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Abstract: Practitioners often rely on intuition to select action spaces for learn-
ing. The choice can substantially impact final performance even when choosing
among configuration-space representations such as joint position, velocity, and
torque commands. We examine action space selection considering a wheeled-
legged robot, a quadruped robot, and a simulated suite of locomotion, manipula-
tion, and control tasks. We analyze the mechanisms by which action space can
improve performance and conclude that the action space can influence learning
performance substantially in a task-dependent way. Moreover, we find that much
of the practical impact of action space selection on learning dynamics can be ex-
plained by improved policy initialization and behavior between timesteps.
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1 Introduction

Reinforcement learning (RL) is a powerful tool for synthesizing robot motor skills. However, prac-
titioners must carefully select the action space where learning occurs, a decision often guided by
intuition. For instance, a wheeled robot might be associated with a wheel velocity action space, a
legged robot with joint positions, and a manipulator with Cartesian space targets. For some well-
studied tasks, the field has converged on common action spaces. For example, position control
action spaces are widely adopted for learning legged locomotion [1, 2, 3]. However, to actuate the
robot’s motion, these position commands must be converted into torques by a feedback law, both
to perform simulation and control the real robot. This raises several questions: What properties of
position control make it particularly useful for legged locomotion tasks instead of directly learning
to act with torques? Is position control helpful for all types of robot tasks, or are there other, poten-
tially more effective, action spaces for systems with different dynamics? How might other tasks that
have not been extensively studied benefit from different action space design choices?

The historical motivations for considering joint position or velocity control instead of torque differ
from their roles as action spaces in reinforcement learning. Classical systems aim for precise regula-
tion to simplify and stabilize high-level control tasks. In contrast, RL aims to maximize cumulative
rewards over time, which might involve deliberately altering position and velocity tracking errors
to achieve the overall objective. The key point raised originally by Hwangbo et al. [1] is that the
position target in RL is state-indexed and not time-indexed as typical in non-learning approaches.
Still, a difference often arises in performance among action spaces due to their impact on the system
dynamics and the learning dynamics. Just as PD controllers support high-bandwidth control beneath
a slower model-based optimization [4, 5], a learned policy might benefit from a high-frequency low-
level control loop, achieving better performance at a lower frequency. On the other hand, the action
space may also experience benefits in RL that are separate from those in model-based control. For
example, the action space can alter the policy’s exploratory behavior or architecture-related biases.
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Default Action Space

Task Position Delta Position Torque

AllegroHand ✓
Ant ✓
Anymal ✓
AnymalTerrain ✓
BallBalance ✓
Cartpole ✓
FrankaCabinet ✓
Humanoid ✓
ShadowHand ✓ (a) evoBOT (b) Go1

Figure 1: Diverse action spaces in the OmniIsaacGymEnvs suite (left) are present across multiple
robotic tasks. We aim to guide practitioners in selecting action space for new tasks by analyzing a
subset of the suite (highlighted) and the evoBOT and Go1 platforms (right) as a case study.

Contributions Through this lens, we examine the contribution of action space selection on the
Unitree Go1 quadruped, the evoBOT hybrid robot [6], and the OmniIsaacGymEnvs task suite [7].
We pose four novel questions that haven’t been explored in prior work:

1. How does the choice of action space impact learning in systems with distinct dynamics?
We find that even for the same locomotion objective, two robots with distinct dynamics
have opposite trends with regard to action space selection. Section 4.1

2. Is action space selection mostly about tuning exploration? We find that for some tasks,
the performance gap between action spaces can be mostly recovered by intervening in the
initial exploration behavior, while for others, this aspect is less influential. Section 4.2

3. Is action space selection mostly about expressive capacity? We find that despite a signifi-
cant gap in reinforcement learning performance between action spaces, performant policies
can be re-expressed in all those spaces with nearly equal performance. Section 4.3

4. How important is the policy behavior between timesteps? We evaluate the impact of high-
level and low-level control frequency across action space representations and find that the
tuning of these parameters is coupled. Section 4.4

2 Related Work

Action Spaces Robots operate within a physics-defined action space, where for instance elec-
tric actuators use current to track torque via a high-frequency control loop [4]. While reinforce-
ment learning policies can directly output torques [8, 9], many studies suggest alternative action
spaces such as joint position [10, 2, 3], joint velocity [11, 6], or task-space setpoints [12], which are
transformed to torques through feedback laws. Research indicates that action space choices signifi-
cantly affect robot learning in various contexts, including character animation [13, 14], manipulation
[15, 16], and flying robots [17]. While position control is often favored, some studies suggest joint
velocity may be more effective for specific tasks. The OmniIsaacGymEnvs suite [7] underscores
the complexity of action space implementation, featuring a balanced mix of action types. Our work
focuses on configuration-space action spaces due to their relevance in sim-to-real RL.

Inductive Bias through Action Space Design Action space selection serves as an inductive bias
in reinforcement learning, influencing the policy’s hypothesis space before learning starts [14]. This
can also be viewed as a form of environment shaping [18] or a method of policy initialization [19].

Temporal Aspects in Action Space Design Parameters like control frequency can impact learning
as well; lower frequencies may simplify learning by shortening trajectories [20]. Additionally, gain
choices for setpoint tracking influence performance and sim-to-real transfer [21, 22, 23]. Techniques
like action filtering [24] and chunking [25] also can enhance efficiency in long-horizon tasks.
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Figure 2: Action Space Illustrative Diagram. A. Depicts the classical decomposition of the pol-
icy network and low-level controller. B. Shows our generalized parameterization of action spaces,
where the low-level controller acts as a linear layer when the learning frequency matches the control
frequency. C. Suggests viewing differences among action spaces in terms of policy architecture and
initialization, proposing pre-training one action space to replicate another’s exploration.

3 Method

3.1 A Generalized Parameterization of Action Space

In a generalized form for RL, the transformation T from the policy output at , state st , and historical
information ht := ∑k=[0..t−1] ak into motor torque commands τt can be expressed as:

τt = T(at ,st ,ht)

This formulation includes task-space action spaces as well as configuration-space action spaces.
Here we focus on configuration space control where actions are expressed in terms of the joint
position qt , velocity q̇t , and torque τt . Table 1 lists a set of common action spaces that fall in this
category. If the command update and torque update operate at the same frequency (i.e. f Ctrl = f RL),
we can combine them to express any of these action spaces as a linear mapping from the state and
action to a torque. This leads us to the following general form for configuration-space action spaces,
which is a special case of the formulation above:

τt = TJ(at ,st ,ht),

TJ(at ,st ,ht) = c1qt + c2q̇t + c3at + c4ht .

We enumerate action spaces represented by this parameterization in Table 1. Each action space is
simply a linear function of the state and action, independentlyly for each joint. Under this param-
eterization, we can see some simple relationships among the action spaces that may be unintuitive.
Delta position control with a one-step integrator is equivalent to torque control with a damping term.
Delta velocity control with a one-step integrator and torque control are also equivalent.

Figure 2 illustrates how the parameters [c1,c2,c3,c4] may be interpreted as a final linear layer φA(·)
of the policy network π(st). The choice among action spaces corresponds to a choice of manual
initialization for these policy weights. This interpretation encourages us to consider whether the
benefit of the action space is architectural, i.e. allowing the policy to learn parameters of this
form results in better performance, or initialization-related, i.e. proper initialization of the network
parameters seeds good performance.
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Action Space Command Update Torque Update [c1 c2 c3 c4]

Position qdes
t ← at τt ← Kp(qdes

t −qt)−Kd q̇t [−Kp −Kd Kp 0]
Delta Position (MS) qdes

t ← at +qdes
t−1 τt ← Kp(qdes

t −qt)−Kd q̇t [−Kp −Kd 0 Kp]

Delta Position (OS) qdes
t ← at +qt τt ← Kp(qdes

t −qt)−Kd q̇t [0 −Kd Kp 0]
Velocity q̇des

t ← at τt ← Kd(q̇des
t − q̇t) [0 −Kd Kd 0]

Delta Velocity (MS) q̇des
t ← at + q̇des

t−1 τt ← Kd(q̇des
t − q̇t) [0 −Kd 0 Kd ]

Delta Velocity (OS) q̇des
t ← at + q̇t τt ← Kd(q̇des

t − q̇t) [0 0 Kd 0]
Torque τt ← at – [0 0 1 0]

Table 1: Seven special cases for the generalized parametrization of action spaces. The command
update relates the policy output at to the desired state (qdes

t , q̇des
t , or τt ). The torque update relates the

command to the desired state. MS = Multi-step, i.e. the action is applied as a delta to the previous
desired state (e.g. qdes

t−1) which is equal to the sum of all previous actions ht ; OS = One-step, i.e. the
action is applied as a delta to the current state.

3.2 Temporal Aspects of Action Space Design

The generalized parameterization of action spaces indicates they are equivalent to a linear func-
tion of state and policy output (see Fig. 2). However, this does not account for policy behavior
between timesteps when the linear function operates at a higher frequency than policy evaluation,
which is common in real systems. Higher-frequency modules can help bridge the sim-to-real gap,
particularly in tasks where torque control is less important. For instance, a well-tuned low-level po-
sition controller can mitigate the need for accurate torque modeling. In force-sensitive applications
like locomotion, successful methods achieve a low torque sim-to-real gap through direct drives or
learning-based system identification. For further analysis, we denote the following frequencies:

Physics Frequency ( f Phys): The frequency of the physics step in simulation, ideally as high as
possible, but balanced against computation speed. This frequency is crucial for simulating dynamics
accurately while managing resource constraints in real systems.

Control Frequency ( f Ctrl): The frequency of torque updates (see Table 1), determines how fre-
quently actions can change. A lower control frequency can limit the variability of action sequences
but may enhance learning stability by shortening trajectories, thus simplifying credit attribution dur-
ing training. We adopt the methodology from [20] to evaluate different control frequencies while
adjusting the training parameters to keep the effective discount factor and batch size constant.

Learning Frequency ( f RL): The frequency of command updates (see Table 1), which, when
lower than the control frequency, allows the same action to persist over several timesteps. This
can improve credit attribution and speed up learning by reducing the number of policy evaluations,
even as torque updates occur multiple times based on local state information.

3.3 Experimental Setup

Policy Training We utilize the Proximal Policy Optimization (PPO) [26] reinforcement learning
algorithm, known for its effectiveness in sim-to-real motor control [1, 27]. Details on policy training
and network architecture are provided in the appendix. We train on five continuous control tasks,
including three from the OmniIsaacGymEnvs suite (BallBalance, Cartpole, FrankaCabinet) [7] and
two custom locomotion tasks for evoBOT and Go1. The main focus is on evoBOT and Go1, where
the reward combines velocity tracking and regularization terms. Training parameters and reward
formulations are adapted from previous works [3, 6], with all terms independent of action represen-
tations for fair comparison. Simulation is conducted using NVIDIA Isaac Sim.
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c3= 10 15 20 30
c1=-40 c2=-3.0 0.47±0.00 0.50±0.01 0.53±0.00 0.54±0.01
c1=-40 c2=-2.0 0.48±0.00 0.50±0.00 0.53±0.00 0.56±0.01
c1=-40 c2=-1.0 0.49±0.00 0.51±0.01 0.56±0.01 0.68±0.01
c1=-40 c2=-0.5 0.51±0.01 0.53±0.00 0.63±0.02 0.61±0.01
c1=-40 c2=0.0 0.47±0.01 0.50±0.02 0.49±0.02 0.51±0.02
c1=-30 c2=-3.0 0.49±0.01 0.51±0.01 0.53±0.01 0.54±0.00
c1=-30 c2=-2.0 0.50±0.00 0.53±0.00 0.55±0.01 0.57±0.01
c1=-30 c2=-1.0 0.51±0.00 0.55±0.00 0.57±0.01 0.62±0.02
c1=-30 c2=-0.5 0.51±0.01 0.57±0.01 0.59±0.01 0.60±0.01
c1=-30 c2=0.0 0.49±0.00 0.50±0.02 0.48±0.02 0.52±0.01
c1=-20 c2=-3.0 0.51±0.01 0.53±0.00 0.54±0.00 0.56±0.00
c1=-20 c2=-2.0 0.51±0.00 0.53±0.01 0.54±0.01 0.59±0.01
c1=-20 c2=-1.0 0.52±0.01 0.56±0.01 0.58±0.01 0.63±0.00
c1=-20 c2=-0.5 0.53±0.00 0.57±0.00 0.59±0.01 0.62±0.00
c1=-20 c2=0.0 0.53±0.00 0.59±0.02 0.59±0.02 0.59±0.01
c1=-10 c2=-3.0 0.54±0.01 0.55±0.00 0.55±0.00 0.57±0.01
c1=-10 c2=-2.0 0.53±0.01 0.54±0.00 0.54±0.00 0.59±0.01
c1=-10 c2=-1.0 0.52±0.00 0.54±0.01 0.56±0.02 0.64±0.01
c1=-10 c2=-0.5 0.53±0.01 0.57±0.00 0.63±0.00 0.65±0.01
c1=-10 c2=0.0 0.55±0.00 0.60±0.01 0.62±0.01 0.63±0.02
c1=0 c2=-3.0 0.71±0.01 0.78±0.00 0.84±0.01 0.94±0.00
c1=0 c2=-2.0 0.76±0.02 0.88±0.01 0.94±0.02 0.97±0.03
c1=0 c2=-1.0 0.94±0.01 0.99±0.00 1.00±0.00 0.99±0.01
c1=0 c2=-0.5 1.00±0.00 0.99±0.01 1.00±0.00 0.97±0.03
c1=0 c2=0.0 0.99±0.01 1.00±0.00 0.99±0.01 0.98±0.01

(a) evoBOT

c3= 10 15 20 30
c1=-40 c2=-3.0 0.22±0.01 0.26±0.01 0.39±0.00 0.36±0.01
c1=-40 c2=-2.0 0.54±0.03 0.62±0.01 0.64±0.01 0.58±0.02
c1=-40 c2=-1.0 0.91±0.00 0.96±0.00 0.96±0.02 0.85±0.01
c1=-40 c2=-0.5 0.94±0.01 0.99±0.01 0.84±0.02 0.71±0.02
c1=-40 c2=0.0 0.91±0.01 0.84±0.02 0.46±0.06 0.27±0.05
c1=-30 c2=-3.0 0.17±0.01 0.27±0.01 0.39±0.00 0.43±0.09
c1=-30 c2=-2.0 0.55±0.01 0.64±0.00 0.64±0.00 0.57±0.07
c1=-30 c2=-1.0 0.96±0.01 0.99±0.01 0.97±0.01 0.80±0.03
c1=-30 c2=-0.5 0.98±0.01 0.97±0.01 0.77±0.02 0.66±0.05
c1=-30 c2=0.0 0.94±0.00 0.76±0.05 0.51±0.04 0.30±0.15
c1=-20 c2=-3.0 0.16±0.03 0.34±0.02 0.44±0.06 0.65±0.04
c1=-20 c2=-2.0 0.47±0.01 0.65±0.01 0.64±0.00 0.78±0.00
c1=-20 c2=-1.0 0.95±0.01 1.00±0.01 0.96±0.00 0.68±0.02
c1=-20 c2=-0.5 1.00±0.01 0.94±0.02 0.78±0.03 0.60±0.00
c1=-20 c2=0.0 0.95±0.01 0.71±0.02 0.52±0.09 0.52±0.05
c1=-10 c2=-3.0 0.04±0.03 0.32±0.17 0.40±0.18 0.69±0.02
c1=-10 c2=-2.0 0.62±0.01 0.70±0.04 0.67±0.03 0.67±0.01
c1=-10 c2=-1.0 0.95±0.01 0.82±0.03 0.73±0.02 0.62±0.03
c1=-10 c2=-0.5 0.96±0.04 0.74±0.01 0.64±0.02 0.53±0.05
c1=-10 c2=0.0 0.72±0.02 0.62±0.01 0.57±0.01 0.43±0.06
c1=0 c2=-3.0 0.52±0.02 0.59±0.02 0.61±0.07 0.48±0.04
c1=0 c2=-2.0 0.61±0.01 0.59±0.02 0.54±0.03 0.51±0.02
c1=0 c2=-1.0 0.56±0.03 0.59±0.04 0.61±0.05 0.54±0.03
c1=0 c2=-0.5 0.61±0.00 0.53±0.03 0.50±0.01 0.48±0.02
c1=0 c2=0.0 0.54±0.02 0.40±0.09 0.39±0.07 0.43±0.05

(b) Go1

Figure 3: Full sweep over the generalized action spaces with 100 different parameterizations
(c4 = 0). We report the mean and standard error of the normalized return across three seeds for
each table entry, each representing one unique combination of the generalized action space.

Robot Platforms To evaluate the choice of action spaces, we use two robots in our case study:
The Unitree Go1 and the evoBOT. The Unitree Go1 is a quadrupedal robot with 12 electric actuators
standing 40 cm tall and weighing 12 kg. The evoBOT is a dynamically unstable robot based on the
principle of a compound inverted pendulum containing 8 electric actuators, standing 80 cm high
(without the arms) and a total weight of 50 kg.

Sim-to-Real To transfer the trained policies from simulation to the real world, we use standard
domain randomization techniques. To model uncertainty in the robot’s sensing and actuation, we
add Gaussian noise to the sensor observations and implement a lag model to simulate processing
delays. To make the robot robust to varied terrains and disturbances, we also randomize the ground
friction randomization and randomly push the robot during training. The details of the domain
randomization parameters and ranges for each task are given in Section 6.

4 Results

In this section, we evaluate our research questions through experiments in simulation. To verify that
our environment is reflective of a sim-to-real scenario, we also transferred the highest-performing
learned policies from Section 4.1 to the Go1 and evoBOT robots in the real world.

4.1 How does the choice of action space impact learning?

We train policies for the Go1 and evoBOT covering 100 sets of parameters c1,c2,c3 in the general-
ized action space parameterization (Section 3). All policies are trained in simulation. The results are
reported in Fig. 3. Our aim in this experiment was not to find the most optimal action space for each
task, but to broadly characterize the trends in the action space parameters for two robots with differ-
ent dynamics. To accomplish this, it wasn’t important to use the most efficient search method (e.g.
bayesian optimization) but instead cover a wide variety of action spaces to expose trends. Therefore,
we opted for a simple grid search. The ranges for the grid search were chosen to span the settings
provided in OmniIsaacGymEnvs as the tuned default action spaces for similar robots.

First, we observe that the optimal action space can strongly depend on the learning task. Even
for locomotion environments, the Go1 and evoBOT have almost opposite trends in terms of how
adjusting the action space parameters impacts their performance.
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Figure 4: Random rollout behavior of different action spaces. For each action space and robot,
the left column plots the joint positions, velocities, and torques during the rollout of a randomly
initialized policy, while the right column plots the histogram of the same states. The different
colored lines in each plot correspond to different joints of the robot.

Second, we see that the learning dynamics can be very sensitive to the choice of action space pa-
rameters. For evoBOT, introducing nonzero c1 corresponding to a position control loop substantially
weakens performance, as does increasing c2 corresponding to the damping parameter. For Go1, the
robot cannot achieve a high reward without a sufficiently high c1. The difference is due to a differ-
ence in each robot’s natural dynamics. The Go1 benefits from a bias towards a nominal standing
pose since learning gravity compensation is a key part of its task and the optimal strategy involves
oscillating the joints around their nominal pose. The evoBOT on the other hand requires continuous
rotations of the wheel to locomote so the bias towards a nominal position introduced by nonzero c1
can harm performance.

4.2 Is action space selection mostly about tuning initial exploration?

Different action spaces yield different initial exploratory behavior, illustrated in Fig. 4, which plots
the joint position, velocity, and acceleration during random rollouts. The initial behavior is thought
to be impactful for learning some tasks; for example, Hwangbo et al. [1] observed that for quadruped
locomotion, the position control action space results in standing behavior under common network
initializations while commanding torques directly will bias the robot to wriggle and fall. To experi-
mentally evaluate the impact of the initialization, we propose an intervention to alter the initial explo-
ration of the policy. We randomly initialize teacher policy π

c1,c2,c3,c4
θT

and student policy π
c1,c2,c3,c4
θS

.
The student policy is trained using supervised learning to imitate the randomly initialized teacher’s
torque outputs but with a different internal action space: minθS E[(πc1,c2,c3,c4

θT
(s)−π

c1,c2,c3,c4
θS

(s))2
],

for s ∼ π
c1,c2,c3,c4
θT

(s) obtained from rolling out the teacher in the training environment. This will
incentivize the rollouts of the student operating in one action space to match the initial exploratory
behavior of another. The green highlighted blocks in Fig. 4 show that the random rollouts from the
student policy adopt similar characteristics to each teacher.

To evaluate the impact of initial exploration on the dynamics of learning, we evaluate four configura-
tions in Fig. 5: Torque from Scratch, Torque with PD-like Initialization, Position from Scratch, and
Position with Torque-like Initialization, where X with Y -like initialization means we pretrain the X
policy to imitate rollouts from a randomly initialized Y policy, then train the X policy with reinforce-
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Figure 5: Initial exploratory behavior plays a major role in the performance of different action
spaces. For dashed lines, the policy underwent a pretraining stage where it was trained through
imitation learning to match the initial random rollouts sampled from another action space. Mean
and standard error of normalized returns are reported across three random seeds.

ment learning. For Go1, torque policy with position-like initialization boosts the final performance
close to training with a position-controlled policy. Conversely, for evoBOT where the torque action
space is more performant, pre-initializing a PD controller with torque-like initialization results in a
gain, although not a full recovery of final performance. We also consider the FrankaCabinet, Ball-
Balance, and Cartpole tasks from the OmniIsaacGymEnvs suite. We find that for some tasks (Go1,
evoBOT), the performance gap between action spaces can be partly or fully recovered by interven-
ing in the initial exploration behavior, while for others, this aspect is less influential. Surprisingly,
FrankaCabinet obtains the highest performance from a torque policy with PD-like initialization,
suggesting it may benefit from initially exploring like a PD policy and later exploring like a torque
policy. This seems intuitively reasonable since the Franka can benefit from gravity compensation
at the start derived from the bias of PD control and later explore a different space of movements to
open the drawer.

4.3 Is action space selection mostly about expressive capacity?

The complementary view of action spaces being tools for exploration would be that they have dif-
ferent expressive capacities due to their different architecture. We find this is not true for policies
that run at synchronized frequency, and we can train a policy with any of position, delta position,
or torque action space to match a high-performing policy trained in another action space using dis-
tillation (see Table 2). This is naively true because neural networks are universal function approxi-
mators; however, it illustrates that our comparison is devoid of factors that would make the policies
impossible to imitate, such as varied behavior between timesteps, which we evaluate in Section 4.4.

4.4 How important is the policy behavior between timesteps?

We examine the impact of temporal aspects on policy performance across different action spaces (see
Fig. 6). Policies are trained for evoBOT and Go1 with control frequencies ranging from 25 to 200 Hz,
and their performance is evaluated based on total reward. All experiments maintain a fixed physics
frequency of 200 Hz and implement the corresponding RL frequency via frame skips of [1,2,4,8].
Results indicate that control frequency significantly affects performance, with higher frequencies
generally yielding better rewards in torque control mode for evoBOT, while lower frequencies also
perform well for Go1.

Additionally, the behavior between physics substeps impacts final policy performance. We analyze
scenarios where torques are recomputed at each physics substep ( f Ctrl = f Phys) versus when they
remain fixed until the next RL update ( f Ctrl = f RL). Our findings suggest that updating torques
at the physics level leads to superior performance for most action spaces and tasks, especially in
position control, likely due to the effects of stiffness and damping in PD control.
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Figure 6: Temporal behavior of RL frequencies and torque
updates significantly influences policy performance across
action spaces. Performance is evaluated across three seeds,
with mean and standard error of normalized returns.

Normalized Return

evoBOT Go1

Teacher 1.00±0.00 1.00±0.07
Position Student 1.00±0.00 1.00±0.13
Velocity Student 1.00±0.00 1.03±0.16
Torque Student 1.00±0.00 0.99±0.18

Table 2: Expressive capacity
plays a negligible role in the
performance of different action
spaces. The best policy from the
action space sweep serves as the
teacher, while student policies im-
itate it using specific action rep-
resentations. Mean and standard
error of normalized returns are re-
ported across three random seeds.

5 Practical Guidelines for Action Space Selection

While our findings generally support that the choice of action space is specific to the robot and task,
we distill some overall guidelines to assist practitioners when selecting action space for new tasks:

1. When selecting an action space for learning, first consider the robot’s dynamics and the
types of movements you expect to be required. If keeping the joints close to a nominal pos-
ture requires some torque, a position gain may be helpful. If the joints require continuous
rotation, consider a torque action space.

2. The choice of action space has a considerable impact on the initial exploratory behavior of
the policy. You can gain intuition for this by visualizing the position, velocity, and torque of
random rollouts. Combining the initial behavior of one action space with the representation
of another is possible through an initial imitation stage.

3. In general, select the action space gains that provide the most advantageous learning dy-
namics for your task. If you need to deploy the final policy using a different set of gains,
you can use teacher-student learning to perform the conversion.

4. Policy behavior between timesteps can influence performance, but with mixed trends. It’s
generally preferable to run the policy at a higher frequency and without any frame skip.

6 Limitations and Future Work

Although our work identified trends in action space design across multiple tasks, these trends do not
fully explain the differences in learning dynamics. For example, initializing the policy to mimic the
initial exploration of another action space improved performance in several tasks but did not yield
identical learning curves, indicating that some factors remain unexplained. While we enhanced our
mechanistic understanding of how action space selection affects learning, we could not leverage
this understanding to stabilize training or introduce a new initialization scheme that consistently
improves performance across tasks. This underscores the challenge of creating robust training that
is less sensitive to environment design, as action spaces introduce strong, task-specific biases.

Future work could focus on establishing metrics to predict whether an action space is suitable for
new tasks before training, potentially accelerating automated environment design, such as using
LLMs [28]. Additionally, it is important to note that our analysis was restricted to the behavior of
action spaces in combination with the PPO algorithm. While we believe our conclusions are useful
since PPO is widely adopted for sim-to-real tasks, further research is needed to explore how these
results generalize to other RL algorithms.
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A Training Details

Hyperparameter Value

# timesteps per rollout 48
# minibatches per epoch 5

mini-batch size 32768
discount factor 0.99

GAE parameter 0.95
learning rate adaptive [29]
kl threshold 0.008

# workers 1
# environments per worker 4096

Table 3: Hyperparameters used during training with PPO [26].

Hyperparameter Value

Hidden layer dimensions [512,256,128]
Activation function elu

Table 4: Neural network architecture for the
Go1 quadruped locomotion task.

Hyperparameter Value

Hidden layer dimensions [128,64]
Activation function elu

Table 5: Neural network architecture for the
evoBOT locomotion task.

Term Form Coefficient

Lin vel tracking (xy) exp{−|vxy,t −vcmd
xy,t |2/σvxy} 1.0

Ang vel tracking (yaw) exp{−(ωz,t −ωcmd
z,t )2/σωz} 0.5

Joint acceleration |q̈t |2 −2.5e−7
Delta torque |τ t − τ t−1|2 −5e−8

Delta pos |qt −qt−1|2 −4e−3
Lin vel (z) v2

z −1.0
Ang vel (roll-pitch) |ωxy|2 −0.05

Power |τ t · q̇t |2 −2e−5

Foot clearance ∑foot(h
f
z,foot−h f ,cmd

z )2Ccmd
foot (θ

cmd, t) −20.0
Base height (hz−href)

2 −80.0
Base orientation |gt |2 −0.2

Foot contact schedule (force) ∑foot[1−Ccmd
foot (θ

cmd, t)]exp{−|ffoot|2/σc f } 0.2
Foot contact schedule (velocity) ∑foot[Ccmd

foot (θ
cmd, t)]exp{−|vfoot

xy |2/σcv} 0.2

Raibert heuristic (p f
x,y,foot−p f ,cmd

x,y,foot)
2 −5.0

Table 6: Reward for quadruped locomotion (adapted from [30] to eliminate dependence on action
representation, e.g. action change penalty is replaced by other smoothness terms).

Term Form Coefficient

Lin vel tracking (x) exp{−|vxy,t −vcmd
xy,t |2/σvxy} 1.0

Ang vel tracking (yaw) exp{−(ωz,t −ωcmd
z,t )2/σωz} 0.5

Joint acceleration |q̈t |2 −1e−4
Delta torque |τ t − τ t−1|2 −1e−4

Table 7: Reward for evoBOT locomotion (adapted from [6] for improved velocity tracking and
to eliminate dependence on action representation, e.g. action change penalty is replaced by other
smoothness terms).
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Term Dim Scale Noise Std

Gravity vector 3 1.0 0.01
Velocity command 3 1.0 0.0

Joint positions 12 0.5 0.005
Joint velocities 12 0.05 1.0
Clock variable 1 1.0 0.0

Table 8: Observations for the Go1 quadruped
locomotion task.

Term Dim Scale Noise Std

Velocity command 2 2.0 0.0
Linear x-velocity 1 2.0 0.0003

Angular y/z-velocity 2 0.25 0.0005
Pitch angle 1 0.5 0.005

Joint positions 2 0.5 0.001
Joint velocities 2 0.05 0.01

Table 9: Observations for the evoBOT locomo-
tion task.

Term Min Max

Ground friction 0.4 2.0
Ground restitution 0.0 1.0

Initial joint velocities −0.1 0.1
Random pushes (every 10 seconds, m/s) −0.5 0.5

Table 10: Domain randomization parameters for
the Go1 quadruped locomotion task.

Term Min Max

Ground friction 0.5 1.0
Ground restitution 0.0 1.0

Initial joint velocities −0.1 0.1
Random pushes (every 4 seconds, m/s) −0.5 0.5

Table 11: Domain randomization parameters for
the evoBOT locomotion task.
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