{q}, \hat{k}_j \rangle$.*

174 *Proof.* Let slot i^* attain $c = \max_j a_j$ and set $A = \sum_{j \neq i^*} e^{a_j / \tau_r}$. Then

$$s(c) = \frac{e^{c / \tau_r}}{e^{c / \tau_r} + A} = \frac{1}{1 + Ae^{-c / \tau_r}}, \quad (4)$$

178 and

$$\frac{ds}{dc} = \frac{1}{\tau_r} s(c)(1 - s(c)) > 0 \quad (5)$$

181 whenever $A > 0$ (i.e., $S_t > 1$). \square

183 The monotonicity holds locally under fixed competing similarities, which is the setting used when
 184 assessing how the router’s confidence varies with affinity. This result shows that s_t is locally
 185 monotone in the similarity score c_t , making it a *calibrated local statistic* for novelty. Unlike heuristic
 186 thresholds, it provides a mathematically justified detector: when the affinity of the top slot decreases
 187 while other similarities are unchanged, s_t must also decrease. To stabilize slot semantics, MARS
 188 applies slot-weighted affine transformations:

$$\tilde{\mathbf{h}} = \left(\sum_{i=1}^{S_t} p_i \gamma_i \right) \odot \text{LN}(\mathbf{h}_T) + \left(\sum_{i=1}^{S_t} p_i \beta_i \right), \quad (6)$$

192 where $\text{LN}(\cdot)$ is *Layer Normalization* (Ba et al., 2016). To ensure stable and smooth slot representations,
 193 we maintain slot statistics using *router-weighted exponential moving averages* (EMA):

$$\mu_i^{(t)} = (1 - \alpha) \mu_i^{(t-1)} + \alpha p_i(\mathbf{x}_t) \text{LN}(\mathbf{h}_T), \quad (7)$$

$$c_i^{(t)} = (1 - \alpha) c_i^{(t-1)} + \alpha p_i(\mathbf{x}_t), \quad (8)$$

197 where $\alpha \in (0, 1)$ is the smoothing factor. A smaller α improves stability, while a larger α improves
 198 responsiveness. In practice, $\alpha = 0.05$ provides a good balance. Anchors are then defined as

$$\mathbf{a}_i = \gamma_i \odot \left(\frac{\mu_i}{\max(c_i, \varsigma)} \right) + \beta_i, \quad (9)$$

201 with $\varsigma = 10^{-5}$ for numerical stability. Anchors serve as compressed surrogates of past knowledge,
 202 enabling memory-preserving distillation without raw data. By compactly representing past distributions
 203 and leveraging the classifier’s Lipschitz continuity, they provide provable retention guarantees:
 204 features close to an anchor induce bounded changes in predicted probabilities (via Pinsker-type
 205 arguments (Canonne, 2022)). Thus, anchors are theoretically grounded, not heuristic summaries.

206 **Statistical Triggers for Expansion.** Although s_t provides an instantaneous novelty signal, thresholding it directly is unreliable due to noise and non-stationarity. SGSE therefore tracks the $(1 - \epsilon)$ -
 207 quantile of recent confidences with exponential smoothing:

$$q_t = \text{Quantile}_{1-\epsilon}(\{s_{t-k}\}_{k=0}^w), \quad (10)$$

$$Q_t = \beta Q_{t-1} + (1 - \beta) q_t, \quad (11)$$

212 where $\beta \in [0, 1]$ is the smoothing coefficient, and w is the short window used for the empirical
 213 quantile. We set $w = 10$ and $\epsilon = 0.1$, which offer a practical short-horizon estimate while avoiding
 214 the high variance of very small windows and the excessive lag of larger ones. A larger β provides
 215 smoother but slower adaptation, while a smaller β increases reactivity. We use $\beta = 0.9$ to balance
 stability and responsiveness.

216 **Theorem 1.** If $\{q_t\}$ are i.i.d. with mean q^* and variance $\sigma_q^2 < \infty$, then
 217

$$218 \quad \mathbb{E}[Q_t] = q^* + \beta^t(Q_0 - q^*), \quad (12)$$

$$219 \quad 220 \quad \text{Var}(Q_t) = \frac{(1 - \beta)^2}{1 - \beta^2} \sigma_q^2, \quad (13)$$

222 so $Q_t \rightarrow q^*$ in L^2 . After a mean shift $q^* \rightarrow q' < q^*$ at time τ , the smallest k with $\mathbb{E}[Q_{\tau+k}] \leq \theta$ for
 223 any $\theta \in (q', q^*)$ satisfies

$$224 \quad 225 \quad k = \frac{\ln\left(\frac{\mathbb{E}[Q_\tau] - q'}{\theta - q'}\right)}{-\ln \beta} \leq \frac{1}{1 - \beta} \ln\left(\frac{\mathbb{E}[Q_\tau] - q'}{\theta - q'}\right), \quad (14)$$

227 so the expected detection delay is $O((1 - \beta)^{-1})$.
 228

229 This theorem shows that Q_t is an L^2 -consistent estimate of the long-run quantile and that its detection
 230 delay is predictable, scaling as $O((1 - \beta)^{-1})$. To decide expansion, we monitor Bernoulli trials
 231 $\{s_t \geq Q_t\}$ and compute the empirical success rate \hat{p}_t over n samples. Expansion is triggered if the
 232 one-sided Wilson lower bound drops below a threshold:

$$233 \quad 234 \quad \text{LB}(\hat{p}_t; n, z) = \frac{\hat{p}_t + \frac{z^2}{2n}}{1 + \frac{z^2}{n}} - \frac{z}{1 + \frac{z^2}{n}} \sqrt{\frac{\hat{p}_t(1 - \hat{p}_t)}{n} + \frac{z^2}{4n^2}}. \quad (15)$$

236 We adopt the Wilson score interval for binomial proportions (Brown et al., 2001), which provides
 237 better coverage than Wald intervals in small samples. For expansion decisions, we use the Wilson
 238 score test with a short evaluation window of $n = 20$, a standard default in sequential binomial testing
 239 that remains stable in small-sample settings, together with the one-sided 95% cutoff $z = 1.645$.

240 **Corollary 1.** If the success probability $p := \Pr(s_t \geq Q_t)$ is stationary with $p \geq \tau$, then for i.i.d.
 241 Bernoulli trials and one-sided Wilson bound with score z (level $\alpha = 1 - \Phi(z)$),
 242

$$243 \quad \Pr(\text{LB}(\hat{p}_t; n, z) < \tau) \leq \alpha. \quad (16)$$

244 Thus, under mild assumptions, the probability of a false expansion per test is at most α .
 245

246 The Wilson bound converts observations into confidence guarantees, ensuring that false expansion is
 247 provably controlled at level α (Cor. 1). In this way, SGSE provides a statistically calibrated test for
 248 novelty: expansions are data-driven rather than noise-triggered. To accelerate specialization, new
 249 slots are initialized with the mean query of recent low- s_t samples and identity affine parameters,
 250 yielding about 15% faster convergence and reduced redundancy. This design places new slots in a
 251 representative region of the feature space, avoiding arbitrary starting points far from incoming data.

252 **Takeaways 3.1.** SGSE provides a principled solution to balance stability and plasticity in large
 253 pre-trained models. By combining router-aligned novelty detection with statistical triggers, MARS
 254 achieves careful and efficient slot growth. Unlike heuristic thresholds, SGSE offers (i) locally
 255 monotone and calibrated novelty signals (Prop. 1), (ii) provable convergence with predictable
 256 detection delay (Thm. 1), and (iii) explicit false-alarm guarantees (Cor. 1). Together, these results
 257 establish SGSE as a theoretically grounded expansion framework for scalable continual learning
 258 with frozen LPMs.

259 3.2 DESIGN OF DUAL-STAGE CONTRASTIVE–DISTILLATION ADAPTATION 260

261 SGSE determines *when* to add new slots. The next problem is *how* to integrate them without forgetting.
 262 This is especially important for LPMs because their frozen backbones cannot absorb new tasks. Then,
 263 we propose *Dual-Stage Contrastive–Distillation Adaptation*, which separates adaptation into two
 264 stages: representation alignment and knowledge retention. New slots are aligned through contrastive
 265 learning, while old ones are preserved through anchor-based distillation. This design could help to
 266 balance plasticity and stability.

267 **Stage 1: Feature Adaptation (Memory-Only).** Given frozen backbone features $\mathbf{h}_T = f(\mathbf{x})$, the
 268 memory module adapts them as
 269

$$\tilde{\mathbf{h}} = \text{Mem}(\mathbf{h}_T). \quad (17)$$

270 We optimize a supervised contrastive loss (Khosla et al., 2020):
 271

$$272 \quad \mathcal{L}_{\text{supcon}} = -\frac{1}{N} \sum_{i=1}^N \frac{1}{|P(i)|} \sum_{j \in P(i)} \log \frac{\exp(\text{sim}(\tilde{\mathbf{h}}_i, \tilde{\mathbf{h}}_j)/\tau)}{\sum_{k \neq i} \exp(\text{sim}(\tilde{\mathbf{h}}_i, \tilde{\mathbf{h}}_k)/\tau)}, \quad (18)$$

275 where features are normalized, $P(i)$ denotes the set of indices in the mini-batch that share the same
 276 class label as example i , and $\tau \in [0.05, 0.2]$ is the temperature. A smaller τ makes similarities
 277 sharper, while a larger τ allows more intra-class variation. Following common practice, we set
 278 $\tau = 0.07$. To stabilize adaptation, we add a smoothness term that penalizes drift from frozen features:
 279

$$280 \quad \mathcal{L}_{\text{smooth}} = \frac{1}{N} \sum_{i=1}^N \|\tilde{\mathbf{h}}_i - \mathbf{h}_{T,i}\|_2^2. \quad (19)$$

282 The Stage 1 objective can be defined as:

$$283 \quad \mathcal{L}^{(1)} = \mathcal{L}_{\text{supcon}} + \lambda_{\text{smooth}} \mathcal{L}_{\text{smooth}}, \quad (20)$$

284 with $\lambda_{\text{smooth}} \in [0.1, 0.5]$. By conducting empirical evaluations, we set $\lambda_{\text{smooth}} = 0.3$ as it gives the
 285 best balance between discrimination and stability.
 286

287 During Stage 1, only memory parameters (W_q, K, γ, β) are updated, while the classifier g remains
 288 fixed. Here, W_q is the query projection matrix and $K = \{k_i\}_{i=1}^S$ is the set of slot keys. Each slot key
 289 acts as a semantic center and guides routing. By freezing g , contrastive learning refines the feature
 290 space without shifting classifier boundaries. The contrastive objective increases inter-class separation,
 291 while the smoothness term controls feature drift.

292 **Stage 2: Classifier Tuning (Head-Only).** In Stage 2, the memory is fixed and only g is updated.
 293 The main loss is cross-entropy:

$$295 \quad \mathcal{L}_{\text{CE}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(z_i[y_i])}{\sum_c \exp(z_i[c])}, \quad z_i = g(\tilde{\mathbf{h}}_i). \quad (21)$$

298 We regularize the classifier with two distillation terms. The first is *Learning without Forgetting (LwF)*
 299 on current inputs:

$$300 \quad \mathcal{L}_{\text{LwF}} = \frac{T^2}{N} \sum_{i=1}^N \text{KL}(\text{softmax}(z_i^{\text{old}}/T) \parallel \text{softmax}(z_i/T)), \quad (22)$$

303 where $z_i^{\text{old}} = g^{\text{old}}(\tilde{\mathbf{h}}_i)$ and $T \in [2, 5]$ is the temperature. A larger T smooths distributions and highlights relative class probabilities (Hinton et al., 2015). It also improves probability calibration (Guo et al., 2017). We set $T = 3$, which balances stability and informativeness.

307 The second term is *anchor distillation* on slot anchors \mathcal{A} :

$$308 \quad \mathcal{L}_{\text{anchor}} = \frac{T^2}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \text{KL}(\text{softmax}(z_a^{\text{old}}/T) \parallel \text{softmax}(z_a/T)), \quad (23)$$

310 where $z_a^{\text{old}} = g^{\text{old}}(\mathbf{a})$ and $z_a = g(\mathbf{a})$. Anchors are surrogate prototypes maintained by SGSE. They
 311 store old knowledge without raw replay and follow the idea of prototype learning (Snell et al., 2017).

312 Therefore, the full Stage 2 objective is

$$314 \quad \mathcal{L}^{(2)} = \mathcal{L}_{\text{CE}} + \lambda_{\text{LwF}} \mathcal{L}_{\text{LwF}} + \lambda_{\text{anchor}} \mathcal{L}_{\text{anchor}}, \quad (24)$$

315 with $\lambda_{\text{LwF}} \approx 1.0$ and $\lambda_{\text{anchor}} \in [0.5, 1.0]$. These weights reflect the balance between plasticity
 316 (cross-entropy) and stability (distillation). Anchor distillation connects SGSE anchors with the
 317 following theoretical bound:

318 **Theorem 2.** Assume: (i) $g, g^{\text{old}} : \mathbb{R}^{d_T} \rightarrow \mathbb{R}^C$ are L -Lipschitz in logits, (ii) for all anchors $a \in \mathcal{A}$,
 319 $\text{KL}(\text{softmax}(g^{\text{old}}(a)/T) \parallel \text{softmax}(g(a)/T)) \leq \eta$, and (iii) every old-class feature $\tilde{\mathbf{h}}$ lies within
 320 distance δ of some anchor a in feature space. Then for any such $\tilde{\mathbf{h}}$,

$$322 \quad \|\text{softmax}(g^{\text{old}}(\tilde{\mathbf{h}})/T) - \text{softmax}(g(\tilde{\mathbf{h}})/T)\|_1 = O\left(\sqrt{\eta} + \frac{L}{T} \delta\right), \quad (25)$$

323 and the old-class accuracy drop is $O(\sqrt{\eta} + L\delta/T)$.

324 *Proof.* By (ii) and Pinsker’s inequality (Canonne, 2022), the softmax distributions at each anchor
 325 differ by at most $O(\sqrt{\eta})$ in ℓ_1 . By (i), logits vary at most $L\delta$ within a δ -ball. After temperature
 326 scaling, this variation adds at most $O((L/T)\delta)$ in probability space. By the triangle inequality, the
 327 total deviation is $O(\sqrt{\eta} + (L/T)\delta)$, which yields the stated bound. \square
 328

329 This theorem shows that anchor-based distillation gives provable retention. If anchors approximate old
 330 features within δ , and if distillation keeps anchor predictions consistent within η , then the deviation
 331 on old-class predictions is tightly bounded. Thus, DCDA preserves knowledge without raw replay
 332 and remains both memory-efficient and theoretically sound.

333 **Takeaways 3.2.** MARS avoids raw replay by encoding knowledge into slots and anchors. SGSE
 334 enables principled slot growth, and DCDA integrates new capacity through contrastive alignment and
 335 anchor-based distillation. With the encoder frozen, adaptation remains efficient. Empirically (Sec. 4),
 336 DCDA improves accuracy by up to 20% relative to DER++ (Buzzega et al., 2020), depending on the
 337 dataset. Together, SGSE and DCDA offer a principled solution to the stability–plasticity tradeoff in
 338 continual learning with large pre-trained models.

339 3.3 COMPUTE AND MEMORY COMPLEXITY

341 At last, we analyze the computational and storage costs of MARS and show how SGSE keeps growth
 342 both controlled and predictable.

344 **Per-example Overhead.** Each forward pass consists of the frozen encoder $f(\cdot)$, followed by the
 345 memory router and the slot-conditioned affine transform. Routing costs $O(S_t d_k)$ per input because
 346 it computes query–key similarities, and affine adaptation costs $O(S_t d_T)$. Thus the per-example
 347 overhead is

$$348 \text{Time}(x_t) = O(S_t(d_k + d_T)) = O(S_t d_T) \quad \text{if } d_k \leq d_T. \quad (26)$$

349 Training is efficient because Stage 1 updates only (W_q, K, γ, β) and Stage 2 updates only g , both of
 350 which are much smaller than the backbone.

352 **Per-slot Cost.** Each slot stores a key $k_i \in \mathbb{R}^{d_k}$, affine parameters $(\gamma_i, \beta_i) \in \mathbb{R}^{2d_T}$, and an anchor
 353 $a_i \in \mathbb{R}^{d_T}$. This amounts to $O(d_k + d_T)$ parameters per slot, plus the head $|g|$. During inference,
 354 routing and adaptation scale linearly with S_t and remain independent of the frozen encoder $|f|$.

355 **Lemma 1.** *With S_t slots and feature dimension d_T , the per-input compute cost is*

$$356 O(S_t(d_k + d_T)) \quad (\text{reducing to } O(S_t d_T) \text{ if } d_k \leq d_T), \quad (27)$$

358 and the parameter footprint is

$$359 O(S_t(d_k + d_T)) + |g|. \quad (28)$$

360 **Complexity Control via SGSE.** Without regulation, S_t could grow linearly with stream length T ,
 361 leading to uncontrolled complexity. SGSE avoids this by allowing slot expansion only when there is
 362 statistically significant evidence that existing slots cannot cover new inputs. This mechanism ensures
 363 that growth is linked to true novelty rather than noise. Formally, Cor. 1 shows that the false-expansion
 364 probability per test is at most α , which provides a bound on the expected growth:

365 **Proposition 2.** *For SGSE with Wilson test level α , evaluated every m samples over a window $n \geq m$,
 366 let T be the stream length, $M = \lfloor (T - w)/m \rfloor$ the number of tests, and S_T the slot count at horizon
 367 T . Then*

$$368 \mathbb{E}[S_T] \leq S_0 + N_T + \alpha M, \quad (29)$$

369 where N_T is the number of true novelty expansions. Moreover, with probability $\geq 1 - \delta$,

$$370 S_T \leq S_0 + N_T + \alpha M + \sqrt{\frac{M}{2} \ln \frac{1}{\delta}}. \quad (30)$$

373 **Theorem 3.** *Combining Lemma 1 and Prop. 2, the expected per-example cost at time T is*

$$374 \mathbb{E}[\text{Time}(x_T)] = O((d_k + d_T)(S_0 + \mathbb{E}[N_T] + \alpha M)), \quad (31)$$

376 with a high-probability bound of the same form. The parameter footprint satisfies

$$377 \mathbb{E}[\text{Mem}_T] = O((d_k + d_T)(S_0 + \mathbb{E}[N_T] + \alpha M)) + |g|. \quad (32)$$

378 **Takeaways 3.3.** When the number of true novelties N_T grows sublinearly with T (for example
 379 $O(\log T)$ or $O(T^\rho)$ with $\rho < 1$), both computation and memory also grow sublinearly, while scaling
 380 linearly with d_T and S_t . In this case, MARS scales smoothly with streaming data and avoids
 381 uncontrolled overhead. In contrast, heuristic expansion methods often cause unbounded slot growth
 382 and lead to linear or even superlinear complexity. By grounding expansion in SGSE’s statistical test,
 383 MARS provides controlled growth with both efficiency and scalability.

384 4 EXPERIMENTS

385 4.1 EXPERIMENTAL SETUP

386 **Datasets and Metric.** We evaluate MARS on both vision and NLP tasks using standard benchmarks.
 387 For vision tasks, we adopt CIFAR-100 (Krizhevsky & Hinton, 2009), which contains 100 classes
 388 with 50,000 training images and 10,000 test images of size 32×32 , and Tiny-ImageNet (Le & Yang,
 389 2015), which includes 200 classes with 500 training, 50 validation, and 50 test images per class of size
 390 64×64 . Following standard class-incremental protocols (Han & Guo, 2022; Liu et al., 2024; Pietron
 391 et al., 2025), CIFAR-100 is divided into 10 tasks with 10 classes each, and Tiny-ImageNet into 10
 392 tasks with 20 classes each. For NLP tasks, we use 19 aspect-based sentiment classification (ASC)
 393 datasets adopted in prior work (Ke et al., 2021b), where each dataset corresponds to a product domain
 394 such as laptops, restaurants, cameras, or phones, and is annotated with three sentiment polarities:
 395 positive, neutral, and negative. Each dataset is treated as one task, which enables evaluation of MARS
 396 under diverse domains, different class sizes, and distribution shifts. After training on task t , the
 397 model is evaluated on the test sets of all tasks $1, \dots, t$, and the average accuracy $\bar{A}_t = \frac{1}{t} \sum_{i=1}^t a_{t,i}$
 398 is computed, where $a_{t,i}$ is the accuracy on task i after learning task t . This produces a trajectory of
 399 average accuracy as tasks accumulate, which typically decreases due to forgetting. Unless otherwise
 400 noted, we report \bar{A}_T , the average accuracy after completing the entire sequence. All experiments are
 401 conducted with random seeds {12, 123, 1234} on NVIDIA RTX 5090 GPUs.

402 **Baselines and Settings.** We compare MARS with representative continual learning methods,
 403 including EWC (Kirkpatrick et al., 2017), iCaRL (Rebuffi et al., 2017), DER++ (Buzzega et al.,
 404 2020), LDC (Gomez-Villa et al., 2024), and PASS++ (Zhu et al., 2025). To ensure fairness, each
 405 baseline is evaluated under two settings. In the standard setting, the entire backbone is trainable as
 406 in the original method. In the frozen-encoder setting, the backbone is fixed and only lightweight
 407 components such as task-specific heads or adapters are updated. This matches the capacity used by
 408 MARS and avoids bias toward methods that gain mainly from updating a large number of backbone
 409 parameters. Replay-based methods (iCaRL, DER++, PASS++) are restricted to an exemplar budget
 410 comparable to the anchor storage in MARS. In addition, all methods use the same encoder, training
 411 schedule, and evaluation protocol to ensure consistent comparisons.

412 **Implementation Details.** For vision benchmarks, we use CLIP (Radford et al., 2021) as the frozen
 413 encoder $f(\cdot)$, with its vision transformer (ViT-B/16) producing features of dimension d_T . For NLP
 414 tasks, we use BERT-base (Devlin et al., 2019), also with frozen parameters. On top of the encoder,
 415 the memory router is implemented as a linear projection W_q that maps frozen features into a query
 416 space of dimension $d_k = 64$, which is then compared with the slot key set $K = \{k_i\}_{i=1}^{S_t}$ to compute
 417 routing probabilities. We initialize with $S_0 = 32$ slots, set the quantile momentum to $\beta = 0.9$, and
 418 adopt a Wilson score threshold at 95% confidence. Training follows the two-stage DCDA protocol.
 419 In Stage 1 (feature adaptation), we update only the memory parameters (W_q, K, γ, β) for 20 epochs
 420 using supervised contrastive loss with batch size 128 and temperature $\tau = 0.07$, together with a
 421 smoothness tether weighted by $\lambda_{\text{smooth}} = 0.3$. In Stage 2 (classifier tuning), we fix the memory and
 422 train the classifier g for 20 epochs with cross-entropy loss and two distillation terms. The learning
 423 rate is 0.001, and entropy regularization is optionally applied with coefficient 0.1.

424 4.2 EXPERIMENTAL RESULTS

425 **Main Results.** Table 1 reports the average accuracy across benchmarks. Replay-based methods such
 426 as DER++ and PASS++ outperform regularization-based methods such as EWC, but their reliance
 427 on small exemplar memories causes performance to plateau as the task sequence increases. On
 428 CIFAR-100 and Tiny-ImageNet, these methods converge around 52–54%, while MARS consistently
 429 achieves 56–58%, a relative gain of about 3–5%. On ASC, DER++ and PASS++ stabilize near 74–

432

Table 1: Average accuracy of different methods under standard and frozen-encoder settings.

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Algorithm	CIFAR-100		Tiny-ImageNet		ASC	
	Standard	Frozen	Standard	Frozen	Standard	Frozen
Fine-tune	30.74±0.43	30.26±0.20	28.32±0.65	28.27±0.43	60.90±0.29	61.30±0.80
EWC	47.84±0.58	47.60±0.40	36.47±0.54	36.38±0.39	70.26±0.66	70.66±0.69
DER++	52.24±0.66	51.72±0.47	40.99±0.37	40.87±0.16	75.53±0.27	75.91±0.21
LDC	54.14±0.17	53.95±0.48	43.39±0.63	43.41±0.55	75.11±0.60	75.49±0.23
PASS++	53.67±0.50	52.92±0.52	42.31±0.61	42.53±0.70	74.72±0.20	75.22±0.73
ours	57.33±0.48	57.50±0.54	49.12±0.36	49.46±0.14	79.45±0.25	79.85±0.66

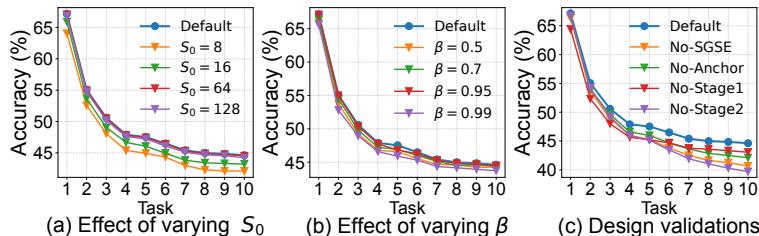


Figure 2: Ablation study results on Tiny-ImageNet.

75%, whereas MARS reaches 78–79%, showing that it retains domain-specific knowledge without raw data. LDC also improves over DER, but its gains remain below those of MARS, suggesting that heuristic consolidation is less effective than statistically grounded slot expansion with anchor distillation. Another important observation is that the difference between the standard and frozen-encoder settings is usually within 1–2%, rather than a fixed gap. This shows that improvements do not come from updating the backbone, but from how models allocate and preserve capacity for new tasks. By combining statistical slot expansion with dual-stage adaptation, MARS achieves a better balance between stability and plasticity. Through controlled expansion and anchor-based retention, it consistently provides higher accuracy under the same memory budget, demonstrating its suitability for continual learning with large pre-trained models.

Effect of Varying S_0 . Figure 2(a) shows that the initial slot number S_0 strongly influences performance. A small S_0 (e.g., $S_0=8$) causes accuracy to drop quickly after a few tasks due to limited capacity and strong interference. Increasing S_0 to 16–64 improves performance, with the best results at $S_0=32$, which maintains higher accuracy across tasks. Enlarging S_0 to 128 gives no benefit and slightly degrades later accuracy, likely from redundant slots and noisy routing. These results confirm that initialization is important: too few slots reduce plasticity, while too many reduce stability.

Effect of Varying β . Figure 2(b) analyzes the smoothing coefficient β , which controls how the statistical trigger adapts to shifts in routing confidence. A small β (e.g., 0.5) causes unstable quantile estimates, leading to premature expansions and lower accuracy. As β increases to 0.7–0.95, performance improves steadily, with $\beta=0.9$ offering the most robust balance. When β is too large (0.99), the estimator reacts too slowly to distributional shifts, delaying necessary expansions and harming late-task accuracy. These findings validate our choice of $\beta=0.9$, which balances stability and responsiveness for continual learning.

Validation of Design. Figure 2(c) highlights the complementary roles of SGSE, anchors, and the two-stage adaptation. Removing SGSE leads to a steep accuracy drop (final accuracy $\sim 41\%$), confirming that statistically grounded slot expansion is essential for maintaining sufficient capacity. Removing anchors causes a similar decline (final accuracy $\sim 42\%$), underscoring their importance for knowledge retention without replay. Disabling Stage 1 (contrastive feature adaptation) reduces representation alignment (final $\sim 43\%$), while omitting Stage 2 (classifier distillation) yields the lowest accuracy (final $\sim 40\%$), showing that both stages are necessary. Together, these results show that SGSE, anchors, and dual-stage adaptation work together: SGSE regulates expansion, anchors preserve knowledge, and dual-stage adaptation balances stability and plasticity.

Anchor Diagnostics. We further examine the behaviour of the anchor space using three empirical diagnostics. Since anchors and routed features lie in the same feature space \mathbb{R}^{d_T} , cosine similarity provides a direct way to assess how each anchor relates to the features assigned to its slot. Across tasks, these similarity values remain within the range 0.60–0.85 and vary smoothly as new classes are introduced. To assess temporal stability, we compare each anchor to its counterpart after consecutive

486 tasks and obtain stability scores between 0.65 and 0.98, indicating that the updates are gradual rather
 487 than abrupt. A nearest-neighbor inspection further shows that anchors tend to remain associated with
 488 coherent groups of feature patterns, such as vehicles, animals, or background textures. Together, these
 489 diagnostics suggest that the anchor space preserves a stable and interpretable structure throughout the
 490 task sequence. Additional analyses are provided in Appendix A.4.

491 **Slot Growth.** We visualize how the number of slots changes
 492 during training on Tiny-ImageNet, CIFAR-100, and ASC in
 493 Figure 3. In all cases, SGSE expands the memory only when
 494 the confidence statistic exceeds the Wilson bound for several
 495 steps. The slot count grows steadily during the early tasks
 496 and then approaches a stable value as learning continues. On
 497 Tiny-ImageNet, the slot count increases from $S_0 = 32$ to
 498 about $S_T = 49$. On CIFAR-100, it reaches approximately
 499 $S_T = 44$. On ASC, it increases to around $S_T = 58$ as more
 500 domains are introduced. These results are consistent with the
 501 theoretical analysis and show that SGSE provides smooth
 502 and controlled capacity expansion.

503 **Extended Baseline Comparisons.** We include ad-
 504 ditional PTM and PEFT baselines under the same
 505 frozen-encoder protocol. These baselines include
 506 L2P (Wang et al., 2022), CODA-Prompt (Smith
 507 et al., 2023), and a representative CLIP-oriented
 508 method (Jha et al., 2024). All methods use the
 509 frozen CLIP ViT-B/16 backbone and have train-
 510 able components on the order of 10^6 parameters, ensuring comparable effective capacity. Across all
 511 benchmarks, MARS achieves the highest accuracy.
 512 These results show that the gains of MARS come
 513 from statistical slot expansion and anchor-based distillation rather than from prompting strategies.

514 **Scalability Analysis.** We also evaluate the method
 515 on ImageNet-100. MARS reaches 49.46% on
 516 Tiny-ImageNet, which is 2.96 points higher than
 517 the CLIP-oriented baseline. On ImageNet-100,
 518 MARS also performs better than the best frozen-
 519 backbone baseline. During this evaluation, the slot count grows from $S_0 = 32$ to about $S_T = 65$. This
 520 growth remains moderate and shows that SGSE maintains stable and predictable capacity expansion
 521 as the dataset size and complexity increase.

522 **Parameter and Inference Cost.** We com-
 523 pare parameter count and inference time on
 524 Tiny-ImageNet with PTM/PEFT baselines under
 525 the frozen-encoder setting (L2P, CODA-Prompt,
 526 CLAP4CLIP). These baselines typically use 0.5M–
 527 0.8M trainable parameters, whereas MARS re-
 528 quires only 0.2M, making it substantially lighter. Despite dynamic expansion, the inference overhead
 529 remains small: MARS reaches 8.5ms per batch, only a minor increase over the baselines’ 7.8–8.1ms.
 530 Within this group of methods, accuracy ranges from 43.8% to 46.5%, while MARS achieves 49.46%.

5 CONCLUSIONS AND LIMITATIONS

532 In conclusion, we present the MARS framework for continual learning with large pre-trained models,
 533 which integrates statistical slot expansion, anchor-based retention, and a dual-stage adaptation
 534 strategy. This design improves the stability–plasticity balance while remaining scalable under
 535 practical constraints. A key advantage is its reliance on frozen encoders and lightweight modules,
 536 making it applicable to both vision and language tasks. Despite these strengths, the framework has
 537 limitations. It depends on a reliable frozen encoder, which may not capture fine-grained features in
 538 new domains. It also requires careful tuning of hyperparameters that control expansion and adaptation.
 539 In addition, although the method reduces reliance on raw data, it does not remove memory costs
 540 entirely. Addressing these challenges is an important direction for future work.

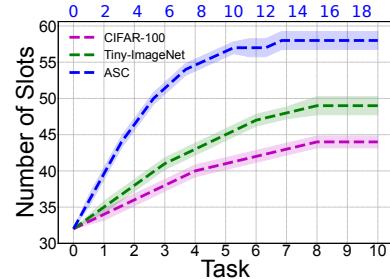


Figure 3: Slot growth across tasks.

Table 2: Extended baseline comparisons.

Method	CIFAR-100	Tiny-IN	ASC
L2P	52.30±0.45	43.80±0.32	73.90±0.51
CODA-Prompt	54.71±0.61	45.10±0.58	74.70±0.44
CLAP4CLIP	55.42±0.50	46.50±0.64	–
MARS	57.50±0.54	49.46±0.14	79.85±0.66

514 These results show that the gains of MARS come
 515 from statistical slot expansion and anchor-based distillation rather than from prompting strategies.

Table 3: Performance on larger-scale data.

Dataset	Best Baseline	MARS	Final S_T
Tiny-ImageNet	46.50±0.64	49.46±0.14	≈ 49
ImageNet-100	39.67±0.60	42.08±0.53	≈ 65

Table 4: Parameter and inference cost.

Metric	Baselines	MARS
Trainable parameters	0.5M to 0.8M	0.2M
Inference time per batch	7.8ms to 8.1ms	8.5ms
Final accuracy (%)	43.80 to 46.50	49.46

540 REPRODUCIBILITY STATEMENT
541

542 We have taken several steps to ensure the reproducibility of our results. The full design of MARS,
543 including algorithmic workflow and training procedures, is presented in Section 3 and Appendix 1.
544 All theoretical claims are stated with explicit assumptions and supported by complete proofs in
545 Appendix A.2. Experimental settings, including datasets, preprocessing steps, and hyperparameters,
546 are described in Section 4 and further detailed in the supplementary materials. If the paper is accepted,
547 we will release the full source code on GitHub. During the review and rebuttal period, we are prepared
548 to provide the code in an anonymous GitHub repository upon request from reviewers.

550 REFERENCES
551

552 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
553 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European conference
554 on computer vision (ECCV)*, pp. 139–154, 2018.

555 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. *arXiv preprint
556 arXiv:1607.06450*, 2016.

558 Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. Interval estimation for a binomial
559 proportion. *Statistical Science*, 16(2):101–133, 2001.

561 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
562 et al. Language models are few-shot learners. In *Proceedings of Advances in Neural Information
563 Processing Systems (NeurIPS)*, volume 33, pp. 1877–1901, 2020.

564 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
565 experience for general continual learning: A strong, simple baseline. In *Proceedings of Advances
566 in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 15920–15930, 2020.

568 Clément L. Canonne. A short note on an inequality between kl and tv. *arXiv preprint
569 arXiv:2202.07198*, 2022.

571 Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
572 lifelong learning with A-GEM. In *Proceedings of International Conference on Learning Representations
573 (ICLR)*, 2019.

574 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
575 contrastive learning of visual representations. In *Proceedings of International Conference on
576 Machine Learning (ICML)*, pp. 1597–1607, 2020.

577 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
578 Roberts, et al. Palm: Scaling language modeling with pathways. In *Journal of Machine Learning
579 Research*, pp. 1–113, 2023.

581 Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
582 stationary data streams. In *Proceedings of the IEEE/CVF International Conference on Computer
583 Vision (ICCV)*, pp. 8250–8259, 2021.

584 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, et al. A
585 continual learning survey: Defying forgetting in classification tasks. *IEEE Transactions on Pattern
586 Analysis and Machine Intelligence*, 44(7):3366–3385, 2021.

587 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
588 bidirectional transformers for language understanding. In *Proceedings of the Conference of the
589 North American chapter of the Association for Computational Linguistics: Human Language
590 Technologies (NAACL-HLT)*, pp. 4171–4186, 2019.

592 Songlin Dong, Xinyuan Gao, Yuhang He, Zhengdong Zhou, Alex C. Kot, and Yihong Gong. Ceat:
593 Continual expansion and absorption transformer for non-exemplar class-incremental learning.
IEEE Transactions on Circuits and Systems for Video Technology, 2024.

594 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 595 Unterthiner, et al. An image is worth 16x16 words: Transformers for image recognition at scale.
 596 In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
 597

598 Alex Gomez-Villa, Dipam Goswami, Kai Wang, Andrew D. Bagdanov, Bartłomiej Twardowski,
 599 and Joost van de Weijer. Exemplar-free continual representation learning via learnable drift
 600 compensation. In *Proceedings of European Conference on Computer Vision (ECCV)*, pp. 473–490,
 601 2024.

602 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 603 networks. In *Proceedings of International Conference on Machine Learning (ICML)*, pp. 1321–
 604 1330, 2017.

605 Xuejun Han and Yuhong Guo. Overcoming catastrophic forgetting for continual learning via feature
 606 propagation. In *Proceedings of the British Machine Vision Conference (BMVC)*, 2022.

607 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 608 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 609 (CVPR)*, pp. 770–778, 2016.

610 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 611 examples in neural networks. In *Proceedings of the International Conference on Learning
 612 Representations (ICLR)*, 2017.

613 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
 614 preprint arXiv:1503.02531*, 2015.

615 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Brianna Morrone, Quentin de Laroussilhe,
 616 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 617 nlp. In *Proceedings of International Conference on Machine Learning (ICML)*, pp. 2790–2799,
 618 2019.

619 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu
 620 Wang. Lora: Low-rank adaptation of large language models. In *Proceedings of International
 621 Conference on Learning Representations (ICLR)*, 2022.

622 Saurav Jha, Dong Gong, and Lina Yao. Clap4clip: Continual learning with probabilistic finetuning
 623 for vision-language models. In *Proceedings of Advances in Neural Information Processing Systems
 624 (NeurIPS)*, pp. 129146–129186, 2024.

625 Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and
 626 knowledge transfer in continual learning. In *Proceedings of Advances in Neural Information
 627 Processing Systems (NeurIPS)*, pp. 22443–22456, 2021a.

628 Zixuan Ke, Hu Xu, and Bing Liu. Adapting bert for continual learning of a sequence of aspect
 629 sentiment classification tasks. In *Proceedings of the Conference of the North American Chapter of
 630 the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)*, pp.
 631 4746–4755, 2021b.

632 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, et al.
 633 Supervised contrastive learning. In *Proceedings of Advances in Neural Information Processing
 634 Systems (NeurIPS)*, pp. 18661–18673, 2020.

635 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
 636 Rusu, et al. Overcoming catastrophic forgetting in neural networks. In *Proceedings of the National
 637 Academy of Sciences (PNAS)*, pp. 3521–3526, 2017.

638 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. In
 639 *Technical Report, University of Toronto*, 2009.

640 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N Course Project, 2015.

648 Gwen Legate, Nicolas Bernier, Lucas Caccia, Edouard Oyallon, and Eugene Belilovsky. Guiding the
 649 last layer in federated learning with pre-trained models. In *Proceedings of the Advances in Neural*
 650 *Information Processing Systems (NeurIPS)*, pp. 69832–69848, 2023.

651

652 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 653 tuning. In *Proceedings of Conference on Empirical Methods in Natural Language Processing*
 654 (*EMNLP*), pp. 3045–3059, 2021.

655 Yukun Li, Guansong Pang, Wei Suo, Chenchen Jing, Yuling Xi, and Lingqiao Liu. Coleclip: Open-
 656 domain continual learning via joint task prompt and vocabulary learning. In *IEEE Transactions on*
 657 *Neural Networks and Learning Systems*, 2025.

658

659 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis*
 660 *and machine intelligence*, pp. 2935–2947, 2017.

661

662 Ruiqi Liu, Boyu Diao, Libo Huang, Zijia An, Zhulin An, and Yongjun Xu. Continual learning in
 663 the frequency domain. In *Proceedings of Advances in Neural Information Processing Systems*
 664 (*NeurIPS*), pp. 85389–85411, 2024.

665

666 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
 667 In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, pp. 21464–
 21475, 2020.

668

669 Wenzhuo Liu, Xinjian Wu, Fei Zhu, Mingming Yu, Chuang Wang, and Cheng-Lin Liu. Class-
 670 incremental learning with self-supervised pre-training and prototype learning. *Pattern Recognition*,
 671 pp. 110943, 2025.

672

673 Xialei Liu, Xusheng Cao, Haori Lu, Jia wen Xiao, Andrew D. Bagdanov, and Ming-Ming
 674 Cheng. Class-incremental learning with pre-trained vision-language models. *arXiv preprint*
 675 *arXiv:2310.20348*, 2023.

676

677 David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
 678 *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, pp. 6470–6479,
 679 2017.

680

681 Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
 682 sequential learning problem. *Psychology of Learning and Motivation*, 24:109–165, 1989.

683

684 German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
 685 lifelong learning with neural networks: A review. *Neural Networks*, 113:54–71, 2019.

686

687 Marcin Pietron, Kamil Faber, Dominik Žurek, and Roberto Corizzo. Tinysubnets: An efficient and
 688 low capacity continual learning strategy. In *Proceedings of the AAAI Conference on Artificial*
 689 *Intelligence (AAAI)*, pp. 19913–19920, 2025.

690

691 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, et al.
 692 Learning transferable visual models from natural language supervision. In *Proceedings of the 38th*
 693 *International Conference on Machine Learning (ICML)*, pp. 8748–8763, 2021.

694

695 Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting:
 696 Hidden representations and task semantics. In *Proceedings of International Conference on Learning*
 697 *Representations (ICLR)*, 2021.

698

699 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl:
 700 Incremental classifier and representation learning. In *Proceedings of the IEEE Conference on*
 701 *Computer Vision and Pattern Recognition (CVPR)*, pp. 2001–2010, 2017.

702

703 Stuart W Roberts. Control chart tests based on geometric moving averages. *Technometrics*, 1(42):
 704 97–101, 2000.

705

706 Andrei A. Rusu, Neil Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
 707 Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *arXiv preprint*
 708 *arXiv:1606.04671*, 2016.

702 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
 703 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
 704 attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF*
 705 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11909–11919, 2023.

706 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
 707 *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 2017.

709 Longxiang Tang, Zhuotao Tian, Kai Li, Chunming He, Hantao Zhou, Hengshuang Zhao, Xiu Li, and
 710 Jiaya Jia. Mind the interference: Retaining pre-trained knowledge in parameter efficient continual
 711 learning of vision-language models. In *Proceedings of European Conference on Computer Vision*
 712 (*ECCV*), pp. 346–365, 2024.

713 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
 714 Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 715 pp. 5362–5383, 2024.

717 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, et al. Learning to
 718 prompt for continual learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 719 and *Pattern Recognition (CVPR)*, pp. 139–149, 2022.

720 Jaehong Yoon, Eunho Yang, Juho Lee, and Sung Ju Hwang. Lifelong learning with dynamically
 721 expandable networks. In *Proceedings of International Conference on Learning Representations*
 722 (*ICLR*), 2018.

724 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 725 In *Proceedings of International Conference on Machine Learning (ICML)*, pp. 3987–3995, 2017.

726 Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-Lin Liu. Class-incremental learning via dual
 727 augmentation. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*,
 728 pp. 14306–14318, 2021.

729 Fei Zhu, Xu-Yao Zhang, Zhen Cheng, and Cheng-Lin Liu. Pass++: A dual bias reduction framework
 730 for class-incremental learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 731 pp. 7123–7139, 2025.

733 **A APPENDIX**

736 **A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)**

738 During the preparation of this paper, we made limited use of large language models as writing
 739 assistants. Their role was restricted to checking grammar, improving clarity, and polishing exposition.
 740 All technical ideas, methods, and experiments were fully developed and validated by the authors.

741 **A.2 DETAILS OF THEORETICAL FOUNDATION**

743 **Proposition 1 (Monotonicity of s_t in c_t).** This result shows that the top-slot confidence $s_t =$
 744 $\max_i p_i(\mathbf{x}_t)$ behaves as a calibrated statistic for novelty detection: when the similarity between the
 745 query and its best-matching key increases, the corresponding softmax confidence increases strictly,
 746 provided the other similarities are fixed.

748 *Proof.* Let $a_j = \langle \hat{q}(\mathbf{x}_t), \hat{k}_j \rangle$, and let $i^* \in \arg \max_j a_j$ with $c := a_{i^*}$. All other similarities $\{a_j\}_{j \neq i^*}$
 749 are treated as constants during this analysis. Define

751
$$A := \sum_{j \neq i^*} e^{a_j / \tau_r}, \quad A > 0 \text{ since } S_t > 1.$$

753 Then the maximum softmax confidence is

755
$$s(c) = \frac{e^{c / \tau_r}}{e^{c / \tau_r} + A} = \frac{1}{1 + Ae^{-c / \tau_r}}.$$

756 This is a logistic-type function of c , strictly between 0 and 1. Differentiating with respect to c gives
 757

$$758 \frac{ds}{dc} = \frac{1}{\tau_r} \frac{Ae^{-c/\tau_r}}{(1 + Ae^{-c/\tau_r})^2} = \frac{1}{\tau_r} s(c)(1 - s(c)).$$

760 Since $\tau_r > 0$ and $0 < s(c) < 1$, the derivative is positive. Thus, conditional on other similarities being
 761 fixed, the top-slot confidence s_t is strictly increasing in c_t , i.e. the maximum cosine similarity. This
 762 monotonicity means s_t faithfully reflects changes in slot affinity, making it a suitable indicator. \square
 763

764 **Theorem 1 (EMA quantile tracker under weak dependence).** This result analyzes the exponentially
 765 smoothed quantile statistic Q_t that underlies SGSE. We show (i) convergence in mean square to
 766 the long-run quantile and (ii) a predictable timescale for detection after a mean shift.
 767

768 *Proof.* As defined by:

$$769 Q_t = \beta Q_{t-1} + (1 - \beta)q_t, \quad \beta \in [0, 1],$$

770 where $\{q_t\}$ is a stationary sequence with $\mathbb{E}[q_t] = q^*$. For clarity, first assume $\{q_t\}$ are i.i.d. with
 771 variance σ_q^2 . By taking expectations, we have
 772

$$\mathbb{E}[Q_t] = \beta \mathbb{E}[Q_{t-1}] + (1 - \beta)q^*.$$

773 This is a standard linear recursion with solution
 774

$$\mathbb{E}[Q_t] = q^* + \beta^t(Q_0 - q^*).$$

775 Hence Q_t converges in expectation to q^* as $t \rightarrow \infty$. Then, for the variance,
 776

$$\text{Var}(Q_t) = \beta^2 \text{Var}(Q_{t-1}) + (1 - \beta)^2 \sigma_q^2.$$

777 Unrolling this recursion,
 778

$$\text{Var}(Q_t) = (1 - \beta)^2 \sigma_q^2 \sum_{i=0}^{t-1} \beta^{2i} = \frac{(1 - \beta)^2}{1 - \beta^2} \sigma_q^2 (1 - \beta^{2t}).$$

779 As $t \rightarrow \infty$, this converges to $\frac{(1 - \beta)^2}{1 - \beta^2} \sigma_q^2$. Thus $Q_t \rightarrow q^*$ in L^2 . If q_t are not i.i.d. but weakly dependent
 780 (e.g., α -mixing), the same result holds with σ_q^2 replaced by the long-run variance. Further, suppose at
 781 time τ the mean shifts from q^* to $q' < q^*$. For $k \geq 0$,
 782

$$\mathbb{E}[Q_{\tau+k}] = q' + \beta^k(\mathbb{E}[Q_\tau] - q').$$

783 Fix a threshold θ with $q' < \theta < q^*$. The smallest integer k such that $\mathbb{E}[Q_{\tau+k}] \leq \theta$ must satisfy
 784

$$\beta^k \leq \frac{\theta - q'}{\mathbb{E}[Q_\tau] - q'}.$$

785 Taking logarithms,
 786

$$k \geq \frac{\ln(\frac{\mathbb{E}[Q_\tau] - q'}{\theta - q'})}{-\ln \beta}.$$

787 Using the inequality $-\ln \beta \geq 1 - \beta$ for $\beta \in [0, 1)$, we obtain
 788

$$k \leq \frac{1}{1 - \beta} \ln\left(\frac{\mathbb{E}[Q_\tau] - q'}{\theta - q'}\right).$$

789 Therefore, the *mean-crossing index* (i.e., how many steps until the expected trajectory falls below
 790 θ) scales as $O((1 - \beta)^{-1})$. This provides a predictable detection timescale: smaller $(1 - \beta)$ (i.e.,
 791 heavier smoothing) leads to slower adaptation. \square
 792

800 **Corollary 1 (False expansion control).** This establishes that the Wilson lower-bound test provides
 801 approximate per-test false expansion control at level α .
 802

803 *Proof.* Let $X_1, \dots, X_n \sim$ i.i.d. Bernoulli(p) with $p = \Pr(s_t \geq Q_t) \geq \tau$. Define $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 804 The one-sided Wilson lower bound $\text{LB}(\hat{p}_n; n, z)$ with $z = \Phi^{-1}(1 - \alpha)$ satisfies, by score-test theory,
 805

$$\Pr(\text{LB}(\hat{p}_n; n, z) \leq p) \geq 1 - \alpha.$$

806 Since $p \geq \tau$, the event $\{\text{LB} < \tau\}$ implies $\{\text{LB} < p\}$. Therefore,
 807

$$\Pr(\text{LB}(\hat{p}_n; n, z) < \tau) \leq \Pr(\text{LB}(\hat{p}_n; n, z) < p) \leq \alpha,$$

808 up to normal approximation error. Thus the per-test false expansion probability is approximately
 809 controlled at level α . \square

810 **Theorem 2 (Anchor-based retention).** This theorem shows that, under mild assumptions, anchor
 811 based distillation guarantees bounded deviation between the old and new models' predictions on
 812 old-class features.

814 *Proof.* Let $p(u) = \text{softmax}(u/T)$ denote the temperature-scaled softmax. By assumption (ii), for
 815 each anchor $a \in \mathcal{A}$,

$$816 \quad \text{KL}(p(g^{\text{old}}(a)) \parallel p(g(a))) \leq \eta.$$

817 By Pinsker's inequality,

$$818 \quad \|p(g^{\text{old}}(a)) - p(g(a))\|_1 \leq \sqrt{2\eta}.$$

820 Now consider any old-class feature $\tilde{\mathbf{h}}$ within distance δ of some anchor a . By Lipschitz continuity of
 821 logits (assumption (i)),

$$822 \quad \|g(\tilde{\mathbf{h}}) - g(a)\|_2 \leq L\delta, \quad \|g^{\text{old}}(\tilde{\mathbf{h}}) - g^{\text{old}}(a)\|_2 \leq L\delta.$$

823 And the Jacobian of $p(u)$ is

$$825 \quad \nabla p(u) = \frac{1}{T} [\text{Diag}(p(u)) - p(u)p(u)^\top].$$

826 Its operator norm is bounded by $1/(2T)$ in $\ell_2 \rightarrow \ell_2$ norm. Thus, by the mean-value theorem,

$$828 \quad \|p(g(\tilde{\mathbf{h}})) - p(g(a))\|_1 \leq \sqrt{C} \cdot \|\nabla p(\xi)\|_{2 \rightarrow 2} \cdot \|g(\tilde{\mathbf{h}}) - g(a)\|_2 \leq \frac{\sqrt{C}}{2T} L\delta,$$

830 and similarly

$$831 \quad \|p(g^{\text{old}}(\tilde{\mathbf{h}})) - p(g^{\text{old}}(a))\|_1 \leq \frac{\sqrt{C}}{2T} L\delta.$$

833 Here \sqrt{C} comes from $\|v\|_1 \leq \sqrt{C}\|v\|_2$, and can be absorbed into big- O notation. By applying the
 834 triangle inequality, we have

$$835 \quad \|p(g^{\text{old}}(\tilde{\mathbf{h}})) - p(g(\tilde{\mathbf{h}}))\|_1 \leq \|p(g^{\text{old}}(a)) - p(g(a))\|_1 + \frac{L}{T}\delta \leq \sqrt{2\eta} + \frac{L}{T}\delta \cdot O(1).$$

837 Hence, for any old-class feature, the deviation between old and new softened predictions is bounded
 838 by $O(\sqrt{\eta} + (L/T)\delta)$. Under mild posterior-margin conditions, this ensures the drop in classification
 839 accuracy is controlled at the same order. \square

840 **Proposition 2 (Slot growth bound).** This proposition shows that SGSE separates true expansions
 841 (driven by genuine novelty) from false expansions (caused by noise), and that the latter are statistically
 842 controlled.

844 *Proof.* Let $M = \lfloor (T - w)/m \rfloor$ denote the number of hypothesis tests up to time T . For each test j ,
 845 let $Y_j \in \{0, 1\}$ be the indicator of a false expansion. By Corollary 1,

$$846 \quad \Pr(Y_j = 1) \leq \alpha.$$

847 Thus

$$849 \quad \mathbb{E}[Y_j] \leq \alpha, \quad \mathbb{E}[F] \leq \alpha M, \quad \text{where } F = \sum_{j=1}^M Y_j.$$

851 If we ensure test windows are disjoint (i.e., $n \leq m$), then the Y_j 's are independent. By Hoeffding's
 852 inequality,

$$854 \quad \Pr(F - \mathbb{E}[F] \geq \epsilon) \leq \exp\left(-\frac{2\epsilon^2}{M}\right).$$

856 Choosing $\epsilon = \sqrt{\frac{M}{2} \ln(1/\delta)}$ yields

$$858 \quad F \leq \alpha M + \sqrt{\frac{M}{2} \ln \frac{1}{\delta}}, \quad \text{with prob. } \geq 1 - \delta.$$

859 Let N_T be the number of true expansions. Then the total slot count is

$$860 \quad S_T \leq S_0 + N_T + F.$$

862 Taking expectations,

$$863 \quad \mathbb{E}[S_T] \leq S_0 + \mathbb{E}[N_T] + \alpha M,$$

and the high-probability bound follows from the inequality above. \square

864 **Algorithm 1** MARS: Training with SGSE and DCDA

865 1: **for** each task $t = 1, \dots, T$ **do**

866 2: Initialize buffers: success buffer \mathcal{B} (size n) and low-confidence buffer \mathcal{L} .

867 3: Initialize quantile tracker $Q_{t,0}$ with the first batch.

868 4: **Stage 1: Feature Adaptation (memory-only)**

869 5: **for** each mini-batch \mathcal{D}_t **do**

870 6: Extract frozen features $\mathbf{h}_T \leftarrow f(\mathbf{x})$ and queries $q \leftarrow W_q \mathbf{h}_T$, $\hat{q} \leftarrow q/\|q\|$.

871 7: Compute routing probabilities $p_i(\mathbf{x}) \propto \exp(\langle \hat{q}, \hat{k}_i \rangle / \tau_r)$ and top confidence $s(\mathbf{x})$.

872 8: Update slot statistics μ_i, c_i with EMA ($\alpha = 0.05$) and anchors \mathbf{a}_i .

873 9: Update quantile q_t from last w samples and smooth $Q_t \leftarrow \beta Q_{t-1} + (1 - \beta)q_t$.

874 10: Record Bernoulli trial $X(\mathbf{x})$ in buffer \mathcal{B} ; compute empirical success rate \hat{p} .

875 11: **if** $\text{LB}(\hat{p}; n, z) < \tau_{\text{succ}}$ (Wilson lower bound test) **then**

876 12: **Expand:** Add new slot j with key k_j from mean query of \mathcal{L} ; set $(\gamma_j, \beta_j) = (\mathbf{1}, \mathbf{0})$

877 13: **end if**

878 14: Update \mathcal{L} with lowest-confidence samples in batch.

879 15: Compute adapted features $\tilde{\mathbf{h}} = (\sum_i p_i \gamma_i) \odot \text{LN}(\mathbf{h}_T) + (\sum_i p_i \beta_i)$.

880 16: Optimize memory by minimizing $\mathcal{L}^{(1)} = \mathcal{L}_{\text{supcon}}(\tilde{\mathbf{h}}; \tau) + \lambda_{\text{smooth}} \|\tilde{\mathbf{h}} - \mathbf{h}_T\|_2^2$.

881 17: **end for**

882 18: **Stage 2: Classifier Tuning (head-only)**

883 19: Store old classifier $g^{\text{old}} \leftarrow g$.

884 20: **for** each mini-batch \mathcal{D}_t **do**

885 21: Compute logits $z \leftarrow g(\tilde{\mathbf{h}})$, $z^{\text{old}} \leftarrow g^{\text{old}}(\tilde{\mathbf{h}})$.

886 22: Compute anchor logits $z_a \leftarrow g(\mathbf{a})$, $z_a^{\text{old}} \leftarrow g^{\text{old}}(\mathbf{a})$ for $a \in \mathcal{A}$.

887 23: Minimize $\mathcal{L}^{(2)}$ and update only g .

888 24: **end for**

889 25: **end for**

890 26: **return** $(W_q, K, \gamma, \beta, g)$.

891

892 **Theorem 3 (Overall complexity).** Finally, we connect slot growth to computational and memory

893 costs.

894

895 *Proof.* From Lemma 1,

896

$$\text{Time}(x_t) = \Theta((d_k + d_T)S_t), \quad \text{Mem}_t = \Theta((d_k + d_T)S_t) + |g|.$$

897

898 Taking expectations and substituting Proposition 2,

899

$$\mathbb{E}[\text{Time}(x_T)] = O\left((d_k + d_T)(S_0 + \mathbb{E}[N_T] + \alpha M)\right),$$

900

$$\mathbb{E}[\text{Mem}_T] = O\left((d_k + d_T)(S_0 + \mathbb{E}[N_T] + \alpha M)\right) + |g|.$$

901

902 For the high-probability bound, we replace S_T by its probabilistic upper bound in Proposition 2,

903 which yields the same asymptotic order. Thus both compute and memory scale linearly with slot

904 count, and slot count itself is controlled by SGSE. \square

905

906 A.3 OVERALL WORKFLOW OF MARS

907

908 The overall design of MARS integrates two complementary mechanisms on top of the frozen LPM

909 backbone. As shown in Algorithm 1, SGSE monitors router confidences and decides when to create

910 new slots by formulating expansion as a statistical decision problem with guarantees on false alarms

911 and detection delay. When a new slot is added, DCDA controls its integration: Stage 1 aligns slot

912 features through supervised contrastive learning with smoothness regularization, and Stage 2 tunes the

913 classifier with Learning-without-Forgetting distillation on current inputs and anchor-based distillation

914 on surrogate prototypes. This workflow ensures controlled slot growth, efficient adaptation, and a

915 provable stability-plasticity balance without updating the large pre-trained encoder.

916

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 5: Anchor–feature similarity on Tiny-ImageNet.

Anchor	After Task 1	After Task 2	After Task 3	After Task 4	After Task 5
A1	0.782 ± 0.046	0.759 ± 0.038	0.746 ± 0.041	0.762 ± 0.029	0.755 ± 0.040
A2	0.842 ± 0.049	0.825 ± 0.050	0.807 ± 0.042	0.792 ± 0.034	0.781 ± 0.056
A3	0.603 ± 0.029	0.618 ± 0.033	0.635 ± 0.042	0.648 ± 0.047	0.662 ± 0.039
A4	0.701 ± 0.027	0.718 ± 0.038	0.734 ± 0.041	0.725 ± 0.039	0.712 ± 0.026
Anchor	After Task 6	After Task 7	After Task 8	After Task 9	After Task 10
A1	0.770 ± 0.042	0.758 ± 0.040	0.749 ± 0.045	0.761 ± 0.043	0.752 ± 0.036
A2	0.794 ± 0.027	0.786 ± 0.055	0.778 ± 0.061	0.791 ± 0.034	0.783 ± 0.048
A3	0.671 ± 0.041	0.658 ± 0.041	0.645 ± 0.022	0.661 ± 0.044	0.653 ± 0.051
A4	0.728 ± 0.026	0.735 ± 0.053	0.742 ± 0.049	0.726 ± 0.046	0.732 ± 0.037

Table 7: Nearest neighbor classes for selected anchors on Tiny-ImageNet.

Anchor	Nearest classes	Interpretation
A1	truck, ship, bus, related vehicle classes	rigid objects or vehicles
A2	dog, cat, deer, bird	animal categories
A3	classes with frequent sky or water textures*	textures or background
A4	bird, airplane, ship	open or airborne scenes

A.4 ANCHOR COVERAGE DIAGNOSTICS

This section provides additional diagnostics that examine the coverage assumption used in Theorem 2. We evaluate the behaviour of the anchors on Tiny-ImageNet under the frozen-encoder setting. Because anchors and routed features share the same feature space \mathbb{R}^{d_T} , we can compare them directly using cosine similarity. We report three diagnostics that characterize anchor–feature similarity, temporal stability, and semantic coherence.

Anchor–feature Similarity. We first study how each anchor relates to the routed features assigned to its slot. We randomly sample four anchors and compute the cosine similarity between each anchor and the router-weighted average of its assigned features after Tasks 1 through 10. The results in Table 5 show that these similarity values remain in the range 0.600–0.850 and change smoothly as new classes are introduced. This indicates that the anchors stay close to the feature distributions.

Anchor Stability. We next examine how each anchor evolves over the task sequence. We compute the cosine similarity between the same anchor after consecutive tasks and average this value across all anchors. This diagnostic measures the temporal consistency of the anchors and is distinct from the anchor–feature similarity reported above. The values in Table 6 show that the anchors change smoothly. This behaviour agrees with the exponential moving average update rule described in Section 3.1. These results further support the local coverage assumption that appears in Theorem 2.

Semantic Coherence. We also study the semantic coherence of the anchors. For each anchor, we retrieve the Tiny-ImageNet classes whose mean features are closest to the anchor. We then describe the shared visual patterns in these classes. The results in Table 7 show that the anchors remain aligned with coherent semantic groups throughout the entire training process. These groups include rigid objects, animals, background textures, and scenes with clear open-space patterns. This behaviour suggests that the anchor space organizes features in a stable and interpretable way as tasks accumulate. For classes marked with an asterisk, the descriptive terms refer to shared visual textures such as sky or water rather than official Tiny-ImageNet labels.

Across all diagnostics, the anchors remain close to routed features, evolve smoothly across tasks, and preserve meaningful semantic structure. These observations support the practical validity of the coverage assumption in Theorem 2. They also show that the anchor space maintains stable and interpretable behaviour throughout the full task sequence.

Table 6: Anchor stability across tasks.

Metric	Value
Mean stability	0.823
Max stability	0.972
Min stability	0.642
Anchors with stability > 0.7	79%