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ABSTRACT

Although learning-based image restoration methods have made significant progress,
they still struggle with limited generalization to real-world scenarios due to the
substantial domain gap caused by training on synthetic data. Existing methods
address this issue by improving data synthesis pipelines, estimating degradation
kernels, employing deep internal learning, and performing domain adaptation and
regularization. Previous domain adaptation methods have sought to bridge the
domain gap by learning domain-invariant knowledge in either feature or pixel
space. However, these techniques often struggle to extend to low-level vision
tasks within a stable and compact framework. In this paper, we show that it is
possible to perform domain adaptation via the noise space using diffusion models.
In particular, by leveraging the unique property of how auxiliary conditional inputs
influence the multi-step denoising process, we derive a meaningful diffusion loss
that guides the restoration model in progressively aligning both restored synthetic
and real-world outputs with a target clean distribution. We refer to this method
as denoising as adaptation. To prevent shortcuts during joint training, we present
crucial strategies such as channel-shuffling layer and residual-swapping contrastive
learning in the diffusion model. They implicitly blur the boundaries between
conditioned synthetic and real data and prevent the reliance of the model on easily
distinguishable features. Experimental results on three classical image restoration
tasks, namely denoising, deblurring, and deraining, demonstrate the effectiveness
of the proposed method. Code and model will be made publicly available.

1 INTRODUCTION

Image restoration is a long-standing yet challenging problem in computer vision. It includes a variety
of sub-tasks, e.g., denoising (Zhang et al., 2017; Yue et al., 2024), deblurring (Pan et al., 2016;
Ren et al., 2020), and deraining (Fu et al., 2017; Wang et al., 2021), each of which has received
research attention. Many methods are based on deep learning, typically following a supervised
learning pipeline. Since annotated samples are not available in real-world contexts, i.e., degrada-
tion is unknown, a common technique is to generate synthetic low-quality data from high-quality
images based on assumptions on the degradation process to obtain training pairs. This technique
has achieved considerable success but is not perfect, as synthetic data cannot cover all unknown
or unpredictable degradation factors, which can vary wildly due to uncontrollable environmental
conditions. Consequently, existing methods often struggle to generalize well to real-world scenarios.

Extensive studies have been conducted to address the lack of real-world training data. Some restora-
tion methods improve the data synthesis pipeline to generate more realistic degraded inputs for
training (Zhang et al., 2023; Luo et al., 2022). Other blind restoration approaches estimate the
degradation kernel from the real degraded input during inference and use it as a conditional input to
guide the restoration (Gu et al., 2019; Bell-Kligler et al., 2019). Unsupervised methods (Lehtinen
et al., 2018; Shocher et al., 2018; Chen et al., 2023; Ren et al., 2020; Lee et al., 2022) enhance input
quality without relying on predefined pairs of clean and degraded images. These methods often use
deep internal learning or self-supervised learning, where the model learns to predict clean images
directly from the noisy or distorted data itself. In this paper, we investigate the problem assuming
the existence of both synthetic data and real-world degraded images. This scenario fits a typical
domain adaptation setting, where existing methods can be categorized into feature-space (Tzeng
et al., 2014; Ganin & Lempitsky, 2015; Long et al., 2015; Tzeng et al., 2015; Bousmalis et al., 2016)
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Figure 1: (a) The prediction error of a diffusion model is highly dependent on the quality of the conditional
inputs. In this experiment, we introduce an additional condition alongside the original noisy input. This condition
is the same target image but corrupted with additive white Gaussian noise at a noise level σ ∈ [0, 80]. More
details can be found in the Appendix A1.1. (b) The restoration network is optimized to provide “good” conditions
to minimize the diffusion model’s noise prediction error, aiming for a clean target distribution.

and pixel-space (Taigman et al., 2016; Shrivastava et al., 2017; Bousmalis et al., 2017) approaches.
Both paradigms have their weaknesses: aligning high-level deep representations in feature space
may overlook low-level variations essential for image restoration, while pixel-space approaches often
involve computationally intensive adversarial paradigms that can lead to instability during training.

In this work, we present a novel domain adaptation method for image restoration, which allows for
a meaningful diffusion loss to mitigate the domain gap between synthetic and real-world degraded
images. Our main idea stems from the observation shown in Fig. 1(a). Here, we measure the noise
prediction error of a diffusion model conditioned on a noisy version of the target image. The trend in
Fig. 1(a) shows that conditions with fewer corruption levels facilitate lower prediction errors of the
diffusion model. In other words, “good” conditions give low diffusion loss, and “bad” conditions
lead to high diffusion loss. While such a behavior may be expected, it reveals an interesting property
of how conditional inputs could influence the prediction error of a diffusion model. Our method
leverages this phenomenon by taming a diffusion model conditioned on both the restored synthetic
image and restored real image from the restoration network, as shown in Fig. 1(b). Both networks are
jointly trained, with the restoration network optimized to provide good conditions to minimize the
diffusion model’s noise prediction error, aiming for a clean target distribution. Such a goal drives the
restoration network to learn to improve the quality of its outputs. After training, the diffusion model
is discarded, leaving only the trained restoration network for inference.

While the multi-step denoising process aids the restoration network, a potential shortcut learning
could arise: the diffusion model learns to recognize conditions based on their channel index or pixel
similarity to noisy synthetic labels, thereby neglecting real data. To mitigate this issue, we propose
crucial strategies to fool the diffusion model, making it hard to discriminate between these two
conditions. Specifically, we incorporate a channel-shuffling layer into the diffusion model and design
a residual-swapping contrastive learning strategy to ensure the model genuinely learns to restore
images accurately, rather than relying on easily distinguishable features. These strategies implicitly
blur the boundaries between synthetic and real data, ensuring that both contribute effectively during
joint training and facilitating their alignment with the target distribution.

To verify the effectiveness of our method, we conducted extensive experiments on three classi-
cal image restoration tasks (denoising, deblurring, and deraining), showing promising restoration
performance and scalability to different networks. In summary, we make the following contributions:

• Our work represents the first attempt at addressing domain adaptation in the noise space for
image restoration. We show the unique benefits from diffusion loss in eliminating the gap
between the synthetic and real-world data, which cannot be achieved using existing losses.

• To eliminate the shortcut learning in joint training, we design strategies to fool the diffusion
model, making it difficult to distinguish between synthetic and real conditions, thereby
encouraging both to align consistently with the target clean distribution.

• Our method offers a general and flexible adaptation strategy applicable beyond specific
restoration tasks. It requires no prior knowledge of noise distribution or degradation models
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and is compatible with various restoration networks. The diffusion model is discarded after
training, incurring no extra computational cost during restoration inference.

2 RELATED WORK

Image Restoration aims to recover images degraded by factors like noise, blur, or data loss. Driven
largely by the capabilities of various networks (Dong et al., 2014; 2015; Zamir et al., 2022; Liang
et al., 2021), significant advancements have been made in sub-fields such as image denoising (Zhang
et al., 2021; Ren et al., 2021; Guo et al., 2019; Kim et al., 2020; 2024; Fu et al., 2023; Kousha
et al., 2022), image deblurring (Kupyn et al., 2018; Suin et al., 2020; Zhang et al., 2019), and image
deraining (Jiang et al., 2020; Purohit et al., 2021; Ren et al., 2019; Yang et al., 2017). In image
restoration, loss functions are essential for training models. For example, the L1 loss minimizes
average absolute pixel differences, ensuring pixel-wise accuracy. Perceptual loss uses pre-trained
networks to compare high-level features, ensuring perceptual similarity. Adversarial loss involves a
discriminator distinguishing between real and synthetic images, pushing the generator to create more
realistic outputs. However, the models trained on synthetic images with these conventional losses
still cannot escape from a significant drop in performance when applied to real-world domains.

To address the mismatch between training and testing degradations, some supervised image restoration
techniques (Zhang et al., 2023; Luo et al., 2022) improve the data synthesis pipeline, focusing on
creating a training degradation distribution that balances accuracy and generalization in real-world
scenarios. Some methods (Gu et al., 2019; Bell-Kligler et al., 2019) estimate and correct the
degradation kernels to improve the restoration quality. Our work is orthogonal to these methods,
aiming to bridge the gap between training and testing degradations.

Unsupervised learning methods for image restoration leverage models that do not rely on paired
training samples (Huang et al., 2021; Chen et al., 2023; Huo et al., 2023; Chen et al., 2024).
Techniques like Noise2Noise (Lehtinen et al., 2018), Noise2Void (Krull et al., 2019), and Deep Image
Prior (Ulyanov et al., 2018) exploit the intrinsic properties of images, where the network learns to
restore images by understanding the natural image statistics or by self-supervision. These approaches
have proven effective in restoration tasks, achieving impressive results comparable to supervised
learning methods. However, they often struggle with handling highly complex or corrupted images
due to their reliance on learned distributions and intrinsic image properties, which may not fully
capture intricate details and show limited generalization to other tasks.

Domain Adaptation. The concept of domain adaptation is proposed to eliminate the discrepancy
between the source domains and target domains (Saenko et al., 2010; Torralba & Efros, 2011) to
facilitate the generalization ability of learning models. Previous methods can be categorized into
feature-space and pixel-space approaches. For example, feature-space adaptation methods adjust
the extracted features from networks to align across different domains. Among these methods,
some classical techniques are developed like minimizing the distance between feature spaces (Tzeng
et al., 2014; Long et al., 2015) and introducing domain adversarial objectives (Ganin & Lempitsky,
2015; Tzeng et al., 2017). Aligning high levels of deep representation may overlook crucial low-
level variances that are essential for target tasks such as image restoration. In contrast, pixel-space
adaptation methods (Liu & Tuzel, 2016; Taigman et al., 2016; Shrivastava et al., 2017; Bousmalis
et al., 2017) achieve distribution alignment directly in the raw pixel level, by translating source data to
match the “style" of a target domain. While they are easier to understand and verify for effectiveness
from domain-shifted visualizations, pixel-space adaptation methods require careful tuning and can be
unstable during training. Recent methods (Hoffman et al., 2018; Zheng et al., 2018; Chen et al., 2019)
compensate for the limitation of isolated domain adaptation by jointly aligning feature space and
pixel space. However, they tend to be computationally demanding due to the need to train multiple
networks and the complexity of the cycle consistency loss (Zhu et al., 2017). Different from the
above feature-space and pixel-space methods, we propose a new noise-space solution that preserves
low-level appearance across different domains within a compact and stable framework.

Diffusion Model. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal,
2021) have gained significant attention in generative modeling. They work by gradually transforming
a simple distribution into a complex distribution in a series of steps, reversing the diffusion process.
This approach shows remarkable success in text-to-image generation (Saharia et al., 2022b; Ruiz
et al., 2023) and image restoration (Saharia et al., 2022a;c; Yue et al., 2023). Often, conditions are fed
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to the diffusion model for conditional generation, such as text (Rombach et al., 2021), class label (Ho
& Salimans, 2022), visual prompt (Bar et al., 2022), and low-resolution image (Wang et al., 2023), to
facilitate the approximation of the target distribution. Some recent works propose to adapt diffusion
models for image restoration and its related tasks such as blind JPEG restoration (Welker et al., 2024),
open-set image restoration (Gou et al., 2024), and classification of degraded images (Daultani et al.,
2024). However, they require the diffusion model in both the training and inference stages. In this
work, we show that the diffusion’s forward denoising process has the potential to serve as a training
proxy task to improve the generalization ability of the image restoration model.

3 METHODOLOGY

Problem Definition. We start by formulating the problem of noise-space domain adaptation in the
context of image restoration. Given a labeled dataset1 from a synthetic domain and an unlabeled
dataset from a real-world domain, we aim to train a model on both the synthetic and real data that can
generalize well to the real-world domain. Supposed that Ds = {(xs

i ,y
s
i )}N

s

i=1 denotes the labeled
dataset containing Ns samples from the source synthetic domain and Dr = {xr

i }N
r

i=1 denotes the
unlabeled dataset with Nr samples from the target real-world domain, where ys is the clean image,
xs is the corresponding synthetic degraded image, and xr is the real-world degraded image.

Image Restoration Baseline. The image restoration network can be generally formulated as a deep
neural network G(·;θG) with learnable parameter θG. This network is trained to predict the ground
truth image ys from its degraded observation xs on the synthetic domain. The proposed noise space
domain adaptation is not limited to a specific type of network architecture. One can choose from
existing networks such as DnCNN (Zhang et al., 2017), U-Net (Yue et al., 2019), RCAN (Zhang et al.,
2018c), and SwinIR (Liang et al., 2021). The approach is also orthogonal to existing loss functions
used in image restoration, e.g., L1 or L2 loss, Charbonnier loss (Zamir et al., 2021), perceptual
loss (Johnson et al., 2016; Zhang et al., 2018b), and adversarial loss (Wang et al., 2018; Kupyn et al.,
2018). To better validate the generality of the proposed approach, we adopt the widely used U-Net
architecture and the Charbonnier loss, denoted as LRes, as our baseline. In the joint training, the
diffusion model is trained using a diffusion objective, LDif , while the restoration network is updated
using both the LRes and LDif . The diffusion model is discarded after training.

3.1 NOISE-SPACE DOMAIN ADAPTATION

Ideally, the ground truth images and those restored images by an image restoration model from
both synthetic and real-world data should lie in a shared distribution of high-quality clean images.
However, attaining such an ideal model that can universally map any degraded images onto the
distribution, is exceedingly challenging. Suppose a high-quality image x as a realization derives from
a random vector X , which belongs to the clean distribution PX . We then define the restored synthetic
and real-world outputs from the restoration network as X̂s and X̂r. In this work, we investigate
developing a meaningful diffusion loss to guide the conditional distributions of both synthetic and
real-world outputs aligned to the target clean distribution, i.e., PX = PX̂s = PX̂r .

Given the commonly adopted case where the ground truth images from the synthetic dataset are
available, we first explore adapting the target clean distribution with a perspective of paired data.
Without loss of generality, let us consider a synthetic degraded image xs with its ground truth ys

from the synthetic domain and a real degraded image xr from the real-world domain. Using the
restoration network G(·;θG), we can obtain the restored images ŷs and ŷr, respectively. Then, based
on our observation that the predicted error of a diffusion model is highly dependent on the quality of
the conditional inputs, we incorporate a multi-step denoising process as a proxy task into the training
process. It employs the predicted images ŷs and ŷr as conditions to help the diffusion model fit the
clean distribution. Following the notations in DDPM (Ho et al., 2020), we denote the diffusion model
as ϵθ and formulate its optimization to the following objective:

LDif = E ∥ϵ− ϵθ (ỹ
s|C(ŷs, ŷr), t)∥2 , (1)

where ỹs =
√
ᾱty

s +
√
1− ᾱtϵ, ϵ ∼ N(0, I), ᾱt is the hyper-parameter of the noise schedule, and

C(·, ·) denotes the concatenation operation along the channel dimension. During the joint training,

1Following the notations in domain adaptation, we use “label” to represent the ground truth image.
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Figure 2: During the joint training, the restored synthetic images smoothly converge to the expected distribution
over the epochs. However, the model tends to find a shortcut in real data by matching the similarity between the
conditions and the paired clean image or remembering the channel index. Consequently, the restoration network
learns to corrupt the high-frequency details in real-world images and the diffusion model tends to ignore them.

supervision from the diffusion loss in Eq. 1 will back-propagate to the conditions ŷs and ŷr if they
are under-restored, i.e., far away from the expected distribution. This encourages the preceding
restoration network to align ŷs and ŷr as closely as possible to the target clean distribution.

The joint training, however, could lead to trivial solutions or shortcuts, as shown in Fig. 2. For
example, it is easy to distinguish the synthetic and real-world conditions by the pixel similarity
between ŷs and ỹs or the channel index. Consequently, the restoration network will cheat the
diffusion network by roughly degrading the high-frequency information in real-world images. As
illustrated in Fig. 2 (bottom), we identify three stages in this training process: (I) Diffusion network
struggles to recognize which conditions aid denoising as both are heavily degraded, promoting the
restoration network to enhance both; (II) Synthetic image is clearly restored and is easy to discriminate
from its appearance; (III) The diffusion model tends to distinguish between the conditions, leading it
to focus on the synthetic data while ignoring the real-world data.

3.2 ELIMINATING SHORTCUT LEARNING IN DIFFUSION

Positive Sample

Anchor

Repel Noise GT

Attract

Negative Sample

Conditions Paired Noisy GT

Conditions

Residual Swapping Channel Shuffling LayerLegend

Figure 3: The proposed solution to eliminate
the shortcut learning in diffusion.

To avoid the above shortcut in the diffusion model, as
shown in Fig. 3, we first propose a channel shuffling layer
fcs to randomly shuffle the channel index of synthetic
and real-world conditions at each iteration before con-
catenating them, i.e., C(fcs(ŷ

s, ŷr))2. We show in the
experiments that this strategy is important to bridge the
gap between synthetic and real data.

In addition to channel shuffling, we devise a residual-
swapping contrastive learning strategy to ensure the net-
work learns to restore genuinely instead of overfitting the
paired synthetic appearance. Using the ground truth noise
ϵ as the anchor, we construct a positive example ϵpos de-
rived from Eq. 1: ϵpos = ϵθ (ỹ

s|C(ŷs, ŷr), t), i.e., the
expected noise from the diffusion model conditioned on
restored synthetic and real-world images. We then swap the residual maps of these two conditions
and formulate a negative example ϵneg as follows:

ϵneg = ϵθ (ỹ
s|C(ŷs←r, ŷr←s), t) , ŷs←r = xs ⊕Rr, ŷr←s = xr ⊕Rs, (2)

where Rs and Rr are the estimated residual maps of the synthetic and real-world images from the
restoration network, and ⊕ is the pixel-wise addition operator. By swapping the residual of two
conditions, we constrain the diffusion model to repel the distance between the wrong restored results
and the expected clean distribution regardless of their context relation. Based on the positive, negative,
and anchor examples, a compact residual-swapping contrastive learning can be formulated as:

LCon = max (∥ϵ− ϵpos∥2 − ∥ϵ− ϵneg∥2 + δ, 0) , (3)
2We omit the shuffling operator fcs for notation clarity in the following presentation.
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where δ denotes a predefined margin to separate the positive and negative samples. In this way, the
loss of diffusion model takes the mean of Eq. 1 and Eq. 3. By implementing the above strategies, we
challenge the diffusion model to distinguish between synthetic and real conditions based on trivial
solutions, thereby encouraging both to align with the target clean distribution.

In the above formulation, the synthetic restored image of the condition, denoted as ŷs, and the input
to the diffusion model, represented as ỹs, form a pair of data with evident pixel-wise similarity.
This similarity can potentially mislead the diffusion model to ignore the real restored image ŷr in
condition as analyzed in Fig. 2. It is important to note that the target distribution encapsulates the
domain knowledge of high-quality clean images, including but not limited to the ground truth images
in the synthetic dataset. Motivated by this observation, the proposed method can be further extended
by replacing the noisy input ỹs with ỹc, defined as ỹc =

√
ᾱty

c +
√
1− ᾱtϵ, where yc is randomly

sampled from an unpaired extensive high-quality image dataset. This strategy disrupts the pixel-wise
similarity between the synthetic condition and the diffusion input, thus enforcing the diffusion model
to guide both the synthetic and real conditions predicted by the restoration network at the domain
level. We will provide an ablation on this setting in Appendix A4.1.

3.3 TRAINING

In the proposed training strategy, the restoration and diffusion models are jointly optimized by:

L = LRes + λDif

[
LDif + LCon

2

]
. (4)

Following previous works (Ganin & Lempitsky, 2015), we gradually change λDif from 0 to β to
avoid distractions for the main image restoration task during the early stages of the training process:

λDif =

(
2

1 + exp(−γ · p)
− 1

)
· β, (5)

where γ and β are empirically set to 5 and 0.2 in all experiments, respectively. And p = min
(
n
N , 1

)
,

where n denotes the current epoch index and N represents the total number of training epochs.

3.4 DISCUSSION

The proposed denoising as adaption is reminiscent of the domain adversarial objective proposed
by (Ganin & Lempitsky, 2015). The main difference is that we do not use a domain classifier with
a gradient reversal layer but a diffusion network for the loss. We categorize methods like (Ganin
& Lempitsky, 2015) as feature-space domain adaptation approaches. Unlike these approaches, we
show that denoising as adaptation is more well-suited for image restoration as it can better preserve
low-level appearance in the pixel-wise noise space. Compared to pixel-space approaches that usually
require multiple generator and discriminator networks, our method adopts a compact framework
incorporating only a single additional denoising U-Net, ensuring stable adaptation training. After
training, the diffusion network is discarded, requiring only the restoration network for inference. The
framework comparison of the above three types of methods is presented in Appendix A2.

4 EXPERIMENTS

Dataset. For image denoising, we follow previous works (Zhang et al., 2018a; Zamir et al., 2022)
and construct the synthetic training dataset based on DIV2K (Timofte et al., 2017), Flickr2K (Nah
et al., 2019), WED (Ma et al., 2016), and BSD (Martin et al., 2001). The noisy images are obtained
by adding the additive white Gaussian noise (AWGN) of noise level σ ∈ [0, 75] to the source clean
images. We use the training dataset of SIDD (Abdelhamed et al., 2018) as the real-world data.
For image deraining, the synthetic and real-world training datasets are respectively obtained from
Rain13K (Yang et al., 2017) and SPA (Wang et al., 2019). For image deblurring, GoPro (Nah et al.,
2017) and RealBlur-J (Rim et al., 2020) are selected as the synthetic and real-world training datasets,
respectively. Please note that we only use the degraded images from these real-world datasets (without
the ground truth) for training purposes. For large-scale unpaired clean images, all images in the
MS-COCO dataset (Lin et al., 2014) are used. The test images of the real-world datasets (SIDD, SPA,
RealBlur-J) are employed to evaluate the performance of the corresponding image restoration models.

6
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Input GT Vanilla DANN PixelDA OursCyCADA Ne2Ne MaskedDDSN

29.02 30.01 22.91 35.7330.7430.23 30.77 30.46

39.8735.9530.5736.0233.9232.6333.89 33.98

Figure 4: Visual comparison of the image denoising task on SIDD test dataset (Abdelhamed et al., 2018). PSNR
(dB) is marked for each comparison sample.

Table 1: Quantitative evaluation of the image denoising task on SIDD test dataset (Abdelhamed et al., 2018).
syn, real, both denote the model is trained on synthetic, real-world (w/o GT), and both synthetic and real-world
(w/o GT) datasets, respectively. The best score is highlighted.

Metrics Vanilla DANN DSN PixelDA CyCADA Ne2Ne MaskedD Ours
Space - Feature Feature Pixel Feature&Pixel - - Noise

Train Data syn both both both both real real both
Train Loss LRes LRes+LGan LRes+LGan LRes+LGan LRes+LGan LOri LOri LRes+LDif

PSNR ↑ 26.58 30.09 28.40 29.24 30.81 25.61 28.51 34.71
SSIM ↑ 0.6132 0.7832 0.6984 0.7611 0.8067 0.5647 0.7196 0.9202
LPIPS ↓ 0.3171 0.1348 0.2265 0.1403 0.1256 0.3039 0.2348 0.0903

Training Settings. To train the diffusion model, we adopt α conditioning and the linear noise schedule
ranging from 1e-6 to 1e-2 following previous works (Saharia et al., 2022a;c; Chen et al., 2020).
Moreover, the EMA strategy with a decaying factor of 0.9999 is also used across our experiments.
Both the restoration and diffusion networks are trained on 128× 128 patches, which are processed
with random cropping and rotation for data augmentation. Our model is trained with a fixed learning
rate 5e-5 using Adam (Kingma & Ba, 2014) algorithm and the batch size is set to 40.

Metrics. The performance of various methods is mainly evaluated using the classical metrics: PSNR,
SSIM, and LPIPS. For the image deraining, we calculate PSNR/SSIM using the Y channel in YCbCr
color space following existing methods (Jiang et al., 2020; Purohit et al., 2021; Zamir et al., 2022).

4.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

We implement the image restoration network using a handy and classical U-Net architecture, which
is trained with the proposed noise-space domain adaptation strategy. To validate its effectiveness, we
compare the proposed method with previous domain adaptation approaches, including DANN (Ganin
& Lempitsky, 2015), DSN (Bousmalis et al., 2016), PixelDA (Bousmalis et al., 2017), and Cy-
CADA (Hoffman et al., 2018), covering the feature-space and pixel-space solutions. For the purpose
of a fair comparison, we retrained these methods with the same standard settings and datasets.
Besides, we also consider some unsupervised restoration methods and representative supervised
methods such as Ne2Ne (Huang et al., 2021), MaskedD (Chen et al., 2023), NLCL (Ye et al., 2022),
SelfDeblur (Ren et al., 2020), VDIP (Huo et al., 2023), and Restormer (Zamir et al., 2022).

Comparison Results. The quantitative and qualitative comparison results are shown in Tab. 1-3 and
Fig. 4-5. From the comparison results, the proposed method leads the comparison methods on three
image restoration tasks. In particular, previous feature-space domain adaptation methods (Ganin &
Lempitsky, 2015; Bousmalis et al., 2016; Hoffman et al., 2018) fail to perceive the crucial low-level
information and pixel-space domain adaptation methods (Bousmalis et al., 2017; Hoffman et al., 2018)
yield inferior results since the precise style transfer between two domains is hard to control during
the adversarial training. Moreover, the self-supervised and unsupervised restoration methods (Huang
et al., 2021; Chen et al., 2023; Ye et al., 2022; Huo et al., 2023) show noticeable artifacts and limited

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Quantitative evaluation of the image deraining task on SPA test dataset (Wang et al., 2019).

Metrics Vanilla DANN DSN PixelDA CyCADA NLCL Restormer Ours
Space - Feature Feature Pixel Feature&Pixel - - Noise
Train Data syn both both both both real syn both
PSNR ↑ 33.04 32.21 33.56 30.20 32.21 20.68 34.17 34.39
SSIM ↑ 0.9540 0.9443 0.9552 0.9288 0.9442 0.8412 0.9492 0.9571
LPIPS ↓ 0.0477 0.0597 0.0512 0.0758 0.0597 0.0967 0.0488 0.0462

Table 3: Quantitative evaluation of the image deblurring task on RealBlur-J test dataset (Rim et al., 2020).

Metrics Vanilla DANN DSN PixelDA CyCADA SelfDeblur VDIP Ours
Space - Feature Feature Pixel Feature&Pixel - - Noise
Train Data syn both both both both real real both
PSNR ↑ 26.27 26.11 26.28 24.71 26.36 23.23 24.89 26.46
SSIM ↑ 0.8012 0.7945 0.8003 0.7646 0.7936 0.6699 0.7404 0.8048
LPIPS ↓ 0.1389 0.1345 0.1380 0.1583 0.1340 0.1340 0.1589 0.1363

generalization performance due to some inevitable information loss and hand-crafted designs on
specific degradations. By contrast, our method ensures a general and fine domain adaptation in the
pixel-wise noise space across various tasks, without introducing unstable training.

Analysis. From the above results, we can observe that the proposed method enables noticeable
improvements beyond the Vanilla baseline (trained only with synthetic datasets) on the tasks involved
with high-frequency noises, such as image denoising. In particular, +8.13/0.3070 improvements on
PSNR/SSIM metrics are achieved. We argue that the target of image denoising naturally fits that of
the forward denoising process in the diffusion model. It is more sensitive to other Gaussian-like noises
with respect to the pre-sampled noise space. Thus, an intense diffusion loss would be back-propagated
if the conditioned images are under-restored, and the preceding restoration network tries to eliminate
the noises on both the synthetic and real-world images as much as possible.

4.2 ABLATION STUDIES

To evaluate the effectiveness of different components in the proposed method, we conduct ablation
studies regarding the sampled noise levels of the diffusion model, determined by the time-step t,
and the training strategies to avoid shortcut learning, as shown in Tab. 4 and Fig. 6. Concretely,
with low noise intensity, e.g., t ∈ [1, 100], it is easy for the diffusion model to discriminate the
similarity of paired synthetic data even when the restored conditions are under-restored. As a result,
the shortcut learning occurs earlier during the training process and the real-world degraded image
is heavily corrupted by the restoration network, of which most all details are filtered. On the other
hand, when the intensity of the sampled noise is high, e.g., t ∈ [900, 1000], the diffusion model is
hard to converge and the whole framework has fallen into a local optimum. By sampling the noise
from a more diverse range with t ∈ [1, 1000], the restored results can be gradually adapted to the
target clean distribution. Moreover, the generalization ability of the restoration network gains further
improvement using the designed channel shuffling layer (CS) and residual-swapping contrastive
learning strategy (RS), which effectively eliminates the shortcut learning of the diffusion model.
Therefore, higher restoration performance on real-world images and more realistic visual appearance
can be observed from (d) to (e) and (f) in Tab. 4 and Fig. 6. We also demonstrate that both synthetic
data and real data are indispensable for domain adaptation in diffusion, excluding each of them
would lead to dramatic degradation in real-world performance (shown in the last two rows in Tab. 4).
Particularly for excluding the real data, the performance is almost degraded to that of the Vanilla
model. More analysis can be found in the Appendix A3.

4.3 SCALABILITY

Comparisons. In this work, we aim to present a general domain adaptation strategy for various
restoration tasks, which is scalable to any restoration network. In particular, a basic and lightweight
U-Net is used to validate the effectiveness of our method. However, such an architecture essentially
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OursCyCADA RestormerNLCL
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35.73 35.8829.9031.29
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25.18 28.03

27.39
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27.60

27.90

28.1925.01

Figure 5: Visual comparison of the image deraining and image deblurring tasks on SPA Wang et al. (2019) and
RealBlur-J Rim et al. (2020) test datasets. PSNR (dB) is marked for each comparison sample.

Noise Sampling Range Strategy Metrics
Exp. [1, 100] [900, 1000] [1, 1000] CS RS PSNR↑ SSIM↑
(a) 26.58 0.6132
(b) ✓ 16.77 0.6070
(c) ✓ 27.36 0.6590
(d) ✓ 32.07 0.8706
(e) ✓ ✓ 32.91 0.9082

(f) (Ours) ✓ ✓ ✓ 34.71 0.9202
(Only syn) ✓ 26.83 0.6286
(Only real) ✓ 32.60 0.8831

Table 4: Ablation studies of variant networks on the SIDD test
image denoising dataset. CS and RS represent the proposed
channel shuffling layer and residual-swapping contrastive
learning strategies, respectively.

Input (a) (b)

(c) (d)

GT

(e) (f)

Figure 6: Visual comparison results of ablation
studies. The complete version (f) of the proposed
method achieves the best restoration results with
visually pleasant appearances.

limits the upper bound of the restoration performance compared to some recent self-supervised
works (Jang et al., 2021; Lee et al., 2022; Jang et al., 2024; Cai et al., 2021) tailored to specific tasks.

Here, we provide experiments to demonstrate higher performance can be achieved using advanced
restoration networks with the proposed adaptation strategy. The comparison results are shown in
Table 5. In this experiment, we employ a restoration network based on U-Net architecture with deeper
layers (named Ours*, the complexity details of different restoration networks are listed in Table A2
of Appendix). The results demonstrate that denoising performance on the SIDD test set has been
improved from 34.71 dB to 35.52 dB. Moreover, we show the proposed method can generalize well
to other unseen real-world datasets in Fig. 8. These datasets are not encountered during the network’s
training and fall outside the distribution of the trained datasets.

We believe more powerful restoration networks can enable further improvements, but pursuing
extraordinary performance for specific tasks is not the goal of this work.

Discussion. Compared to the self-supervised methods (Chen et al., 2023; Ren et al., 2020; Huo et al.,
2023; Jang et al., 2021; Lee et al., 2022), our work shows the following unique strengths: it is not
bounded to the specific tasks; it is free to the prior knowledge of underlying noise distribution and
degradation mode; and it is friendly to the type of preceding restoration networks. We also argue
the difference between domain adaptation and self-supervised learning methods: Domain adaptation
transfers knowledge from one domain to another with different distributions, improving performance
in new, unseen environments. Self-supervised learning, on the other hand, learns from unlabeled data
by generating pseudo-labels or exploring the target distribution from the data itself. Both approaches
reduce the reliance on large labeled data but address different challenges: domain adaptation focuses
on bridging domain gaps, and self-supervised learning leverages data’s inherent structure.

Performance vs. Complexity. We validate the scalability of the proposed method using different
variants of U-Net-based restoration networks and other types of architectures, such as the Transformer-
based network (Wang et al., 2022). In particular, we classify these networks based on their model
sizes and obtain: Unet-T, Unet-S (the model applied in Sec. 4.1), Unet-B, Uformer-T, Uformer-S,
and Uformer-B. More details are listed in the Appendix. The quantitative results vs. computational
costs are shown in Fig. 7. As we can observe, as the complexity increases, the vanilla restoration
network (orange elements) tends to overfit the training synthetic dataset and perform worse on the
test real-world dataset. In contrast, the proposed method can improve the generalization ability of

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Metrics C2N AP-BSN† Ours Ours*

Space - - Noise Noise

Type SS SS DA DA

Train Data both real both both
PSNR ↑ 35.35 34.90 34.71 35.52
SSIM ↑ 0.9370 0.9000 0.9202 0.9297

Table 5: Ours* denotes using a more advanced restoration net-
work with deeper layers, trained by our domain adaptation strat-
egy. SS and DA represent the self-supervised and domain adap-
tation methods, respectively. † The asymmetric pixel-shuffle
downsampling for the blind-spot network is exploited.
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Figure 7: Scalability of the proposed method
on different network architectures.
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Figure 8: Visual results of the proposed method on unseen real-world datasets: the denoising test dataset
DND (Plotz & Roth, 2017) and deraining test dataset ‘Real-Internet’ (Yang et al., 2017).

restoration models with various sizes (blue elements). It is also interesting that for each type of
architecture, our method can facilitate better performance as the complexity of the restoration network
increases, demonstrating its effectiveness in addressing the overfitting problem of large models.

4.4 LIMITATION

The natural mission of the diffusion model is to predict the noises mixed in the input, which are
sampled from a high-frequency distribution. Diffusion models excel at capturing and modeling these
small-scale variations due to their ability to learn fine-grained details through their denoising process.
Thus, more intuitive improvements can be observed in image denoising and deraining tasks, which
typically involve high-frequency noises in images. By contrast, artifacts in blurred images, which
consist of smooth, gradual changes in intensity, can be less sensitive for diffusion models. They affect
larger regions of the image and require the model to correct broad, sweeping distortions rather than
fine details. Consequently, diffusion models may struggle to fully restore images with low-frequency
noise compared to those with high-frequency noise. We leave it as one of the future work.

5 CONCLUSION

In this work, we have presented a novel approach that harnesses the diffusion model as a proxy network
to address the domain adaptation issues in image restoration tasks. Different from previous feature-
space and pixel-space adaptation approaches, the proposed method adapts the restored results to the
target clean distribution in the pixel-wise noise space, resulting in significant low-level appearance
improvements within a compact and stable training framework. To mitigate the shortcut issue arising
from the joint training of the restoration and diffusion models, we randomly shuffle the channel index
of two conditions and propose a residual-swapping contrastive learning strategy to prevent the model
from discriminating the conditions based on the paired similarity. Furthermore, the proposed method
can be extended by relaxing the input constraint of the diffusion model, introducing diverse unpaired
clean images as denoising input. Experimental results demonstrate the effectiveness of our approach
over feature-space and pixel-space domain adaptation methods, as well as its scalability surpassing
that of self-supervised methods across a range of image restoration tasks.
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APPENDIX

A1 IMPLEMENTATION DETAILS

A1.1 CONDITION EVALUATION ON DIFFUSION MODEL

This work is inspired by the beneficial effects that favorable conditions facilitate the denoising process
of the diffusion model, as shown in Fig 1(a). In this preliminary experiment, we first condition and
train the diffusion model with an additional input in addition to its conventional input. Then, we test
the noise prediction performance of this model under different conditions. To be specific, we corrupt
the condition by adding the additive white Gaussian noise (AWGN) of noise level σ ∈ [0, 80] to its
original clean images, which are performed on 1,000 images in the MS-COCO test dataset (Lin et al.,
2014). The noise prediction error of the diffusion model is evaluated using the mean square error
(MSE) metric.

A1.2 COMPARISON SETTINGS

In comparison experiments, we mainly compare the proposed approach with three types of previous
methods: domain adaptation methods, including DANN (Ganin & Lempitsky, 2015), DSN (Bous-
malis et al., 2016), PixelDA (Bousmalis et al., 2017), and CyCADA (Hoffman et al., 2018); unsu-
pervised image restoration methods, including Ne2Ne (Huang et al., 2021), MaskedD (Chen et al.,
2023), NLCL (Ye et al., 2022), SelfDeblur (Ren et al., 2020), and VDIP (Huo et al., 2023); some
representative supervised methods which serve as strong baselines in image restoration such as
Restormer (Zamir et al., 2022), to comprehensively evaluate generalization performance of different
methods. MaskedD (Chen et al., 2023) proposes masked training to enhance the generalization
performance of denoising networks, showing the potential to be directly applicable to real-world
scenarios. It shares the same goal with our work.

A1.3 SCALABILITY EVALUATION

To provide a comprehensive evaluation of the proposed method, we apply six variants of the image
restoration network in our experiments, including three variants of convolution-based network (Ron-
neberger et al., 2015): Unet-T (Tiny), Unet-S (Small), and Unet-B (Base); and three variants of
Transformer-based network (Wang et al., 2022): Uformer-T (Tiny), Uformer-S (Small), and Uformer-
B (Base). These variants differ in the number of feature channels (C) and the count of layers at
each encoder and decoder stage. The specific configurations, computational cost, and the parameter
numbers are detailed below:

• Unet-T: C=32, depths of Encoder = {2, 2, 2, 2}, GMACs: 3.14G, Parameter: 2.14M,

• Unet-S: C=64, depths of Encoder = {2, 2, 2, 2}, GMACs: 12.48G, Parameter: 8.56M,

• Unet-B: C=76, depths of Encoder = {2, 2, 2, 2}, GMACs: 17.58G, Parameter: 12.07M,

• Uformer-T: C=16, depths of Encoder = {2, 2, 2, 2}, GMACs: 15.49G, Parameter: 9.50M,

• Uformer-S: C=32, depths of Encoder = {2, 2, 2, 2}, GMACs: 34.76G, Parameter: 21.38M,

• Uformer-B: C=32, depths of Encoder = {1, 2, 8, 8}, GMACs: 86.97G, Parameter: 53.58M,

and the depths of the Decoder match those of the Encoder.

A2 DISCUSSION ON DIFFERENT DOMAIN ADAPTATION METHODS

As discussed in Sec. 3.4, we described the effectiveness of the proposed method beyond the previous
feature-space and pixel-space domain adaptation methods. We further show their specific framework
in Fig. A1. In contrast to previous adaptation methods, our method is free to a domain classifier or
discriminator by introducing a meaningful diffusion loss function.
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Figure A1: Overview of different domain adaptation (DA) approaches. (a) Feature-space DA aligns the
intermediate features across source and target domains. (b) Pixel-space DA translates source data to the “style"
of the target domain through adversarial learning. (c) The proposed noise-space DA is specifically designed for
image restoration. It gradually adapts the results from both source and target domains to the target clean image
distribution, via multi-step denoising. Particularly, the function network represents a restoration network in the
context of image restoration.

A3 ADDITIONAL ANALYSIS OF THE ABLATIONS

We provided an ablation study to show the necessity of real data, in which only the synthetic or
real data conditions onto the diffusion model. The quantitative results of the SIDD test dataset are
listed in Table. 4. It is noteworthy that both synthetic and real data are essential for effective domain
adaptation in diffusion models. Omitting either type results in a significant decline in real-world
performance. In particular, when real data is excluded, the performance nearly degrades to the level
of a Vanilla model. We further analyze the necessity of each condition as follows: (1) Real data
typically acts as a “bad” condition that introduces extra noises to the diffusion model, because the
restoration network cannot restore it well under the domain gap. Consequently, valid and strong
diffusion loss would backpropagate to the restoration network, promoting it learns to provide “good”
conditions. As a benefit of the proposed strategies to eliminate the shortcut, the model progressively
adapts the real data into the target clean distribution in a multi-step denoising manner. (2) Synthetic
data in two conditions can provide useful guidance in the early training stage, ensuring the diffusion
model continuously focuses on these condition channels.

A4 ADDITIONAL COMPARISON RESULTS

A4.1 EXTENSION

Table A1: Quantitative metrics of the proposed method
(Ours) and its extension on unpaired condition case (Our-
Ex). The results are formed with PSNR/SSIM/LPIPS.
The best and second best scores are highlighted and
underlined.

Task Ours Ours-Ex

Denoising 34.71/0.9202/0.0903 33.44/0.8938/0.1064

Deraining 34.39/0.9571/0.0462 34.20/0.9587/0.0444

Deblurring 26.46/0.8048/0.1363 26.44/0.8030/0.1313

As mentioned in Sec. 3.2, our method can extend
to the unpaired condition case by relaxing the
diffusion’s input with the image from other clean
datasets. Thus, the shortcut issue can be poten-
tially eliminated since the trivial solutions such
as matching the pixel’s similarity between input
and condition do not exist. Such an extension
keeps the channel shuffling layer but is free to
the residual swapping contrastive learning. We
show the quantitative evaluation in Tab. A1. The
results demonstrate that although the condition
and diffusion input are unpaired, our method can
still learn to adapt the restored results from the
synthetic and real-world domains to the clean
image distribution, which also complements the restoration performance of the paired solution in
some tasks like deraining and deblurring.
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Table A2: Complexity comparison of the image restoration methods: Parameter (M), GMACs (G).

Metrics C2N AP-BSN Restormer Selfdeblur MaskedD VDIP Ours Ours*
Parameter 164.57 3.10 26.09 3.10 12.00 3.00 8.56 65.19
GMACs 280.48 60.62 35.24 23.83 188.03 23.77 12.48 22.46

Input GT

Ours Ours*

Input GT

Ours Ours*

Figure A2: Visual results on detailed textures and high-frequency components. The proposed method serves as a
general learning strategy for the image restoration task, offering scalability across different restoration networks.
It also enables performance improvements as the complexity of the restoration network increases (Ours*).

A4.2 MORE ADVANCED RESTORATION NETWORKS

As discussed in Sec. 4.3, the proposed domain adaptation method offers strong scalability across
various image restoration networks. Additionally, by employing more advanced restoration networks
with the proposed denoising as adaptation (Ours*), the performance can be further improved, yielding
results that are more perceptually aligned with the ground truth as illustrated in Fig. A2. The
complexity comparison of different image restoration networks is listed in Table A2.

A4.3 ADDITIONAL VISUAL COMPARISON RESULTS

We visualize more comparison results on the image denoising task in Fig. A3, image deraining task
in Fig. A4, and image deblurring task in Fig. A5. In particular, we name the proposed method and its
extension as ‘Ours’ and ‘Ours-Ex’, respectively.

A4.4 ADDITIONAL VISUAL RESULTS ON OTHER REAL-WORLD DATASETS

To show the generalization ability of the proposed method, we also visualize the restored results of
the proposed method on other real-world datasets (Plotz & Roth, 2017; Yang et al., 2017) in Fig. A6,
Fig. A7, Fig. A8. Please note that these datasets were not seen during the network’s training and fall
outside the distribution of the trained datasets.

A4.5 FAILURE CASE

We show the failure case of our method and comparison methods in Fig A9. Particularly, our
method fails to restore the images with challenging degraded distortions such as strong noises and
out-of-distribution noises. These real-world degradations induce a significant gap compared with the
synthetic dataset, burdening the learning model to effectively adapt the restored results into the clean
domain.

A4.6 ANALYSIS ON TRAINING DYNAMICS AND COMPLEXITY

To clearly demonstrate the impact of the introduced diffusion loss during training, we have visualized
the related metrics of training dynamics in Fig. A10 (left). It is easy to find that the restoration model
trained only with L1 loss on the synthetic dataset tends to overfit quickly and performs poorly on
the real-world validation set. By contrast, the diffusion loss can effectively guide the restoration
model to adapt to the real-world domain in a multi-step denoising manner, consistently improving the
restoration performance on the real-world validation set.
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PixelDAVanilla DANN CyCADA
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OursNe2Ne MaskedD Ours-Ex

Figure A3: Visual comparison of the image denoising task on SIDD test dataset (Abdelhamed et al., 2018).
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PixelDADANN DSN CyCADA
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Figure A4: Visual comparison of the image deraining task on SPA test dataset (Wang et al., 2019).
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Figure A5: Visual comparison of the image deblurring task on RealBlur-J (Rim et al., 2020) test dataset.
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Input DANN MaskedD Ours

Figure A6: Visual results of the proposed method on unseen DND real-world denoising test dataset (Plotz &
Roth, 2017).
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Input DANN MaskedD Ours

Figure A7: Visual results of the proposed method on unseen DND real-world denoising test dataset (Plotz &
Roth, 2017).
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Input OursRestormer

Figure A8: Visual results of the proposed method on unseen ‘Real-Internet’ real-world deraining test
dataset (Yang et al., 2017).
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Input Ours Comparison

Figure A9: Failure case of the proposed method and comparison methods.

Figure A10: Analysis of training dynamics (left) and model complexity (right) of the proposed method.

Moreover, we show the results of validating the diffusion model with different complexities in
Fig. A10 (right). To be specific, we classify the diffusion models into three types based on their
complexities in each layer: Diffusion-T: [32, 32, 64, 64], Diffusion-S: [32, 64, 128, 128], Diffusion-
B: [64, 128, 256, 512] (exploited in this paper). As we can observe, the real-world restoration
performance gains further improvements as the complexity of the diffusion model increases, i.e.,
from Diffusion-T to Diffusion-B. We also provide a deep analysis of diffusion loss in restoration
tasks when compared with MAR (Li et al., 2024): MAR models the per-token probability distribution
using a small MLP as the diffusion model. It is trained jointly with the AR model to achieve efficient
image generation. In particular, the tokens are small in size and represent high-level semantic features.
By contrast, our diffusion model serves for the low-level image restoration problem. It directly adapts
the restoration results at the dense and wide-scale pixel level, requiring accurate discrimination on the
rich texture of images. Therefore, in the context of adapting the restoration model to the real-world
domain, the diffusion model cannot be extremely simplified.

DnCNN Restormer SwinIR

Vanilla Ours Vanilla Ours Vanilla Ours

PSNR 25.98 30.46 24.10 33.98 30.86 34.85

SSIM 0.5911 0.7637 0.5194 0.9183 0.7544 0.9153

Table A3: Performance comparison on SIDD test set of the commonly-used and SOTA restoration models under
different training strategies. Vanilla denotes training the model on the paired synthetic datasets and Ours denotes
training with the proposed domain adaptation strategy.
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A4.7 VALIDATION ON MORE RESTORATION MODELS

Our work contributes to a novel and general domain adaptation strategy for image restoration, which
cannot be replaced by current self-supervised methods. To this end, we further validated our method
on the commonly used and SOTA restoration models, such as DnCNN, Restormer, and SwinIR. The
quantitative evaluations of these comparison methods are reported in Table. As we can observe, all
restoration models trained on synthetic datasets failed to generalize well to the real-world dataset. By
incorporating the proposed domain adaptation training strategy, the real-world performance of these
models gains significant improvements, demonstrating the favorable generalization and scalability of
our method.
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